Lawrence Berkeley National Laboratory
 LBL Publications

Title

Antiproton Star Observed in Emulsion
Permalink
https://escholarship.org/uc/item/3502v5gk

Authors

Chamberlain, Owen
Chupp, Warren W
Goldhaber, Gerson
et al.
Publication Date
1955-12-01

UNIVERSITY OF CALIFORNIA

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Dívision, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Radiation Laboratory Berkeley, Callfornia
 Contract No. W-7405-eng-48

ANTIPROTON STAR OBSERVED IN EMULSION
Owen Chamberlain, Warren W. Chupp, Gerson Goldhaber, Emilio Segrè, and Clyde Wiegand
and
E. Amaldi, G. Baroni, C. Castagnoll. C. Franzinett, and A. Manfredini
Istituto di Fisica della Università, Roma Istituto Nazionale di Fisica Nucleare, Sezione di Roma
December 1, 1955

Printed for the U. S. Atomic Energy Commission

ANTIPROTON STAR OBSERVED IN EMULSION
Owen Chamberlain，Warren W，Chupp，Gerion Goldhaber． Emilio Segrè，and Clyde Whegand
Radiation Laboratory University of Callfornia Berkeley California and
E．Amaldi，G．Baroni，C．Castagnoll， C．Eranzinetti，and A．Manfredins
Iotituto di Fiaica della Univerolta，Roma Istituto Nazionale di Fisica Nucleare，Sezione di Roma

December 1p， 1955

In connection with the antiproton investigation at the Bevatron wo planned and cearried out a photographic－emulsion exposure in a magnetically selected beam of negative particles．The magnetic oystem was identical to the firot half fone de－ Aecting magnet and one magnetic lens）of the system used in the antiproton experi－ ment of Chamberlain，Segrè，Wiegand，and Ypsilantiso ${ }^{1}$ The selected particlee left the copper target in the forward direction with momentum $1.09 \mathrm{Bev} / \mathrm{c}$ ．

Cosmic－ray evento possibly due to antiprotons had been observed previously by Hayward，${ }^{2}$ Cowan，${ }^{3}$ Bridge，Courant，DeStaebler，and Rosai，and（in nuclear emulsion）by Amaldi，Castagnoli，Cortini，Franzinett，and Manfredini． 5 We wero hopeful of finding events simhlar to the last one in our experiment as reported here．

When the antiproton concentration in the beam used was measured ${ }^{2}$（one for about 50,000 pions）it became posaible to make a rough eatimate of the number of antiprotons that should come to reat in the nuclear emulaion atacks．Since tho range of antiprotone from the selected beam was considerably greater than the length of

[^0]the stackg, it was necessary to slow the antiprotons in an absorber $1132 \mathrm{~g} \mathrm{~cm}^{-2}$ of copper) before allowing them to enter the stacks in which they were to come to rest. The estimate of the number of antiprotons stopping in the stacks is hence rather drastically affected by the assumption made about their nuclear attenuation cross section in the copper absorber. If the attenuation crose section is assumed equal to that for protons we could expect about 7 antiprotons, while if it were twice that for protons we could expect only about 2.5 antiprotons. in the ecanned part of our stacks. Up to now only one has been found. We think, however, that we should not draw any conclusion about the attenuation crosa section from these numbers, since our efficiency of observation is different for different scanning methods and is not easy to estimate.

Intensive scanning in Rome and in Berkeley has produced one star, found in Rome, and shown in Fig. 1. It has outgoing tracks as indicated in Table I. . The most reasonable asoumption is that Track a is a pion. If the black prongs are due to protons the visible energy release may be computed as follows: kinetic energy of the two pions, 389 Mev; reet energy of the two pions, 280 Mev; kinetic energy of the black tracks, 101 Mev ; and binding energy for the black tracks, 56 Mev . The total visible energy is 826 Mev .

The momentum unbalance is $520 \mathrm{Mev} / \mathrm{c}$, and in the most conservative (and very unlikely) assumption that four neutrons escaped, all with the same energy and in the same direction, the minimum invisible energy release would be 65 Mev . A more realistic eatimate of the energy represented by neutrons would be 160 Mev . It is also possible that a very considerable energy went into neutral pions. Other essumptions on the identity of the heavy tracks give higher total energy releases.

We must conclude that the visible energy release in consistent with that to be expected from the annihilation of an antiproton-proton pair; it would be harder to explain as due to a reaction in which all the energy io eupplied by only one particle of protonic mass.

From the magnetic analysis we can say that the particle that generated this otar entered the copper absorber preceding the emulsiono with a momentum of $1090 \neq 20 \mathrm{Mev} / \mathrm{c}$ 。 The obaerved range io $132 \mathrm{~g} \mathrm{~cm}^{-2}$ of copper plup 9.31 cm of emulaion. From these data we can calculate the ratio M / Mp of the masc of thio particle to the proton masio, and we obtain $1.02 \neq 0.04$ in which the main uncertainty Is due to the uncertainty in momentum. We have not conaidered here the remote posadbility of inelaotic ocattering in the copper aboorber, which would lead to a

Lower mase value. Somewhat less precise values of the mase are obtained from measurements made exclusively in the emuloion. All these mana measurements are reported in Table II.

This event is corroborating evidence, but not final proof for the interpretation given in Ref. 1 that the new particles observed at the Bevatron are antiprotons. It also givea aupport to the hypothesio that the atar deacribed in Ref. 5 was indeed due to an antiproton.

A more detalled description of these reaulta la being aubmitted for publicaHon in the Nuovo Cimento.

This work was performed under the suspices of the U. S. Atomic Energy Commisaion.

Table 1

Analysis of the Star Shown in Fig. 1

Track	Range (Microns)	$\begin{aligned} & \text { Ionization } \\ & (I / I 0) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{p}^{\beta} \\ (\mathrm{Mev} / \mathrm{c}) \end{gathered}$	Identsty	$\begin{gathered} E \\ (\mathrm{Mev}) \end{gathered}$
a	23960 observed	0.90 ± 0.06	$430 * 70$	- 4 (1)	332.0
b	19500 observed	8.29 ± 0.09	98 ± 9	T	57.5
c	4250 total			8	32.3
d	1100 total			$p(7)$	15.0
e	340 total			$p(7)$	7.6
1	202 total			$p(7)$	5.5
8	4050 total			$p(7)$	31.4
h	206 total			$p(?)$	5.5
1	100 total			$p(7)$	3.6

The particle identity for Tracks o and c fe certain. That for Track a is only inghtly uncertain; a very improbable altornative se that ft de due to an olectron. The others can be protons or alpha particlee.

Table II

Mass Measurements			
Method	Range Interval from the and (mm)	$\mathrm{M} / \mathrm{m}_{0}$	$\mathbf{M / M}$
Ionization-scattering	82.0-66.0	1840 ± 250	1.00 ± 0.14
Ionlzation (mean gap length)-range	74.6-19.0	1810 ± 100	0.99 ± 0.06
Same	5-0	1740 ± 130	0.95 ± 0.07
Scattering-range	10-0	16354280	0.89 ± 0.15
Residual range-momentum (from orbit)	$\begin{gathered} 93.14 \text { plus } \\ 132 \mathrm{~g} \mathrm{~cm}^{-2} \text { copper } \end{gathered}$	1865* 70	1.02土0.04
Weighted average		1824* 51	0.99 ± 0.03

Fig. 1. Reproduction of the star. L is the incoming track $(9.31 \mathrm{~cm}$ of range). For the explanation of the other tracks see Table I.

[^0]: O．Chamberlain，E．Segrè，C．Wiegand，and To Ypoilantio．Phyo．Rev． $\mathbf{1 0 0}_{0}$ 947 （1955）．
 2 Evano Hayward．Phyo．Rev．72． 937 （1947）。
 ${ }^{3}$ E．W．Cowan Phyo．Rev．94． 162 （1954）。
 ${ }_{5}{ }^{5}$ Bridge，Couranto DeStaebler．and Roosi。 Phyo．Rev．95． 1101 （1954）． 5 E．Amaldi，C．Cantagnoll，G．Cortind，C．Franginett，and A．Manfredinh， Nuovo Cimento IS 492 （1955）．

