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Abstract 

 This thesis studies Robotic handling of Deformable Linear Objects (DLO). Many habitats 

used for space exploration include panels with multiple wires and connections which can be 

easily reconfigured by humans but very difficult to be handled autonomously by robotic systems 

due to the flexible nature of the wires. In some situations, the wires can come loose and get 

separated from their connections resulting in malfunctioning of some onboard systems. This 

thesis develops methods for autonomous handling of flexible wires (deformable linear objects) 

involving the unplugging and re-plugging or stowing of one end of the wire from a connection 

point. An anomaly situation may arise when the end of a gripped DLO slips away from the 

robotic end effector into the environment while being maneuvered, entering the object into an 

unknown state. The objective of the research presented herein was to use purely visual sensing to 

detect this DLO slip locating the loose connector end, estimating its pose, and autonomously 

developing a motion plan for retrieval and delivery of the connector end to its originally intended 

destination. Three pose estimation methods are implemented: employing fiducial markers, 

RGBD image processing, and machine learning algorithms to generate the pose of the end of the 

DLO being manipulated.  

Experiments are performed using two cooperating robotic arms that show identification 

rates of 48.1%, 100.0%, and 77.8% and arm retrieval grasp rates of 48.1%, 74.1%, and 64.0% 

respectively among 27 trials. The identification rate varied based on the level of occlusion of the 

DLO end within the workspace. Slip detection is accomplished by comparing this estimated 

position’s distance to the manipulating arm’s end effector against a threshold quantifying a slip, 

producing a success rate of 77.2% from 18 slip trials. In the event that the loose connector settles 

out of the camera’s view, a spiral search pattern was designed to maneuver the secondary camera 
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for further workspace inspection, with a search identification rate of 91.7% in 36 trials. The 

effectiveness of the overall system as a solution for anomaly detection and resolution is exhibited 

through three demonstrations with varying environmental configurations. 
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1    Introduction 
 
1.1    Motivation  

As humanity continues to expand its presence and exploration of space, self-reliance in 

spacecraft design becomes exponentially vital. NASA’s current objectives detail aspirations of 

human spaceflight into deep space, of which the Moon and Mars are included destinations [1]. 

Journeying into deep space demands heightened consideration in how crews are to be supported, 

as they entail missions longer in duration increasingly further from planet Earth. Historically, as 

seen in the operation of the International Space Station in Low Earth Orbit, teams aboard are 

highly dependent on resupplies, live support, and communication from mission control located 

on Earth’s surface [2], [3], [4]. Meanwhile, necessary onboard tasks, such as repair, maintenance, 

and inspection operations, are conducted continuously by onboard crews. For long-duration 

expeditions into deep space, these affordances are made null as increasingly greater distances 

from Earth delay real-time communication and ground support. Spacecraft may also operate (at 

least for some period of time) without any crew members, resulting in no viable manpower to 

perform necessary tasks for extended periods of time. Therefore, missions into deep space 

require a self-sufficient system comparatively free of dependence on Earth.  

A proposed solution is the SmartHab, a self-aware and self-sufficient habitat capable of 

supporting a crew when present and sustaining itself when not [2]. At any time, these spacecrafts 

may be in a number of situations, including in orbit, on a surface, or in transit between 

destinations. Despite its present situation, the SmartHab must be able to meet the biological 

needs of astronauts onboard, as well as needs of the spacecraft itself, such as repair or 

maintenance procedures. An integrated Environmental Control and Life Support System 

(ECLSS), capable of providing clean water and air to space crews, assists in accommodating the 
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former [5]. The latter, traditionally handled by humans aboard a spacecraft, may be viably 

supplemented by a or multiple robotic agents. Menial tasks, not worth an astronaut’s invaluable 

time, are prime for such a substitution, especially if those demands are within the scope of a 

robotic arm’s capabilities. Assuming the interior of such a SmartHab borrows in design from the 

ISS, necessary work may need to be performed on arrays of tightly compacted subsystems, 

organized in such a way that maximizes the utilization of volume available in the spacecraft [6], 

[7]. These subsystems may also feature an assortment of DLOs that are necessary to that 

module’s functionality. In the event that a maintenance or repair task for such a subsystem is 

necessary, a robotic system onboard the SmartHab must be able to manipulate the DLOs. In 

order to manipulate such objects, however, the system first needs to have the ability to track and 

monitor them, informing the agent of the entity’s present state. Additionally, anomaly events may 

occur during the execution of a task, further requiring a robotic agent detect and appropriately 

respond to any off-nominal situation. A SmartHab, meeting self-sufficiency standards through 

the utilization of autonomous systems, requires the ability to satisfy each of these specifications. 

 

1.2    Project Goals and Scope 

Among the range of subsystems on the SmartHab are Battery Orbital Replacement Units (ORUs), 

sources of distributable energy. Over the course of their operation, these battery ORUs become 

degraded and require substitution. Before the unit can undergo replacement, the DLO connected 

to its face must be safely unplugged and stowed. Assuming a robotic agent, composed of two 

arms bearing gripper end effectors, onboard the SmartHab possesses this capacity, an anomaly 

event may occur where that recently unplugged DLO end slips from the manipulating arm’s 

grasp enroute to a designated stowing point. At any point, the system requires a reliable and 
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robust method of estimating the connector end’s pose, as to inform itself of the object’s state. The 

autonomous system must then recognize that the DLO, an electrical cable in this scenario, which 

is no longer held by the grasping arm’s gripper. Once flagging the off-nominal slipped status of 

the cable, its unknown location must be found via onboard system technology. A plan for 

retrieval of the cable connector end is calculated and executed before completing a final 

trajectory that restores the cable to its original destination.  

The research presented in this thesis aims to devise, implement, and demonstrate a zero-

gravity robotic solution to resolving this DLO slip anomaly for the purposes of SmartHab 

autonomy and self-sufficiency. In order to do so, capabilities in pose estimation, object state 

monitoring, gripper end effector slip detection, and workspace search are developed such that a 

DLO under manipulation is restored to a known state if entering this off-nominal situation. By 

nature of the robotic agent’s intended use case, the developed solution targets autonomy, 

requiring no user input or initial conditions except basic attributes of the DLO connector end 

supplied to the system.  

With the capabilities achieved, attention is next dedicated to system robustness. 

Maximizing the repeatability and success of task execution in the presence of low accuracy and 

noise is crucial in a live workspace, where spacecraft misalignments or other environmental 

conditions may severely alter performance compared to a sterile testing environment. The robotic 

agent must be capable of performing its task without human assistance or correction, no matter 

the circumstances of its workspace. Variations in lighting, primarily, introduces noise in the form 

of reduced RGB and depth image quality, posing challenges to a system employing visual 

sensors. Additionally, measurements of entities may not be as accurate as the system’s 

knowledge, rendering finely tuned robotic maneuvers unreliable in interacting with the 
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workspace. The degree to which requirements and tolerances may be relaxed therefore 

contributes significantly to robustness in system capabilities, further cementing the system’s 

qualifications in autonomy. 

 

1.3    Thesis Structure 

Following this introduction, the proceeding thesis is divided into the following sections: 

• Background: providing critical explanations of the theories and concepts underlying the 

capabilities developed in this work. A literature review of related work is also provided, 

showcasing the state of similar research. Approaches in solving related problems are 

highlighted to demonstrate resolutions to adjacent problems, as well as their advantages 

and disadvantages. 

• Methods: detailing this work’s implemented solutions to both connector end pose 

estimation and anomaly response, composed of slip detection and occluded environment 

search. This section delves into the underlying architecture and technologies behind the 

capabilities enabling SmartHab autonomy. 

• Results: a summary of the experimental results, demonstrations, and findings made in this 

thesis. The process of experimentation, accuracy of pose estimation methods, and the 

developed system’s proficiency in resolving the proposed research problem are presented 

and discussed. 

• Conclusion and Future Work: an overview of the research conducted as well as avenues 

for where this work could be expanded upon or improved. 
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2    Background 

2.1    Cameras and Image Processing 

2.1.1    Sensor and Camera Types 

The major senses, such as sight or touch, serve as the human body’s bridge to perceiving and 

understanding the physical world. Much in the same vein, robotic systems have a varied suite of 

sensor options that enable them to absorb information about their environment. Four of the major 

categories of sensing systems employed in modern robotics include tactile, visual, laser, and 

encoder, while other miscellaneous types of external sensors used include proximity, inertial, 

force/torque, acoustic, magnetic, and ultrasonic sensors [8]. Each sensor collects data in various 

forms for the system, which must be processed to glean valuable information. In Table 1 below, 

these varieties are listed and broken down by type, principle, information obtained, and common 

utilizations in robotic applications. 
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Table 1: Robotic Sensor Variety Summary [8]  

For the purposes of object detection in this body of work, visual sensors in the form of stereo 

cameras, offering RGB color image and depth distance data, are utilized. Other varieties of 

sensors were considered, but either yielded unnecessary information (e.g. acceleration via inertial 

sensors) or were not plausible due to hardware constraints (e.g. lack of tactile sensors for arm 

end effectors).  

While several techniques for capturing RGB images exist, many modern cameras utilize 

the rolling shutter approach. Rolling shutter cameras compose images not by taking a single 

snapshot of a scene, as done in the more traditional pinhole camera model, but rather by scanning 

along directions of the scene (i.e. vertically, horizontally, or rotationally) and building a 

composite image from each scan’s returned data [9]. Figure 1 illustrates a comparison of the 
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approaches, depicting the stage of capture in relation to time for both global and rolling shutter. 

Assuming proper distortion correction and image compilation, the primary advantage of rolling 

shutter over other conventional capture is improved accuracy via rapid updates. The continual 

scanning of this technique introduces a constant influx of new scene data, making completed 

images available for processing.   

 

Figure 1: Visualization of global and rolling shutter approaches [9]  

Depth cameras offer spatial distance information between the position of the sensor and any 

objects located in its field of view (FOV). Stereoscopic depth imaging is one approach that 

determines depth by capturing two, slightly offset two-dimensional RGB images [10]. Positional 

differences between features in the two images are measured and processed to produce a final 

depth image. The relationship of depth (z) to measured disparities (d) is represented in Equation 

1, with respect to focal length of the imaging sensor (f) in pixels and baseline between the offset 

capturing lenses (B) in the desired depth units, typically meters or millimeters [11]. 
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𝑧 = !∙#
$

      (1) 

 

2.1.2    Camera Placement in the Robotic Environment 

When employing visual cameras as the primary sensing mechanism for a robotic system, 

consideration must be placed in determining their optimal placement that yields the most rapid 

and efficient collection of information from the workspace. Cameras have options not only in 

how they are oriented, but where they are positioned in the operational environment. Cameras 

can be mounted on the arm itself, along any of the joint parts or on the end effector, opening up 

the possibility of dynamic image capture alongside the robotic agent. Alternatively, a camera or 

sensor can be placed in a static pose (position and orientation) somewhere in the environment. 

For each camera used in a system, its respective pose should either maximize coverage of the 

environment or provide effective time monitoring of significant entities.  

For static camera sensors, one approach to determining placements is by repeating a 

desired task and varying sensor locations for each trial such that observability is maximized [12]. 

Defining a heuristic in this iterative approach offers a systematic method of determining the most 

optimal camera configuration, demarcated by the highest scoring sensor configuration. This 

heuristic could be optimized to maximize view of either scene or an object of interest. The 

physical environment in which the robotic system operates in, constrains potential sensor 

configurations, where tangible surfaces must be available for cameras to be placed. Pose options 

would, for instance, be a lot more limited in open environments such as outer space 

extravehicular activities, underwater ocean tasks, or wide outdoor fields in industrial farming 

applications. In such instances, determining valid “optimal camera sites” over an area of interest 

and maximizing their coverage is desirable [13]. Dynamic camera sensors, such as ones placed 
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on a mobile robotic agent, comparatively offer greater flexibility in placement. Due to the 

degrees of freedom afforded by a robot, the camera can be simply moved to the most optimal 

view of the work environment [14]. It is critical, however, to capitalize on this fact by placing the 

sensor in a pose that benefits from the movement of the robotic agent, such as on an arm’s end 

effector. 

 

2.1.3    Morphological Operations 

For a robotic agent to utilize information from a visual sensor, camera output in the form of 

images must first be processed in order for relevant information extraction. Due to natural noise 

introduced by imperfect sensors, these processes enhance images to better extract information 

from collected data [15]. Morphological operations are computer vision techniques that 

processes images by applying a defined shape, in the form of a structuring element, over a source 

image [16]. The two (the shape template and the image) are combined via convolution, a 

mathematical operation that receives as inputs two matrices of compatible dimensionality and 

outputs a resulting matrix [16]. The two matrices are pictures p, which can be represented as 

matrices in the form of binary images, and a structuring element as matrix convolution kernel t 

[7]. Illustrated in Figure 2 are these convolution kernels in matrix format, and their 

corresponding shapes.  
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Figure 2: Example structuring elements with respective matrix implementations [7] 

For any submatrix within the image p, a thresholding operation can be applied as follows in 

Equation 2  [17]: 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑝, 𝑡) = 	 /1	𝑝 ≥ 𝑡
0				𝑒𝑙𝑠𝑒     (2) 

Morphological operations are commonly applied to data in the form of binary images as, by 

nature, their numerical structure lends itself to processing with this method [18]. The structuring 

element s, calculated for each cell by the threshold, acts as a moving window over the binary 

image during convolution c, calculating the number of ones S that overlay with the structuring 

(size of the structuring) presented in Equation 3 [7], [16]. 

𝑐 = 𝑓 ⊛ 𝑠       (3) 

Dilation and Erosion are two such morphological operations that can be applied to a binary 

image [17]. Dilation expands a binary image by extending its shape, defined at a window as 

whether the number of ones in the binary image that overlap with the structuring element is 

greater than or equal to the number of ones, then the pixel window’s corresponding pixel in the 

image that overlaps with the center of the structuring element will be set to one [16]. Erosion 

alternatively shrinks a binary image by reducing its shape, turning the image pixel corresponding 
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to the structuring element’s origin to zero if all ones in that window of the image do not overlap 

with the structuring element [16]. The effects of both morphological operations are depicted in 

Figure 3. 

 

Figure 3: Morphological operations depicting dilation (top) and erosion (bottom) [15]  

 

2.1.4    RGB and Depth Alignment 

A stereo camera system, capable of capturing both the RGB and depth image from two separate 

RGB and infrared sensors respectively, are inherently located at different positions due to the 

physical space occupied by each lens [11]. In the context of a robotic system, this results in 

different frames for each lens, as well as different source points of reference between the RGB 

and depth image views of the same scene. To remedy this hardware constraint, the images taken 

from the separate depth and RGB lenses can be aligned via a mapping calculation to place them 

in a shared coordinate system [19]. For each sensor in the stereo camera, a 3D point from the 

scene can be mapped to a corresponding point on a planar, 2D pixel coordinate system, with 
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respect to each camera’s internal parameters [7][19]. A point P in either the RGB or depth image 

is specified as (u, v), with (u,v) representing the pixel coordinates of point P. Its corresponding 

point is represented as (X, Y, Z), in 3D space with (X, Y, Z) representing pixel coordinates. The 

transformation between these two representations is given in Equation 4 as follows [19]: 

𝑍 7
𝑢
𝑣
1
: = 	 ;

𝑓! 0 𝑢"
0 𝑓# 𝑢$
0 0 1

< ;
𝑋
𝑌
𝑍
<     (4) 

In this equation, fx and fy are the focal lengths of the respective lens in pixel coordinate units, u0 

and u1, the principal point of the image, and Z is the transpose between the two coordinate 

systems [7][19]. With external parameters stored in a matrix M determined for a specific camera 

sensor, an alignment relationship between the RGB and depth lenses of that sensor can be 

formed as illustrated in Figure 4. 

 

Figure 4: Alignment relationship for a point P between an RGB and depth image [19] 

For two points (X1, Y1, Z1) and (X2, Y2, Z2), the calculated 3D points for the corresponding 

points in the depth and color images, the full transformation between the two 2D coordinate 
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system points can be found using Equation 5 by solving for R, the rotation matrix, and t, the 

translation vector [7]: 

?
𝑋1
𝑌1
𝑍1
1

@ = 𝑀 B

𝑋2
𝑌2
𝑍2
1
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𝑋2
𝑌2
𝑍2
1

D    (5) 

 

2.2    Identification Techniques 

2.2.1    Fiducial Markers 

Visual sensors enable a robotic system to optically gather information about its environment in 

the form of images. If these images are two-dimensional RGBs, the system must translate what is 

captured in the image to usable information in the 3D space. The use of fiducial markers is one 

such approach. Fiducial markers are shapes bearing unique patterns that once identified in an 

image by a scanning algorithm, offer position and orientation information about the marker [20]. 

These can be affixed to entities in the scene, enabling pose estimation by serving as visual 

landmarks when processing input images. Figure 5 depicts several examples of commonly used 

fiducial markers. 
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Figure 5: Examples of fiducial markers [21]  

Pose estimation with a camera and fiducial markers is achieved by determining the spatial 

relationship between the two. A system is first given information about the marker to be searched 

for. Such identification include pattern, size, and units of measurement [22]. By analyzing the 

size and pattern of a fiducial marker identified in an image, a scanning algorithm is able to 

estimate the relative distance, orientation, and distortions with respect to the camera [23]. This 

process is a form of optical tracking and can be categorized as a registration problem between 

homologous measurements of the marker and its pattern, also known as an Orthogonal 

Procrustes Analysis problem (OPA) [24]. 

OPA facilitates pose estimation of fiducial markers by conducting a point-to-point 

registration between the known pattern and shape geometry of the marker and those measured by 

the visual sensor [25]. Pose estimation is given by the best alignment between the known xi and 

observed yi sets of points, found by solving the point-to-point registration problem for the 

rotation matrix R and translation vector t [25]. Measuring errors in the form of fiducial 

localization error (FLE), fiducial registration error (FRE), and target registration error (TRE) 

refine the pose estimation FLE represents the distance between an observed point and the 
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unknown true location of the point prior to computing the registration transformation [25]. FRE 

is simply the root-mean-squared (RMS) distance between xi and yi following registration [25]. 

Lastly, the calculated distance between a point, not used in the registration calculation, to its 

corresponding point when the registration is applied is the TRE [25]. The relationship between 

the points, error varieties, rotations, and translations following the completed point registration is 

visualized in Figure 6. 

 

Figure 6: Visualization of relationship between FRE, FLE, and TRE with respect to known and 

measured points. f0, f1 and d0, d1 represent the RMS distance of the fiducials and the distance of 

the observation from the principal axis of the fiducial configuration [25]  

 

2.2.2    Machine Learning Image Recognition 

Given a digital RGB image, image recognition by a machine learning (ML) algorithm is the 

process in which said algorithm successfully identifies a subject of interest in the image by 

detecting common features attributed to that entity. A common approach to implementing ML 

object detection is by reducing it to a classification problem and training a convolutional neural 

network (CNN) to perform the task [26]. A CNN is a derivation of the standard deep neural 

network (DNN), a structured neural architecture consisting of a series of interconnected layers, 
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wherein each layer is composed of neuron nodes that accept an input and return some output [27]. 

Convolution, or cross-correlation, simply improves filtering and requires fewer nodes for 

classification by regularizing weights over those nodes [28]. 

Beginning from a CNN’s initial input layer, sections of the image are filtered by a 

convolution layer for lines, edges, curves, colors, or any other identifying pattern of pixels that 

could be correlated to what is to be identified [26]. Often between the convolutional layers are 

supporting pooling layers, responsible for reducing the height and width of an input, resulting in 

the reduction of computation and avoidance of overfitting [27]. One or more rounds of 

convolution and pooling complete feature extraction, passing those on to fully-connected layers 

for classification. A fully-connected layer receives the features in a the form of a flattened one-

dimensional vector, where a set of neuron nodes bearing full connection to all nodes in the 

previous layer, begin making decisions [27]. These decisions are attempts at classification, made 

via weights and biases, which are initially randomized if not pretrained. Estimates by the model 

are compared to solutions provided in the training dataset, demarcating the location of a feature 

if present in the image. A loss value is calculated depending on the accuracy of the model’s guess 

to the correct solution, beginning the fine-tuning process of back propagation in which the model 

adjusts weights and biases of layers to better predict on subsequent images [29]. A softmax layer 

(or function) is finally introduced following the fully-connected layers to produce a probability 

distribution classifying the likelihood that a feature belongs to a given class label [27]. These 

estimates in the form of probabilities denotes the algorithm’s perceived percent likelihood that a 

feature is both present and located at the estimated position. Illustrated in Figure 7 is the 

architecture of a standard CNN, featuring the input, convolutional, pooling, fully-connected, and 

softmax layers resulting in a CNN’s estimate. 
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Figure 7: Convolutional neural network architecture featuring input, convolutional, pooling, 

fully-connected, and softmax layers [27]  

 

2.3    Robotic Task Execution 

2.3.1    Sampling-Based Motion Planning 

As entities in a three-dimensional world, robotic agents have the capability of enacting physical 

change in its environment. To make any meaningful impact, a robot must move to target 

configurations from an initial starting state. A configuration is a complete specification of the 

positions of every point on the robot, with all possible configurations making up a robot’s 

configuration space, or all achievable movement states [30]. Deciding what sequence of 

movements to execute to continuously traverse between configurations is the responsibility of 

motion planners. In robotics, motion planning is the process of dividing a desired movement 

trajectory into individual, discrete motions while satisfying any given constraints on that 

movement, such as avoiding obstacles in its path [31]. Motion planners employ a variety of 

techniques in deciding which specific movements to make. The standard categories of motion 

planning are sampling, optimal node, mathematic model, bioinspired, and multifusion based 
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algorithms [32]. The Open Motion Planning Library (OMPL) is the motion planning software 

library utilized in this body of work, which utilizes the first category of algorithm.  

Sampling-based algorithms are classically split into two categories: roadmap and tree-

based planners. In the first approach, a probabilistic roadmap in the form of a graph is formulated 

during an initial learning phase [33]. Each node in that graph is sampled, or randomly generated, 

and represent an accessible robot configuration, free from collisions [33]. Next begins the query 

phase, where edges are iteratively added by attempting to link configuration nodes to their 

neighbors, successful in the event that a collision free trajectory exists between any two 

neighboring vertices [33]. Given an initial and target end configuration, a motion plan can be 

found by first adding them as nodes in the roadmap. Once edges are drawn for each node to their 

k nearest neighbors, a graph search algorithm is called on the roadmap to find an optimal 

traversal between the start and goal nodes [30]. Figure 8 visualizes a potential roadmap for a 

configuration space, where an attempted k = 2 edges are drawn for each vertex. 

 

Figure 8: Sampling-based roadmap featuring k = 2 edges for each node [30] 

In the second sampling-based motion planning strategy, a classical tree graph is utilized to 

represent the total configuration space. The robot’s initial configuration is defined as the root of 

the tree, and the structure branches by generating new sample configurations from the previous 

node, added only if collision free trajectories exist between the parent and child [30]. This 
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process iteratively samples achievable movement options until the goal configuration is 

accessible in a leaf node. Searching the tree for the path between starting and goal configurations 

is most commonly done with the Rapidly-Exploring Random Trees (RRT) graph planning 

algorithm [30]. RRT offers flexibility in tree graph search as it expands based on control inputs 

(achievable configurations), avoiding the probabilistic roadmap’s requirement of point-to-point 

convergence [34]. A sample RRT output consisting of a root and thirteen sampled nodes is 

depicted in Figure 9. 

 

Figure 9: Sampling-based Rapidly-exploring Random Tree graph output featuring a root node 

and thirteen sample nodes [30]  

 

2.3.2    Coordinate Frames and Transformations 

A robotic agent operates in a three-dimensional world. Robotic systems commonly represent 

their knowledge of their operational environment by mapping a Cartesian coordinate system, or 

frames, along three axes, x, y, and z. A universal world frame is first defined, in which all other 

entities, including the robot, exists. The robot further refines its own positional specification 

within the world frame via three additional coordinate frames: the world reference frame, 

detailing the robot’s physical relationship to its environment, the joint reference frame, 

describing individual joint movements, and lastly the tool reference frame, specifying 
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movements of the robot’s end effector relative to a frame attached to the hand (and therefore 

along the rest of the robot’s body) [35]. Significant entities in the scene are also described by 

reference frames to define their positional and orientational relationships to other entities, the 

robotic agent, and the world environment. All frames in a scene relate and interact with one 

another through relationships called transformations, which define a frame’s position and 

orientation. This information is relative to a parent frame, which is either the universal world 

frame or an already existing frame in the world. Frames are expected to dynamically change over 

the course of a task, therefore giving transformations three primary forms [35]. The first is a pure 

translation, wherein a frame moves in the environment without any adjustment to its orientation 

[35]. Next are pure rotations, where no positional change occurs between a parent and child 

frame, but orientation changes along any of the three axes [35]. Lastly, a frame could undergo a 

combinational transformation that maneuvers positionally and orientationally relative to its 

parent frame [35]. Illustrated in Figure 10 is a pure translation operation, depicting a child 

positionally changed with respect to its parent frame. Relationships between frames and their 

respective coordinate systems are mathematically represented by matrices, which describe 

current translational and rotational information between a parent and a child [36]. Depending on 

the desired transformation, a series of matrix operations can describe the relationship between 

two entities in a robotic workspace in a structured, numerical representation.  
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Figure 10: Example of a pure translation between a world, parent, and child frame [35]  

 

2.4    Related Work 

2.4.1    Image Sensor Based Object Recognition 

Visual sensors, such as RGB and depth lens equipped stereo cameras, are capable of capturing 

both color and depth information from its FOV. These images, used either independently or in 

tandem, offer valuable information about a 3D environment despite being two-dimensional.  

 To estimate pose with a visual sensor, a significant entity must first be differentiated from 

its surrounding environment. With recent advances in the efficiency and accessibility of machine 

learning (ML) algorithms, artificial intelligence offers a method of identification via RGB 

images alone. In a typical use case of this approach, Ryu et al. (2021) surveyed the potential of 

machine learning in the application of livestock disease monitoring by testing with human 

subjects’ faces [37]. The team trained artificial intelligence models to draw 3D bounding boxes 

given images taken from an RGBD camera. They found that given enough training data, these 

models were successful in determining label, distance, and position of a subject [37]. ML 

algorithms are similarly employed by Rahul et al. (2018), where an RGB and depth capable 
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stereo camera trains a CNN to identify and classify objects, while also calculating distances from 

the camera [38]. Their model tags suspected regions of images with bounding boxes to get 2D 

positional data, finally determining the depth dimension via triangulation of a constructed 3D 

point cloud of the scene [38]. Much of the work in ML object detection aligns with these works, 

training varying algorithms to identify and classify objects in an image, and offering 3D 

distances provided capable visual sensor hardware. However, in the realm of robotics, further 

must be done to relate those bounding boxes and 3D coordinates of the objects to representative 

poses in the real world. 

In maintaining the use of only RGB images, fiducial markers are widely used as a means 

to classify objects and estimate pose, enabling the guidance of one or more robotic agents via 

visual servoing. Because these markers only require seeing a pattern and performing point-based 

registration to obtain the full position and orientation [24], they serve as an incredibly quick and 

efficient method of pose estimation once affixed to a significant entity. In the work of Rogeau et 

al. (2020), ArUco tags were utilized in the 6-degree of freedom robotic arm assembly of timber 

panels requiring precise insertion maneuvers [39]. To accomplish this task, a visual feedback 

loop was developed beginning with a camera capturing an image of ArUco equipped panels [39]. 

An algorithm proceeds to calculate the full pose of the fiducial marker, later using this 

information in the robot controller to fine tune the movement trajectory reaching a target within 

<5mm of imprecision [39]. This is demonstrated in Figure 11, where a robotic arm inserts a 

wooden panel at the pinpointed pose estimated from an ArUco tag [39]. Fiducial guided visual 

servoing is seen again in the work by Yu et al. (2019), where AprilTags, a class of markers, were 

utilized in guiding a 4 degree of freedom arm in object grasping [40]. Images were captured on 

an OpenMV camera, responsible for recognizing significant entities with affixed fiducial tags 
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offering full positional and orientational information [32]. These AprilTags were utilized in 

tandem with force-compliant end effectors to precisely tune the final grasp of targets [40].  

 

Figure 11: Example of fiducial marker guided visual servoing; insertion of a wooden panel at 

pose estimated from ArUco tag [39]  

 

2.4.2    Occlusion Search 

A robotic system may encounter potential obstacles that impede, or even damage the agent, in a 

live working environment. While some hazards pose physical harm, others might simply hinder 

robotic performance or halt execution of a task. Occluding obstacles are one such class of 

environmental hazard, typically occurring by preventing a robotic agent from reaching a goal 

configuration or obstructing sensors from perceiving the surrounding environment. In a robotic 

system operating with or depending solely on visual sensors, such occluding obstacles present 

significant challenges in gathering information about the workspace. To negate the interferences 

brought forth by occlusions, predictive estimation, active visual search, or a combination of the 

two are viable counter strategies.  
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Beginning with the former, Chi et al. (2019) propose a tracking framework of deformable 

linear objects (DLO), utilizing RGBD data and Coherent Point Drift (CPD) to estimate occluded 

regions of said objects [41]. Their approach begins with regularization of CPD output via locally 

linear embedding and constrained optimization, offering topological consistency of the object 

view when occlusions obscure a DLO [41]. Next, the team’s developed algorithm considers free 

space visible in the scene to pinpoint areas of occlusion, and to improve already made 

estimations of on point locations [41]. Finally, shape descriptors are employed to fully estimate 

and reason the most probable positions of an object of interest under occlusion [41]. Given 

partial view of a DLO, this method seeks not to return an object to view, but rather assumes its 

position based on expected approximations of where it should be behind an obstacle. Figure 12 

illustrates the results of this work, where the shape of the deformable linear object is estimated 

with occlusions partially obscuring regions of the target [41]. 

 

Figure 12: Estimation of deformable linear object position under partial occlusion via the method 

developed by Chi et al. (2019) [41]  
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Lin et al. (2015) proposed an implementation consisting purely of active search, requiring 

no estimation. The team conducts robotic search of an environment based on the selection of 

potential agent configurations [42]. An A* search tree algorithm was developed with leaf nodes 

as sampled, available poses that lead to, or enable the grasping of an occluded target [42]. The 

robot in this scenario is able to move either itself or obstacles in the environment to improve its 

view, selecting actions that minimize cost of future action cost [42]. Nodes in the tree are 

connected to each other if transitions between the two are available to the robot, and a greedy 

plan is applied such that minimum actions are taken to reveal remaining hidden target poses that 

lead to revealing the goal [42]. 

Applying active visual search, in tandem with predictive estimations calculated by the 

system, significantly enhances the effectiveness of occlusion search compared to using a single 

approach alone. An ideal joint effort may consider an object’s likely position behind occlusion 

and initiating a search at the estimated position to search an entire scene more efficiently. 

Radmard et al. (2018) developed a system wherein a robotic agent repositions its visual sensor to 

achieve a view around an obstacle by estimating its most likely location [43]. The team 

developed a particle filter responsible for continuously updating a guess, an estimated position of 

the object found by their algorithm [43]. A map of the occlusion’s boundaries is first produced to 

compute potential obstacle clearing motions, while a cost function optimizes between 

information gain of the subject or obstacle and cost of maneuvering the sensor [43]. A planner 

uses this cost to balance information gain and search to prevent a complete mapping of the scene, 

until a view of the target object is acquired [43]. Similarly in the work of Wong et al. (2013), a 

robotic agent explores specific areas depending on most probable target locations [44]. In this 

cupboard scenario, obstructing entities in the form of containers hold goal objects within. A 
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generative model of the scene was developed, where, co-occurrence information and spatial 

constraints guide a robotic agent to searching specific containers for the target [44]. This 

similarity-based approach estimates target location by matching the target to occlusions with 

similar attributes, much in the same sense as a coffee mug would likely be located near other 

cups and not with bowls or plates [44]. 

 

2.4.3    Summary 

The key objective of this thesis is the utilization of various techniques to extend the information 

gained about an environment through visual sensors alone. Fed RGB or depth images from 

equipped stereo cameras, a robotic system must first detect and recognize an object of interest 

among its surroundings. Machine learning algorithms for object detection, as presented in the 

works of [37][38], demonstrate capability in identification of an object and estimating its 

position by detecting features learned from training data. Although successful in recognition, it 

lacks the component of defining a full pose for the object, namely orientation, from the images 

alone. Fiducial markers remedy this by offering unique identifications discernible by their 

patterns. Robotic visual servoing as performed in [39][40] is made possible by the full pose 

estimations calculated via point registration [24] of marker geometries observed in the RGB 

images. Fiducial tags, however, are not readable unless the entire pattern is visible or a 

computationally expensive backup algorithm estimates the remaining pattern blocked by 

occlusions. This thesis work therefore aims to fully estimate the pose of an object, including 

position and orientation, utilizing only RGBD stereo cameras without the need of fiducial 

markers. Additionally, partial occlusions should not impede pose estimation, creating a robust 

system capable of visual servoing without searching unless a target is heavily obscured. 
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 In the presence of occlusions, three approaches to searching behind obstacles are 

presented. A system could fully estimate the position of occluded objects as done in [41], or 

initiate a comprehensive search around obstacles by minimizing action costs between maneuvers 

in the robot’s total configuration space [42]. Active search can also be guided by estimations, as 

seen in the combined approaches of [43][44]. Here, robotic agents prioritize search in locations 

with a high chance of containing the target. This thesis aims to search around occlusions 

efficiently and robustly, characterized by not processing the entire configuration space while 

successfully locating a target. Additionally, the search algorithm proposed by this thesis should 

be lightweight, refraining from heavier predictive estimations using factors considered in the 

presented related works. 

  

3    Methods 

3.1    System Overview 

3.1.1    Configuration 

The method presented in this section describes aspects of an end-to-end solution to the DLO 

connector end slip anomaly detection and response problem. The overall system is designed to 

emulate the interior of a SmartHab, dimensionally appropriate for the anticipated volumetric 

constrained dimensions of this human-crewed spacecraft. It is configured and composed of two 

parts: the robotic agent and its workspace. The robotic agent is comprised of two Trossen 

Robotics ViperX 300 S six degree of freedom (DOF) robotic arms equipped with gripper end 

effectors. Two cameras, mounted at different locations in the environment, provide visual 

information about the scene through RGB and depth images. The cameras consisting of the Intel 

RealSense d435i and d415, are affixed, respectively, one to the left arm’s wrist joint and the 
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second to a rear camera stand behind both arms. The entire setup, including the environment and 

robotic agent, is depicted in both real world (left) and RViz simulation (right) views in Figure 13. 

The real-world view displays the two arms of this system’s robotic agent, with two visual sensors 

one mounted behind and the other mounted on the left arm’s wrist joint. In front of the pair are 

the mock work environment with attached DLO. The simulation view displays the ROS (Robotic 

Operating System [45]) frames for the robotic arms, cameras, and world. A central world frame 

is defined on the plane of and directly between the robotic arms. The environment is composed 

of a floor and two plywood panels of dimensions 36 x 24 inch2 and 12 x 24 inch2 attached to one 

another. These are placed 20 inches (+20 along the x-axis) in front of the world frame. The two 

robotic arms are mounted along the world frame’s y-axis, offset seven inches along the positive 

and negative directions. The rear camera is mounted 14 inches behind (-14 along the x-axis) and 

16 inches (+16 along the z-axis) above the world frame, and the arm camera is mounted 1 inch 

(+1 along the z-axis) above the left arm’s wrist joint. 

 

Figure 13: Actual (left) and simulation (right) views of the robotic system in environment, with 

two visual sensors mounted behind and on the left arm's wrist joint 
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Two different obstructions were also created to challenge the system’s ability to locate the end of 

the loose connector. These are made of purple polystyrene foam and are displayed in Figure 14 

with labels specifying their dimensions. Both of these foams were sized relative to the 

volumetric constraints of the environment. They were also shaped such that they could block the 

end of the DLO connector from the rear camera view without completely preventing the robotic 

agent from searching around them with the arm camera.  

 

Figure 14: Designed short (left) and tall (right) foam environment obstacles with dimensions 

Affixed to the back panel are four blue racks, providing a sliding connection point for the DLOs. 

These attachment points are outlet socket USB-C power blocks, roughly emulating the shape and 

connection face of a battery ORU. The DLO is a red USB-C to USB-C cable, with a bolstered 
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red plastic wrapped around the end of the connector. As a method to approximately emulate near-

zero gravity conditions, the length of the cable is reinforced with a black plastic wrapping as to 

stiffen the entirety of the DLO. The stiffening would allow the DLO to hang in space rather than 

falling due to gravity. Figure 15 depicts the DLO and mock battery ORU connector blocks 

utilized in this work, with respective dimensions labeled. 

 

Figure 15: Mock DLO cable (top) and battery ORU (bottom) with dimensions 

The starting configuration of the environment consists of the arms in their sleep state and the 

DLO plugged into both connection points on the wooden panels. The system, employing its rear 

mounted camera, continuously monitors the position of the DLO connector end. The right 

robotic arm, tasked with manipulating the connector end, grasps and unplugs it from the USB-C 

power block. It maneuvers to a temporary stowing point before an engineered slip occurs 

dropping the unplugged end into the workspace. The system, having lost the DLO, consults the 
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rear camera for sight of the connector. If unsuccessful, a search pattern over the workspace is 

initiated. Once the connector end has been identified, pose estimation for the loose connector end 

is conducted by either camera. This is accomplished using fiducial markers, machine learning, or 

RGBD image processing. Following successful pose estimation, the pose of the connector end is 

transformed to the coordinate system of the right manipulating robotic arm. Motion plans are 

then generated and executed for retrieval and restoration of the connector end to its original 

destination. 

 

3.1.2    Software Overview 

The codebase developed for this thesis was written in Python 3 and built under the Noetic 

distribution of ROS 1 running on a Linux Ubuntu 20.04 operating system. Software interfaces 

with the robotic arm hardware via the Robotic Operating System (ROS) framework, an open-

source structured communications layer facilitating transfer of information between robotic 

agents and written code [45].  

The software presented in this thesis follows standard ROS practices using an object-

oriented approach of information transmission between class-like nodes. This messaging 

infrastructure supports transmission of data between nodes via a publish and subscribe message 

pattern [45]. Several custom nodes were implemented in this thesis, including responsibility for 

intaking sensor data, processing it for relevant information, calculating frame pose estimations, 

and deciding on appropriate robotic responses depending on perception of the environment.  

As much of this work concerns applications of computer vision to guide visual servoing, 

OpenCV, a software library containing computer vision algorithms and functions, is employed to 

process output from the system’s cameras. OpenCV is typically accessible via the standard 
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Python 3 distribution but receives more direct support from ROS via a framework bridge. Not 

only is the library fully accessible to ROS nodes, but efficient conversions between ROS and 

OpenCV datatypes are available. Control of the robotic arms is handled by MoveIt, the ROS 

motion planning framework which, once configured for this two-arm setup, offers motion 

planning and trajectory execution capabilities. OMPL, a sampling-based motion planner 

available in MoveIt, handles planning and movement of the arms throughout this work [32].  A 

series of demonstration scripts leverage MoveIt motion planning and ROS node communication 

to test the robotic skills developed in this body of research.  

 

3.1.3    System Requirements and Assumptions 

The requirements for the robotic system developed for this thesis are as follows: 

1. The robotic system demonstrates the ability of pose estimation, including position along 

the X, Y, Z axes and orientation, in quaternions, along the X, Y, Z, W axes, for the 

connector end of a deformable linear object (DLO). Pose estimation is calculated directly 

from output RGB and depth images published by the visual sensors, with no prior 

knowledge pertaining to the DLO or the environment. 

2. The cameras within the robotic system demonstrate the ability to track an object of 

interest by monitoring the state of the DLO. By continuously tracking the position of the 

DLO, an unknown state is flagged in the event that its current position differs from what 

is expected by the system. 

3. The robotic agent demonstrates the ability to perform its task despite the impeding impact 

of occluding obstacles. In the presence of occlusions, a search of the workspace is 
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conducted using a robotic arm equipped with a camera if the DLO connector end is no 

longer in a known state. 

4. The robotic agent develops a motion plan and executes retrieval plans for a connector in 

an unknown state by locating the object, calculating its full pose estimation, and sending 

a robotic arm for grasping it. 

The assumptions used for the robotic agent developed for this thesis are as follows: 

• The location and geometries of the ground and panels are known to the system. 

• Initially, the two ends of the cable are connected to two connection points on the back 

and right panels. The locations of these connection points are known to the system. 

• One end of the cable is always fixed, plugged into the right panel’s connection point. The 

other, left end, along with the rest of the wire, may be free if slipped from the robotic 

arm’s gripper. 

• The system has no information about the physics or properties of the cable, except 

limited information about the left connector end to be unplugged. Depending on the pose 

estimation technique employed, the system is only aware of one of the following: 

i. The fiducial marker pattern affixed to the connector end that the system is to 

search, identify, and register. 

ii. Prior learned pattern features (through neural network training) about the 

connector for use in machine learning object recognition. 

iii. The color of the connector end it is to identify and estimate pose for. 

• The process of unplugging the cable and maneuvering it to a new location is known and 

organized by the system, and not handled by this work. 
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• At any point, the pose of the connector end is assumed unknown to the system. 

Identifying, tracking, and monitoring the status of the connector end requires pose 

estimation by the system to determine position and orientation. 

• The work presented in this thesis is intended to be utilized in zero gravity conditions. 

This is emulated under standard gravity conditions via the use of a stiff cable, reinforced 

with semi-malleable plastic. This would allow the cable to hang in the air rather than 

falling under gravity 

 

3.2    Identification and State Estimation of Connector Cable End 

3.2.1    Pose Estimation Techniques Overview 

The research presented in this thesis concerns manipulation of a deformable linear object at its 

end extremity, where a point of connection exists for plugging into an appropriate outlet. In order 

to successfully manipulate the cable, the system must first be able to identify, monitor, track, and 

search for the end of a cable using its position and orientation. Pose estimation of the cable’s 

connector end is critical as it informs the system of the cable’s state, enabling all other 

capabilities presented in Methods (Section 3). This information can be utilized to update the 

robotic agent on task progress and status, or be converted to individual ROS frames which guide 

the robotic arms in visual servoing based manipulation of the DLO’s.  

 Three pose estimation techniques are presented in this work, all based purely on visual 

feedback and requiring only the RGB and depth image outputs from a pair of RGBD capable 

stereo cameras. Although each approach receives the same input options, they require specific 

setup conditions that result in unique identification and pose estimation procedures. The three 

strategies for pose estimation demonstrated in this thesis are as follows: 
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1. Fiducial markers 

2. Machine learning object detection 

3. RBG segmentation and depth point cloud processing 

 

3.2.2    Fiducial Markers 

3.2.2.1    Camera Calibration 

For a system to perform pose estimation with fiducial markers, two steps must first occur. A 2D 

image is first produced which is a flat view of the camera’s observed scene. Cameras, by the 

nature of their construction and how images are captured by their internal sensors, may introduce 

levels of distortion that do not realistically depict a view of the environment. Figure 16 illustrates 

the various types of potential camera lens distortions, which vary depending on the type of 

camera capturing the image. The second step is to correct any distortions so that the returned 

image accurately represents the scene. 

 

Figure 16: Primary types of camera lens distortions: (a) No distortion (b) Barrel distortion (c) 

Pincushion distortion (d) Mustache distortion [46]  
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Because fiducial marker pose estimation is heavily dependent on the curves, contours, and 

relation of points observed, distortion heavily skews this calculation. Depending on the specific 

camera used, the manufacturer defaults may already correct for distortions in the sensor’s 

intrinsic parameters [11]. Additional distortion correction is possible through OpenCV, which 

offers a suite of functions for camera calibration using a flat, reference checkerboard image. The 

dimensions of the pattern are passed to the functions, which are used to recognize distortions 

based on the checkerboard’s appearance in relation to those dimensions in the camera’s images 

[47]. The camera’s view of the checkerboard, with calibration lines drawn by OpenCV, is 

depicted in Figure 17. Distortions are recorded in the form of image coefficients, which are then 

passed to fiducial identifying functions to correct for distortions in images scanned for present 

markers.  
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Figure 17: Checkerboard with OpenCV calibration lines drawn over the RGB image 

 

3.2.2.2    Fiducial Marker Registration 

With calibration complete, fiducial markers to be placed in the environment must be registered 

with the system, essentially informing the algorithm of what specific patterns to search for. For 

the fiducial marker work completed in this thesis, ArUco markers were chosen since they are 

well supported in OpenCV. They are also robust with high detection rates across various 

environments, as found in [20]. For differentiating tags in a scene, each unique pattern included 

in the set of default ArUco dictionary are numbered. Identification of one of these default 

patterns therefore returns a numerical value, which can be recalled to not only gather information 
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about which patterns were found, but also to identify the entities those tags represented in the 

environment. 

 

3.2.2.3    Fiducial Marker Identification 

Once a system is calibrated with distortion coefficients, and informed of fiducial markers to 

identify, the OpenCV ArUco identification algorithm can be called for an image. The camera 

publishes images at a set framerate, received by a ROS node with an appropriate callback for 

processing the picture. Images are passed to the node in the form of ROS images, which are 

converted via an OpenCV bridge to format the files into OpenCV images. This formatting step 

enables the application of OpenCV computer vision processing functions on images returned by 

the camera.  

OpenCV detects ArUco markers in a two-step process over a compatible image type. The 

function first searches for ArUco tags by applying an adaptive thresholding to segment potential 

markers from their surroundings. Any plausible candidates have their contours extracted, and any 

candidate bearing no resemblance to the tags are discarded [22]. Next, valid ArUco patterns are 

identified by analysis of their inner codification. A perspective transformation and thresholding 

prepare prospective pattern bits for verification of whether the pattern belongs to a default ArUco 

dictionary [22]. Assuming valid markers are identified, outputs required for pose estimation are 

calculated alongside any image coefficients to correct for distortions. These outputs, tvec and 

rvec, are vectors representing the 3D positional difference between the camera and the marker, 

and the Rodrigues axis of rotation and rotation angle about that axis between the camera and 

marker center respectively. These vectors supply the marker’s position and orientation 

information relative to the camera and are determined by the features of the tag’s pattern via a 
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point-to-point registration between a known base view of the pattern and the pattern observed in 

the image [25]. In the context of this thesis, two ArUco tags are present in the scene, affixed to 

the left cable connector end and an eventual stowing point. Figure 18 depicts the rear camera 

view of the workspace, with pose estimations generated for these two fiducial markers by 

OpenCV. 

 

Figure 18: Pose estimation of two fiducial markers in workspace, generated by OpenCV 

 

3.2.2.4    Pose Estimation 

A frame for an ArUco marker can be drawn using the vectors following identification. The 

translational vector is applied directly as the new ArUco child frame’s position, functioning as a 

transformation from the position of the parent camera frame’s location. The rotational vector 

requires minor processing before it can be used in representing frame orientation. The Rodrigues 

values are given in the form of a float vector but can be represented as a rotational matrix. The 

ROS tf library, capable of tracking multiple coordinate frames over time, can transform this 
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matrix of Rodrigues angles to Euler angles, and finally from Euler to quaternions. Quaternion 

values can then be applied to calculate the orientation portion for the ArUco frame. With position 

and orientation set, a full pose is defined enabling the generation of this new frame representing 

the fiducial marker, relative to the camera’s frame. 

 

3.2.2.5    Representative Frame Adjustments 

Generated fiducial marker frames exist in the ROS system’s world coordinate system, serving as 

reference points for entities where the tags are affixed to in the workspace. An ArUco tag placed 

on the left connector end, for instance, essentially represents that entity by offering numerical 

identification and offering pose estimation. For visual servoing, these frames, if positionally 

reachable and orientationally aligned to the robotic agent, act as goal poses for the arm’s end 

effector. Under these conditions, a motion planner is capable of calculating and executing a 

trajectory to maneuver the robotic arm from its initial position to the pose specified by the 

fiducial marker pose, as similarly accomplished in [39][40].  

Suppose, however, that the pose generated by a fiducial marker frame is not exactly 

where a frame of the robot should traverse to. The ArUco affixed to the left cable end is at the 

extremity of the cable, and grasping of the marker itself could result in damage over repeated 

manipulation. In this instance, a simple offset transformation along the ArUco frame’s red x axis 

remedies this issue by attempting a grasp point slightly right of the marker’s physical position. 

The motion planner can now generate a trajectory for the arm by sending it to the ArUco frame 

offset, accurately grasping via pose estimation and safely handling the marker with this minor 

positional transformation. Figure 19 depicts the RViz simulated view of the environment 

featuring the two original ArUco marker frames, and the third offset frame used for grasping.  
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Figure 19: RViz simulation view of fiducial marker frames and offset grasping frame 

 

3.2.2.6    Fiducial Marker Visual Servoing Pipeline 

Figure 20 illustrates the full pipeline this system follows in order to visually maneuver the 

robotic agent using fiducial markers. The selected camera constantly publishes its intrinsic 

parameters and captured RGBD images. The former is subscribed to by a camera calibration 

node that calculates any coefficients for correcting lens distortions, improving accuracy of 

fiducial marker readings. A central node that performs the Aruco tracking subscribes to the 

camera for its RGB images and receives any distortion correction coefficients from the camera 

calibration node. It passes this information to cv2, which detects and returns the rvec and tvec 

matrices of detected Aruco markers. The node generates a frame based on the returned matrices, 

making final adjustments before publishing this information in the form of a frame, which the 

system may then use to guide the robotic agent in visual servoing. 
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Figure 20: Fiducial marker guided visual servoing pipeline 

 

3.2.3    RGBD Image Processing 

3.2.3.1    RGBD Image Segmentation for Position 

Obtaining position of the cable connector is achievable by processing the RGB and depth images 

published by the system’s visual sensors. For this approach, this thesis follows the work of [7] in 

which this sensory information from the camera is processed to generate a segmented depth 

image by leveraging concepts from computer vision [7]. The purpose of the segmentation is to 

filter the cable connector end from its environment based on its red color, represented by a Hue 

Saturation Value (HSV) range [48]. Once filtered, the system will have a binary image 

representation of the connector to further process for pose estimation, ignoring irrelevant 
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information from the rest of the environment. The HSV filtering process for image segmentation, 

as implemented by [7] is as follows: 

1. An RGB image from the camera is passed to the OpenCV library’s cvtColor() function to 

convert it from the RGB color model to HSV. 

2. An HSV color range is defined for the object of interest, in this case red for the color of 

the cable connector end. 

3. A mask is generated of all RGB image pixels falling within the defined HSV color range 

using the OpenCV library’s inRange() function. 

4. The original image is segmented to create a new depth image by applying the bitwise 

AND operation to the raw image with the masks defined in step 3. 

5. The result is converted to a binary image. 

The HSV filtered segmented binary image represents the cable connector, but still bears noise 

from the environment. To remedy this, further isolation of the connector from its environment is 

achieved using three morphological operations [7], [17]: 

1. Dilation: performed by passing the segmented image to the OpenCV library’s dilate() 

function, enlarges the boundary of the isolated connector end. It corrects for errors such 

as holes in the segmented object, missing boundaries, or disconnected portions of the 

object. 

2. Contour detection: extracts only the pixels associated with the curve of the connector by 

first applying the OpenCV findContours() function to the binary image, returning a list of 

all contours found. The OpenCV contourArea() function is next called to find the contour 

with the largest area, which corresponds to the connector. Dilation is therefore a 
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significant preprocessing step as filtering for the largest contour would fail if the 

segmented object of the connector was broken up by errors fixed during that step. 

3. Erosion: counteracts the effects of the dilation step, removing added boundaries to the 

segmented object. This is done by passing the binary image following contour detection 

to OpenCV’s erode() function. 

Following this extraction and refinement procedure, the cable connector is isolated from its 

environment in the format of a binary image. A ROS nodelet manager, defined in the system 

launch file, converts from the depth binary image format to an XYZ point cloud. The system 

now has a point cloud representing the cable connector in a coordinate system with respect to the 

chosen camera’s frame of reference. Figure 21 depicts the loose cable’s connector point cloud, 

following HSV segmentation and conversion from a binary image, in the RViz simulation view 

of the environment. 
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Figure 21: Loose cable connector point cloud (white) in RViz simulation view of environment 

Position can next be calculated via processing of this connector point cloud. The absolute center 

pixel along all three axes of this point cloud is a prime candidate for the position portion of pose 

estimation. To make this approach more robust (avoiding the influence on positioning any single 

pixel would have) outliers are first filtered before n points along each of the X, Y, and Z axes are 

averaged to generate an n-mean 3D point instead. The steps for calculating the center n-mean 

point are as follows: 

1. Define a variable n representing the total number of points to average for the calculation 

of the point cloud’s new 3D mean center point 

2. Sort all points in the point cloud according to a dimension (X, Y, or Z axis) 
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3. Extract the n middle points from the point cloud along the axis selected in step 2, and 

average their values 

4. Repeat steps 1-3 for all three axes and input their value to the corresponding position in 

the new n-mean center point frame 

Performing this procedure yields an optimal center of the connector’s point cloud, which can 

then be supplied to the position portion of the connector’s pose estimation. Figure 22 depicts a 

generated frame, relative to the camera parent frame, for the cable connector with this n-mean 

averaged center point as its position with no orientation values set. 

 

Figure 22: Generated frame for connector with position given by averaged center point 
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3.2.3.2    Point Cloud Processing for Orientation 

The same segmented binary image’s point cloud used to find position is leveraged to find the 

orientation of the cable connector. A point cloud, by nature of it being three dimensional, 

inherently contains information about how it is oriented in the environment. Orientation for a 

cylindrical connector end, abstracted as a geometric line in 3D space, can therefore be calculated 

by the vector connecting its start and end points [49]. Rotational information about each axis, 

offered by the directional component of the vector, is defined by its head and tail points. A ROS 

conversion of this vector to a quaternion rotation is then assigned to the rotation component of 

the frame representing the pose estimation of the connector end.  

 Calculating orientation begins by determining the minimum and maximum points of the 

point cloud, representing the tip and the base of the connector end. The n minimum and 

maximum points of the point cloud are similarly averaged for finding orientation. Because the 

point cloud is already well isolated by the segmenting process described in Section 2.3.3.2, few 

outlier points remain. These are first removed via a mean of all points along an axis, where any 

points outside a standard deviation threshold are deleted. Consideration is then placed on which 

axes’ minimum and maximum points should be utilized, depending on the actual orientation of 

the connector in the environment. If the connector is principally horizontal, the points with the n 

minimum and n maximum X values are averaged for the starting and ending points. Similarly, 

the n minimum and n maximum Y values are averaged if the connector is principally vertical. 

The decision on which direction and axes to move forward with is made by comparing the 

distance between the minimum and maximum averaged points along the X versus Y axes, with 

the connector’s principal orientation given by the greater distance. The direction of the line is the 
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3D difference vector between the minimum and maximum averaged points along the selected 

axis. This is depicted in a bold red line for legibility in Figure 23’s RViz simulation view. 

 

Figure 23: Direction vector (red) between the averaged minimum and maximum points of the 

connector point cloud  

The direction vector is then normalized to have a length of one unit. This step ensures the vector 

represents only the direction, and not the magnitude of the line as well [49]. Each component of 

the direction vector, the difference between the average minimum and maximum for each axis, is 

divided by the total length of the vector. Finally, the vector is converted to quaternions to match 

the orientation component of a new ROS transform frame. It is important to note that the 

rotations calculated via this method only offer suitable rotation values about the Y and Z axes. 
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Due to the point cloud’s cylindrical nature, this vector approach results in a non-unique solution, 

and therefore unstable, orientation values about the X axis. Therefore, the X axis rotation is 

copied from the parent camera frame. By matching the X axis of rotation to the typically upright 

camera frame, grasping of the connector is simplified as a result of the relatively more stable 

orientation of the camera. 

 

3.2.3.3    Pose Estimation 

Having calculated both position and orientation from the connector point cloud, a new frame 

representing the cable end can be generated by supplying positional coordinates and rotational 

values from 3.2.3.1 and 3.2.3.2 respectively. This frame is positioned at the center of the point 

cloud, and oriented by both the camera’s frame and the directional vector between the n averaged 

minimum and maximum points. Figure 24 depicts the frame generated for the connector, with 

appropriate position and orientation for the point cloud’s pose in the environment. 
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Figure 24: Connector frame generated from HSV segmented point cloud 

 

3.2.3.4    RGBD Image Processing Visual Servoing Pipeline 

Visual servoing of the robotic arm, guided by HSV segmentation and point cloud processing, is 

outlined in the Figure 25 pipeline. The approach begins with the visual sensor publishing both 

RGB and depth images to a node that performs the HSV segmentation. It calls on the OpenCV 

library to assist in computer vision processing tasks of image masking and morphological/bitwise 

operations. These segmented images are remapped by a ROS nodelet manager, which converts 

the bitwise images to point clouds. The point clouds are then published to two separate nodes, 

handling position and orientation calculation separately. The latter also adjusts its X axis of 

rotation from the camera’s transform, stored in ROS’s transform library tf2. It also receives the 
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calculated position values through a transform frame and publishes the full completed frame 

representing the connector end to the system.  

 

Figure 25: RGBD image segmentation point cloud guided visual servoing pipeline 

 

3.2.4    Machine Learning 

3.2.4.1    Image Dataset Configuration 

Machine learning can be leveraged for pose estimation through the utilization of a commonly 

employed task for object detection. Training of any neural network requires an input dataset 

consisting of a collection of samples which are all belonging to a uniform medium the algorithm 

is to operate on. Because information about the world, in this work, is captured by cameras, the 

form of data for this body of work is image files. Alongside the images, the training process 

requires annotations. This is typically provided in a text document specifying where the objects 

of interest are located in each image [50]. These annotations assist the neural network in learning 
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what features to recognize by providing the correct locations of entities, adjusting its weights to 

correlate certain pixel colors and patterns to the classes it must identify [50]. Only one class label 

is used in this work for representing the cable’s connector end. The annotations are drawn 

manually using the open-source labelling tool CVAT (Computer Vision Annotation Tool) and are 

defined by rectangular bounding boxes capturing the region of images where objects of interest 

are located. 

To further expand the dataset and intensify the training process for more robust 

predictions, copies of samples from the dataset can be augmented and added [51]. 

Augmentations, done by adding noise, transformations, shaders, etcetera, enable the CNN to 

accurately identify features despite changes to the environment, such as lighting changes or 

image deformations [51]. The augmentations are designed to emulate the variations in the view 

that the sensors may encounter. Figure 26 depicts two JPG images from the final dataset, both 

with bounding boxes included: an unaltered sample from this work’s dataset, with connector end 

in view, as well as a corresponding copy with augmentations applied. 

 

Figure 26: Bounding box annotated (yellow) RGB images of cable with connector end in 

environment (left) and its augmented copy (right) 
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3.2.4.2    Convolutional Neural Network Training 

Given a dataset of JPG images and corresponding class annotations, a CNN can learn to 

recognize specific features within these samples to detect and estimate the locations of those 

same features in new images. The CNN selected for object detection in this work is YOLOv5, an 

evolution of the You Only Look Once (YOLO) family of real-time object detection models [52]. 

Training and hosting of the model is accomplished with Roboflow, a computer vision and  

artificial intelligence tool offering rapid deployment of object detection development with their 

computer vision services [53]. Two versions of the model exist as a result of training twice under 

two separate datasets. The first, Dataset A, consists of 122 images all taken under the same 

lighting conditions of the cable connector in various positions and orientations. This dataset was 

split such that 85, 25, and finally 12 images were a part of the train, validation, and test sets 

respectively. The second, Dataset B, similarly captures the connector in diverse poses, but 

additionally contains some images with lighting variations, introduced by a floodlight pointed at 

the environment. Also added are augmentations on those captured images, producing a dataset of 

292 total images. 255, 25, and 12 images were respectively placed in the train, validation, and 

test sets. The augmentations applied to the second dataset are fully listed in Figure 27 and were 

selected based on anticipated conditions that the robotic agent may encounter during live 

operation, such as lighting changes or unpredictable poses of the connector end introduced by the 

cable’s free fall or the pose of the camera itself. 



 

 54 

 

Figure 27: Augmentations applied to the second dataset for training YoloV5 model 

The two versions of the model naturally yielded differing metrics as a result of the uploaded 

datasets. Dataset A produced higher accuracies across all categories over Dataset B, likely due to 

the controlled lighting and un-augmented conditions under which this version of the model was 

trained under, therefore making prediction highly accurate. The evaluations of these two models 

under mAP (average of the Average Precision metric across all classes in a model), precision 

(rate of correct model's predictions), and recall (percentage of relevant labels successfully 

identified) are listed in Table 2 [53]. 
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 mAP Precision Recall 

Dataset A 

(unagumented) 
99.5% 99.8% 100% 

Dataset B 

(augmented) 
84.0% 72.1% 64.0% 

 

Table 2: Evaluation of model version performances under mAP, precision, and recall 

 

3.2.4.3    Pose Estimation 

The trained YoloV5 model is capable of drawing a rectangular bounding box over the region of 

an image which it estimates the connector end to be. The accuracy will be subject to the 

presented metric evaluation of each version. A bounding box not only predicts the position of the 

cable connector relative to the visual sensor, but also confirms the presence of the entity in view 

of the camera. Leveraging this information enables the identification and pose estimation of the 

cable connector, using only RGBD images from the camera and the machine learning model. 

 To visual servo under this technique, the position of the guiding frame must first be 

calculated. Because rectangular bounding boxes are utilized instead of closer-fitting, oriented 

bounding boxes, the estimated region captures the entirety of an identified cable connector. All 

four edges of the bounding box tightly enclose the connector with minimal to no padding, 

guaranteeing that the center point of the box will represent the center of the connector despite the 

orientation of the connector within. Therefore, the X and Y coordinates are defined as the center 

point of the 2D bounding box. Z can then be found by simply looking up the value of this X, Y 
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coordinate in the corresponding aligned depth image. This approach in obtaining the position is 

naïve; however, in that it depends on a singular pixel value to determine the value along each 

axis. Assuming orientation is approximately correct, a single pixel is, in practice, acceptable for 

determining X and Y coordinate values due to the width of the gripper. The gripper’s grasping 

zone lowers tolerances and leaves margin for error given how much wider it is than the thin 

connector end. Considering depth however, the consequences of a single pixel’s inaccuracy may 

result in an under or over shooting of the target grasp. To make the depth value more robust, a 

cluster of Z values from the aligned color-to-depth image can be averaged, similar to the point 

cloud averaging performed in Section 3.2.3.  

Although X, Y, and Z are now defined, these are in the coordinate system of the camera 

images, and not in the camera frame relative to the world environment. The corresponding 3D 

point in the environment is calculated using the camera’s provided developer kit (Intel Realsense 

SDK) for Python 3, pyrealsense2, where the function rs2_deproject_pixel_to_point handles 

conversion with an X, Y position, depth value Z, and intrinsic parameter values [54]. Figure 28 

depicts the result of this position calculation, where a bounding box is drawn over the connector 

present in the camera’s view (right) and a corresponding frame (without orientation values) is 

generated in the RViz view (left). 
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Figure 28: Generated frame (left) for bounding box over identified connector (right) 

An orientation must next be determined to completely specify the connector’s pose. Fully 

calculating the three principal rotations about the X, Y, and Z axes proves challenging given only 

2D RGB images for a model to review. Although several approaches were considered, a 

completely machine learning driven pose estimation strategy was abandoned due to overarching 

research direction and complexity in obtaining orientation values. These proposed techniques are 

however elaborated upon in the Future Work portion. The machine learning pose estimation 

approach presented in this work borrows the orientation estimation technique using point clouds 

converted from segmented images, described in Section 3.2.3.2.  

 

3.2.4.4    Machine Learning Visual Servoing Pipeline 

The full pipeline of this system employs involving visually servoing the robotic arm using the 

machine learning approach is illustrated in Figure 29. This procedure begins with the selected 
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camera constantly publishing its intrinsic parameters and captured RGBD images. The depth 

images are provided to an orientation calculation node, which is responsible solely for 

calculating X, Y, Z, and W for the connector. These values, along with RGBD images and 

intrinsic parameters from the camera, are sent to a central connector tracking node responsible 

compiling the information and estimating the full pose. This node first sends the RGB images 

and intrinsic parameters to Roboflow via an API call, in return receiving predictions made on 

that image and their coordinate positions in 2D. The prediction coordinates are then forwarded to 

the camera’s developer kit, where it is converted to a 3D coordinate position relative to the world 

frame. With position and orientation, the tracking node generates a full pose for the connector 

and publishes it to the system for use with the robotic arm. 

 

Figure 29: Machine learning and depth image guided visual servoing pipeline 
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3.3    Management of Robotic Agent 

3.3.1    Motion Planning and Execution Architecture 

In order to complete its assigned objectives, the robotic agent must be commanded to meaningful 

poses in its workspace. As this system employs only visual sensors, visual servoing is the 

principal guiding strategy for robot motion control. A simple visual servoing strategy is 

employed wherein the system defines a target frame that the selected arm’s end effector is sent to, 

handled by MoveIt’s motion planning and execution. This strategy, portrayed through system 

architecture in Figure 30, is utilized for both cable connector end grasping (Section 3.4.2) and 

search pattern maneuvers (Section 3.4.3). 

 

Figure 30: System architecture for robotic agent motion planning and execution 

 

3.3.2    Robotic Arm Task Allocation 

The robotic agent in this system is composed of two separate arms capable of individual 

commands. In order to complete the system’s objectives, only one arm is necessary for 

manipulation of the DLO. In the event that a cable slip anomaly results in a complete loss of 
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vision of the DLO’s connector end, the second arm with an arm mounted camera conducts a 

search of the environment in an effort to relocate it behind occlusions. 

In this thesis, the left and right arms are assigned to camera search and DLO 

manipulation respectively. Depending on the location of the cable in the environment, it may be 

more optimal to have a third camera affixed to the right arm such that both arms are capable of 

performing either role. In a more traditional robotic system, this decision is typically made by a 

higher-level task planner, which is neither developed nor used in this system. In a more flexible 

application of the technology presented in this thesis, the roles of the arms may switch 

interchangeably depending on the current status of the environment. The intention of this 

research is to ultimately integrate the capabilities developed here into a larger, more intelligent 

system. Therefore, a predetermined allocation of roles for the arms are set and maintained 

throughout this work, as the focus is to demonstrate the capabilities of the visual sensor guided 

arms themselves. 

 

3.4    Slip Anomaly Detection and Response 

3.4.1    Anomaly Monitoring, Quantification, and Detection 

As the robotic agent is executing its assigned tasks, a DLO in the environment is nominal if its 

state, characterized by its position, is known to the system. This nominal state can be verified by 

monitoring the cable through the system’s visual sensors. In this work, the connector end of a 

cable is tracked instead of the entirety of the DLO’s length. Assuming the cameras have an 

unobstructed view of the connector, the system is capable of estimating its pose using the three 

approaches described in Section 3.2: fiducial markers, machine learning, and RGBD image 

processing.  
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Pose estimation grants live positional information, which is compared against where the 

system expects the connector to be at that point in time. This idea serves as the foundation of 

how a slip is detected. In the presence of a robotic arm’s working environment, a nominal DLO 

is either in one of two modes. The first is at rest, not moving in the environment and expected to 

remain at its untouched position. The second is under manipulation by the robotic agent, wherein 

the connector should be in motion relative to the end effector managing it. Within the grasp of 

the end effector, it should be expected that the connector end maintains a consistent distance 

(within some margin) from the robotic arm. Because both the end-effector, p, and the cable 

connector end, q, exist in 3D space, the distance between them is represented by the three-

dimensional Euclidean distance formula, given by Equation 6 [55]:  

𝑑(𝑝, 𝑞) = 	I(𝑝$ − 𝑞$)% +	(𝑝% − 𝑞%)% +	(𝑝& − 𝑞&)%  (6) 

Using only the visual sensors, a slip of the cable from the robotic arm’s end effector can be 

defined when this distance is surpassed by a set threshold value. The connector surpassing the 

slip distance threshold is equivalent to a connector existing outside the possible positional range 

to still be considered within grasp by the end effector, thus denoting a slip anomaly. Constant 

monitoring of the cable by the visual sensor allows for tracking of the connector’s current 

location and flagging a slip to the system if the set limit is exceeded. Figure 31 illustrates the 3D 

Euclidean distance measurement (green) between connector and grasping arm’s end effector. 

This is visualized in both nominal manipulation (left) and off-nominal slip (right) operation. 
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Figure 31: 3D Euclidean distance measurement (green) between connector end and grasping 

arm's end effector in nominal (left) and off-nominal (right) operation 

 
3.4.2    System Control Flow for Off-nominal Slip Response 

Once a slip of the cable connector from the grasping arm’s end effector is identified by the visual 

sensors, the system must respond to the slip anomaly in order to reestablish the nominal state. A 

return to the nominal state is achieved by restoring the DLO to its position just prior to its slip, 

thus requiring the robotic agent to conduct a three-step recovery response consisting of locating, 

retrieving, and maneuvering the cable.  

 Anomaly response begins with relocating the slipped connector end. Following a slip, the 

cable end could potentially settle anywhere in the environment. The primary camera mounted 

behind the robotic arms is consulted first, due to its panoramic view over the entire workspace, 

for relocating the connector end [13]. Failure to identify the DLO suggests the loose cable end 

has landed behind an entity obscuring it from view of the rear camera. Whether the obstruction is 

another DLO, obstacle in the environment, or even the robotic arms themselves, the connector 

end still requires relocating. Instead of sending the robotic agent to move probable blocks in the 
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scene [42], this thesis proposes conducting a search for the connector end with an auxiliary 

camera mounted to the wrist of the second robotic arm which is not utilized in grasping tasks. 

The search algorithm developed is further described in Section 3.4.3 and is only deployed if at 

least one of the following three conditions fail. These conditions ensure the connector end is 

truly obstructed and lost from field of view in a live monitoring of the scene, thus avoiding 

initiation of a search on behalf of a system or sensor error. These three conditions are as follows: 

1. The frame for the connector end exists. This condition is met if the frame exists in ROS 

transform library tree. 

2. The last active frame for the connector end is within a preset duration of the current 

system time. The timestamp of the frame is compared against the current system time and 

is considered active if the time difference is within an active threshold. 

3. The frame for the connector end has been active over a preset duration. This condition is 

checked by exploiting the inherent noise from the camera sensors. This noise stems from 

the effects of light intensities, viewing angles, and reflections from the object or scene [7]. 

The noise results in minor pose estimation differences, minute changes to position or 

orientation that are still accurate reflections of the connector end’s real location in the 

environment. Figure 32 illustrates this noise as a result of the minor difference in pose 

between two captures of the RViz simulation view. It is taken only one second apart but 

from the same viewing angle. The connector frame is deemed active if this noise has 

resulted in minor pose estimation changes over the course of a set interval. 
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Figure 32: Visualization of noise affecting connector end pose estimation (RGBD image 

processing method), set one second apart from the same viewing angle 

Regardless of how the system locates the connector end, identification and pose estimation are 

performed via the selected method described in Section 3.2. Once the connector end is relocated 

by the system, it must next retrieve the DLO by regrasping the connector end. Assuming 

successful pose estimation in view of the system’s visual sensors, the connector end is now 

represented in the system by its own frame. The ROS transformation library tf2 is capable of 

translating the coordinate system of the connector frame to that of the robotic arm so that the 

agent can maneuver to it [35], [36]. An abstracted view of this relationship is depicted in Figure 

33, where the connector frame is first transformed to its parent camera frame of reference, then 

the world reference frame the robot’s frames exist.  
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Figure 33: ROS transformation tree depicting parent child relationships between entities 

Following the transformations conducted by tf2, the pose of the connector end is in a format 

comprehensible to the robotic agent. A motion plan is next made and executed by MoveIt, 

commanding the robotic agent to maneuver to the connector end’s pose for grasping. This work 

assumes no obstructions are present between the grasping arm and connector end during the 

retrieval process. In the presence of further occlusions, more robust motion planners with 

avoidance strategies may be employed. Once the grasping arm reaches the pose of the connector, 

a grasp attempt is made, restoring the loose DLO end to a known state. Another motion plan is 

finally planned and executed to restore the grasped end to its original position. The Euclidean 

distance measurement monitoring (Section 3.4.1) between the connector end and arm end 

effector is deployed again here to ensure another slip does not occur enroute to the cable’s 

destination. The underlying system architecture of this monitoring and retrieval process, using 

fiducial markers as the pose estimation strategy, is summarized in Figure 34. 
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Figure 34: System architecture for slip anomaly response with fiducial markers 

A full robotic behavior tree diagram mapping the sequence of actions taken by this system is 

depicted in Figure 35. 
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Figure 35: Behavior tree representing states and actions of this robotic system. 

 

3.4.3    Environment Spiral Search Pattern 

3.4.3.1    Search Area Optimization 

In the event that the primary rear mounted camera fails to locate the loose connector end and the 

connector frame is deemed inactive, the second robotic arm which is not utilized in DLO 
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manipulation, with a secondary camera affixed to its wrist, is deployed in a search of the 

environment. Moving makes this robot mounted visual sensor dynamic, opening up views to the 

system previously not observed by  the static visual sensor alone [14].  

 The search’s objective is to identify the connector end regardless of its location in the 

workspace, and conduct pose estimation with its arm mounted camera. Searching the entirety of 

the workspace, while thorough, proves highly inefficient when properties/characteristics of the 

cable may assist in narrowing the search to specific regions of the scene. These cable 

properties/characteristics are as follows: 

1. The connector end’s movement is restricted by the length and stiffness of the cable. 

Certain regions of the scene can therefore be ruled out as the cable cannot physically 

reach those positions. This area of search interest can be represented by a cone, illustrated 

in Figure 36. Regions of this cone vary in probability in terms of containing the loose 

connector end. 

2. Search of the probability cone can be optimized by first inspecting areas where the loose 

connector end was last observed. Doing so minimizes the time in finding the connector, 

as it is more probable the entity has settled near its last location prior to entering an 

unknown state [43], [44]. 
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Figure 36: Cone representing the most probable region a loose connector end may settle 

 
3.4.3.2    Spiral Search Strategy 

A spiral shaped search pattern (“Spiral Search”) was therefore developed to scan the loose 

DLO’s most probable settling regions The search included the entire workspace in the event the 

lose DLO is not located in the most probable regions. The pattern is initiated where the connector 

end was last observed. The robotic arm’s end effector with the camera is then sent in a circular 

path imitating an algorithmic breadth-first search, concentrically moving outwards as the search 

expands – hence spiral. Figure 37 maps a typical course (red arrows) the arm follows, as viewed 

from the rear mounted camera. The search begins where the connector was last observed (red 

star). Pauses are made at set checkpoints (red dots) along the route to scan the scene for the 

connector end. When the search pattern traverses out of bounds (blue), outside the camera’s Field 
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of View (FOV), the spiral path resumes at the next valid point. The end effector is flatly oriented 

at each valid point, giving the camera a view parallel to the back wooden panel. 

 

Figure 37: Spiral search path with primary stopping points (dots), initiated from the connector's 

last known location (star) 

At each checkpoint, subpoints (green dots) are also defined and inspected to ensure an area is 

thoroughly scanned prior to moving onto a different portion of the search route, as illustrated in 

Figure 38. Eight subpoints encircling each primary point are scanned, with the end effector 

oriented toward that area’s central point (green arrows) as a means of searching around any 

obstacles present in that subregion. The distances between the red primary points along the X and 

Y axes is 0.25 meters. The first green sub point is placed 0.125 meters right of its corresponding 
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primary point, with the following 7 placed 0.125 meters horizontally and vertically from the 

previous. At each sub point, the searching robotic arm faces the primary point at an angle of pi/6. 

These distances were chosen based on the dimensions of the connector end relative to the total 

area of the environment. The rotation was selected following testing of views around the 

obstacles designed in Section 3.1.1, resulting in the choice of the value which will provide a 

general angle for searching. 

 

Figure 38: Spiral search path with eight stopping subpoints (green dots), and direction vectors 

(green arrows) denoting end effector orientation at each subpoint 

Search in this manner is both robust and efficient through this systematic approach to scanning 

the scene. Efficiency is achieved by exploiting information about the connector, beginning the 

search where the end is most likely to settle [43], [44]. Robustness is achieved by 
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comprehensively scanning each portion of the spiral search path (subpoints) and carrying out the 

search over the entire scene in this systemic manner until the connector is relocated. In a 

simulation view of the robotic agent, Figure 39 depicts the searching arm at two stages of the 

spiral search: primary point with flat orientation parallel to the back wooden panel (left) and 

subpoint oriented towards the central primary point (right).  

 

Figure 39: Searching arm at two stages of the spiral search pattern: primary point with flat 

orientation (left) and subpoint oriented towards the central primary point (right) 

 

3.4.3.3    Software Implementation 

The spiral search pattern is implemented as a single moving frame that iteratively traverses 

through the main points and the sub points in the path. The frame, representing a point to be 

scanned, begins at the connector end’s last known position. MoveIt then motion plans and 

executes a trajectory that commands the searching arm and camera to that frame’s pose. A scan is 

initiated at that point, and if the connector end is not located, the system updates the search frame 

for the next point. The algorithm makes the necessary adjustments to the search frame by editing 
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the position and orientation of where the end effector must next go. This process is repeated until 

the connector end is found or the search terminates. Figure 40 depicts a simulation view of the 

search frame at its initial pose, positioned at the connector end’s last known location with no 

orientation. 

 

Figure 40: Search frame at its initial pose, positioned at the connector end’s last known location 

with zeroed orientation 
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4    Results 

In this thesis, a complete robotic system employing a selection of methods is proposed to resolve 

the research problem of DLO slip anomaly identification and response. The solution, requiring a 

robotic system perform pose estimation, monitoring slip detection, and performing retrieval of a 

DLO connector end. The system developed employs two Trossen ViperX 300 S robotic arms and 

Intel RealSense d415 and d435i cameras. To examine the effectiveness of the solution offered by 

this system, a testing environment was developed to perform a series of three technique 

validation experiments to evaluate the capabilities of the developed pose estimation approaches, 

slip detection strategy, and spiral search algorithm. These individual parametric studies 

emphasize repeatability, where validity of the solution is reinforced through consistent outcomes 

instead of relying solely on value-based comparisons to determine accuracy. Given low noise and 

stable environmental conditions, each technique is statistically expected to succeed based on 

consistent results obtained from many repeated trials. Following technique validation, these 

newly acquired system capabilities are assembled into an end-to-end demonstration of slip 

anomaly detection and response, addressing the central research problem of this thesis. 

 

4.1    Techniques Validation 

4.1.1    Identification and State Estimation 

4.1.1.1    Experiment Overview 

Three pose estimation techniques were developed and presented in this thesis for the purposes of 

identification, state estimation, and monitoring of a DLO connector end. To validate the 

practicality and accuracy of each approach’s ability to estimate position and orientation, the 
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following experiment was formulated. One end of the DLO described in Section 3.1.1 is 

connected to the right panel, while the other is free in the workspace.  

Over each trial of the experiment for each pose estimation technique, the length of the 

cable is set in different configurations that vary the connector end’s pose. These configurations 

were chosen based on realistic settled DLO poses following a slip in zero gravity, factoring in 

droop as a result of the physical constraints posed by testing the weighted end in a standard Earth 

gravity environment. The system then attempts to identify and estimate the connector end’s 

position and orientation. A total of 9 configurations are defined: 5 of which are unobstructed and 

a final 4 that are partially obscured from the view of the rear camera. For stability in repeated 

testing over all trials, only the rear-mounted camera was employed in this experiment as pose 

estimation is performed in the same manner between both visual sensors. The connector end 

under configuration 3, chosen for its high identification and grasp success rate across all 

configurations’ metrics, is utilized in the partial occlusion configurations by the taller obstacle 

described in Section 3.1.1. These four trials partially occlude the entire connector end by roughly 

10%, 30%, 50%, and 70%. In doing so, each approach’s ability to work properly, in the face of 

obstacles, without supplemental algorithms, is also tested. In summary, for each of the 3 pose 

estimation methods, 9 configurations are tested in which 5 are obstruction free and 4 are 

occluded in increasingly more coverage of the connector end. All 9 configurations utilized in this 

experiment are displayed in Figure 41 as seen by the rear mounted camera. Each trial is 

attempted three times, resulting in a total of 27 trials per pose estimation method and 81 trials in 

total for this technique validation experiment. 
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Figure 41: Pose estimation configurations for technique validation experiment 

Three metrics are collected per trial to assess each pose estimation approach. First, the capacity 

to identify the connector end is recorded as either a success or failure, determined by the 

system’s generation of a frame for the connector end within 5 seconds. If identification was 

successful, position estimation is gauged next by measuring the Euclidean distance between the 

position of the connector end in the actual environment and its estimated position in the system. 

This is accomplished by first producing a ground truth, a measurement of the actual connector 

end’s position relative to the environment’s origin which would be the world frame origin. This 

ground truth is found by manually measuring the distance along the X, Y, and Z axes of the 

connector end from the world frame’s pose in the environment. The process for determining the 

ground truth for configuration 3 is depicted in Figure 42, where the X (left), Y (left), and Z (right) 
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coordinate values of the connector end position (green) is measured relative to the world frame’s 

pose (red). 

 

Figure 42: Measurement procedure for determining connector end ground truth X, Y, Z relative to 

system world frame 

In the system’s simulation view of the environment, a testing frame for the ground truth is 

created using these measurements. Figure 43 visualizes the ground truth frame for DLO 

configuration 3, generated from the measurement procedure depicted in Figure 42, in the RViz 

system simulation. 
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Figure 43: RViz simulation view of the generated ground truth for DLO Configuration 3 

The distance between the connector end’s ground truth testing frame and the pose estimation 

frame is then computed by calculating the 3D distance between them. Due to inherent noise from 

the sensors affecting the accuracy of pose estimation, the position used for comparison against 

the ground truth is the position averaged over 3 seconds. A lower distance equates to a more 

accurate estimation of position as the difference between the frames, or error in position 

estimation, is less significant. Each approach’s ability to estimate orientation is lastly gauged by 

verifying whether the connector end is graspable by the robotic arm guided by the estimation 

frame generated. Because a theme explored in this thesis is maximizing robustness in task 
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execution with the minimum level of accuracy required, success of the system is determined by a 

valid grasp of the end and not necessarily a perfect estimation of its orientation. Therefore, 

orientation estimation results are quantified again as a success or failure depending on whether 

the robotic arm is able to grasp the connector end with the provided calculation. The DLO is 

configured such that grasp is certainly achievable if the system performs pose estimation 

properly. The results of each technique’s pose estimation along the metrics of identification, 

positional difference, and orientation graspability is described in the following sections.  

 

4.1.1.2    Fiducial Markers Results 

With 9 trials in this experiment, the use of fiducial markers for pose estimation resulted in an 

identification success rate of 48.1% (13/27 successful, 14/27 failure), grasp success rate of 48.1% 

(13/27 successful, 14/27 failure), and average ground truth distance error of 0.02881 meters. The 

data collected from each trial is listed in Table 3. 
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Trial DLO Configuration Identification Success Ground Truth Error (m) Grasp Success 
1 1 success 0.02891 success 
2 1 success 0.02888 success 
3 1 success 0.02889 success 
4 2 success 0.02881 success 
5 2 success 0.02879 success 
6 2 success 0.02881 success 
7 3 success 0.02874 success 
8 3 success 0.02873 success 
9 3 success 0.02875 success 
10 4 failure - - 
11 4 failure - - 
12 4 success 0.02879 success 
13 5 failure - - 
14 5 failure - - 
15 5 failure - - 
16 6 (10%) success 0.02885 success 
17 6 (10%) failure - - 
18 6 (10%) success 0.02887 success 
19 7 (30%) failure - - 
20 7 (30%) failure - - 
21 7 (30%) success 0.02877 success 
22 8 (50%) failure - - 
23 8 (50%) failure - - 
24 8 (50%) failure - - 
25 9 (70%) failure - - 
26 9 (70%) failure - - 
27 9 (70%) failure - - 

 
Table 3: ArUco fiducial marker pose estimation identification/grasp success and ground truth 

error per trial, by DLO configuration 

From the RViz simulation, Figure 44 demonstrates the utilization of fiducial markers to estimate 

the connector end pose in configuration 3, depicting the ground truth frame (left), estimated pose 

frame (center), and the two frames together (right). 
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Figure 44: RViz simulation view of the configuration 3 ground truth (left), fiducial marker pose 

estimation frame (center), and both frames together (right) 

 

4.1.1.3    RGBD Image Processing Results 

The utilization of RGB and depth image processing for pose estimation yielded an identification 

success rate of 100.0% (27/27 successful, 0/27 failure), grasp success rate of 74.1% (20/27 

successful, 7/27 failure), and average ground truth distance error of 0.01081 meters. The data 

obtained per trial is presented in Table 4. 
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Trial DLO Configuration Identification Success Ground Truth Error (m) Grasp Success 
1 1 success 0.00443 success 
2 1 success 0.00448 success 
3 1 success 0.00446 success 
4 2 success 0.00432 failure 
5 2 success 0.00437 success 
6 2 success 0.00436 failure 
7 3 success 0.00447 success 
8 3 success 0.00443 success 
9 3 success 0.00439 success 
10 4 success 0.00446 success 
11 4 success 0.00451 success 
12 4 success 0.00448 failure 
13 5 success 0.00439 success 
14 5 success 0.00442 success 
15 5 success 0.0044 success 
16 6 (10%) success 0.00881 success 
17 6 (10%) success 0.00889 success 
18 6 (10%) success 0.00883 success 
19 7 (30%) success 0.01359 success 
20 7 (30%) success 0.01365 failure 
21 7 (30%) success 0.01358 success 
22 8 (50%) success 0.01699 success 
23 8 (50%) success 0.01695 success 
24 8 (50%) success 0.01694 failure 
25 9 (70%) success 0.0357 failure 
26 9 (70%) success 0.03575 success 
27 9 (70%) success 0.03572 failure 

 
Table 4: RGBD image processing pose estimation identification/grasp success and ground truth 

error per trial, by DLO configuration 

The configuration 3 ground truth frame (left), RGBD image pose estimation frame (center), and 

the two frames together (right) is visualized in Figure 45’s simulation view. 
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Figure 45: RViz simulation view of the configuration 3 ground truth (left), RGBD image pose 

estimation frame (center), and both frames together (right) 

 

4.1.1.4    Machine Learning Results 

Pose estimation conducted by machine learning object detection for position and depth image 

processing for orientation produced an identification success rate of 77.8% (21/27 successful, 

6/27 failure), grasp success rate of 63.0% (17/27 successful, 10/27 failure), and average ground 

truth distance error of 0.02913 meters. Table 5 details the results per trial. 
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Trial DLO Configuration Identification Success Ground Truth Error (m) Grasp Success 
1 1 success 0.03091 success 
2 1 success 0.03099 success 
3 1 success 0.03097 success 
4 2 success 0.01877 failure 
5 2 success 0.01879 failure 
6 2 success 0.01876 failure 
7 3 success 0.03065 success 
8 3 success 0.03068 success 
9 3 success 0.03059 success 
10 4 success 0.01471 failure 
11 4 success 0.01472 success 
12 4 success 0.01469 success 
13 5 success 0.03129 success 
14 5 success 0.03136 success 
15 5 success 0.03134 success 
16 6 (10%) success 0.03521 success 
17 6 (10%) success 0.03522 success 
18 6 (10%) success 0.03517 success 
19 7 (30%) success 0.04002 success 
20 7 (30%) failure - - 
21 7 (30%) success 0.04006 success 
22 8 (50%) failure - - 
23 8 (50%) failure - - 
24 8 (50%) success 0.04677 success 
25 9 (70%) failure - - 
26 9 (70%) failure - - 
27 9 (70%) failure - - 

 
Table 5: Machine learning pose estimation identification/grasp success and ground truth error per 

trial, by DLO configuration 

Figure 46 depicts the RViz simulation views of the configuration 3 connector end pose ground 

truth frame, the estimated pose generated via machine learning (center), and the two frames 

together (right). 
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Figure 46: RViz simulation view of the configuration 3 ground truth (left), machine learning pose 

estimation frame (center), and both frames together (right) 

 

4.1.1.5    Identification and State Estimation Results Summary 

Figure 47 and Figure 48 charts the number of successes and failures for connector end 

identification and grasp respectively, per pose estimation technique. Between the three pose 

estimation techniques evaluated in this experiment, RGBD image processing had the highest 

identification success rate at 100.0% as well as the highest grasp success rates at 74.1%. 
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Figure 47: Identification success and failure count per trial by pose estimation technique 

 

Figure 48: Grasp success and failure count per trial by pose estimation technique 
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Because the RGBD Image and machine learning approaches share the same orientation 

estimation method, their total number of grasping results can be compiled and compared to the 

grasp success rate of the fiducial markers, as illustrated in Figure 49. 

 

Figure 49: Compiled grasp success rates between fiducial markers and the shared RGBD and ML 

orientation estimation approach 

The ground truth distance error per trial for each technique is plotted in Figure 50. RGBD image 

processing had the lowest average ground truth error at an average distance of 0.01081 meters, 

followed by machine learning at 0.02881 meters, and lastly fiducial markers at 0.02913 meters. 
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Figure 50: Ground truth distance error per trial by pose estimation technique 

For each pose estimation technique, the average ground truth distance error, variance, and 

standard deviation are presented in Table 6.  

Pose Estimation 
Technique 

Ground Truth Mean 
Distance Error (meters) Variance Standard Deviation 

Fiducial Marker 0.02881 3.627e-9 6.022e-5 
RGBD Image 0.01081 1.009e-4 1.004e-2 

Machine Learning 0.02913 8.185e-5 9.047e-3 
 

Table 6: Ground truth mean distance error, variance, and standard deviation per pose estimation 

technique 
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4.1.2    Slip Detection 

4.1.2.1    Experiment Overview 

Presented in this thesis is an approach to recognizing the slip of the DLO connector end from the 

manipulating robotic arm’s end effector utilizing only visual data from camera sensors. An 

identified connector end is constantly monitored throughout the execution of a task though pose 

estimation. The positional aspect of the estimated state is compared against the current position 

of the end effector and is flagged a slip anomaly in the case that the distance between the two 

surpasses a preset threshold. To assess this technique’s robustness in detecting a slip, and assess 

where shortcomings and failures may present themselves, the following experiment was devised.  

 Each trial of this experiment begins with both ends of the DLO described in Section 3.1.1 

connected to the right and back panel mock battery ORU blocks. The manipulating robotic arm 

proceeds to unplug the left end of the DLO and carries it in its gripper to one of three positions 

across the workspace’s horizontal plane. Once the arm maneuvers the connector end to that point, 

the arm purposefully releases the end connector from its grip in a controlled, engineered slip 

from two different heights. Due to spatial constraints of the environment, location of the 

connector, and available reach of the manipulating arm, these locations were selected as they 

evenly space slipping points laterally at heights suitable for producing low- and high-distance 

slips. Figure 51 depicts the manipulating robotic arm with DLO connector in hand at each of the 

six slipping points. 
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Figure 51: Right manipulating robotic arm grasping DLO end at each of the six slipping points 

Across all 6 trials, a slip threshold of 0.2 meters is set, meaning a slip is flagged by the system if 

the distance between the estimated position of the DLO connector end and center of the 

manipulating arm’s end effector surpasses this value. Following a slip, the system is given 10 

seconds to identify the slip and estimate the loose DLO end’s new pose. For pose estimation, the 

RGB and depth image processing method was selected due to its robust performance across 

metrics presented in Section 4.1.1. As slips are difficult to reproduce exactly for a controlled 

experiment, three slip trials are conducted at each of the six slipping points, resulting in a total of 

18 trials for this experiment. 
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4.1.2.2    Slip Detection Results 

Over the 18 trials performed across the six slipping point DLO configurations, the system had a 

success rate of 72.2%, composed of 13 successful and 5 failed detections within the allotted ten 

seconds. This data is presented in Table 7, detailing the trial number, position configuration of 

the DLO, height describing whether the slip point was classified as “high” or “low”, 

identification success, and reason for failure if the slip was not detected. 

Trial DLO Configuration Height Identification Success Cause of Failure 
1 1 high success - 
2 1 high success - 
3 1 high failure loss of vision 
4 4 low failure threshold not met 
5 4 low success - 
6 4 low failure loss of vision 
7 2 high success - 
8 2 high success - 
9 2 high success - 
10 5 low success - 
11 5 low failure threshold not met 
12 5 low failure threshold not met 
13 3 high success - 
14 3 high success - 
15 3 high success - 
16 6 low success - 
17 6 low success - 
18 6 low success - 

 
Table 7: Slip detection success per trial, by DLO configuration and slip position 

The failures occurred under configurations 1, 4, and 5, having 1, 2, and 2 unsuccessful detections 

respectively. To offer insight into the trials with failed detections, these can be viewed with 

respect to the height of each trial’s slip position. Figure 52 splits the total number of trials by 

whether each experienced a high or low height slip and shows the breakdown of successes 

according to that slip height. Out of 9 trials per set of high and low drop trials, success rates of 

88.9% and 55.6% were achieved by the system. 
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Figure 52: Slip detection success and failure count by trial drop height 

Furthermore, Figure 53 charts only the failed trials by drop height, delineated by the cause of that 

trial’s respective failure. Among high drop trials, 100.0% of failures were the result of vision 

failure. For low drop trials, 25.0% of failures were due to vision failure while 75.0% were the 

result of the slip threshold not being met.  
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Figure 53: Cause of failure breakdown for slip detection failed trials 

 

4.1.3    Environment Spiral Search Pattern 

4.1.3.1    Experiment Overview 

Once the system determines the loss of the DLO connector end behind an obstructing 

environmental obstacle, this thesis proposes sending the second arm which is not utilized for 

DLO manipulation in a spiral pattern search of the environment as described in Section 3.4.3. 

The following experiment was designed to evaluate this technique’s robustness in relocating the 

DLO connector end and locating the blind spots within the pattern. 

 The spiral search pattern experiment begins with one end of the DLO connected to the 

right panel block, while the left is disconnected and loose in the environment. The DLO is 

configured into one of three configurations, again chosen for emulating realistic settled DLO 

poses after a slip in zero gravity with natural droop due to testing the weighted end under Earth 

gravity. Each configuration is then covered by either the smaller or larger obstacle described in 
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Section 3.1.1. Under this setup, spiral search is then initiated twice: once in which the system is 

informed of the DLO end’s last known location, and another where that location is unknown, 

requiring the system begin searching from the center of the back panel, the plane parallel to the 

camera view. This is defined as the exact center along both the X and Y axis of the rear-mounted 

camera’s view. Figure 54 depicts the left robotic arm initiating a search of the workspace from 

both the connector’s last known location, as well as the camera’s view of the workspace origin, 

with the smaller obstacle obscuring the connector end.  

 

Figure 54: Spiral search initiated from the DLO connector's last known position (left) and 

workspace origin (right) 

Each trial is performed three times per configuration of DLO, selected obstacle, and starting 

search position. The experiment is therefore composed of 36 trials across these three variables, 

wherein three metrics are recorded per attempt. Whether the system is able to successfully locate 

the DLO connector end with the search pattern within 5 minutes is first recorded, denoted as 

either a success or failure. If the search was successful, the time to find the connector end is also 

recorded. This is defined as the total time, in seconds, the search pattern required between 
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initiation of the search procedure to the pose estimation of the DLO end. Lastly, the main point 

or sub point along the spiral search pattern in which the connector was identified is also recorded. 

 

4.1.3.2    Search Pattern Results 

In the 36 trials testing the developed spiral search pattern, the system achieved a success rate of 

91.7%, composed of 33 successful and 3 failed identifications within the 5-minute search period. 

Table 8 outlines these results, listing the trial number, DLO configuration, occluding obstacle, 

search pattern’s starting position, success of the search. If the identification was successful, the 

time (in seconds) to find the DLO and the point of identification are also presented. 

Trial DLO 
Configuration Obstacle Start Identification 

Success 
Time to 

Find (sec) 
Point of 

Identification 

1 1 short last known success 29.64 main point 1, 
subpoint 1 

2 1 short last known success 30.55 main point 1, 
subpoint 1 

3 1 short last known success 29.91 main point 1, 
subpoint 1 

4 1 short origin success 141.09 main point 1, 
subpoint 8 

5 1 short origin success 144.23 main point 1, 
subpoint 8 

6 1 short origin success 142.7 main point 1, 
subpoint 8 

7 1 tall last known success 46.11 main point 1, 
subpoint 2 

8 1 tall last known success 43.39 main point 1, 
subpoint 2 

9 1 tall last known success 44.47 main point 1, 
subpoint 2 

10 1 tall origin success 267.16 main point 2, 
subpoint 7 

11 1 tall origin success 271.25 main point 2, 
subpoint 7 

12 1 tall origin success 252.68 main point 2, 
subpoint 6 

13 2 short last known success 25.1 main point 1, 
subpoint 1 
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14 2 short last known success 26.71 main point 1, 
subpoint 1 

15 2 short last known success 25.49 main point 1, 
subpoint 1 

16 2 short origin success 139.26 main point 1, 
subpoint 8 

17 2 short origin success 143.07 main point 1, 
subpoint 8 

18 2 short origin success 142.38 main point 1, 
subpoint 8 

19 2 tall last known success 43.39 main point 1, 
subpoint 2 

20 2 tall last known success 44.92 main point 1, 
subpoint 2 

21 2 tall last known success 44.51 main point 1, 
subpoint 2 

22 2 tall origin failure timeout - 
23 2 tall origin failure timeout - 

24 2 tall origin success 141.66 main point 1, 
subpoint 8 

25 3 short last known success 29.02 main point 1, 
subpoint 1 

26 3 short last known success 26.8 main point 1, 
subpoint 1 

27 3 short last known success 27.95 main point 1, 
subpoint 1 

28 3 short origin success 144.58 main point 1, 
subpoint 8 

29 3 short origin success 140.6 main point 1, 
subpoint 8 

30 3 short origin success 144.14 main point 1, 
subpoint 8 

31 3 tall last known success 45.9 main point 1, 
subpoint 2 

32 3 tall last known success 43.69 main point 1, 
subpoint 2 

33 3 tall last known success 47.11 main point 1, 
subpoint 2 

34 3 tall origin success 141.78 main point 1, 
subpoint 8 

35 3 tall origin failure timeout - 

36 3 tall origin success 142.21 main point 1, 
subpoint 8 

 
Table 8: Spiral search success, time, and point per trial, by occluding obstacle and start position 
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Of the 36 total trials, half of them began their search at either the DLO connector’s last known 

location or at the origin of the workspace. Two subsets of trials can thus be defined depending on 

the trial’s initial search position, with their success and failure counts visualized in Figure 55. 

 

Figure 55: Spiral search trial success and failure count, by initial position 

All successful trials, separated into these two start position subsets, are plotted in Figure 56 

according to the total elapsed time to locate the DLO end connector. 
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Figure 56: Elapsed time to find DLO connector end per subset trial, by initial position 

Among the 33 successful trials, the connector end was most often found within the subpoints of 

the first main point, which accounted for 30/33 of the identifications. The remaining 3 successful 

trials were found within the main point’s second subpoints. Among subpoints, identification was 

most common in subpoint 8, totaling 12 successful identifications. Subpoints 1 and 2 both had 9 

successful trials, followed by subpoints 7 and 6 with 2 and 1 identifications, respectively. This 

data is illustrated in Figure 57’s pie chart, visualizing the distribution of identifications between 

subpoint poses. 
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Figure 57: Distribution of successful identifications by spiral search pattern subpoint 

 

4.2    Full Scenario Demonstration 

4.2.1    Demonstration Overview 

Having individually evaluated and proven the robustness and efficacy of each capability 

presented in the Methods section of this thesis, these approaches can be organized into a 

complete solution demonstration to prove the validity of these techniques in resolving slip 

detection and response. The demonstration designed to assess the system directly mirrors the 

anomaly scenario described in Section 1.2, and is conducted as follows. 

 The demonstration begins under the condition that the battery ORU is degraded and 

requires replacement but no action has been taken by the system. The environment is arranged to 
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reflect this, with the right end of the DLO plugged into the right panel, and the left end connected 

to the mock degraded battery ORU unit. As no actions have been executed, the two robotic arms 

are in their sleep state. The system then sends the right manipulating arm to unplug the left 

connector end of the DLO. After disconnecting the DLO from the degraded battery ORU, the 

arm, with unplugged connector end in its end effector, maneuvers towards an imaginary stowing 

point. While en route, the arm purposefully drops the connector, emulating a slip of the DLO into 

the workspace. The motion planning of the robotic agent for unplugging and slipping is preset to 

maintain consistency and repeatability among the set of demonstrations. Additionally, the 

objective of this demonstration, and thesis as a whole, aims to address the slip detection and 

resolution aspect of the scenario, rather than fine tuning DLO manipulation. The DLO connector 

end has thus entered an unknown state and must be relocated by the system to return to nominal 

functionality. For this demonstration, identification and pose estimation are done via the RGB 

and depth image processing approach as it was proven to be the most robust across its technique 

validation metrics (Section 4.1.1.3). This demonstration seeks only to offer the entire system as a 

solution for the slip anomaly problem, therefore the other pose estimation methods are not 

explored. Employing this technique, the system must first recognize the slip of the DLO 

connector end from the manipulating arm’s end effector, recorded as either a success or failure. 

Next, the system must locate and estimate pose for the loose connector end. The procedure to 

accomplish this, consisting of selecting which camera to use and whether to initiate a spiral 

search of the environment, is left to the discretion of the system operating with the methods 

described in Section 3.4. Three trials of the proposed full system solution are conducted, varying 

in workspace configuration. The first contains no obstacles in the environment, while the second 

and third contain the shorter and taller foam obstacles, respectively. These objects are placed 
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such that they completely obscure the line of sight that the rear mounted camera has on the 

anticipated settled position of the loose connector end (post slip). The system’s ability to locate 

the connector end and perform pose estimation, again, is noted as either a success or failure. The 

robotic arm must actually physically retrieve the relocated connector end to restore it to a known 

state, and the pose calculated by the system should offer a valid position and orientation for 

grasping. Whether the system’s pose estimation results in a solid grasp of the connector end is 

also recorded as a success or failure. Assuming a successful retrieval is made, the connector end 

is finally moved to a mock stowing point for demonstration purposes, concluding the 

demonstration. Figure 58 details each step of the full demonstration, with accompanying labels 

and visuals of the respective stage. 



 

 102 

 

Figure 58: Outline of all stages composing the full system demonstration 
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4.2.2    Results and Summary 

The complete system demonstration, evaluating the end-to-end solution proposed by this work, 

was successfully conducted over three iterations. The three versions consisting of featuring no 

obstacles, using the short foam obstacle, and using the long foam obstacle respectively, all 

detected the slip of the DLO from the manipulating arm’s end effector. They all also relocated 

the loose connector end via either the rear mounted camera or a deployment of the arm camera 

with spiral search. They all performed pose estimation of the DLO end, performed motion 

planning and executed a trajectory to retrieve the DLO end, and restored the DLO end to its 

originally intended position. Full videos of each of the three demonstrations is provided in the 

following links: 

1. Demonstration 1 (no obstacles): https://youtu.be/C0trQMqRs6c  

2. Demonstration 2 (short obstacle): https://youtu.be/aMunUT4PcUU 

3. Demonstration 3 (tall obstacle): https://youtu.be/16bP1cBrb_E 

 

4.3    Discussion 

4.3.1    Identification and State Estimation 

Each pose estimation technique, implemented in this robotic system for the purposes of 

identification and state estimation of a DLO connector end, presents unique advantages and 

disadvantages in its use. The data collected verify this notion, as trends observed from the 

technique validation experiment provide insight into the situations in which a particular approach 

is most appropriate according to measurements of accuracy or robustness. The three pose 

estimation techniques are further analyzed as follows. 

 

https://youtu.be/C0trQMqRs6c
https://youtu.be/aMunUT4PcUU
https://youtu.be/16bP1cBrb_E
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4.3.1.1    Fiducial Markers 

A rudimentary analysis of the fiducial marker’s results in the validation experiments suggest that 

the method of using fiducial markers is an inferior pose estimation technique, netting the lowest 

identification rate, grasp rate, and largest average ground-truth distance error. The cause of these 

failures, however, lies in how fiducial markers are to be used and the environmental context in 

which this experiment placed them in. In order to function at maximum capacity, fiducial 

markers should fully be visible to a calibrated camera, entailing adequate lighting and an 

unobstructed view of the entire marker pattern. Several of the testing configurations, though 

realistic to the slip anomaly problem, violated the conditions that these tags depend on. Under 

DLO configuration 4, the connector end is near perpendicular to the camera, while configuration 

5 leaves the fiducial marker pattern completely out of sight as the end is twisted towards the right 

of the workspace. Similarly in configurations 7, 8, and 9 (30%, 50%, and 70% occlusion 

respectively), high failure rates were the product of increasing occlusion of the connector end, 

blocking the crucial marker pattern from the camera’s perspective.  

 When circumstances allow for an unobstructed view of the fiducial marker’s entirety, the 

ArUco tags proved to be potent tools for pose estimation. Where robustness was lacking, fiducial 

markers compensated with highly precise positional data. Among the three pose estimation 

techniques explored, fiducial markers yielded the lowest variance and standard deviation values 

in its set of average ground truth error distances, both by a considerable margin. Despite its 

reported mean distance error, accuracy of the fiducial markers is also deceivingly exact. Even 

when askew, as long as the full pattern was visible, successful identification always led to a valid 

grasp of the connector. Furthermore, unlike the other two methods that generated a pose 
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estimation from the connector directly, this technique required physically affixing an ArUco tag 

to the connector end. The tag itself has a thickness which is not accounted for in the ground truth 

measurement. Although the distance error indicates inaccuracy, this is only relative to the ground 

truth frame. Fiducial markers maintain high levels of precision, as evidenced by the deltas 

between their measurements. It is for this fact that the related visual servoing works seen in of 

[39], [40] chose to employ fiducial markers for boosting accuracy. 

In this work, fiducial markers are affixed to the ends of DLOs that, due to frequent 

manipulation and their cylindrical nature, may twist in various directions unbefitting of ideal 

recognition conditions. This is clearly not the optimal use case for this tool. The marker’s pattern, 

moving in direct tandem with the DLO it is affixed to, may not always be facing the visual 

sensors, or may be obstructed from that camera’s view. Therefore, although fiducial markers 

offered a quick setup of live pose estimation, the conditions they require to operate do not align 

with the pose estimation demands required for this body of research. 

 

4.3.1.2    RGBD Image Processing 

Across all metrics, pose estimation accomplished with the RGB and depth image processing 

technique resulted in the highest success rates for identification and grasping, as well as the 

lowest mean ground-truth distance error. This approach’s success can largely be attributed to the 

computer vision techniques employed, where the segmentation step of isolating the connector 

from the environment grants the system an accurate representation of the connector’s actual pose. 

To begin, once any amount of the matching red hue is visible, the system is able to construct a 

point cloud representation for the connector. The approach’s flawless identification rate is due to 
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this fact. Even if only a minute fragment of red is visible, segmentation remains feasible, and a 

point cloud with at least two points can establish both a position and orientation estimation.  

Assuming full view of the connector, the point cloud is automatically positioned correctly 

in the world frame given its generation from the camera frame, with accuracy in placement 

subject to the accuracy of said camera’s depth image capture. Therefore, defining the center point 

of this point cloud as the position of the pose frame results in a correspondingly accurate 

estimation, evidenced by the lowest mean ground-truth distance error. The estimated pose frame 

aligns exactly with where the ground-truth frame is measured and defined, as they represent the 

same point in 3D space. The distance error, however, does increase when occlusion is present. 

Since the position is determined by the center of the point cloud, its coordinate value is biased 

toward the part of the red connector that the system can view and segment. As a result, while the 

system can identify the connector, the calculated position might not be entirely accurate. This 

discrepancy is evident in the increasingly poor results from trials 16 through 27. This supports 

the subtheme of accomplishing retrieval and maximizing robustness with the minimum level of 

accuracy necessary, as a grasp may still be possible despite partial segmentation of the connector 

end. 

Segmenting the visible parts of the connector is highly reliable for identification, while 

still providing reasonably accurate positional estimations. However, when only a small portion of 

the connector is visible, orientation estimation suffers dramatically. A smaller segmented point 

cloud implies a shorter distance between the maximum and minimum points used to draw the 

direction vector. Conversely, a longer distance obtained from the full length of the connector 

allows for greater orientation accuracy, as it captures and reflects more of the true direction. This 

concept is illustrated by the rise in grasping failures as the occlusion of the connector end 
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increases between configurations 7 to 9. Because orientation is calculated in the same way under 

the machine learning pose estimation approach, the same pattern emerges with increasing grasp 

failures among its trials using these configurations. Orientation accuracy also tends to decline 

when estimating the pose of a connector end that is almost perfectly parallel (configuration 2) or 

perpendicular (configuration 4) to the viewing camera, evidenced by their corresponding grasp 

failures. Due to the nearly flat horizontal and vertical views of the connector in these 

configurations, the system seems to struggle in grasping its depth dimension. However, this may 

be attributed to the limitations of the visual sensor, particularly the depth imaging capabilities of 

the camera. Even under optimal conditions and lighting, the depth images returned by the Intel 

RealSense cameras introduced certain degrees of noise, affecting both orientation and position 

estimation. This also helps account for why this has the highest variance and standard deviation 

among approaches. Segmented point clouds for connector end configurations that exhibit clear 

3D dimensionality are therefore only generally accurate, limited by the hardware of the visual 

sensor. However, when faced with a flat view, the segmented point clouds tend to severely 

misrepresent the object's depth. Figure 59 depicts two captures of the segmented point cloud and 

the corresponding calculated orientation for a connector that is nearly parallel to the camera, 

taken 3 seconds apart. This issue could be resolved by acquiring additional depth images of the 

object or replacing the visual sensor with one offering higher resolution depth imaging. 

Alternatively, the entire camera could be repositioned, such as by the arm camera, as to afford it 

a more optimal view that perceives dimensionality of the connector [14]. 
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Figure 59: Noisy segmented point clouds for a nearly horizontal connector pose, captured 3 

seconds apart 

 

4.3.1.3    Machine Learning 

Because the machine learning pose estimation technique shares its orientation calculation with 

RGBD image processing (as detailed in Section 4.3.1.2), this approach is primarily a position 

estimation technique rather than a complete offering of state estimation. This is akin to the work 

of [38], where depth related aspects of state estimation did not rely on machine learning 

principles. 

For the calculation of position, the machine learning approach was relatively imprecise 

and had the largest average distance error, as evidenced by its large variations in mean ground-

truth distance error between configurations (Figure 49). Despite this, the positioning of this 

approach did result in variance and standard deviation results similar to those of the RGBD 

approach. The ground-truth distance error of the machine learning approach may not necessarily 

be the fault of the machine learning algorithm, but rather how the generated pose estimation 
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frame’s position is defined. The approach utilizes the center of the bounding box as the supplied 

positional coordinate, which introduces inaccuracy as it often does not tightly bind the actual 

connector’s pose. If there's additional padding between the edges of the bounding box and the 

connector, or if the orientation of the connector causes its center to deviate from that of the 

bounding box, the ground truth distance error increases. In configurations 2 and 4, the DLO is set 

such that it is horizontal and vertical to the camera’s view. With little rotation about each axis, 

the machine learning approach accurately calculated position as the bounding box origin more 

closely aligned with the connector. 

The machine learning approach also performed poorly in detecting the connector end 

behind occlusions, as evidenced by its failures to identify and grasp under DLO configurations 7 

through 9. Neural networks gain the ability to accomplish a task by learning from supplied data. 

Although the training set employed a series of augmentations, none of the images directly 

showed the connector behind obstacles. This issue could be resolved by retraining the model 

with more images of the connector under different occlusion scenarios. 

 

4.3.1.4    Identification and State Estimation Summary 

In evaluating the performances of each implemented pose estimation technique, the most 

significant takeaway is that the approach selected for the system’s needs should consider the 

context in which it will be used. The pose estimation technique should first and foremost identify 

and pose estimate for the connector end within the environment. While all three approaches are 

capable of achieving this, some are better suited to the specific conditions of this workspace’s 

anticipated conditions. The most prevalent are the infinite number of possible poses the DLO 

may take from manipulation, as well as any number of obstacles that may be present in the scene. 
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Additionally, the system must be independent, and therefore employ robust methods as the task 

must be performed in an environment expecting low to zero gravity and little to no human 

intervention. 

 Supported by the experiment results, the RGBD image processing approach best answers 

the system’s needs for pose estimation. This approach proved highly reliable in identification in 

the presence of obstacles, as segmentation confirms the presence of the connector upon seeing 

any amount of the matching red color. From the segmented point cloud, a position and 

orientation can be calculated. Figure 50 supports the approach’s consistent and accurate pose 

estimations, relative to the ground truth and other approaches. Although orientation estimation 

especially suffered given a sparse point cloud, the other techniques also failed to accomplish this 

task. This can be resolved by repositioning the camera sensor to get a better view of the 

connector, only feasible if the object's general location is identified. Across all configurations, 

this approach’s orientation estimation technique resulted in a higher number and percentage of 

successful grasps made, as seen in Figure 49. 

Besides pose estimation capability, another consideration in selection is the conditions the 

approach requires to operate. RGBD image processing requires only the RGB and depth images 

published by the system’s camera, as well as information about the connector, specifically its 

color. Fiducial markers require the production of a physical tag and mounting it to the object of 

interest. The machine learning approach, though also only requiring RGB and depth images, is 

expensive to run. Running the model through the API, as done in this thesis, requires an internet 

connection. If running the model locally on the system, heavy computing power is necessary to 

support the hundreds of nodes. Furthermore, the training process for the model is uncertain, as 

there is no definitive answer for how many images are enough or when the training is considered 
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complete. RGBD image processing is relatively cheap in computing cost, requires no 

modification to the target DLO, and needs only image files to accomplish pose estimation. Its 

ability to accomplish the task of pose estimation is also verifiable through the testing of its 

unchanging, underlying algorithms. Therefore, although three pose estimations were developed 

and presented, only the RGBD image processing approach seems suitable for the application of 

DLO manipulation in a busy and compact zero gravity environment.  

 

4.3.2    Slip Detection 

Equipped with only camera sensors, the system must rely solely on visual data to detect a slip 

from its robotic arm end effectors. This work presented a method in which a threshold is imposed 

on the Euclidean distance between the position of the arm’s gripper and estimated position of the 

connector end. Through repeated slipping trials of this technique validation experiment, it was 

observed that the system was most successful in detection when the connector slipped by a 

significant distance and far from the manipulating arm. This corresponds to the two causes of 

failure described in the experiment’s results: loss of vision monitoring the connector end and not 

surpassing the distance threshold despite a slip. 

Among the tested configurations, the horizontal X coordinate of the slip point mattered 

significantly less than the vertical Y position in detection success rate. Slip points 1, 2, and 3 all 

dropped the connector end from a higher vertical position, allowing for gravity to carry the DLO 

further downwards and result in higher slip detection rates (Figure 52). This increased distance 

easily surpassed the set threshold, clearly defining a slip. Although slip point 6 constituted a 

lower slipping height, it was still easily recognized as the connector sprung back to an extended 

configuration, moving far from its original slipping point. Slip points 4 and 5 dropped the 
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connector end from a low height, leaving little height for it to fall and settle. Despite a slip 

occurring, the shorter vertical distance led to less movement, making it harder to exceed the slip 

threshold resulting in its low slip detection rate. A majority of total failures (Figure 53), 

especially under low height slip points, were caused by this failure to surpass the distance 

threshold. To address this issue, the threshold limit could be raised or lowered. However, this 

introduces its own set of issues: a low threshold might generate false positives during normal 

manipulation, while a high limit could overlook slips, especially if the connector end moves only 

slightly after a slip incident. 

The system must constantly monitor the state of the connector end, and compare that 

position with where the system expects it to be to make judgements concerning its status. 

Because this technique is severely dependent on visual data, any obstructions to the camera’s 

view also interrupted its ability to detect slips. Slipping by a considerable distance, as seen in slip 

points 1, 2, 3, and 6, caused the connector end to spring away from the manipulating arm, 

resulting in high detection rates. No obstacles were introduced into the environment for this test, 

but the robotic arm manipulating the DLO served as an inherent obstruction. If the cable moves 

only slightly or comes to rest in a position where it's obstructed by the arm or other 

environmental objects, this approach is rendered ineffective. However, granted that this system is 

only equipped with visual sensors, slip detection by comparing Euclidean distance against a 

threshold is proven to be a viable strategy if supplied with constant vision data of the connector 

end. 
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4.3.3    Environment Spiral Search Pattern 

The Spiral Search algorithm is designed to inspect areas of the workspace that are obstructed by 

environmental obstacles, blocked from view of the primary rear mounted camera. Out of the 36 

trials, varying in selected obstacle and starting position, the Spiral Search pattern successfully 

located the connector end 33 times. This high success rate can be attributed to two factors: the 

arm camera's broad FOV and the use of information regarding the connector's last known 

location. 

 The environment in which this system was tested is dimensionally small, simulating the 

compact volumetric constraints of an actual robotic workspace aboard a SmartHab vehicle. The 

selected cameras, limited only by their own hardware, are capable of capturing wide views over 

the workspace. As a result, successful identification often came from viewing large portions of 

the environment rather than from a specific placement location. This rendered the selection of an 

obstacle that meaningfully impeded identification futile as the expansive views had little trouble 

looking around them. Identification was further boosted by the robust pose estimation technique 

provided by RGBD image processing, capable of discerning any fraction of DLO from the 

environment through color segmentation. It is important to note that this experiment assessed 

whether identification was possible through the initiation of a spiral search, and not whether the 

resulting pose estimation was suitable for grasping. Thus, locating the connector end at a given 

main or subpoint might ultimately be pointless, despite identification afforded by the camera’s 

wide FOV.  

All of this does not imply, however, that optimal camera placement was not beneficial. 

Initiating a search from the connector’s last known location clearly accelerated the search, as 

evidenced by Figure 56’s mapping of each trial’s completion times, sorted by that search’s initial 
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starting position. A search conducted from the connector’s last known location, as opposed to the 

origin of the workspace, yielded shorter total search time durations, often by a wide margin. 

Among runs with identical trial variables, the minimal differences in time likely stem from the 

system’s pose estimation calculations since the search itself was consistent throughout. These 

results are in line with similar occlusion search approaches that target specific areas depending 

on the target’s most probable locations [44]. Starting a search from the workspace's origin can be 

inefficient, as it involves examining areas where the connector is less likely to be found. All 3 

unsuccessful trials from the experiment began their search from the origin, ultimately failing due 

to timing out of the allotted trial time. Although it might have been possible to eventually locate 

the connector after exploring all points along the pattern, this would be too time consuming and 

therefore, not feasible.  

Another contribution to the failures lies in the settings used in the algorithm of the search 

pattern. Across all trials, the distances traveled between two points and the viewing angles at 

those points remained the same no matter what the obstacle was or the starting position. This 

strategy is extremely rigid, with inflexibility leading to a series of issues and potential areas of 

improvement. From an optimization standpoint, the wide FOV rendered many subpoints 

redundant, particularly 3 and 7. The perspectives they offered overlapped substantially with other 

segments of the pattern, squandering valuable search time by reexamining already covered areas. 

The results presented in Table 8 and Figure 57 support this notion, wherein most identifications 

were accomplished by a few subpoint poses. Subpoints 1, 2, and 8 accounted for 90.9% of all 

successful trials (30/33), with the remaining 8.1% of identifications accomplished by subpoints 6 

and 7. These likely experienced the greatest identification success rates due to gravity pulling the 

connector into the bottom half of the workspace, making views that look downward over 



 

 115 

obstacles perform better. Subpoints 1 and 2 are also the first to be checked. This design choice is 

intentional because they are ideally located to find the connector, so they should be reviewed 

first, and then skipping over the successive subpoints. In this experiment, the main point, along 

with subpoints 3, 4, and 5, are almost entirely ineffective because they yielded no successful 

identifications. The system wastes time positioning the camera arm and examining the view in 

these areas already covered, or that will be better covered by a later subpoint. This might not 

hold in a genuine zero-gravity environment. If unaffected by gravity, the DLO would not tend to 

drift or settle downwards as seen in this experiment.  

Although the subpoints might have too much overlap in their views of the workspace, the 

camera arm's viewing angles also conversely create blind spots in its search. Success in these 

cases depends on the hope that another subpoint will cover these blind spots, but this is certainly 

not guaranteed. These blind spots most often occurred because the connector end settled too 

close to an obstacle, or behind a part of the object that the camera arm has difficulty seeing 

behind. At no point during the search does the arm look entirely parallel behind an object, which 

could have resulted in earlier identification, or covered scenarios in which the connector end was 

completely missed. 

Despite these limitations, the system still achieved a high identification rate using the 

spiral search pattern. With a wide field of view, precise camera placement was found to be less 

critical, allowing for added flexibility in the positions to which the camera arm is directed. To 

accelerate the search and cover difficult blind spots missed by the current setup, the search 

pattern can be optimized by adjusting the points to check, the distances to move, and the 

orientations from which to view the workspace. 
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4.3.4    Full Scenario Demonstration 

Three in-depth demonstrations are presented, illustrating the potential of this system to resolve 

the slip anomaly issue from end to end with the developed technologies described in this thesis. 

Covered in the solution demonstration are capabilities for monitoring the state of the DLO, 

detecting any slip of its connector end during manipulation, searching the environment to locate 

it in the event of a slip, pose estimation once found, and finally calculation and execution of a 

grasp plan for retrieval to bring the DLO back to a known, nominal state. Although successful, 

the system remains inaccurate to its intended use case as all technique validation experiments 

and demonstrations were performed in a standard gravity environment. Though mimicked by a 

stiffened cable, the system remains untested against DLO behavior in zero gravity. Additionally, 

only one DLO was designed and used throughout this body of work. The system’s ability to 

identify and pose estimate for DLOs of various colors and sizes also remains unproven. Finally, 

while notable progress was achieved in robotic capabilities despite the constraint of relying 

solely on visual sensors, incorporating additional types of, or more advanced sensors could make 

the system much more robust and efficient. Visual sensors with enhanced resolution or 

processing power could address some of the noise-related issues mentioned, while a broader 

range of sensors could compensate for the limitations of depending on cameras alone. However, 

even with just two cameras, the system accomplished a great deal, demonstrating that it is a 

viable solution to DLO slip detection and response. 
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5    Conclusion and Future Work 

5.1    Conclusion 

In this thesis, a selection of individual robotic capabilities is developed and integrated to address 

the need for DLO slip anomaly detection and response handling in an autonomous space habitat. 

A system, composed of two 6-DOF robotic arms and two RGB and depth capable camera sensors, 

is proposed to adequately respond to these needs. 

At the root of this system’s functionality is a dependable method for determining DLO 

pose, as state estimation of the object to be manipulated is necessary throughout task execution. 

Rather than estimating the state of the entire DLO, only the connector end under manipulation is 

considered. Obstacles may be present in the workspace blocking camera lines of sight, and the 

DLO itself may hold unpredictable configurations from robotic manipulation, making robustness 

in the approach a key factor. Three methods are presented for use by either camera, each with 

their own unique set of prerequisites, advantages, and disadvantages in utilization. Fiducial 

markers, requiring physical tags and RGB images, proved to be both extremely accurate and 

precise. This required consideration in placement to avoid damage of the tag, as well as 

positional offsetting for proper representation of the entity it stood for. Under situations where 

the tags were occluded or not directly facing the camera, however, fiducial markers faltered as 

their patterns were not available for view. This hindered the pose estimation and grasping process, 

resulting in success rates of 48.1% during its trials in the technique validation experiment. 

Although fiducial markers are unfit for the rigors of constant DLO movement and manipulation, 

they show promise for use in representing less busy entities, such as the battery ORU block or 

stowing point. The next approach involved processing both RGB and depth images such that a 
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point cloud representation of the connector end is isolated from its environment, achieved 

through color segmentation. This approach yielded highly encouraging results, reaching 

identification and grasp success rates of 100.0% and 74.1% respectively. Robustness is achieved 

through the point cloud formulation process, as only a sliver of red color seen by the camera is 

necessary to identify and generate a rough position. Though orientation calculation success 

decreased under heavy occlusion, it generated enough information for launching other methods, 

such as an arm camera search for an improved viewing angle. The final approach explored was 

the utilization of machine learning algorithms to detect the connector in an RGB image and 

determining a frame position from the pixel values. A trained model proved relatively successful 

but encountered difficulty under occlusions. Additionally, no orientation calculation methods 

were proposed, requiring the approach to borrow from RGBD image processing. This approach 

achieved success rates of 77.8% and 64.0% for identification and grasping trials, respectively. 

Although further remedial training of the algorithm could resolve these issues, it calls into 

question when enough training is achieved. Additionally, the model is computationally expensive 

to run compared to the inexpensive processing of the other two approaches. For these reasons, as 

well as its robust attributes proven through experimentation, the RGBD image processing 

approach is deemed most fit for DLO connector end pose estimation. 

With a pose estimation technique validated through repeated trials of the designed 

parametric study, the system must next detect slips of the connector end from the right 

manipulating arm’s end effector. Limited to only visual sensors, an approach was developed that 

measures the live three-dimensional Euclidean distance between the estimated position of the 

connector end and the arm’s gripper. If within grasp, this distance should be within a distance 

range. Therefore, a slip can be quantified by surpassing this set threshold. While this method saw 



 

 119 

a detection success rate of 77.2%, its failures are attributed to the loss of vision or failure to 

surpass the threshold despite a slip occurring. These are the limitations due to depending on 

visual sensors only and can be improved by equipping the system with more varieties of sensors, 

namely tactile. 

Once a slip is detected, the system may not be able to immediately acquire sight of the 

connector if it were to settle behind an obstacle, blocking it from view of the primary rear camera. 

To remedy this, a spiral search pattern of the workspace was developed for maneuvering a 

secondary camera affixed to a second arm around the environment. Search of the loose connector 

end employing this technique resulted in 91.7% successful identifications among the total trials. 

This success is attributed to the utilization of the connector end’s most probable location, in 

which the cable’s last known position is supplied to the system to initiate searching from. 

Launching a search in this manner produced overall lower weight times and a higher success rate. 

Success also stemmed from the camera’s wide field of view, which made even non-optimal 

segments of the search pattern suitable for identification, as evidenced by the breakdown of 

which pattern points were credited with the most success. 

Connector end pose estimation, calculated distance-based slip detection, and environment 

spiral search are all individual capabilities designed to solve their own confined problems. In 

tandem, the system takes advantage of each to offer an end-to-end solution for the overall slip 

anomaly problem. Monitoring, slip detection, search identification, and pose estimation are 

accomplished via the three state estimation techniques. The Euclidean threshold approach to 

quantifying a slip flags the anomaly with only visual data. In the event that the loose connector is 

blocked from view, a search protocol can be initiated to further inspect the environment. The 
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entire solution, compiled into three separate demonstrations, establishes the system’s validity in 

autonomously monitoring, detecting, and resolving the DLO manipulation slip anomaly problem.  

 

5.2    Future Work 

The state of the system, as described at the conclusion of this work, would benefit significantly 

from future efforts aimed at increasing its robustness or further enhancing its newly developed 

capabilities. The first step is to address the shortcomings of the pose estimation, slip detection, 

and active search strategies identified in the Section 4. These areas for improvement can then 

inspire new avenues in extending the system to better fulfill its current task, or to handle related 

DLO manipulation tasks more effectively. Ideas for the future building and expansion of this 

research are next presented. 

 

5.2.1    Identification and State Estimation 

Each of the three pose estimation techniques was found to have their own set of unique 

advantages and disadvantages. Rather than relying solely on one technique, the system could 

benefit from using them in tandem, or at least selecting between approaches based on the task at 

hand.  

Fiducial markers, though unreliable if not facing the camera or under occlusion, did 

prove highly accurate and precise when estimating the pose of its own tag. In situations where an 

entity is not expected to move unpredictably, or remain constantly in a camera’s line of sight, 

visual servoing with fiducial markers is a promising approach.  

When the movement of an entity, such as the DLOs explored in this work, is unstable, the 

RGBD image processing approach is best used for its robust identification and pose estimation. 
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Endeavors could be made to improve its accuracy, either through computer vision techniques or 

improved depth images. This accuracy should further extend into orientation calculation, and 

ensuring rotations computed accurately reflect the actual pose of an item no matter how 

miniscule its corresponding segmented point cloud is. Orientation calculation could, alternatively, 

be entirely overhauled using the more robust, tested, and efficient principal component analysis 

(PCA) data processing technique. Akin to this work’s approach of fitting a vector between the 

length of the connector end, PCA could be used to fit a cylindrical ellipsoid to the segmented 

point cloud, enabling generation of the principal axes to calculate orientation.  

Another area of improvement could be replacing the current color segmentation approach, 

as it is highly subject to lighting conditions, and requires bold outstanding colors to discern from 

the environment. Objects of interest must be of that color, and the system currently has no 

applicable method to discern separate objects sharing the segmentation color. Also, any future 

objects of interest, and their chosen colors, must be registered to the system. One possible 

remedy for differentiation is the application of the Iterative Closest Point (ICP) algorithm, which 

can be utilized to correlate the shape of a point cloud to a computer-aided design model, and 

therefore distinguish connectors based on this matching. This approach was implemented, but 

ultimately abandoned due to low depth image resolutions returned by the system’s visual sensors 

between two distinct connectors. ICP alone would also still fail at discriminating between 

multiple cables with the same connector head. Moving forward, further testing of ICP’s 

application in this context, and fusion with other identification methods may resolve the issues 

described. 

Lastly, much work could be done for the machine learning approach. The most obvious 

next step would be training the model to recognize an object under occlusion, which can be 
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accomplished by supplying images of an object partially occluded behind obstacles. Because the 

machine learning approach simply borrowed its orientation estimation technique, an interesting 

future direction could be reliably estimating depth and orientation from the RGB images alone. 

Depth could be calculated by creating labels for the connector at different distances from the 

camera and using pixel comparisons of size to estimate this Z values. A set of class labels could 

also be defined for the object in various orientations, and the model could be trained to predict an 

orientation from a given image. These class labels could be mapped to a library of preset poses, 

which the robotic agent could use as it maneuvers to the given position. Position estimation 

could also be improved by using oriented bounding boxes, a more advanced form of prediction 

unsupported by this system’s model host Roboflow. 

 

5.2.2    Slip detection 

The system’s ability to detect slips was severely limited by only having access to visual data. 

Loss of vision severely hindered monitoring of the connector end and therefore detection of slips. 

Future work could see the addition of more cameras around the environment when limiting its 

sensors to strictly a visual based system. However, more varieties of sensors, such as the addition 

of tactile force sensors on the robotic arm’s end effectors, could greatly bolster the system’s 

awareness of an object’s grasp status. If vision is lost, or if the set slip threshold is not surpassed, 

the force data from these sensors could still reveal a slip. An object in the grasp of a connector 

would result in a force reading, while an empty set of grippers would show near-zero values, as 

depicted in Figure 60. A combination of these approaches would greatly enhance the system’s 
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ability to detect slips as cameras, alone, are not solely responsible for recognizing the anomaly.

 

Figure 60: Grasped (left) and empty (right) readings from a force sensor on the end effector of a 

UR5e robotic arm 

 

5.2.3    Environmental Spiral Search Pattern 

Though the spiral search pattern presented in this work yielded high identification rates, much of 

that success stems from the wide, and therefore camera-placement forgiving FOV afforded by 

the Intel RealSense cameras utilized. The locations checked by the system were not intelligently 

chosen. Instead, one can start with robustly checking the entire workspace. A future direction 

could be enhancing the spiral search by intelligently tuning the angles it views the environment, 

and the distances it should move to locate an object of interest most efficiently.  

Alternatively, for the purpose of relocating a loose connector end, search could be 

avoided entirely if any portion of the entire DLO is visible. Akin to the work of [41], the system 

could generate, depending on the length and direction of cable it can see, where the occluded 

portion may have settled. Predictive capabilities could be combined with active search to further 

improve search speed and accuracy. Alternatively, if equipped with the tactile force sensors 

described in 5.2.2, the lost connector end could also be retrieved by simply tracing the end 
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effector down the length of the DLO. The total length of the DLO could be supplied to the 

system, and as long as a nonzero force is read, tracing continues until the total DLO’s length is 

traveled, thus reaching the connector end. 
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