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Fishing, fast growth and climate
variability increase the risk of collapse

Malin L. Pinsky1 and David Byler2,†

1Department of Ecology, Evolution, and Natural Resources and Institute of Earth, Ocean, and Atmospheric
Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
2Department of Operations Research and Financial Engineering, Princeton University, Charlton Street,
Princeton, NJ 08544, USA

Species around the world have suffered collapses, and a key question is why

some populations are more vulnerable than others. Traditional conservation

biology and evidence from terrestrial species suggest that slow-growing popu-

lations are most at risk, but interactions between climate variability and

harvest dynamics may alter or even reverse this pattern. Here, we test this

hypothesis globally. We use boosted regression trees to analyse the influences

of harvesting, species traits and climate variability on the risk of collapse

(decline below a fixed threshold) across 154 marine fish populations around

the world. The most important factor explaining collapses was the magnitude

of overfishing, while the duration of overfishing best explained long-term

depletion. However, fast growth was the next most important risk factor.

Fast-growing populations and those in variable environments were especially

sensitive to overfishing, and the risk of collapse was more than tripled for

fast-growing when compared with slow-growing species that experienced

overfishing. We found little evidence that, in the absence of overfishing, cli-

mate variability or fast growth rates alone drove population collapse over

the last six decades. Expanding efforts to rapidly adjust harvest pressure to

account for climate-driven lows in productivity could help to avoid future

collapses, particularly among fast-growing species.
1. Introduction
Dramatic declines across many species remain an important issue in ecology and

conservation, particularly given the consequences of these declines for entire com-

munities and the future resilience of these systems [1]. Evidence from terrestrial

species suggests that a large body size or feeding high in the food chain can

increase vulnerability [2,3], patterns that are consistent with theory and increased

extinction risk in species with slow population growth rates [4]. These patterns,

however, may not hold in the ocean. Instead, marine species with fast life histories

are as likely, if not more likely, to decline below low thresholds compared to

species with slower growth rates [5]. Why these patterns may be substantially

different in the ocean remains unclear.

One possible explanation is that short-lived species display larger population

fluctuations in response to climate variability than long-lived species, making

them more likely to decline below any fixed threshold [6–9]. The influences of cli-

mate on marine population dynamics appear widespread: environmental

regimes are detectable in nearly seven out of every 10 stocks and temperature

effects on population dynamics are common [10,11]. Fast-growing species

may be especially sensitive to such climate variability because populations

grow and decline quickly [9,12,13]. Sardines in southern California, for example,

have fluctuated by more than an order of magnitude for at least the past couple of

millennia, often on a 50–60 year period, with no influence from fishing [14]. An

open question is whether high sensitivity to climate alone can explain the high

vulnerability to collapse of otherwise fast-growing species over the past half-cen-

tury. If this were a strong effect, one would expect that the probability of collapse

would increase with growth rate even among populations that do not experience

overfishing.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2015.1053&domain=pdf&date_stamp=2015-08-05
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The interactions between fishing and climate variability may

also be important. Fishing effects include both immediate

impacts on abundance as well as longer term consequences

for population dynamics through the truncation of age-

distributions, selection for particular life-history strategies (e.g.

early maturation), reduction of intraspecific diversity, alteration

of species interactions and destruction of habitat [15,16]. A

growing body of evidence suggests that these changes create

populations that are more sensitive to climate variability for

reasons that include the loss of long-lived individuals, strength-

ened cohort resonance, reduced density-dependent effects,

enhanced nonlinear dynamics, or a lower intraspecific diversity

of climate responses [8,16–19]. These changes can increase the

magnitude of population fluctuations driven by environmental

variability [8,15–18], and may increase the probability or

duration of a large population decline [12,13,19].

In addition, fishing could interact with climate variability

through coupled social–ecological dynamics, rather than

through ecological changes alone. When the environment

causes a decline in population productivity, fisheries manage-

ment risks driving the population to collapse if harvest is not

rapidly reduced [13,20]. Delays in management responses, as

are common in complex social systems, increase the probability

of a collapse [20]. In this context, fast-growing species are

especially difficult to manage, because they respond especially

rapidly to environmental change [13,20,21]. If interactions

between fishing and climate variability (rather than climate

alone) are important in driving population collapse, we

would expect fewer collapses among unfished populations,

even in regions with highly variable climates.

Despite strong interest in fishing, climate and the life histo-

ries of populations that decline, most analyses to date examine

only a few populations or a few species [9,11–13,18,22].

Whether there are general phenomena affecting most marine

fishes across a diversity of ecosystems remains unclear, and

there have been calls for expanded analyses [13]. In addition,

it remains unclear whether the sensitivity of fast-growing

species to climate variability can explain their high vulner-

ability to collapse in recent decades across a wide range of

species [5]. Here, we used boosted regression trees (BRTs)

[23] to identify which aspects of fishing, climate, species

traits and their interactions best explain collapses and relative

population levels for marine fish populations around the

world. BRTs provide a quantitative approach that can account

for nonlinear relationships and interactions between different

variables, therefore making this method particularly appro-

priate. In particular, we address four questions: (i) do the

interactions of fishing with rapid growth rates contribute to

population collapses? (ii) are fishery collapses more likely in

regions with more variable climates? (iii) do the interactions

of climate and fishing contribute to collapses? and (iv) what

are the relative influences of fishing, life history and climate

on population collapses? Across more than 150 populations,

we found that overfishing played a strong role in collapse,

but interactions suggested that fast-growing species in variable

climates were especially sensitive to overfishing.
2. Material and methods
(a) Fish and fisheries data
We examined population collapses within the RAM Legacy Stock

Assessment Database version 1.0, which has compiled time-series
of population biomass and fishing pressure from 1950 to 2008 [24].

We defined a stock as collapsed if its minimum annual biomass

(Bmin) fell to less than 20% of the biomass necessary to support

maximum sustainable yield (BMSY) [5]. BMSY values were either

from stock assessments or from Schaefer surplus-production

models fit to catch and biomass [5,24]. This definition of collapse

used a fixed threshold, and declines below this level could

be driven by fishing, climate, natural variability or other factors.

Temporal variation in BMSY has been recognized in many popu-

lations, though we do not consider it here [13]. In addition, we

examined mean depletion to measure the relative population

level of each stock (average B/BMSY for a stock).

We also examined alternative metrics of population status to

test the sensitivity of our results. Collapses may be more likely in

longer time-series, and so we also used metrics of collapse and

depletion that only examined the last 20 years. Similarly, we exam-

ined a metric of collapse that required stocks to stay below 20% of

BMSY for at least 4 years, so that a single year of low biomass would

not appear as a collapse. We also examined collapses after filtering

out small pelagics (families Clupeidae and Engraulidae), since these

species are known to fluctuate strongly [9,14]. Finally, it is possible

that our definition of collapse highlights stocks that are highly

variable, rather than primarily those that fall to low levels. We

therefore also examined those species that had grown to at least

twice the level of BMSY.

We developed two metrics of overfishing from the RAM

Legacy dataset. Maximum fishing was defined as the maximum

fishing mortality (Fmax) relative to the mortality consistent with

maximum sustainable yield (FMSY). Duration of overfishing

was the proportion of years in which overfishing (F/FMSY . 1)

occurred. We note that FMSY varies across species (e.g. typically

higher for species with higher productivity), and so our metrics

of overfishing are partially corrected for these differences to aid

comparisons. We also examined mean relative fishing pressure

(mean F/FMSY), but found it to be closely correlated to maximum

fishing (Fmax/FMSY) (r2 ¼ 85%).

We compiled data on maximum length, individual growth rate

(von Bertalanffy K), trophic level, average egg diameter and

fecundity from Fishbase [25] in April 2015, supplemented by a

literature search where values were missing [5]. We also classified

each stock by its management organization to help account

for regional differences in management. Organizations were

defined at the national level, with the exception of ‘Europe’ and

‘multinational’ (non-European).
(b) Climate data
We calculated climate variability for each large marine ecosystem

(LME). There are 63 coastal LMEs, and to this, we added seven

open ocean ‘LMEs’ (West Pacific, East Pacific, Indian Ocean,

North Atlantic, South Atlantic, Subantarctic and Arctic) to help

match measures of climate variability to each fish stock (figure 1).

We calculated climatic variability from sea surface tempera-

tures (SSTs) in the 1870–2014 HadISST dataset [26]. We

spatially averaged the monthly SSTs within each LME and de-

trended each time-series by subtracting a linear regression from

the values. We measured short-term climate variability as the

standard deviation of the de-trended SSTs, which is dominated

by the seasonal cycle. We also measured long-term climate varia-

bility by low-pass filtering the de-trended monthly SSTs with a

10-year running mean before calculating the standard deviation.

These latter time-series were significantly correlated to the Pacific

Decadal Oscillation, the North Atlantic Oscillation or the Atlantic

Multidecadal Oscillation for all LMEs ( p , 0.05), except the

Chukchi Sea. We also examined other running mean window

sizes (2–119 months), but climate variability at annual or lower

frequencies were well correlated to decadal variability (r2 .

0.8), while climate variability at frequencies higher than annual
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Figure 1. Maps of large marine ecosystems (LMEs) showing global variation
in (a) proportion of stocks that have ever collapsed, and (b) seasonal climatic
variability (standard deviation of detrended monthly SSTs, 8C). Grey regions
in (a) indicate LMEs without stock status information. (Online version in
colour.)
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were well correlated to monthly variability (r2 . 0.9; electronic

supplementary material, figure S1). Finally, we also calculated

the ‘colour of noise’ in the SSTs. Colour in this context measures

the relative importance of high versus low frequency oscillations,

and it is calculated as the exponent of a 1/fß model fit against the

power spectrum in log-coordinates [27]. We note that tempera-

ture is only one of many possible factors that drive marine

dynamics; others include transport and the magnitude and

type of production [28].
(c) Statistical modelling
We used BRTs to determine which explanatory variables (elec-

tronic supplementary material, table S1) and interactions were

most closely related to fishery declines. Regression trees provide

a statistical learning technique that is well suited to detecting

nonlinear relationships and interactions among factors [23].

Each tree is formed by sequentially dividing the data into homo-

geneous regions defined by a predictor variable. BRTs increase

predictive performance by combining many, relatively simple

regression tree models together by sequentially fitting each to

the residuals from previous trees [29]. The final model is

formed as an average across the full set of trees [23].

Here, we fitted separate BRT models for collapse and

depletion. Models were fitted to the 154 stocks across 72 species

and 25 LMEs that had information on fishing pressure and life-his-

tory traits (electronic supplementary material, figure S8). We used

a Bernoulli error distribution for collapse and a Gaussian distri-

bution for depletion after log-transforming mean B/BMSY. A

Shapiro–Wilks test did not reject normality of the residuals for

the depletion model ( p ¼ 0.27). We measured relative interaction

strength using the Elith metric, which measures the residual vari-

ation between pairwise model predictions with and without

interactions [23]. Values near zero indicate negligible interactions.

For tree-building, we used a learning rate of 0.001, a tree

complexity of 10 and a bag fraction of 75%. Slower learning

rates and higher tree complexities provided negligible increases

in predictive power. Tree complexity controls how many levels

of interactions are fitted, while learning rate determines the con-

tribution of each new tree. We used 500 bootstrap replicates to

calculate 95% confidence intervals (CIs) [29].
We evaluated models against subsets of the data withheld

during model fitting using 10-fold cross-validation. We used

area under the receiver operating characteristic curve (AUC)

and the true skill statistic (TSS) to evaluate the collapse model,

and the correlation between predictions and observations for

the depletion model [30]. Generally, AUC values greater than

0.75 are considered useful [31]. We also used bootstrap resam-

pling to test the null hypothesis of no interaction among

explanatory variables. For each of 100 bootstraps, we resampled

the collapse and depletion values before re-fitting a BRT model,

and then recorded the size of the interactions to generate a

distribution under the null hypothesis.

In addition, we fit generalized linear models (GLMs) with a

binomial error term for collapse and ordinary least squares (OLS)

regression models for log-transformed mean depletion after stan-

dardizing the explanatory variables to mean zero and variance

one. We fitted models with all possible combinations of terms

and then used Akaike’s information criterion corrected (AICc)

for small sample size to identify a minimal adequate model.

We also calculated relative variable importance (RVI) as the

sum of AICc weights from all models that included a particular

variable. Statistical modelling was done in R v. 3.0.2 using the

gbm package v. 2.1 [32], published BRT code [23] and the

MuMIn package v. 1.13.4 [33].
3. Results
(a) Summary patterns
Overall, a quarter of the populations (25%) included in our

dataset experienced a collapse. Twelve LMEs contained at

least one collapsed stock and 13 LMEs contained no collapsed

stocks (figure 1a). The LMEs with the greatest seasonal climatic

variability were enclosed or coastal areas and those at inter-

mediate latitudes (figure 1b; electronic supplementary

material, figure S2). Before accounting for multiple factors

through statistical models, the raw data suggested that col-

lapsed stocks experienced more overfishing and had faster

growth and lower trophic levels (figure 2). More depleted

populations appeared to have greater overfishing durations,

faster growth and more seasonal variability (figure 2).

(b) Single factor effects
Overall, BRT models were relatively effective at explaining

variation among stocks in the probability of collapse and

degree of depletion. Collapse models had an AUC score of

0.84+0.04, and a TSS of 0.79+0.04 when tested against out-

of-sample, cross-validation data. As expected, these values

were lower than from the training data where over-fitting

was more likely (AUC of 0.99 and TSS of 0.97). Predictions

from the mean depletion model had a cross-validation r2 of

69+3% (92% for training data).

Both BRT models ranked similar terms as important and

emphasized the role of overfishing in population collapse

and depletion (table 1 and figure 3a,g). For both models,

overfishing metrics (F/FMSY) contributed 40–53% of the expla-

natory power (table 1). Life-history traits provided 27–41%

of the models’ explanatory power, particularly individual

growth rate (K). Seasonal variability was the most important

climatic factor and the third or fourth most important variable

in both models (table 1). A higher probability of collapse and

lower population levels were correlated with more overfishing

(figure 3a,g), higher growth rates (figure 3b,h), greater seasonal

variability (figure 3c,j), and high or low fecundities (figure 3d).
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Table 1. Results from the boosted regression tree (BRT) and linear (GLM or OLS) models for collapse probability and mean depletion. (The contributions of each
variable to the BRT models (in per cent) are shown, and the six most important variables are highlighted in italics. The coefficients for the variables retained
by AICc in the minimal adequate linear models are shown, along with the relative variable importance (RVI) from model averaging. Variables with p , 0.05 in
the linear models are highlighted in italics.)

variable

collapse mean depletion

BRT (%) GLM coefficients GLM RVI BRT (%) OLS coefficients OLS RVI

maximum fishing pressure (Fmax/FMSY) 33.5 2.0 1.0 5.8 0.51

log10 growth rate (K ) 18.6 1.6 1.0 11.2 20.28 1.0

seasonal variability (8C) 8.0 0.44 0.63 6.2 20.23 0.99

log10 fecundity (eggs) 7.7 0.47 0.5 3.4 0.36

log10 egg diameter (mm) 7.3 1.4 1.0 5.2 0.28

overfishing duration ( proportion) 7.1 0.5 47.5 20.65 1.0

management 6.0 0.13 9.6 0.19

trophic level 4.0 0.28 5.1 0.51

colour of noise 3.3 0.37 1.8 0.34

log10 length (cm) 3.3 0.32 1.9 0.34

decadal variability (8C) 1.2 0.32 2.3 0.37
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Stocks were more depleted in Europe and Canada and less

depleted in Australia and New Zealand (figure 3i).
The minimal adequate linear models supported the

importance of the same set of factors. For both collapse and

mean depletion models, AICc retained overfishing, growth

rate and seasonal climate variability (table 1). Collapse was

more likely and population levels were more depleted for

stocks that experienced more overfishing, faster growth

rates and more seasonal variability, as in the BRT models.

Models for alternative metrics of collapse (collapsed in most

recent 20 years, collapse length of at least 4 years or collapses

excluding small pelagics) or depletion (over last 20 years)

also highlighted similar factors as important (electronic sup-

plementary material, table S2). Overfishing remained the

most important risk factor and rapid growth rate remained

the most important species trait (electronic supplementary

material, table S2 and figures S3–S6). By contrast, rapid
growth rate was not strongly correlated to populations that

reached high abundance (B/BMSY . 2) (2% contribution

to model; electronic supplementary material, table S2 and

figure S7). Instead, short overfishing duration and management

were the best predictors of high abundance.
(c) Interaction effects
A benefit of BRTs is their ability to reveal nonlinear inter-

actions among explanatory factors. Interactions were

important in the collapse model, particularly between maxi-

mum overfishing (Fmax/FMSY) and growth rates or climate

(table 2 and figure 4). Interactions of this strength were not

likely under the null hypothesis of no relationship between

collapse and explanatory variables ( p , 0.01). In both cases,

models suggested that species with rapid growth rates or in

highly variable ecosystems were not vulnerable to collapse
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Figure 4. Interactions in BRT models explaining probability of collapse (a – c) or mean depletion (d – f ), including (a) growth rate and maximum fishing,
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Table 2. The relative strength of the four strongest interactions in models
for collapse probability or mean depletion. (Values near zero indicate
negligible interactions. Values are comparable within a model but not
between models because response variables are on different scales
(binomial versus log).)

model variable 1 variable 2
interaction
size

collapse maximum fishing growth rate 160

maximum fishing seasonal

variability

22.5

maximum fishing fecundity 16.8

maximum fishing management 12.6

mean

depletion

overfishing duration growth rate 0.32

overfishing duration management 0.29

overfishing duration trophic level 0.18

maximum fishing growth rate 0.18
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in the absence of overfishing. However, for populations that

experienced overfishing, the risk of collapse was more than

tripled for fast-growing when compared with slow-growing

species. We caution, however, that we lacked data for very

fast-growing species at the highest levels of overfishing

(figure 4a). Similarly, populations experiencing overfishing

in the most variable ecosystems were about twice as likely

to collapse as those in more stable ecosystems (figure 4b).
The interactions in the model for mean depletion were

weaker but also involved overfishing (figure 4d–f ).
4. Discussion
By examining patterns of collapse across more than 150 popu-

lations around the world, we found evidence that fishery

collapses are best explained by a combination of overfishing,

life-history traits and climatic variability. Acutely high over-

fishing was correlated to acute declines in abundance, while

chronic overfishing explained long-term depletion. However,

our results also expand upon theory and regional results to

highlight the particularly high sensitivity of fast-growing

species in climatically variable environments to overfishing.

Despite a large and growing body of evidence for the role of

climate and other environmental factors in the dynamics of

marine species [10,11,27], including dramatic fluctuations of

small pelagic species over millennial timescales [9,14], our

results suggest that collapses over the last half-century were

most strongly driven by overfishing. Overfishing was the

dominant factor in both models, constituting two of the six

most important predictors and appearing in every strong inter-

action. Efforts to avoid overfishing continue to appear as an

important step to prevent fishery collapses. Our models also

revealed important distinctions between chronic overfishing

and acutely high levels of overfishing, with the former corre-

lated to depletion and the latter correlated to collapses.

Going forward, time-series of fishing pressure may be useful

for distinguishing acute declines from long-term depletion.
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However, our findings expand on this result by showing

that life-history characteristics and climate variability predis-

pose certain fished populations to collapse and depletion. For

example, species with a more rapid growth rate were at

greater risk of collapse and had lower relative population

levels. Individual growth rate is correlated to intrinsic rates

of population increase [34], and so our results suggest that

species with ‘fast’ life histories were more likely to collapse

than would be predicted from simple models of extinction

risk [4]. We note that the high sensitivity to overfishing

(F . FMSY) that we find is different from asking which species

can withstand the highest absolute rates of fishing (absolute

F, not scaled to FMSY), and in fact, these latter species tend

to have fast growth rates [35]. However, fisheries science

also recommends more intensive fishing (higher F ) on these

species, which in practice may counter-balance their ability

to withstand higher fishing mortalities. While other studies

have found that these patterns may not apply as strongly in

the North Atlantic or for bycatch species [36,37], our results

match well to evidence that many populations of fast-grow-

ing species have fallen to low levels, including winter

flounder (Pseudopleuronectes americanus), mackerel (Scomber
spp.) and sardine (Sardinops spp.) [5,12,38].

An important and relatively underappreciated mechanism

for this sensitivity may relate to the dynamics of coupled

social–ecological systems. Fast-growing species have short gen-

eration times and respond quickly to environmental changes

[21]. In addition, delays in reducing harvest rates after popu-

lation growth declines can increase the risk of population

collapse. Such delays are pervasive for a variety of reasons,

including social resistance, lags between data collection and

analysis, and scientific uncertainty [20]. However, species

with short generation times can only tolerate a short delay,

while longer generation species can tolerate longer delays,

which makes management of fast-growing species more diffi-

cult [20,21]. This mechanism may explain our finding that

fast-growing species and those in climatically variable regions

were especially sensitive to overfishing. While fast-growing

species fluctuate strongly even in the absence of fishing [14],

the strong interaction we found between fishing and growth

rate suggested that collapses among fast-growing species over

the last half-century were primarily caused by overfishing.

The collapse of the fast-growing California Current sardine

(Sardinops sagax) provides a well-studied example of these

interacting factors. The stock famously declined in the 1950s

during a period of cooling temperatures that were tied to

poor recruitment and a much-delayed response from manage-

ment to reduce harvest quotas [12]. Simulations show that both

fishing and climate probably contributed to this collapse: fish-

ing induced high-frequency oscillations in sardine abundance

and made a collapse nearly five times more likely [12]. Our

results suggest that similar mechanisms may operate in a wide

range of population collapses, not just small pelagic species.

Synergistic interactions between fishing and life history or cli-

mate have also been identified through models, case studies and

regional analyses of population variability [6,8,12,15,22], provid-

ing a base of support for our findings. For example, models show

that cohort resonance causes short-lived species to be particu-

larly sensitive to environmental variability and that the effects

are amplified by age-truncation from fishing [6]. Fishing

also tends to reduce intraspecific diversity, including genetic,

geographical, age and phenotypic diversity. Lower diversity

reduces the ability of populations to buffer environmental
stochasticity by limiting bet-hedging and the portfolio effect

[19]. Our results were consistent with this increased sensitivity

of heavily harvested populations to climatic variability and

suggest that these mechanisms are widespread.

Our models also suggested that trophic level provided little

explanatory power for collapse or depletion. The result appears

to contradict the suggestion that fishing first depletes top pre-

dators [39]. However, more recent analyses have revealed

that fishery development patterns are more often driven by a

transition from low-cost/high-value to high-cost/low-value

species, rather than down the food web [40]. In addition, our

dataset does not include fishery collapses before 1950, and so

may not capture early declines of top predators. Finally, our

dataset is composed of stock assessments, and so is restricted

to species that are fished. Fished species tend to have a larger

body size and a higher trophic level than unfished species [5].

While our model suggested that both high fecundity and

large egg size may be risk factors for stock collapse, this

appears contradictory because species with high fecundity

tend to have small eggs [7]. However, fecundity also

increases strongly with body size, and our dataset includes

a number of relatively large-bodied fishes with high fecund-

ity and relatively large eggs that have collapsed to low

abundance (e.g. American plaice (Hippoglossoides platessoides)

and Atlantic cod (Gadus morhua)).

We were surprised that seasonal climate variability was

more closely correlated to population collapses and depletion

than longer term climate variability, in part because most lit-

erature on marine population dynamics focuses on inter-

annual or lower frequency climate variation [27,28]. How-

ever, fish recruitment is more variable in highly seasonal

environments because spawning seasons are short [41], and

this stochasticity may make fisheries management more diffi-

cult. This problem will be particularly acute for short-lived

species that rely on a small number of recruitment events.

We note that highly seasonal environments (as measured

by SST) are found in small ocean basins and at intermediate

latitudes (electronic supplementary material, figure S2), away

from the consistently warm temperatures of the tropics and

the consistently cold temperatures of the poles.

Despite the breadth of the datasets in our analysis, there

remain important limitations. Because our indicators of

population status were derived from stock assessments,

they were concentrated in developed countries [24] and

included few tropical climates (with particularly limited sea-

sonality and climate variability). Including a broader range of

climatic conditions might detect a stronger climate effect or

overturn the climate effect that we detect. We note, however,

that we did include high latitude ecosystems with low clima-

tic variability (electronic supplementary material, figure S2).

It is also possible that other indicators of climate would be

more appropriate than variability in SSTs, such as variation

in primary productivity, upwelling or climate regime

shifts. Environmental variability may also help explain the

magnitude of population variability.

Overall, our results suggest that information on overfishing,

life history and climate variability can improve our ability to

understand global patterns of fisheries declines. While overfish-

ing is a dominant risk factor, fast-growing species in variable

environments appear especially sensitive to overfishing. Even

though short-lived species may recover more quickly from col-

lapse than other fishes, collapses in these species can last from

years to decades [42,43]. These durations are long enough to
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have substantial impacts on food webs [13]. Intensive fishing

during climate-driven lows in productivity are likely to be par-

ticularly problematic, and dynamic management that can

rapidly reduce harvest appears important for avoiding col-

lapses among fast-growing species [13,21]. Such advice has

become common for small pelagic species [9,13,44] but is less

often applied more broadly. Most standard fisheries assess-

ments at the moment assume a constant environment [45].

Efforts to relax this assumption and to build an appreciation

for multiple and interacting drivers of population decline

appear important for preventing future collapses.
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