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ABSTRACT

The problem of finding the overall second order elastic moduli for a two
phase material is considered. The model material consists of an incompressible,
isotropic matrix containing spherical inclusions which are also incompressible
and isotropic. To evaluate the effective moduli, the second order elastic field
of a single inhomogeneity in an infinite matrix under homogeneous displacement
boundary conditions is determined. This elastic field is assumed to approximate
that of the composite with dilute concentration of the second phase.
Subsequently, through the equality of the strain energies of the inhomogeneous
material and an equivalent homogeneous material, possessing the overall elastic
moduli, explicit expressions for elastic constants are obtained.



1.Introduction

The problem of determining the overall or effective properties of a linearly
elastic material composed of several distinct phases has received considerable
attention in the last few decades. Either rigorous bounds on the effective
properties are established which are based on variational principles [Paul
(1960), Hashin-Shtrickman (1963)]1, or a variety of approximate methods have been
proposed, such as self-consistent method and its variants [Budiansky (1965), Hill
(1965), Christensen & Lo (1979)], differential formulation [Cleary (1980}], the
Mori-Tanaka approach (1983) [Norris {1989)], and the poly-inclusion formalism
[Ferrari (1994)]. All these approximate methods are founded on the celebrated
Eshelby’s solution of the problem of a single inhomogeneity in an infinite matrix
[Eshelby (1957)].

In contrast, the problem involving nonlinear elastic materials has hardly
been investigated, which is understandable given the inherent mathematical
difficulties in the analysis. Nevertheless, using variational principles,
estimates for the overall properties of certain classes of composites have been
found by Willis (1990), Talbot & Willis (1987), Ponte Castafieda & Willis (1988).

Within the context of second order elasticity, Ogden (1974) determined the
overall second order bulk modulus for a composite consisting of dilute
concentration of spherical particles. Hashin (1985) studied a similar problem
except at finite concentration of inhomogeneities using the composite spheres
assemblage model. Most recently Chen & Jiang (1993) considered the problem of
finding all of the second order constants for a bi-phase composite. They used a

perturbation approach which avoids solving a second order boundary value problem,



however, the calculations become so bulky as to prevent them from presenting
explicit expressions for the overali moduli.

In this paper we consider a second order elastic composite, consisting of two
phases each of which is incompressible and isotropic. The constraint of
incompresSibility, which approximates most elastomers, reduces the number of
elastic constants from five (for an unconstrained isotropic, second order
material) to two. Furthermore, the ﬂéld equations are simplified considerably
making it possible for us to obtain explicit expressions for the overall
constants of a composite with dilute concentration of inhomogeneities.

In Section 2 the field equations for the first and second order problems are
recalled. Then the second order equations are shown to simplify due to the
incompressibility condition. This is in part based on the work of Carroll &
Rooney (1984). In Section 3, a particular boundary value problem is considered
where a body, which is infinite in extent and contains a spherical inhomogeneity,
is subjected to homogeneous displacement boundary conditions. The first order
solution is recorded and is subsequently used to determine the second order
elastic solution. In the first part of Section 4 we show that the
incompressibility of the constituent phases implies incompressibility of the
effective homogeneous material. In the second part, explicit expressions for the
overall constants are obtained through equality of the strain energies of the
homogeneous effective medium and the composite. This is in turn based on the
result first obtained by Hill (1972) for large deformations. The last Section is
devoted to discussing some of the features of the results. In addition,
corresponding overall properties for the special case of rigid fillers in an

incompressible matrix are obtained.



2. Formulation and Simplification of the Field Equations

Let X and x denote the position vectors of a material point in a fixed
reference configuration and in the current configuration, respectively. The
deformation function of the equilibrium problem is defined by x = x(X). The

deformation gradient F and the displacement gradient H are given by

F = -5 Ho=F-1, (2.1)

where | is the identity tensor. Let n represent the first Piola-Kirchhoff stress
tensor and W = W(F) represent the strain energy as measured per unit volume of
the reference configuration. Then the Lagrangian form of equations of
equilibrium, in the absence of any body force, and stress constitutive equations

are given as

Div e = O, (2.2)
n o= W (2.3)

where Div refers to the divergence operator with respect to X. In addition, the

constraint of incompressibility requires that
det F = 1. (2.4)

As a result of this constraint the material response consists of a determinate



part, depending only on F, and a constraint part involving an unknown scalar
field P which is determined from the differential equation and the boundary

conditions. Hence (2.2) and {2.3) become

L 0, (2.5)
o= PF o+ W (2.6)
ij ji aF
i
Here summation convention is implied by repeated indices. Let B = EET denote the

Cauchy-Green deformation tensor. For isotropic elastic solids the strain energy

depends on the principal invariants of B. Therefore using (2.4) we have

W = W(I1,l2), (2.7)

| =B, |, = B .= B, | =1, (2.8)
where B' denotes the adjugate of B. Equations (2.5) and (2.6) hold in general for
any nonlinear elastic incompressible material.

We now want to use the method of successive approximations to derive the
second order elasticity equations. To that end, let a measure of smallness ¢ be

defined as

e = sup WH(), (2.9)
B -2

where u}jni = Tr HTH and B is the region of space occupied by the body in its
undistorted reference configuration. Following Signorini (1936), let us assume

that the prescribed surface displacements or tractions on 8B admit a power series
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expansion in £ such that

X -X = €0+ €2 v+ O(e?) on 3B, (2.10)
or

mono=es + e? to+ O(e®) on 8B, (2.11)

where n refer to direction cosines for the outward unit normal to 8B. Under
these conditions, Stoppelli (1954) has shown the existence and uniqueness of the
solution to (2.5) and (2.6). Furthermore provided e is sufficiently small, the
displacement and stress fields admit an absolutely convergent power series

expansion in . Thus

x - X =eu + g2 v+ O(e®) in B, (2.12)

i |

mo=eo + e T + 0) in B. (2.13)

When the strain energy is expanded as a power series in l1 and l2, Rivlin

(1953) has shown that it can be expressed as
W = Cl(l-3 + C(-3) + 0", (2.14)

where C1 and C2 are material constants. When (2.12) to (2.14) are substituted in
(2.4), (2.5) and (2.6), two sets of field equations are obtained which correspond
to the first and second order expansions in e.

The first order equations are

u = 0, (2.15)



o = 0, (2.16)

o= -D ‘Sa,' + 2 u eij, (2.17)

u = u on 8B, (2.18)
or
s.n =35  onsB, (2.19)
where
e, =3 +u) and u=2(C +C) (2.20)

This is the familiar set of equations in linear elasticity for incompressible
materials where p is the shear modulus.

The second order equations are

1
vi'i =75 Ua,j uj,i, (2.21)
Tijj = 0, (2.22)
Tij = -q aij + ”(Va,j + vj'i - U uk'i) 4+ p u“
-8 C2 eikekj, (2.23)

V. = V on 8B, (2.24)
or

T n =t on 38B. (2.25)



Equation (2.21) represents the incompressibility condition for the second order
solution. In the above sets of equations, p and q are the first and second order
pressure terms, respectively, in the expansion of P. For traction boundary value
problems there is a further condition, known as Signorini’s compatibility
condition, which ensures existence of the second order solution and is expressed
as

j e uc n dA = O. (2.26)
B ijk K

This completes formulation of the field equations. We now proceed to simplify
the second order equations. Following Chan and Carlson (1970), we introduce the
transformation

W=V ui'j uj. (2.27)

Then (2.21)-(2.23) reduce to

w. = 0, (2.28)
L 0, (2.29)
T= g8 +plwo + w) o+ T, (2.30)
U] 1} 1.} 1 ij
where g“ is given in terms of the first order solution as
T, T K (ukei}’k +ou. et uj,keki) ULy
-8C, €8y (2.31)



If (2.30) is substituted in (2.29), there resuits a body force term given by
r:” . Carroll and Rooney (1984) identified a part of this body force which is
conservative and therefore can be absorbed into the unknown second order pressure

term q. To see this let

T =1" +4¢ee, (2.31)
ij i ) ik kj
where
_ 1
&—C1-C2—2u-202, (2.32)
+ pr—
T =M (ukeij’k - u},,keki - uk’iekj) +p uj‘i. (2.33)

Carroll and Rooney (1984) showed that

+ 1
- - . .34
T 5 (u‘, p,j i ejkejk)'i (2.34)
Hence
* — +
T a + 4 € (eikekj)'j, (2.35)
where
q" = - % (uj P -n ejkejk), (2.36)

Equation (2.35) can be recast in an alternative form which facilitates the

computations. Let W represent the first order rotation tensor,
W = Vi (ui’j -u ). (2.37)

Then it can be shown that



(2.38)

{ ) = ee  + %(eikejk)i + W”,k ejk.

e e ). e .
ik Kkj,j ik kj,j
Thus
# . _ + #
r”J- (g + q),i + 4 éﬁ(eikekj’j + VmGemL (2.39)
where
a = -2¢ee. (2.40)

We now summarize below the simplified second order equations in light of the

preceding results.

w. =0, (2.41)
.+ B =0, (2.42)
v = -q ,5“ + M (Wa; + w“), (2.43)

q+q++q*. The boundary conditions are

with the second order pressure q'

wo= \TVi on 8B, (2.44)
or
r;j n o= Ti on 8B, (2.45)
where
Bi = 4 £ (eikekjlj + WM ejk), (2.46)
W o= v - % u u on 8B, (2.47)
i i Wi
Ti = ’(i - (r:‘. + q*aij + q*Bij) n on 8B, (2.48)
T = p (u e, +e W, +W el)+p (e, - W)
(2.49)

+(4 € - 2 y) eikekj.

Once the above set of equations are solved for w, the second order displacement
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and stress fields are given by

V.= woo+ % u uj, (2.50)

T = 1;j + rfj + (q+ + q*) 6”. (2.51)

3. Solution of the Problem of Spherical Inhomogeneity In an

Infinite Matrix

As discussed in the Introduction, in order to find the overall properties
under the assumption of dilute concentration, we will solve a particular boundary
value problem in second order elasticity. Consider an infinite body B, consisting
of a spherical inhomogeneity of radius R embedded in an otherwise homogeneous
matrix. To solve the first order problem we impose homogeneous displacement

boundary conditions

c
i
N
X
c
i
Nim
X
c
I

E X3 on 8B, (3.1)

which are given in terms of the Cartesian coordinates and are symmetric with
respect to X,-axis. Hence, the boundary value problem is axisymmetric as well.
The solution to this problem is based on Eshelby’s well-known result [Eshelby
(1957), Mura (1982)] that the strain field in the inhomogeneity is constant. The
first order displacement fields in the two phases are given in terms of spherical

coordinates (r,9,n) as

u. = sr(1-3 coszﬂ) in g, (3.2)

10



u, = 38r cos @ sin o in Q, (3.3)

u = [-e- §% (3 cos?s - 1) + 3 B cos] / (2 umrz)

r

+ Er (3 cos® -1) /2 in B\Q, (3.4)
u, = -3 cosssine (2L 4 Lg) in B\Q, (3.5)
uor

where Q is the spherical domain of radius R occupied by the inhomogeneity, the
subscript m refers to material properties of the matrix, and «, B, v and & are
constants to be determined by the interface conditions. To obtain the pressure,

(2.17) is substituted into (2.16), yielding (in Cartesian coordinates)
p = 2pe = pu . (3.6)

Transforming (3.6) into spherical coordinates and using displacement fields (3.2)
to (3.5), the pressure is then obtained by integration. To within a constant, the

pressure is

p = B (3 cos’s - 1)/ r° in B\o, (3.7)

p =0 in Q. (3.8}
The stress fields in each of the phases, as obtained from (2.17), are

o, = 2m3(1-3 cos?s) in Q (3.9)

c.s = 6 ws cos o sin o in Q, (3.10)
o =8+ 2a-9gcos™ /' + (3cos’ -1) (129/1° +u E)

in B\Q, (3.11)

11



., = sin © cos ¢ (24 3/ ° -3/ -3 u E) in B\ (3.12)

where the subscript f refers to the material properties in the inhomogeneity.

Finally imposing continuity of U, Ug o and s at the interface, r=R, the

constants are determined to be
« =p=5ulu -p)RE/Bu + 2u), (3.13)

m m f m f
¥y =p -p)RRE/(Bp + 2u), (3.14)
m m f m f
8 = -bu E/(23u + 2u)). (3.15)
m m f

With the first order solution known, we now proceed to determine the body
force B (Equation (2.46)) which appears in the second order equations (2.42).
Since e and W are uniform in the inhomogeneity, it is clear from (2.46) that the
body force vanishes there and needs to be determined only in the matrix. For the
purpose of computations, it is more convenient to use the cylindrical polar

coordinates (p,%,z) where

o= p2 + 2%, (3.16)

The body force term is rewritten as

B = Bj” + sz’, (3.17)
Bi(” =4¢ e e, (3.18)
Bi‘z’ =4¢g W e. (3.19)

Using the first order solution in the matrix, as given in (3.4) and (3.5), e and

12



W are evaluated and upon substitution in {3.17) to (3.19) yield

B, =3Bp¢l 308r224-1807{24-5umr7E22—6r3r422
Bar'z + 755 %2 + u P E + ar® 39" ul s (3.20)
B = £ [(90 B 1’ 540 B 4)z° +(-15 B umr7 E+(-72 B2 -24 « B)I*
+54083r2)23 + (SBumrgE + 18a8r5~7263r4) z]
/ (ui i), (3.21)

We now want to determine w appearing in (2.41) to (2.43). These equations

have an alternative representation in terms of Boussinesq potentials, ¢ and y,
for an axisymmetric problem. We will show that the body force can be further
decomposed into a conservative part (which becomes part of the second order

pressure) and a component which acts in the z direction only. That is,

B = -Grad q, + blp.2) e, (3.22)

Then the field eqguations are

Ap = -z b, Ay = b,

(3.23)
2pw = Gradlp + zy) -2 ¢ e, (3.24)
=y | + ulGrad w + (Grad w)'], (3.25)

where A denotes the Laplacian. In order to reduce the body force B to the form of

(3.22), Bp is integrated with respect to p and the result is designated as -q,-

Then B is written as

13



l_3=Bpep+Bze = -q, € +(Bz+q1’z-q ) e

- -z .o -p 12 -z
= -Grad q, + (B + g, ) e = -Grad q, + be, (3.26)
where
b=B +aq _ = -€[(366 2708 725 +((9 g% 18 a B)r?

+36 8 ¥ )zl / (2 w2 7, (3.27)
and the guantity a, is given by in spherical coordinates as

Q= §m[r2 cos’s (-24 « umr7 E-42 o?¢* + 180 « 7 1)

1

+8 « umrg E + r4(72 o r’- 360 « ar)cos% + 42 /°

9 ayr'/(8 “i r'?), (3.28)

As before, the conservative part of the body force in (3.26) is absorbed in
the second order pressure term. Consequently (2.48) and (2.51) are changed to
; Y+ q + a)s ] n on 8B, (3.29)

T =1 + r:i +q" + g + a,)s,. (3.30)

With the body force given in (3.27), particular solutions for (3.23) are

determined to be

¢ = [3 a, cos’s + 6 a, cos’s - a1)r2 + 12 a, cos’s
+1b6 a, cos?s - a2] / re, (3.31)
y' =[(3 a, cos’s +(-3 a, -2 a )cos o) r? -4 a, cos’s

+(-3 a, - 9 az) cos ¢} / r7, (3.32)

14



where

a =56 ¢/8u) a, = B v € /(2]

a, = -36°¢ /t4ud), a, = -9B7E/Bu) (3.33)

The corresponding displacement field, given in (3.24), is then

we = -[(15 a cos?s +(6 a-9 aa)cos?‘«s 2 al)r2 + 20 aqcos”«s
+(9 a, -12 a4)005219 -3 aZ] / (umr7), (3.34)
wh = -[(9 ascos% +6 a cos o)sin o r? +(20 340053«9

+15 a,cos #)sin ©] / (umr7), (3.35)

where the superscript p stands for the particular solution.
The displacement boundary conditions for the second order problem, given in
(2.47), are chosen so as to make w vanish at infinity. Therefore, it is necessary

that

-1
V.= 5 uou on 4B. {3.36)

_ E - E - p2
V-ZX, V——ZX, v, = E )(3 on 48B. (3.37)
The homogeneous solutions to (3.23) are two harmonic potentials ¢ and y which
admit the following product representation [Sternberg, Eubanks and Sadowsky

(1952)]
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- 1 . n-1
¢ =70 pn(cos 9), g =T pn(cos 9),

n = 0, 1, £2,... (3.38)

where P is the Legendre polynomial of degree n. The appropriate potentials are
those which have the same angular dependence as the particular solution in (3.34)
and (3.35). Once these harmonic potentials are identified, use of (3.25) leads to

the following solutions in the matrix and the inhomogeneity.

h 2 4 2 ) 6
Z”mwr_ m, po/r (Bmz/r +6m4/r)p2 (5m3/r
+20 m_/ r4)p4 in B\, (3.39)
h ', 4 6 4, ¢ .
2 oW = sin o [-m2 pz/ r —(m3/ r+ 2 m5/ r )p4] in B\@Q, (3.40)
— 3 3 5 .
2 B W = 2(f1r -3 f4r )p:2 +4 (f2r 5 f5r )p4 in Q, (3.41)
. . 3 s _ 3 5 ’ .
2 B Wy = sin o [(-f1r +5 f4r )p2 + (f2r +7 fsr )p4] in Q,
(3.42)
, dp
where p = N . The coefficients m_,....,m_and f_,...,f are a set of, as yet,
n dcos » 1 5 1 5

undetermined constants associated with the matrix and inclusion response,
respectively.
The second order pressure q  is determined using (2.42) and (2.43). We also

note that
w o= w" + w in B\ (3.43)

The displacement fields obtained above are used to find

16



q" = [cos®’s (18 m4r2 -210 m) -6 r114r2 +245 mscos“«s +21 m.]/

(2 1% +[(24 agcos"'@ +(-27 a, -12 a1)C05219 +3 a, +2 a1)r2

-40 8«4C0846 +(-12 a4—72 82)0082'8 +3 a, +9 a2]/ ® in B\a, (3.44)
q = “5‘2 f5r4 (35 cos™ -30 cos’s +3) - _2% f4r2(3 cos’s -1)
in Q (3.45)

The stress field ©° can now be evaluated using (2.43). We record below only the
relevant components of it which are used in determining the constants.
© . = (840 mp, + 70 m1po)r5 + (4760 m_p, + 420 mzpz)r3
+(1392 ap, +(750 a, + 1120 a)p, +(-42 a, - 70 a1)po)r2
+ 1050 m.p,r + 1920 ap, + (600 a, +1260 232)p2
+(-315 a, -525 a Jp ] / (35 r°) in B\Q, (3.46)

—_ 5 7 ’ t. 3 ’
Tor =[105 maue rp, + (525 mp p, + 104 mzumpz)r +(114 ap,

7 2 ’ 7
+(180 a, + 280 a1)p2)r + 210 mu p, 1+ 240 ap,

+(460 a, +805 a )p)] sin o /(35 p r°) in B\, (3.47)
o 4 2 .
Try =110 f5r p4+(12 f2p4+24 f4p2)r +2 1‘1;)2 +3 f3p0 in Q, (3.48)
’ _ 4 2 ’ 2z ’ f .
Tor = [(24 f5r -3 f2r )p4 +(8 f4r —f1)p2]sm o in Q. (3.49)

The second order displacement v and stress field T are given by (2.50) and
(3.30). There are various terms in these expressions which arise exclusively out
of the first order solution and are computed below.

The expressions for f and g, as given by (2.31) and (2.36), are evaluated

using the first order displacement fields. The relevant components of f and q°

17



are found to be

T, = -3 k2 -6 pi'%os®s + (1 -2 ¢ pu?)r'%) E®

+{((108 e € p -117 « p::.)ij—'r (810 7 pi 720 v €mpm)rgcos4@

+((93 « p? -84 o € p )i’ +(576 5 € u_-648 y p’)r’Jcos’e
+8 af pu -8a ui)r7 + (54 «# ui -48 ¥ Emum)rs) E

+((18 o«’n_ -54 o’ Jr* +(576 « ¥ € -99 « ¥ u )r* +270 "
-1440 +°€ )cos®s +((30 «’€ -9 o’u )" +(36 « ¥ u_

-288 « 7 £ )r* -108 y°u_ +576 27¢ Jcos’s +(3 o’y -8 o’¢ )

+(96 « v € 21 ay um)r2+54 zzum 288 72€m]/(2 uirm) in B\Q
r; = 3 cos ¢ sin ¢ [24 B u r’cos’s E -225 y v rPcos’s E
r m m

-5 B umr7E -3« umr7E +85 7 umrSE +6 g’r*cos?

-102 B 7 rcos®s +150 y%cos® -2 a B ¥ +34 « ¥ r? -30 ¥’
/(4 umrm) -3(4 f;‘m -2 um)cos 9 sin © (umrSE +B r? -8 7)

10)

[umrSE -3 B8 r’cos® + 15 y cos® +a 1’ -3 4] /(4 ui r

-[3 B cos & (3 cos’s -1)sin ® (umrEE +2 B r? -8 ¥)]

/(2 p ¥ in B\@,
m
r;r = &° (4 £ -2 u)(3 cos?s +1) in Q
* - 2 _ . .
Tor = 38 (4 ﬁ;f 2 uf)cos 9 sin © in Q,

g’ =[3 pi r'°E? +(315 ¢ umrscos4ﬁ +(-270 ¥ pmrscoszﬁ
+27 7 umrS)E +(45 g%r* -225 B ¥ 1?2 +405 y’)cos’s
+(-27 « B 1r* +(108 « -18 B)y r? -90 3?)cos’s +6 o*r'

+(-9B-36a)y 1’ +117 %1/ (4 umrm) in B\Q,

18
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gt = 38 in Q. (3.55)

y = u . u. (3.56)
Then

210
r
m

Y, = (3 ui r'%cos?s +u JEZ +({(135 » umr5 -27 « umr7)cos4ﬂ
+(24 o u r’ - 108 T U rS)COSZf} -x M " +9 y 1] r5)E
m m m m

+(-18 «*r* 126 « 7 r? -180 yHcos*s +(12 o*r* -72 « ¥ 1*

+72 3%)cos’s -2 o't +18 a 5 12 -36 4’14 #’r°)  in B,
(3.57)
v, = -3 u:;‘rmE2 +{(18 « umr7 -180 «» umr5)cos3«9 +(72 7 pmrs
6 « pr')E +((90 o° -54 a 5 r)cos’s +(18 « ¥ " -18 2°))
sin  cos o / (4 ui r%) in B\, (3.58)
Y, = 3 &°r cos®s + &°r in Q, (3.59)
Yo = -3 8% cos © sin in Q. (3.60)

We now require that Ve Vgr T and Tes be continuous at the interface 8Q

(r=R). This leads to the following conditions

_
Wl = > [Ui,j ui]] on aQ, (3.61)
[['t'ijnj]] = ~[[r:jni +(q* +q +q)n] on &g, (3.62)
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where [-] represents the jump discontinuity. By matching various angular
dependencies, these equations provide ten linearly independent algebraic

equations in the ten unknowns f1,.,.,f and M. me. They are solved using the

5
symbolic manipulator VAXIMA and the resulting expressions, being somewhat
lengthy, are given in the Appendix.

This completes the second order solution, for the particular boundary value

problem considered. We proceed to homogenization in the subsequent section.

4. Homogenization

The problem of determination of the effective properties for nonlinear
elastic materials was addressed by Hill (1972). He established an overall
constitutive law for the nonlinear material by relating the volume average of the
strain energy to that of the deformation gradient. Cowin (1977) has also
addressed the same topic.

Let the volume average of any field quantity G be defined as

In
i

[ G ax, (4.1)
B

<|-=

where V is the volume of B. Under homogeneous displacement boundary conditions
x = F(t) X on 8B, (4.2)
the average strain energy function, U = W(F), is given by [Hill (1972)]

20



U = UF. (4.3)

This result provides the basis for the homogenization procedure that follows.
Before proceeding further, however, we would show that if both the matrix and
the inhomogeneity are incompressible then the effective homogeneous medium is

also incompressible. To prove this we write
det Fs =F F (4.4)
- AB A

where F~ denotes the adjugate of F. Then

* * *®

(det F BAB),B = (FiAFiB),B - FiBFiA,B + FiB,BFiA' (4.5)
But
8 det F i
(det F 8,505 = (det E),A - T3 F Foa = FioFioa
iD
= FioFap (4.6

where we used the fact that FiAD = FiD K Equating (4.5) and (4.6) gives

= Timy: -
FiAFiB,B =0 or F'(Div F) = 0. (4.7)

Since ET is nonsingular, the above implies that

=

DivF =0 or FiA'A = (J XAJ)'A = 0. (4.8)
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Using the assumption that J=1, the above gives
X = 0. (4.9)

Then incompressibility of both phases and the boundary condition (4.2) along with

the above imply

0 = J\FiAF/;\: dx = _[).(iA X, 9% = J-()'(i Xa i) a X
: , 8 ,

[

B B
= Jani XA,iNA d/-\ = SBFiBXB XA,iNA d/—\
. . — . -1
= F —“VE F'=VE F
= F_ jBaBA X, 80X = VF Fl = VF_F_ (4.10)
where the last equality is obtained by using the identity | = F E'1 and invoking

the boundary condition (4.2). Equation (4.10) establishes the desired result.

We now need to record the expression for strain energy function, W, in second
order elasticity. This has been reported in various sources such as Toupin and
Bernstein (1961) and Johnson (1985). The expression given in the former can be

written in terms of the Lagrangian strain tensor as

1,1 1,2

W = 2 Lijkl i K % ijkimn ij knEmn’ (4.11)
where
1 _
K A 5”_ Bkl + 2 n Iijk', (4.12)
2 _ |
i jkimn - V1§ij5kI6mn + 2 VZ(aij lklmn + Skl !mnij + 6mn 'ijkl
+ 8 v, lij“mn), (4.13)
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1

ijkimn - Z (Sik Ijlmn + 6jl |ikmn + 6il ijkmn + ajk itmn’

1
ik~ 2 (6ik5jl + Silajk)'

(4.14)
(4.15)

To find the corresponding expression for the incompressible case (4.11) is

expanded using the above relations. In addition, the incompressibility

implies

Then (4.11) reduces to

4 4
ijkd EijEkl t 3y, ‘ijklmn EijEklEmn + Ole’),

W = pul
which upon using (4.14) and (4.15) simplifies to

_ 4 _ 2 4 3
W——uEijEji+3vEEE ——uTr[_E+3vTrE_E.

This expression is also reported in Ogden (1984).

condition

(4.16)

(4.17)

(4.18)

We would like to relate the second order constant €, which we have been using

in the previous section, to the corresponding one in (4.18), namely v, Recall

that W is given in terms of C1 and C2 by (2.14). Once the Lagrangian strain E is

expressed in terms of C then the principal invariants of C may be used to obtain

Tr B2 = ,} (HH + HH + 2 HH H ) + O(e%,
- U o ij ik jk

TrE® =2 (6H + 3HH + 6 HH H) + 0.
po ii ij i ij ik jk
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These are substituted in (4.18) and the result is compared to the expression for

W given in (2.14) to conclude

o= 2(C1 + Cz)’

3

Recalling (2.32) the above vyields

é’:v3+%u.

v, = -2 (C, + 2C2).

(4.21)
(4.22)

(4.23)

It is the pair of effective constants p and € which will be determined in what

follows.

Next we express the strain energy W in terms of the first and second order

displacement fields. To that end, let

s, = ]

= e = '2 (ui,j + uj,i)’

_ 1

These are then used in (4.19) and (4.20) to obtain

TrE? = e e 4?2 (2 u e?
- ik ik ik

Then the strain energy function in (4.18) is written as
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(4.25)

(4.26)
(4.27)



W = ¢ W1 + €2 Wz' (4.28)

where
W1 = U eikeik = U T|’ ?2, (429)
qu(2ue‘2)+uue)+4vTre3
2 ik ik Bk ik 3 73 =
_ (2) 4 3 3
= u (2 U & + uj'iuj'keik) + (€ - 5 p) Troe”. (4.30)

We assume the strain energy function in the effective homogeneous medium has
the same form as in the composite, with the overall constants p and £. To
determine these constants we consider a spherical body of radius RO made of the
matrix material which contains a spherical inhomogeneity of radius R. This gives
Ra

= - A similar body, made entirely of the
R

(1

the wvolumetric concentration ¢
0
homogeneous effective material, is also considered. Under identical boundary

conditions the total strain energy of the two materials are equated to yield the
expressions for the overall constants. The dilute concentration limit is obtained
by expanding these expressions in powers of ¢ and retaining only the terms of up
to order cne in c.

In particular, considering the first order case, the displacements in the
matrix given in (3.4) and (3.5) are evaluated at r=RO and then imposed, as
displcement boundary conditions, on the boundary of the homogeneous body. The

solution to this problem is found to be

i

~-~

(2 g,r-6 g3r3)(3 cos?s -1) / (4 ), (4.31)
= 3 (5 gsr3 -g.1) cos o sin ® / (2 p), (4.32)

D>

where
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g, = (2upER’+5auR’-21 yu /(2nRO, (4.33)
g, = lenR?-59p /(2 R, (4.34)

and the superscript h refers to the homogeneous material. Substituting the above
in (4.29) an expression for W1 is obtained which upon integration over the

spherical region 0 =r = RO, yields

Ul = nu (10w’ E°R' + 8ap ER’ + 13’R*-114 « v R’

+ 285 49/ (5 uiR;). (4.35)

The corresponding expression for the inhomogeneous material is obtained by
using the appropriate first order displacement field, (3.2) to (3.5), and
performing the integration in the inhomogeneity and the matrix. The result is

found to be

U = 2n(5 “i EZRO"’ -6 32R04 + 48 B ¥ R02 -120 ¥ / (5 umRO7)
-2 (5 pi R'E? - 6 g’R* +48 g v R2-120 %) / (5 me7)

+ 8 m 8°uR. (4.36)
The effective shear modulus p is then determined by equating (4.35) and (4.36).
The resulting expression is precisely the result of Eshelby (1957). When u is

expanded in powers of ¢ and terms up to the first order are retained, the

familiar expression for the overall shear modulus [Christensen (1979)] results,

po=p -Bpk -p)cl/Be + 2u) (4.37)
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To find the second order constant, the second order solution in the matrix,
as given by (3.34), (3.35), (3.39) and (3.40), is evaluated at r-—-—-RO and then
imposed on the boundary of the homogeneous body. The displacement field is then

found to be

w) = -[(176 h, u*° - 35 h w’rcos’s + (-150 h, u*r
+(18 h, + 30 h)u’* - 6 h u’ricos® + 15 h, u’r” + (-6 h,

-3 h) R S h, w2l /(4 v, (4.38)

wy = [(245 h, p’r® - 35 h, r¥cos® + ((21 e§ €-105 h, pA)r’

+(30 h, +15 hz)u2r3 6 h1u2r)cos 8] sin o / (4 1Y), (4.39)
where
_ 3 5 3 3 3 2
h =210 v’'mR° + 147 i’'m R ® + (288 a_ + 448 a Ju'R
+(480 a, + 840 az);ﬁ] / (28 uzumROS), (4.40)
h, = -(1269 p m5R03 +480 au R02 +385 p m R +768 a,u)/(56 umRO‘O),
(4.41)
h, = -[42 ©’'mR° + 35 ’'m R * +(72 a, + 112 a 'R * +(128 a,
+224 a )’} /(28 w'k R '), (4.42)
- 3 2 12
h, = (980 p mR > +384 au R > +315 u m R +640 au) /(280 p R *).
(4.43)

The complete second order solution in the homogeneous medium is obtained by using
(2.50). Finally, the relevant part of the strain energy, W2, is determined by
integrating (4.3) over the homogeneous body.

A similar procedure in the inhomogeneous medium yields the strain energy
which, upon being equated to that of the homogeneous medium, results in an

expression for £ in which p is eliminated using (4.37). Once this is expanded in
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powers of ¢ and terms of order up to one are retained we find the relatively

simple expression

[

; - 4 £ = - ~ 3 P 2 o~y 2 2
£ -Em +5(|26um~bdufu —ZC)UEmum+dbUE um'Z/ufum

m

—240€mufui~36ufum + 30€mufum + 60€mp.
/14 B+ 2pu). (4.44)

This is the expression for the overall second order constant in terms of the
elastic properties of the constituents and the volume fraction under the dilute

concentration assumption.

5. Discussion

The expression obtained above for the overall second order constant can be
reduced to the case of rigid spherical fillers in an incompressible matrix by

taking its limit as K, goes to infinity. We find that
€ =€ +12(5& -3p)o0 (5.1)
T m 2—8 m ”m ) )

This provides a good approximation for rubber composites containing rigid
inclusions.

As mentioned in the Introduction, Ogden (1974) determined the overall second
order bulk modulus. He found that, when the embedded phase consists of the rigid
particles, the overall bulk modulus is less than that of the matrix. This is in

éontrast to the behavior of the first order bulk modulus which increases under
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similar conditions.
We now examine whether similar behavior holds for the second order modulus €.
The following typical values of the two elastic constants are taken from Hashin

(1985).

C1 = 0.5 MPa, C2 = 0.05 MPa. (6.2)

Then using (2.20), (2.32) and (4.22) we find
p_ = 1.1 MPa, v, = -1.2 MPa, g = 0.45 MPa. (5.3)

The second order constant v, is generally found to be negative. Using (5.1) it is

then found that
£ =& - 0.56 c, (5.4)

which indicates that € < éjm, similar to what is observed for the second order
bulk modulus.

From the derivation presented here, it is clear that finding explicit
expressions for the overall second order constants for an unconstrained material
involves prohibitively lengthy computations. The advantages of using the
constraint of incompressibility are that, on the one hand, the number of elastic
constants is reduced from five to two and, on the other hand, the presence of the
undetermined pressure term allows one to absorb the conservative part of the body

force thereby simplifying the task of obtaining the second order solution.

29



Acknowledgements

MF is grateful to NSF for support under the National Young Investigator program.

References

Budiansky, B. (1965) On the Elastic Moduli of Some Heterogeneous Materials. J.
Mech. Phys. Solids 13, 223.

Carroll, M.M. and Rooney, F.J. (1984) Simplfication of the Second Order Probiem
for Incompressible Elastic Solids. Quart. J. Mech. Appl. Math. 37, 261.

Chan, C. and Carlson, D.E. (1970) /nt. J. Eng. Sci. 8, 415.

Chen, Y.C. and Jiang, X. (1993) Nonlinear Elastic Properties of Particulate

Composites. J. Mech. Phys. Solids 41, 1177.

Christensen, R.M. (1979) Mechanics of Composite Materials. J. Wiley & Sons,

Interscience.

Christensen, R.M. and Lo, K.H. (1979) Solutions for the Effective Shear
Properties in the Three-Spheres and Cylinder Models. J. Mech. Phys. Solids 27,
315.

30



Cleary, M. and Chen, I.W. and Lee, S.M. (1980) Self-Consistent Techniques for
Heterogeneous Media. ASCE J. Eng. Mech. 5, 861.

Cowin, S.C. (1977) Effective Stress Strain Relations for Finitely Deformed

inhomogeneous Bodies. Mech. Res. Comm. 4, 163.

Eshelby, J.D. (1957) The Determination of the Elastic Field of an Ellipsoidal
Inclusion, and Related Problems. Proc. Roy. Soc. A 241, 276.

Ferrari, M. (1994) Composite Homogenization Via the Poly-Inclusion Approach.

Composite Engineering 4, 37.

Hashin, Z. and Shtrickman, S. (1963) A Variational Approach to the Elastic
Behavior of Multiphase Materials. J. Mech. Phys. Solids 11, 127.

Hashin, Z. (1985) Large Isotropic Elastic Deformation of Composites and Porous

Media. Int. J. Solids Structures 21, 711.

Hill, R. (1965) A Self-Consistent Mechanics of Composite Materials. J. Mech.
Phys. Solids 13, 213.

Hill, R. (1972) On Constitutive Macro-variables for Heterogeneous Solids at

Finite Strain. Proc. Roy. Soc. Lond. A 326, 131.

31



Johnson, G.C. (1985) Acoustoelastic Response of a Polycrystalline Aggregate with

Orthotropic Texture. J. Appl. Mech. 52, 659.
Mori, T. and Tanaka, K. (1983) Average Stress in Matrix and Average Elastic
Energy of Materials with Misfitting Inclusion. Acta Metallurgica 21, 571.

Mura, T. (1982) Micromechanics of Defects in Solids. Martinus Nijhoff, The Hague,

Netherlands.

Norris, A.N. (1989) An Examination of Mori-Tanaka Effective Medium Approximation

for Multiphase Composites. J. Appl. Mech. 56, 83.

Ogden, R.W. (1974) On the overall Moduli of Non-Linear Elastic Composite
Materials. J. Mech. Phys. Solids 22, 541.

Ogden, R.W. (1984) Non-Linear Elastic Deformations. Ellis Horwood Limited,

Chichester.

Paul, B. (1960) Prediction of Ealstic Constants of Multiphase Materials. Trans.
AIME 219, 36.

Ponte Castafeda, P. and Willis, J,R. (1988) On the Overall Properties of

Nonlinearly Viscous Composites. Proc. Roy. Soc. London A 416, 217.

32



Rivlin, R.S. (1953) The solution of Problems in Second Order Elasticity. J.

Ration. Mech. Analysis 2, 53.

Signorini, A. (1936) Atti 24th Riun. Soc. ital. Prozi. Sci. 3, ©.

Sternberg, E. and Eubanks, R.A. and Sadowsky, M.A. (1952) On the Axisymmetric

Problem of Elasticity Theory for a Region Bounded by Two Concentric Spheres.

Proc. 1st U.S. Nat’l Congress Appl. Mech. 209.

Stoppelli, F. (1954) Un Teorema di Esistenza e di Unicitd Relativo alle Equazioni

dell’elastostaica Isoterma per Deformazioné Finite. Ricerche Mat. 3, 247.

Talbot, D.R.S. and Willis, J.R. (1987) Bounds and Self-Consistent Estimates for
the Overall Properties of Nonlinear Composites. /IMA J. Appl. Math. 39, 215.

Toupin, R.A. and Bernstein, B. (1961) Sound Waves in Deformed Perfectly Elastic

Materials. Acoustoelastic Effect. J. Acoustical Soc. America 33, 216.

Willis, J.R. (1990) Variational Estimates for the overall Behavior of a Nonlinear

Matrix-Iinclusion Composite. Micromechanics and Inhomogeneity (ed. Weng, G.J and

Taya, M and Abe, H) 581. Springer-Verlag.

33



Appendix

The constants determined from equations (3.61) and (3.62) are given as

follows.

m = 0,

i

m

, = (846 € u® + 705 € u u® + 72 )€ p° - 10 %’

- 1880 £ p? u! + 132 € uou'-235 % pt - 674 g pt
+ 1400 j%, u' - 1175 £ u ul -28 j g ppd - 200 jPul p?
- 1183 jzgmuf “i + 2800 j? 1 “i + 544 Em“,i

+ 940 € yln’ - 128 € p ul + 445 [l w? - 512 € uiu’
o - 48 j Emuf T

- 2631 % p?p - 1768 j’€ 2 u  + 800 j’¢ u*

2
m
2

+ 68 Jzimuf p° + 564 Emuf u

m

+ 1166 j’%_ud) R°E? / (14 h [,

m, = 6 (u - p) (2160 gmurj + 3096 £ u “; - 4320 j € p!
+ 6520 ° u' - 1128 £ p? u° - 10512 | € pop’
+ 21886 j* u u® - 23400 j* € - 3072 ¢ pdu’
- 8256 j £ w2 + 15120 j* u u? - 120660 j° € u u’
+ 21080 j? € u’ - 1056 € uiu -2112 ] € uln
+ 183090 j€ p? u_ + 80445 j? € u u - 33990 j° g p?
-101525 j? gmpf)R7E2 / 17 (488 “f, + 1611 pp_ + 1030 uf)],

-«MB
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m, = (6768 £ u® + 3525 € u p° + 576 j £ u° + 720 | i’

- 13630 € pi ' + 876 )€ p p' + 45§ up' - 5392 % £ !
+ 5600 j* £u’ - 6815 £ u’ u’ -284 j € pf u® - 2250 * pju’
- 9539 j" £ p u’ + 14000 * €p u} + 1632 £ u’

+ 6580 £ u! p? - 864 j & pdp’ + 1485 2 u¥ u?
+ 9514 j* € p? u® + 2244 "€ p® u + 3572 € ulm

- 304 j € p uy 14343 € u 7 9384 * £ p ut +160 7 €

+ 5508 j? gm.uf) R%E% / (84 h jY),

m, = -9 (p_-p)1162 € u

] +1608 gmu: u -2304 j € pt

m m

w 3
- N 3o

+1480 j* 1’ -616 £ u’u

m

5520 | gm“i“f +6875 j° “.i“f

3

-12480 j%€_u® -1600 & u u® -4288 j € p’ u? +4980 |* p? u}
-74620 j’€ p’n +6200 j°€ p® -544 £ p u7 -1088 j £ p wl

m m f

+86650 € p p® +36425 j’€ p p +3090 j€_p’

m f

3

42625 jzgmuf) R°E’/[14 ["(488 u° +1611 pp  +1030 w1,

3 N

f,o= -u(8037 & u°® +1410 € p° u +684 | €_ u +705 > >

1 m m

14335 € p' wy +804 j € ' ou +930 |k w +1597 7€ u

-700 j* £ u® -4700 € p® ¥ -416 j £ p’ u? -1875 | T

-8426 j’¢_u’n +5600 j€u’u 1632 j%€ u® +6580 £ plu?

m

-816 j £ p? w> +240 j* p? ¥ +7161 jg p? w2 +4896 j’€ p’ u
+3008 € p p° -256 j £ puf -5232 i? € put -4896 j* £ p u

+1632 j%_ud) E? /(28 h |* ),
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f,=15u (u_-n) (1836 ¢ u° + 2340 € popt-3672j¢ u?
- 1530 j* u! - 1056 € u? p® - 8352 | € nopl-1695 (" u p’
V4

+ 34278 j’¢ u® - 2352 £ uf uj} -6240 j€_ u ”,i - 240 | pf 2

m m

.2 2 2 2 4 . 3
- - 0~ £ u'y - 1536 £ u'u
47217 | £ M 16120 | € u°- 768 ¢ Hop 1536 | £ T

+ 16899 |* € w’p  + 24645 | € n op_-8525°¢ ui)E’

f m f

/(7w (488 u? + 1611 u u_+ 1030 u° ) RY),

f,=-(1251 ¢ u' - 834 € wou’ + 30l - 1529 ¢ u¥u’

- 90 Pup? + 21 % u’ + 400 Pep’ + 556 £ pu_ + 60 ju’

+ 358 7€ wom + g u-179 ¢ ul) E/ (24,

_ 6 . 5 2 5 2 4
f, = -u (1269¢ wu® + 108 j¢ u®- 15 u° - 2116 € pu? p*

+ 108 j§ pp' + 60 jup’ + 909 i’ ut - 700 jPeput

3 3 . 2 2 .2 2 3 Vi 3
- 470 Em“fu'm - 72 Jgm“f”m - 75 J “f“m - 1092 J Em“f“m
- 544 j% u® + 940 gmujui - 112 jgmpfui + 30 jzufui

m

+ 757 iZEmu‘:‘ui + 952 izﬁmufui + 376 J’Emufum - 32 jEmufum
3
f

+ 126 j%¢ pPu - 272 jzgmufpm - 136 j%€_u) E%/(28 h j4umR2),

m m

fy = Suwlu - u) (396 € pu° + 492 & pyu® - 792 j¢ u® - 330 [’

m

- 232 ¢ piu’ - 1776 j€_up’ - 355 jup + 10350 j% _p°

- 496 € pu? - 1312 je_pu’ - 50 julu’ - 6400 j*¢ pp®

- 4960 € u® - 160 € piu - 320 j€ pou - 3110 j°€ win

.2 .2 2 2
+ 3410j€mpfum + 1550]€muf ) E
(7' (48842 + 1611 up + 1030 p) RY,
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where
j=3u + 2u,

h§8ui+19ufum+8uf.
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