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Abstract

This paper aims to answer the fundamental but still unan-
swered question: how can brains represent 3D objects? Rather
than building a model of visual processing, we focus on mod-
eling the haptic sensorimotor processes through which objects
are explored by touch. This idea is inspired from two main
facts: 1) in developmental terms, tactile exploration is the pri-
mary means by which infants learn to represent object shapes;
2) blind people can also represent and distinguish objects just
by haptic exploration. Therefore, in this paper, we firstly es-
tablish the relationship between the geometric properties of an
object and constrained navigation action sequences for tactile
exploration. Then, a neural network model is proposed to rep-
resent 3D objects from these experiences, using a mechanism
that is computationally similar to that used by hippocampal
place cells. Simulation results based on a 2× 2× 2 cube and
a 3× 2× 1 cuboid show that the proposed model is effective
for representing 3D objects via tactile exploration and compar-
ative results suggest that the model is more efficient and accu-
rate when learning a representation of the 3×2×1 cuboid with
an asymmetrical geometrical structure than the 2×2×2 cube
with a symmetrical geometrical structure.

Keywords: tactile exploration; 3D object representations;
constrained navigation action sequences; neural network

Introduction

How is the geometry of 3D objects represented in the mam-

malian brain? This question has attracted much attention

in cognitive science (e.g. Biederman, 1985; Bülthoff et al.,

1995; Logothetis & Pauls, 1995; Murata et al., 1997). Most

researchers have focussed on deriving 3D object representa-

tions from vision (e.g. Georgieva et al., 2009; Logothetis &

Pauls, 1995; Murray et al., 2003). However, retinal represen-

tations of 3D objects mean very little in themselves: they only

acquire meaning by being correlated with motor movements,

and in particular motor affordances (Gibson, 1950).

In this paper, we develop a model of how 3D object repre-

sentations can be learned through tactile exploration. There

are several recent models of this process (see e.g. Gemici

& Saxena, 2014; Natale et al., 2004). In Gemici & Sax-

ena (2014) and Natale et al. (2004), robots are trained to

learn haptic representation of objects through tactile explo-

ration and then manipulate objects. Our model derives from

one particular intuition—namely that the process of exploring

an object using a hand is computationally very analogous to

the process whereby a freely moving agent explores its two-

dimensional environment. This latter process has been inten-

sively studied: it is known to involve the hippocampal region,

in particular the system of place cells and grid cells in the

Figure 1: An agent (here a snail) exploring with only tactile

feedback can use its egocentric (blue axes) observations to

build up a model of its environment in an allocentric (exter-

nal, red axes) frame.

hippocampus and entorhinal cortex (Etienne & Jeffery, 2004;

Frank et al., 2000; Fyhn et al., 2004; Moser et al., 2008).

A place cell’s circuit receives information about the agent’s

locomotion movements (‘dead reckoning’), and also percep-

tual information about the current environment, derived from

vision (and olfaction in rats; see e.g. McNaughton et al.,

2006). Through these egocentric inputs, it learns an allo-

centric representation of the local environment (Gramann et

al., 2010; Holdstock et al., 2000; Klatzky, 1998; Vidal et al.,

2004). For example, as shown in Fig. 1, the exploring agent

(i.e. a snail in that figure) can use its egocentric inputs to

build up an allocentric representation of its environment. In

our model, we assume the hand is a ‘navigating agent’, which

can execute various kinds of movements in its own coordinate

system and explore the spatial information of the navigated

environment. We will abstract away from the arm actions

that produce these movements, so the hand is construed as an

autonomous navigator. We will focus on the situation where

this navigating hand is exploring the ‘environment’ of a 3D

object. In this case, it receives various perceptual inputs about

the form of the object, through the sense of touch: it can sense

edges, and other surface features of the object. We then en-

visage a circuit, analogous to the place cells circuit, that takes

hand-centered representations of hand movements and object

features, and learns an ‘allocentric’ (i.e. object-centered) rep-

resentation of the object being explored by the navigator.
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In this paper, we first introduce a network for navigating

2D environments, which learns allocentric representations of

places similar to those in the hippocampus. We then describe

a modification of this network to model the parietal circuit in-

volved in haptic exploration of 3D objects, that learns object-

centered representations of places on 3D objects. Finally, we

present an evaluation of this 3D model. The main contribu-

tions of this paper are as follows.

• Instead of representing 3D objects via vision like most re-

searchers, the proposed model in this paper aims to repre-

sent 3D objects via tactile exploration.

• The relationship between navigation action sequences al-

lowed for execution and the navigated object is estab-

lished. By assuming the hand as a ‘navigating agent’, the

model learns an ‘allocentric’ representation of a 3D object

through navigation action sequences and perceptual inputs.

• Simulative results of the model exploring two 3D objects

are presented and compared, which verifies that the model

is effective on object representations and is more efficient

and accurate for representing a cuboid, owing to its asym-

metrical geometrical structure, than a similar cube.

A Model of 2D Navigation Using a Recurrent

Self-Organizing Map

In this section, we describe a neural network, which rep-

resents the navigated environment through the navigating

agent’s egocentric dead reckoning information and perceptual

information about environment landmarks.

The neural network of navigation derives from a model by

Takac and Knott (see Dar & Knott, 2018 for an introduc-

tion). It is based on a recurrent self-organizing map, named

modified self-organizing map (MSOM; Strickert & Hammer,

2005). In a regular self-organizing map (SOM), the units are

distributed in a two-dimensional plane and each of the units

are fully connected to every input unit via adjustable weights

(Kohonen, 1982). During training, the units compete to be

a winner for a certain input pattern and then the winner’s as

well as its neighborhood’s weights are adapted to be more re-

sponsive for this input pattern. Finally, a non-recurrent SOM

comes to represent frequently occurring patterns in its input

units. In an MSOM, apart from the normal input units like

SOM, its input contains a recurrent representation of its own

state at previous time instance. After training, MSOM units

come to represent frequently occurring sequences in its input

units.

The MSOM we describe in this paper is designed to learn

sequences of navigation actions executed when the navigating

agent is exploring some environment. Its representations of

these sequences implicitly encode ‘allocentric’ places in the

environment, because the possible sequences are constrained

by the geometry of the environment. For example, consider

the 2D environment shown in Fig. 2. Say the navigating agent

starts at location L1 facing North, and executes the navigation

L1

L2

L1

Figure 2: Geometrical description of a 2D environment,

where L1 and L2 denote two different locations.

L2

L3

L1

Figure 3: Geometrical description of a cube, where L1, L2

and L3 denote three different locations.

action sequence ‘F→F→F→L→F→F’ to reach location L2

(where ‘F’ and ‘L’ denote the movements of moving forward

and turning left respectively). L2 is the only possible location

that can be reached with this navigation sequence: the geom-

etry of the environment effectively maps this sequence to a

particular place in the environment. Therefore, by learning

the object constrained navigation action sequences as well as

the perceptual information about the object, the MSOM come

to represent the navigated object.

Adapting the Model for Haptic Exploration of

3D Objects

In this section, we explain how to configure a general MSOM

to represent 3D objects based on hand navigation action se-

quences. We intend the MSOM as a high-level model of the

parietal circuit that controls haptic exploration of objects by

the hand. There is good evidence that parietal cortex com-

putes object-centered spatial representations. For instance, in

humans, parietal lesions often lead to object-centered neglect

(see e.g. Behrmann & Tipper, 1994), and fMRI has recently

shown object-relative spatial activity (see e.g. Uchimura et

al., 2015). In macaque, cells in parietal area 7a encode target

location relative to an object, rather than in retina- or head-

centric coordinates (Chafee et al., 2007).

When a navigating hand explores a 3D object, it can move

directly, which includes moving directly forward, moving di-

rectly left, moving directly right and moving directly back-

ward, and it can also move over an edge, which includes mov-

ing forward over an edge, moving left over an edge, moving

right over an edge and moving backward over an edge. For

example, with regard to a cube shown in Fig. 3, when the

navigating agent is in location L1 facing East, it can move

directly forward to reach location L2 while it cannot move

forward over the edge. In contrast, when the agent reaches

location L2, the agent cannot move directly forward whereas
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Surface cues

MSOM units

Next action distribution

Action selected

Motor system

parietal cortex premotor cortex

Figure 4: The architecture of the model for learning to repre-

sent 3D objects.

Figure 5: Geometrical description of a 2× 2× 2 cube, where

the number denotes available exploration surface of the cube,

and the boundary between two surfaces is denoted by ‘B’ ap-

pended with such two surface numbers.

it can move forward over the edge to reach Location L3.

The architecture of the whole model for learning to rep-

resent 3D objects is illustrated in Fig. 4. The model aims

to achieve the function of a navigator (i.e., the hand) when

exploring a cuboidal structure. The hand is assumed to be

able to execute the hand-centered navigation actions, which

include movements to move directly (i.e., move directly for-

ward, move directly left, move directly right and move di-

rectly back, denoted by ↑,←,→ and ↓ in solid lines respec-

tively in Fig. 4) and movements to move over the edge (i.e.,

move forward over the edge, move left over the edge, move

right over the edge and move backward over the edge, sim-

ilarly denoted in dashed lines respectively in Fig. 4), and

receive the tactile sensory inputs, like edge in front, edge on

left, edge on right and edge behind. Note that the model is

inspired from the circuit in brains which gleans haptic sen-

sorimotor information of an object from peripheral sensors,

then transfers the inputted information to the somatosensory

cortex and finally obtains the object representation in the pari-

etal cortex as well as the premotor cortex. More details about

the model are shown in Yan et al. (2018).

Simulative Verification and Comparison

To test the performance of the model for learning to represent

3D objects, two typical 3D objects, a 2× 2× 2 cube and a

3× 2× 1 cuboid, are assigned to the model for exploration

and representation. The length, width and height of the cube

are 2 units and those of the cuboid are 3, 2 and 1 units respec-

tively. Corresponding exploration results are illustrated and

compared in this section.

Performance Indicators

To evaluate the learning ability of the model for represent-

ing 3D objects, we first develop three performance indicators:

reconstruction accuracy, geodesic distance between recon-

structed positions and actual position and uniqueness rate.

Note that to better evaluate the performance of the model, in-

stead of obtaining average values of designed performance in-

dicators during the whole training process, we utilize average

values of performance indicators within a sliding window.

Reconstruction Accuracy With the agent exploring an ob-

ject, the MSOM is trained to represent the input patterns.

Based on the representation learnt via tactile exploration, for

a certain MSOM activity pattern, the agent can reconstruct its

position and orientation. To learn about how much informa-

tion included in MSOM activities, the reconstruction accu-

racy is used to evaluate the learning ability of the model. At a

given time instance, each position on the object is assumed as

the agent’s actual position with a corresponding probability,

where higher probabilities denote more likely guessed posi-

tions. Thus, we design two criteria Pmax and Pinc. We let

φ denote the size of the sliding window, and then we define

Pmax = T (α=β)
φ and Pinc =

T (α>0)
φ , where T (·) denotes how

many times the given event happened in a given window in

the sliding window series, α denotes the probability of the

actual agent position in the reconstructed probability distri-

bution and β denotes the maximal value in the reconstructed

probability distribution.

Geodesic Distance Between Reconstructed Positions and

Actual Position Another useful performance indicator is

to measure the geodesic distance between reconstructed po-

sitions and actual position, which is defined as Dgeodesic.

Specifically, the criterion Dgeodesic is designed to denote the

sum of geodesic distances between each reconstructed po-

sition and the agent’s actual position weighted by the re-

construction probability of the corresponding position. We

assume g(i,δ) denotes the geodesic distance between posi-

tion i and the actual agent position δ, and then we define

Dgeodesic = ∑m
i=1 ∑4

j=1 g(i,δ)pi j, where m denotes the number

of available exploration positions on the object; j = 1,2,3,4
is used to respectively denote North South East West orienta-

tions; pi j denotes the probability of the agent being in loca-

tion i and with the particular j orientation in the reconstruc-

tion distribution.

Uniqueness Rate The above criteria say nothing about how

thoroughly the hand explores the whole of an object. (In

machine learning terms, they emphasize ‘precision’ over ‘re-

call’.) Our exploration algorithm includes a ‘boredom’ rou-

tine, which encourages exploration of unknown places and

avoids exploring objects in a loop, and such a routine is de-

scribed in more details in Yan et al. (2018). As a measure of

the algorithm’s recall, we introduce another criterion called
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Figure 6: Results of the model for exploring and representing a 2× 2× 2 cube. (a) Reconstruction accuracy of the model

for estimating the agent’s position. (b) Geodesic distance between the reconstructed agent’s position and the actual agent’s

position. (c) Uniqueness rate of the model during the exploration.

uniqueness rate U , which is the percentage of unique posi-

tions within a sliding window. Specifically, U = τ/ε, where

τ is the number of unique positions within a sliding window

and ε is the size of the sliding window, which is the number

of positions allowing tactile exploration of an object (e.g. 24

for a 2× 2× 2 cube).

Example 1: A 2×2×2 Cube

The geometrical description of the 2× 2× 2 cube to be ex-

plored and represented is shown in an unfolded view perspec-

tive in Fig. 5. Note that in the figure, the numbers are used

to denote different surfaces in the cube and ‘B’ with numbers

appended stands for boundaries of the cube. Additionally, the

number of one surface number in Fig. 5 stands for how many

available exploration positions are in such a certain surface.

As illustrated in Fig. 5, there are 4 available positions to be

explored in each surface and in total, such a cube has 24 avail-

able positions. As stated before, the object constrains action

sequences which can be performed to explore the object.

At the beginning, the agent chooses a random initial ex-

ploration position and orientation. Then, via executing con-

strained actions, the model is trained to represent such an ob-

ject being explored. This training process is divided into 20

epochs and each epoch consists of 100 steps of successfully

performed actions. Note that the unsuccessful action attempt

is not counted and does not train the proposed model, since it

is not allowed by the object which means it does not include

any geometric information about the object being explored.

Results of the three performance indicators when the

model is trained to represent the cube are illustrated in Figs.

6(a), (b) and (c) respectively. As shown in Fig. 6(a), af-

ter a short phrase of training (specifically, near 200 steps),

the model can 100% predict the actual agent position with a

nonzero probability, which substantiates the effectiveness of

the model for learning to represent the cube. Additionally, as

we can see from Fig. 6(a), the model becomes progressively

better at predicting the actual agent’s position, which bene-

fits from the representation learning via tactile exploration.

As depicted in Fig. 6(b), the geodesic distance between re-

constructed positions and the actual agent’s position becomes

progressively smaller as the exploration proceeds, which fur-

ther verifies the effectiveness of the model for representing

the cube as well as other 3D objects. As shown in Fig. 6(c),

the average uniqueness rate is about 60%, which means dur-

ing 24 steps, the agent explores on average almost 15 unique

positions; that is, it does not simply travel in a loop, which

to some extent indicates the effectiveness of the model. Note

that the model can also accurately predict the actual agent’s

position and orientation at the same time. Since the result of

the model predicting the agent’s actual position and orienta-

tion is similar with that shown Fig. 6(a) and (b), we omit

it here for saving space. Therefore, the effectiveness of the

model for representing 3D objects is justified.

Example 2: A 3×2×1 Cuboid

For further investigating its effectiveness for representing 3D

objects as well as for comparison, the model also explores

a 3× 2× 1 cuboid. To save space, we omit its geometrical

description, which is similar to the 2× 2× 2 cube.

Results of this exploration, based on a random starting po-

sition and orientation, are shown in Fig. 7. As shown in

Fig. 7(a), after about 150 training steps, the model can 100%

predict the actual agent’s position with a nonzero probability,

which substantiates the effectiveness of the model for repre-

senting the cuboid. Similarly, the model becomes progres-

sively better at predicting the agent’s actual position as ex-

ploration proceeds. Moreover, as we can see from Fig. 7(b),

the geodesic distance between reconstructed positions and the

actual agent’s position becomes progressively smaller as ex-

ploration proceeds, which suggests that the model’s represen-

tation of the cuboid’s geometry improves over this time. The

average uniqueness rate 63% shown in Fig. 7(c) indicates

during 22 steps, the agent explores 14 unique positions of the

cuboid possessing 22 available positions, which means that

the agent does not explore the object in a loop. Therefore, the

model’s effectiveness is demonstrated again.

Comparison

To further investigate the model’s performance in learning to

represent 3D objects, we quantitively compare simulative re-
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Figure 7: Results of the model for exploring and representing a 3× 2× 1 cuboid. (a) Reconstruction accuracy of the model

for estimating the agent’s position. (b) Geodesic distance between the reconstructed agent’s position and the actual agent’s

position. (c) Uniqueness rate of the model during the exploration.

Table 1: Comparison of average values of criteria from step

1 to step 2000 and from step 200 to step 2000, respectively

denoted as avg and avg200, when exploring the 2×2×2 cube

and 3× 2× 1 cuboid
Pmax Pinc Dgeodesic U

# cube
avg 40.24% 98.09% 0.93 61.26%

avg200 41.84% 100.00% 0.85 61.95%

# cuboid
avg 41.72% 98.26% 0.97 63.08%

avg200 43.32% 100.00% 0.91 63.37%

Table 2: Comparison of maximal values of criteria from step

200 to step 2000 when exploring the 2× 2× 2 cube and 3×

2× 1 cuboid
Pmax Pinc U

# cube 72.00% 100.00% 87.50%

# cuboid 74.00% 100.00% 95.50%

sults of the model obtained when representing the 2× 2× 2

cube and 3× 2× 1 cuboid via tactile exploration from differ-

ent perspectives.

Firstly, by studying the time course of evaluation criteria,

the learning ability of the model can be examined. As in-

dicated in Fig. 6(a), the cube needs about 200 steps for the

preliminary training, to the point when the model begins to

have success in predicting the agent’s actual position. By

contrast, the cuboid needs only about 150 steps for the pre-

liminary training, as shown in Fig. 7(a), which suggests that

the model is more efficient in learning to represent the cuboid

compared to the cube. Secondly, we compare average values

of the criteria from step 1 to step 2000 with those from step

200 to step 2000 to study the representation learning ability

of the model, which are shown in Table 1. As we can see from

Table 1, all average values of all reconstruction accuracy cri-

teria for the cube and cuboid from step 200 to step 2000 are

greater than those from step 1 to step 2000, which means that

after a procedure of exploration of objects, the model comes

to predict the agent’s position more accurately. In addition,

all average values of geodesic distance criteria for the cube

and cuboid from step 200 to step 2000 are smaller than those

Table 3: Comparison of minimum values of criterion from

step 200 to step 2000 when exploring the 2× 2× 2 cube and

3× 2× 1 cuboid
Dgeodesic

# cube 0.56

# cuboid 0.48

from step 1 to step 2000, which further substantiates the ef-

fectiveness of the model for representing 3D objects.

When it comes to the maximal reconstruction accuracy val-

ues reached during learning, from Table 2, we can see that

the geometry of the cuboid is learned better than that of the

cube. As illustrated in Table 3, the minimum geodesic dis-

tance value of the cuboid reached during learning is smaller

than that of the cube, which verifies again that the model is

more successful in representing the cuboid than the cube.

Based on the above analysis, we can draw the conclusion

that the model is effective for learning to represent 3D objects

via tactile exploration. Moreover, multiple criteria substanti-

ate that the model is more effective and efficient to represent

a cuboid than a cube, which is due to that the extra asymmet-

rical space information involved in the cuboid contributes to

its representation learning of the model.

Conclusion

This paper has developed a neural network model for learn-

ing to represent 3D objects through a navigating agent’s tac-

tile navigation action sequences. Simulative results based on

two 3D objects, i.e., a 2× 2× 2 cube and a 3× 2× 1 cuboid

have verified the efficacy and accuracy of the proposed model

to learn representing 3D objects via tactile exploration. Fi-

nally, having shown a proof of concept for the model, we in-

tend to examine in more detail whether the parietal cortex has

circuitry which could implement it. SOMs are a reasonable

high-level model of cortex (see e.g. Adesnik et al., 2012; Ko-

honen, 1982, 1993; Ritter et al., 1992); and there are various

recurrent loops involving parietal cortex which could imple-

ment the recurrent component of an MSOM - for instance,

the corticostriatal loops of Alexander et al. (1986).
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