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Supervised Semi-Automated Data Analysis Software for Gas 
Chromatography / Differential Mobility Spectrometry (GC/DMS) 
Metabolomics Applications

Daniel J. Peirano, Alberto Pasamontes, and Cristina E. Davis*

Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, 
Davis CA, 95616

Abstract

Modern differential mobility spectrometers (DMS) produce complex and multi-dimensional data 

streams that allow for near-real-time or post-hoc chemical detection for a variety of applications. 

An active area of interest for this technology is metabolite monitoring for biological applications, 

and these data sets regularly have unique technical and data analysis end user requirements. While 

there are initial publications on how investigators have individually processed and analyzed their 

DMS metabolomic data, there are no user-ready commercial or open source software packages 

that are easily used for this purpose. We have created custom software uniquely suited to analyze 

gas chromatograph / differential mobility spectrometry (GC/DMS) data from biological sources. 

Here we explain the implementation of the software, describe the user features that are available, 

and provide an example of how this software functions using a previously-published data set. The 

software is compatible with many commercial or home-made DMS systems. Because the software 

is versatile, it can also potentially be used for other similarly structured data sets, such as GC/GC 

and other IMS modalities.

Keywords

differential mobility spectrometry (DMS); field asymmetric ion mobility spectrometry (FAIMS); 
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Introduction

Mobile chemical sensors have a large role to play in varying application areas that range 

from national defense, to human clinical diagnostics and precision agriculture. While a 

variety of high precision sensors exist for these tasks, the technology termed Field 

Asymmetric Ion Mobility Spectrometry (FAIMS) or Differential Mobility Spectrometry 

(DMS) has gained visibility over the last decade due to its robust performance (Cumeras et 

al. 2015a; Cumeras et al. 2015b). The tool has been commercially produced by several 

industries, and has operating principles that allow for mobile field use and point detection, or 

as a discovery tool in a research laboratory. While DMS hardware advances have been 
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widely explored, there have been fewer reports of data analysis breakthroughs that are 

applicable to diverse new data sets on multiple homemade or commercial instrument 

platforms (e.g. vendor agnostic data analysis approaches). Currently, there is no stand-alone 

software package that gives users the opportunity to easily visualize their data and pursue 

step-wise rigorous data analysis procedures to interpret their DMS results, especially as it 

relates to biological systems that are being monitored.

Many reports of DMS data analysis have focused on single chemical identification (Davis et 

al. 2010; Krylov et al. 2010; Manard et al. 2008) for specific applications, where users seek 

to determine if a target compound is present within a complex sample type, such as an air 

sample. Generally the resulting data is relatively easy to visualize and interpret, and only 

modest data processing methods may be needed. Noisy signals may be filtered to detect the 

target chemical peak, or additional hardware configurations may be used to couple DMS 

with orthogonal tools such as mass spectrometry (Manard et al. 2010), or gas 

chromatography (GC) to look for ion collision products that aid chemical identification 

(Kendler et al. 2007). But generally in these data sets, we seek to determine relatively simple 

information from the data stream. Occasionally, we also may be interested in detecting 

groups of several chemicals from a complex mixtures, but still only identifying a handful of 

major chemical features which is a small finite number (Camara et al. 2013; Lu and 

Harrington 2007; Rearden et al. 2007). In some examples, signal alignment has been used 

(Krebs et al. 2006a), along with feature selection procedures (Fong et al. 2011; Zhao et al. 

2009) to assist in chemical identification. DMS data can also be augmented by mass 

spectrometry to confirm chemical identity (Lu et al. 2009), and in general these approaches 

are still numerically relatively straight forward to interpret. It is significantly more 

challenging to try and categorize complex DMS chemical data obtained from biological 

sources and mixtures, which themselves produce natural variation between samples.

Two major instrument configurations have been explored in connection with DMS for 

biological applications: pyrolysis (Py), and gas chromatography (GC). Pyrolysis helps to 

provide biomarker liberation from bacteria/endospores (Cheung et al. 2009; Eiceman et al. 

2006; Krebs et al. 2006b; Prasad et al. 2008), which can then be separated and detected by 

DMS. Gas chromatography allows for a modest pre-separation of a very complex mixture 

before additional DMS separation and detection (Aksenov et al. 2014; Arasaradnam et al. 

2014a; Arasaradnam et al. 2014b; Basanta et al. 2010; Covington et al. 2013; Rutolo et al. 

2014; Schivo et al. 2013). The data sets that result are usually extremely complex and multi-

dimensional, with some data features being very abundant but perhaps unimportant, and 

other data features having small abundance but high significance. It is often a combination 

of these low and high abundance chemical signals that help classify new incoming data, and 

both supervised and unsupervised learning algorithms have been used for untargeted 

biomarker discovery in biological applications. In addition, biological data can frequently 

include spurious chemicals that are not associated purely with one category of data over 

another. Thus, a common approach is to examine the entire signal space as a whole, thus 

determining a pattern of metabolic response.

A variety of algorithm approaches have been reported, each with advantages and limitations. 

Principal component analysis (PCA) is an unsupervised method to determine if data will 
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cluster according to groups based on orthogonal transformations of the data. It is very useful 

as an initial look at metabolomic data (Covington et al. 2013; Prasad et al. 2008), and can be 

used towards outlier detection. Genetic algorithms have been one way to build and validate 

whole-spectrum models of GC/DMS responses (Eiceman et al. 2006; Krebs et al. 2006b; 

Shnayderman et al. 2005), which has the advantage of using an optimization method to 

determine biomarkers within data sets to achieve high classification rates to separate groups 

of data. However, they sometimes converge on local optima solutions, and can be 

computationally expensive when optimizing for a large number of features or samples. 

Frequently these local optima are not general enough to be applied to data not used in 

training the model. A fuzzy rule building expert system (Rearden et al. 2007) has also been 

demonstrated for synthetic complex mixtures, such as JP-8 jet fuel, and may also be 

appropriate for metabolomic data sets. Linear discriminant analysis (Covington et al. 2013; 

Rutolo et al. 2014) and Fisher discriminant analysis (Arasaradnam et al. 2014b) have been 

used as classification methods for biological data as well. Partial least squares (Aksenov et 

al. 2014; Cheung et al. 2009) is well established and a valuable method to classify groups of 

GC/DMS data, and our software system has initially included this analytical tool for model 

building. A description of our software applying this technique (PCA, PLS, background 

correction and smoothing) to data that have been previously published (Aksenov et al. 2014) 

is presented as an illustrative example throughout this paper. The software is designed so 

that additional capabilities and applications can be added in future versions.

Software Structure

Our software (Figure 1) is designed to implement the most common data analysis steps 

frequently applied to metabolomic data sets in the literature (Peirano DJ 2013). At present, 

there is no software package that can apply these steps seamlessly to DMS data. This 

software was not built to replace chemometrician input on data analysis, but to enable 

researchers to have preliminary observation of their sampled data, and to determine how 

their data would behave during preprocessing and model development. Briefly, we will 

outline the major stages in our software data analysis steps here, and we will then expand on 

specific procedure details in later sections.

Reflecting our overall data analysis procedure, the first step is to effectively visualize the 

data (Figure 1, Step 1). Devices actively being developed or samples collected using novel 

techniques or on new chemical sources require slow and comprehensive visual analysis of 

the samples that are initially collected. This can allow the user to refine experimental 

protocols, as well as instrument settings to optimize their method development for a new 

application. A user can easily observe if the signal is absent or saturating the detector by 

visualizing their data. Resolution and consistency of peaks can also be observed by 

deliberate interaction with the size of the visual field and the representation of the peaks. 

This leads to a greater understanding of the data, and can identify nuances or problems in the 

data before going further with an experiment.

The next step in the procedure is preprocessing the data (Figure 1, Step 2). Lab members not 

normally involved with the statistical analysis of data are able to implement baseline 

removal and smoothing on their data and observe these effects on their samples. By 

Peirano et al. Page 3

Int J Ion Mobil Spectrom. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



understanding the chemistry involved as well as the engineering specifications of their 

specific device, users may have different insights to apply to the settings they choose for the 

preprocessing. For example, if a system has a certain data acquisition frequency, this could 

help dictate specific smoothing parameters to avoid artificially aliasing the signal.

Outlier identification can occur at a variety of points during the procedure (Figure 1, Step 3). 

They can be identified through visual inspection, or by running an initial Principal 

Component Analysis (PCA) on the raw data, or running an additional PCA after the 

preprocessing occurs. Identifying outliers using any combination of these methods enables 

the user to observe the consistency of data collected using their device and techniques. These 

methods can be used to identify natural sources of biological signal variance or artificial 

instrument noise when used in conjunction with a well thought out experiment plan.

The steps up to this point are excellent for determining the general quality of the data 

collected. However, for certain applications, the user may aim to differentiate between 

groups of samples (such as healthy or infected). The collected data may be consistent and of 

good quality, but that alone may not be sufficient to identify biomarker metabolite features 

in the spectra that are statistically different between classes of samples. Our next step is to 

build and test a model targeting differences in the samples that correlate to different 

classifications or experimental groupings (Figure 1, Step 4). The model can either analyze 

pairwise comparisons between two groups, or we can model more than one group at a time. 

The models themselves can be produced using various common algorithms, and the model 

terms and variables should be saved for later reference. Finally, the last step of our 

metabolomic data analysis process uses our model training techniques to predict unknown 

samples (Figure 1, Step 5).

Description of Illustrative Data Set

To demonstrate each of the steps of our data analysis procedure implemented by the 

software, a previously analyzed set of samples was used. We previously published a 

GC/DMS analysis of volatile organic compounds (VOCs) emitted by a biological system 

(Aksenov et al. 2014). Briefly, this data set analyzed a fingerprint set of citrus volatiles that 

changed after a tree was infected with a specific pathogen. Trees were placed into three 

classifications: healthy, asymptomatic and mild. Asymptomatic samples were samples taken 

from an infected tree, but from a branch that showed no indications of infection. Both mild 

and asymptomatic samples could also be classified as infected samples as opposed to 

healthy samples. Though the initial paper used samples collected from throughout the year, 

the samples we provide here as an illustrative data set were all collected during October 

2011 over 5 days of field sampling. During the collection of samples, we found the initial 

samples collected each day were less consistent as data collection started immediately after 

initializing the instrument. To demonstrate multiple aspects of outlier detection, we have 

retained this data as part of our example set.
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1. Data Visualization

DMS data is collected as a large matrix of values as charged ions accumulate on the detector 

pads during a defined time interval, Δt. Each value indicates an intensity that corresponds 

with the abundance of a chemical (or more than one chemical) that is measured under very 

specific operating conditions. For instance, GC/DMS data includes chemical abundances 

that are a function of both a certain retention time (RT) as a chemical elutes off the GC 

column, and a certain compensation voltage (CV) as an ion mobility parameter. Typically, 

both negative and positively charged ions are recorded simultaneously, although the positive 

spectra are historically the most interesting in biological metabolite applications. Since the 

intensities at each point in the spectra indicate the measurement of a specific chemical(s), it 

is important to note the retention time is determined by that chemical’s interaction with the 

GC column and the compensation voltage is based on the interaction with the RF electric 

fields within the drift tube region of the DMS instrument.

The digitization capability of DMS devices can vary. In our example data set, we digitized 

100 electrode readings per second. This resolution of 100 digitized values also corresponded 

to sweeping the CV over the selected range of the compensation voltages, enabling one 

compensation voltage sweep per second. This can be modified for higher resolution, 

depending on the analog-to-digital capabilities of the instrument (which vary by 

manufacturer). In general, there is a tradeoff between increased data resolution and data 

acquisition time required. When DMS devices are connected to GC columns, researchers 

must try to match resolution with the elution times of chemicals from the column; otherwise, 

if the digitization is too slow, chemicals may be “missed” as they elute off the column faster 

than data is collected. For most of the resolutions selected for RT and CV in a DMS device, 

indications of the presence of a chemical will span multiple compensation voltage digitized 

points and multiple retention time increments. This will create a large area of higher 

amplitude intensities that span two dimensions around a central point which is usually the 

location of the highest intensity. This can also be called a “peak”.

The presence of certain peaks can indicate specific chemical(s), and analyzing the position 

and intensity of the peaks in a signal space can be used to differentiate between different 

groups of collected samples. Therefore, data visualization needs to maximize the user’s 

ability to observe peak locations and intensities. This visualization step also helps users to 

understand how data vary between certain samples in order to assess the performance of 

their device and get an idea of the ability of a statistical model to differentiate between 

samples of varying groups. Finally, effective data visualization can assure the user with some 

confidence that consistent sampling is occurring. This can be especially important for 

biological applications, and critical for other applications of low abundance volatile organic 

compound (VOC) sampling (e.g. ambient air monitoring).

Visualizing samples from current GC/DMS devices can be a relatively straight forward, 

although critical, first step in data interpretation. In our software, we map the CV to the x-

axis and the RT to the y-axis, with color indicating peak amplitude. However, the human eye 

does not always recognize slight differences in color in pixels far from each other, making it 

challenging to compare peaks over an entire signal space. Therefore, the 3-dimensional (3D) 
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plotting capabilities of MATLAB 2014a were employed to create a visualization of a true 

3D signal space with the intensity of the signal plotted along the z-axis. This allows the 

signal to be observed as a landscape of multiple peaks. The software can also rotate the 

signal space, enabling the comparison of peak heights and locations with much greater 

clarity. Additionally, certain regions of the data can be targeted for visualization and model 

building by defining the CV and RT range of interest. The range of the z-axis can also be 

defined to assist in visualization without affecting subsequent data processing or model 

building steps. This allows the user to observe significantly smaller peaks that may be 

visually dominated by non-relevant peaks that do not impact the analysis of the sample, for 

example the reactant ion peak (RIP). We show a sample from our previously published data 

visualized in the software, both before and after reducing the plotted range (Figure 2). When 

the original raw data is plotted (Figure 2a), the dynamic range of the data makes it difficult 

to observe small features. By reducing the plotted signal space (Figure 2b), a clear picture of 

potential features takes shape. Finally, when the plotted retention time dimension and 

compensation voltage are reduced as well (Figure 2c), this removes the RIP from the signal. 

We are then able to discern small amplitude peaks emerging in the spectra. These features 

are further observed in the 3D visual plot (Figure 2d).

2. Pre-Processing

Often DMS devices have small but persistent voltage offsets on the detector pads that can be 

static, or can vary slightly over time. This is most likely attributed to minor operating issues 

with platform electronics, but it needs to be taken into account when data is analyzed in an 

automated or semi-automated fashion. Baseline voltage shifts are most noticeable at points 

when there are no chemical peaks present in the spectra, but the value of the signal is still 

above zero, representing a small offset potential on the electrode. As stated previously, this 

offset can be constant throughout the entire signal, or it can be affected over the time of the 

physical sampling. This fluctuation can potentially have a large effect on relative peak 

amplitudes within the sample, and if the offset varies between samples, then comparing 

peaks intensities of different samples becomes very challenging. Without baseline removal, 

it is still possible to determine the positions of peaks and attempt to identify biomarkers 

through peak location in the signal space, but analysis based on the quantification of the 

peaks would suffer.

Asymmetric least squares (ALS) is a one dimensional mathematical correction algorithm 

(Stevenson et al. 2013) that is performed on the samples in a direction parallel to retention 

time axis of the signal space. In other words, for each compensation voltage, all retention 

times that correspond to the compensation voltage are treated as a single time series, and the 

baseline is found for those values. For each time series, ALS iterates a least squares 

calculation multiple times. Each time, all points found below the calculated least squares 

line are given a heavier weight than those found above the line, and using this weighting a 

new least squares line is calculated, until a stable point is reached. The resulting equation is 

polynomial and maps closely to the bottom points of the time series, while remaining mostly 

indifferent to the chemical peaks above it in the spectra. This creates a continuous and 

differentiable solution that can be removed from the data and mimic a similar baseline that 

could have been observed visually. We show a sample from our previously published data 
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before (Figure 3a) and after baseline removal (Figure 3b). This step allows for a clear 

visualization of specific features that were previously obscured by signal fluctuations.

Besides the signal change that may occur due to an electrode offset potential, other factors 

can include signal noise as well. Each sample is made up of tens of thousands of individual 

digitized data value pixels, and each of those single measurements can include noise that 

originates from many potential sources. Examples include but are not limited to: Brownian 

noise in the electronics from ambient thermal shifts, physical vibrations on the instrument, 

and background trace chemicals that are detected near the noise floor of the instrument. All 

of the sources of noise are not necessarily apparent when visually observing the spectra at 

full working range of the instrument, but they can have a large impact on many types of 

mathematical models that are built based on the quantitative measurements of biomarker 

peaks versus the background. To remove this noise, we implement Savitzky-Golay 

smoothing (Bromba and Ziegler 1981; Madden 1978; Nevius and Pardue 1984). Savitzky-

Golay takes an input of window size, and M Order (which defines the order of the 

polynomial that could occur in the signal within the window size) and generates a set of 

coefficients, equal in length to the window size, with values that represent a polynomial of 

M Order. We show a sample from our previously published data before (Figure 4a) and after 

noise removal (Figure 4b). Note that the smoothing is applied before the baseline removal in 

the preprocessing, though the user can modify the order of preprocessing steps in the 

software.

3. Outlier Detection

Outlier detection is a critical step in data analysis, and involves moving aberrant samples 

from the data set prior to modeling and interpretation. Outliers can appear in a data set due 

to many reasons. One common origin is improper sample collection or a mistake by the 

researcher who collected the sample. Another common origin of outliers is the 

instrumentation itself, with issues ranging from not enough purge gas to clean the instrument 

between runs, lack of a warm up time for the device before sampling, or simply a brief 

electronics malfunction or interruption. Finally, most biological data is exceptionally 

heterogeneous, and outliers can simply be due to actual true variation within the system. 

What compounds this problem, however, is that a researcher may have a biological sample 

that they think represents one category, but it actually belongs to a different group (e.g. 

assuming a sample is healthy, but is in fact diseased). Data visualization can be used to 

identify sampling errors and equipment malfunction, and aberrant files can be manually 

removed. However, it is much harder to identify outliers that have a true biological origin or 

mistaken group membership.

Identifying when to denote a data sample as an outlier or a “good” sample can have a large 

impact on models later built to interpret the overall data set and forecast future unknown 

samples (to be discussed in subsequent sections). Additionally, aggressive outlier 

identification may result in a data set that does not represent the true variability of measured 

data, especially from biological systems. Perhaps most importantly, some researchers try to 

perform outlier detection “by hand”. This raises potential biases within the available data 

used to make a model, and is especially likely if outside information about the “true” 
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classifications of samples is known or inferred (e.g. a separate “gold-standard” data stream 

that is independent of the DMS data set).

Multiway Principal Component Analysis (PCA) treats each sample as a single point in an n-

dimensional field, where n is the number of variables contained within the sample (Wold et 

al. 1987). PCA then optimizes for the strongest covariances among these dimensions for the 

sample set, and aligns the data along these principal components. Outliers have a large 

impact on PCA as they will have multiple variables that vary with each other away from the 

“normal behavior” of the sample set. Observing the primary principal components can 

indicate samples that do not behave as the other samples in the set, providing a visualization 

to identify these samples. If many of the samples are clustered in the first few principal 

components while a few samples are dispersed away from this grouping, those dispersed 

samples are defining the principal components because the data within those samples 

behaves differently than most. If the full set of samples is evenly dispersed across the 

components, then the samples behave in a similar manner, and PCA is able to correctly 

identify the covariances that are defined by this shared behavior. Finally, it is important to 

note the number of samples in the set prior to removing outliers. When there are fewer 

samples, each sample has a much larger impact on defining the principal components, and 

therefore covariances coincide with impacts from individual samples appearing much 

stronger than they would if there were more samples collected. This can make samples 

appear as outliers when they are simply demonstrating natural variances.

We use our previously published data set to illustrate outlier removal (over multiple 

iterations of PCA) by showing the set of “Healthy” classification samples before outlier 

removal (Figure 5a), and the separation of Healthy samples after outlier removal based on 

the two days of sampling (Figure 5b). This can be compared with the score values of healthy 

samples in Figure S1 from our previous paper, which also demonstrated that the natural 

variation of the data separated along day of sampling in October 2011 (Aksenov et al. 2014). 

The loading of the first principal component when outliers are present contains much more 

noise, and large areas of similar behavior cannot be observed (Figure 5c). This means that 

the strongest observed behavior between the samples does not correlate to varying chemical 

intensity which is usually observed in peaks covering large areas, but rather to electrical 

noise generated from the device. However, after outliers are removed, the loading matrix of 

the first principal component contains much less noise while large areas are present 

demonstrating variation between the samples is based on the height of these peaks indicating 

varying chemical intensity (Figure 5d).

4. Model Building

Frequently, chemical analysis using DMS is performed with the intention of enabling 

forecasting unknown samples at a later time. Data is acquired under known conditions, 

allowing an algorithm to be trained to represent different group responses. After modeling a 

“training” data set, we can then use this to make predictions about specific unknown samples 

in the future (to be discussed in the next section). The first step in this process is creating an 

adequate mathematical model representation of the initial training data.
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Multiway Partial Least Squares – Discriminant Analysis (nPLS-DA) (Geladi and Kowalski 

1986) is a form of supervised Principal Component Analysis (PCA) where the principal 

components are identified based on their ability to differentiate between groups. Similar to 

PCA, nPLS-DA is able to incorporate a set of samples where the number of variables 

contained within each sample exceeds the number of samples that were collected. This 

works well for GC/DMS data where a sample can contain over 50,000 digitized points of 

data, and a variable is a single digital value within the spectra. The variables are analyzed 

based on their covariance with other variables within the set of samples, and groups of 

variables that behave similarly are grouped into principal components. Each principal 

component is analyzed based on how well it corresponds with the information on assigned 

sample groupings. They are then “rotated” within their multi-dimensional space to best align 

with the determined sample groupings. This allows for the construction of a linear regression 

model that can use the input of a single unknown sample and multiply through by the 

corresponding coefficients for each variable within the sample, returning a value 

corresponding to a range of zero to one which represents how much it co-aligns with other 

samples within that classification set.

The nPLS-DA algorithm is a supervised analysis, and like other supervised techniques, the 

training of the model is the most important aspect in creating a robust analysis method. The 

initial starting data needs to be randomly separated into training and testing sets, where 

samples of specific classification groups are proportionally represented. When building the 

nPLS-DA model, only the training set of data is used. The accuracy of the model is then 

subsequently assessed by applying it to the remaining testing set not initially used. This 

process creates models that are less impacted by “overtraining” and tend to perform better 

on additional future unknown sample forecasting.

There is a commonly used model building process termed “Leave-One-Out.” In this case a 

model is built with all but one of the samples, and the last sample is treated as a testing set of 

size 1. This process is done repetitively, and an aggregate accuracy of many models can be 

calculated after this process completes a specific number of modeling cycles for all samples. 

This can be prohibitively slow, and an alternative is to create a training set of just 20-30% of 

the original data set samples. This may better reflect the overall forecasting accuracy of the 

model on true unknowns since less of the original data is used in the model training process. 

We should note that if a linear supervised analysis is used (such as nPLS-DA) then the 

Leave-One-Out approach should always result in the same classifications of the same 

samples. However, if the samples are randomly separated into training and testing sets, then 

the models will vary based on which samples were used to test them. Therefore many 

models should be built and tested to observe an expected performance of the model.

Unknown Sample Forecasting

For many experimentalists, a major goal for GC/DMS analysis of biological data is to enable 

prediction classifications of future unknown samples. Once a model is built, we go through a 

specific set of steps to perform this forecasting process. Using nPLS-DA, a model will return 

a single value between 0 and 1 for each new unknown sample applied to it that correlates to 

the classification of the model, and it will do this for each possible classification group in the 
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system. For example, the nPLS-DA algorithm builds a separate model for each classification 

type within our illustrative data set (e.g. Healthy, HLB Asymptomatic, HLB Mild). Based on 

the method of model training (i.e. Leave-One-Out) each sample is evaluated as “unknown” 

to the trained model and values are returned that indicate the probability that sample is from 

each of the different groups. The ideal forecasting case results when a sample has a value of 

1 calculated for a single classification, and value of 0 for all remaining groups. However, the 

model is applying a coefficient matrix to the unknown sample input, and the returned values 

will be a real number that ranges from 0 to 1. Models can return values outside of this range 

as the sum of the product of the model final coefficients and a specific sample may produce 

values slightly outside this range. Additionally, models that have few samples in certain 

classifications (as this one does in the mild classification) can often bias towards opposing 

classifications as it is being trained on much more data in those classifications, and therefore 

a “right answer” in the training is much more often to be away from the classification with a 

limited amount of samples. The most straightforward way of assigning forecasts to an 

unknown sample is to identify the classification that corresponds with the highest predicted 

value from the models. This reflects which model the sample most closely aligns with, 

although it can be hurt if a model based on a classification with few samples biases away in 

its predictions of those types of samples, and is still susceptible to a variety of factors 

including low sample numbers during the model building process. This type of classification 

approach does not assess if all of the classification models are returning values that are 

appropriate for a predicted group. In other words, for every sample there will always be a 

model that returns the largest corresponding value, but the other models may also be 

returning very high corresponding values for their classifications. Another problem that 

could surface is that other samples in the same classification may normally return much 

higher responses in that classification. These other aspects of the prediction of a sample 

should be incorporated into assessing if a valid prediction is being made.

A different approach is to define single or even multiple thresholds when assessing a sample 

prediction from the model. The initial step is to identify if thresholds can even be used on 

the predictions. For each classification model (i.e. HLB Mild), the mean and standard 

deviation are found for samples that correspond with this model (HLB Mild) and samples 

that do not correspond with this model (HLB Asymptomatic and Healthy). If the difference 

between the means of each set is less than two times the sum of the standard deviations from 

each set, then the model is not effective at separating the samples, at least in a manner that 

can make use of multiple thresholds. This is repeated for each type of classification. If all 

classification models have passed this initial test, then each unknown sample is assessed. If it 

is found to be within two standard deviations of the mean for a certain classification, and 

within two standard deviations of the means for samples that fail for all the rest of the 

classifications, then it is identified as being predicted to be a member of that classification. If 

it is found that it does not qualify this way, then it is identified as being unable to be 

predicted as any classification for this category. The model developed to classify samples 

based on healthy and infected was not able to differentiate between the groups strongly 

enough to make a definitive threshold, but there is clearly two different groups observed as 

shown by a box plot of the predictions of the model (Figure 6b).
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Viewing the scores plot and loadings of the latent variables identified by nPLS can also 

show the behavior of the samples as well as identify where in the sample space the chemical 

peaks occur that most strongly differentiate between desired classifications. However, 

because the scores and loadings would need to correspond to a single model, a unique model 

is built using all of the data, demonstrating the groupings of the calculated scores (Figure 

6a). The loadings for this unique model are also shown, and as can be seen in the scores plot, 

the first latent variable effectively maps the behavior that best correlates with differentiating 

healthy from sick, while the second latent variable correlates well with differentiating 

between asymptomatic and mild (Figure 6c).

Using the illustrative data set from our previous paper (Aksenov et al. 2014), we can 

demonstrate the development of an nPLS model using a Leave-One-Out training technique. 

For this model, the CV range selected was −23 V to 15 V and the RT range was 0 to 230 

seconds. The order of pre-processing was Savitzky-Golay smoothing with a window size of 

9 and an M Order of 3, then ALS baseline removal using a λ of 102 and a proportion of 

positive residuals of 0.01. Both preprocessing techniques were applied along constant CV 

values. The number of latent variables for the nPLS model was set at 2. Samples classified 

as asymptomatic and mild were combined into a classification of infected to be compared 

with samples classified as healthy. The confusion matrix for the results of the model is 

shown (Table 1).

There are some differences in the techniques used in this paper and the initial analysis of the 

illustrative data we previously published (Aksenov et al. 2014). In this paper we use our 

newly developed software, while in the initial paper the PLS_Toolbox developed by 

Eigenvector Research Inc. was used. The largest difference in the two implementations is 

during baseline removal, where instead of ALS as used in the current software, ALS Basis 

method is used. This introduces small differences that are reflected in slight discrepancies in 

outlier detection, resulting in different samples used to train and test the final models. 

Additionally, while this is a demonstration of an implementation of our procedure and for 

the final assessment and we used Leave-One-Out as a training method, for the previous 

paper, 300 models were built using a 70/30 breakdown of training and testing to ensure that 

the accuracy identified would appropriately reflect the final model built.

Despite these differences in analysis, the resulting accuracies are very similar. In the 

previous paper, the accuracy for classification of healthy samples was found to be 95.49 

± 4.11%, while the current software achieved an accuracy of 92.5%. For the accuracy of the 

classification of HLB infected samples, the previous paper achieved an accuracy of 88.48 

± 11.62% while this software achieved an accuracy of 83.3%.

Discussion and Conclusions

New data visualization tools such as our present software might aid additional advanced 

hardware and DMS system development (Zhao et al. 2008). For example, if certain regions 

of the GC/DMS or Py/GC/DMS data sets are particularly interesting and feature rich, then 

the hardware could be modified to enhance detection within that part of the data. Likewise 

operating protocols such as GC times or CV range adjustments may allow for higher 
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accuracy once a pilot study indicates the portion of the signal with the most diagnostic 

power.

While we have presented one way to analyze GC/DMS metabolomic data, there are certainly 

more avenues to explore. One limitation of the current approach is the notion of discrete 

state classification, which assumes that new incoming samples must belong to one of the 

major classification groups, e.g. “healthy” or “sick”. This paradigm can work well for many 

examples, such as our plant pathogen infection data presented as the example case in this 

paper. However, some metabolic diseases and disorders are more of a continuum of 

biological response that cannot always be articulated as discrete states. If we initially choose 

the two far ends of the spectrum as the training example, we cannot always predict how the 

model will classify new samples from the more moderate intermediate portion of the 

response. Likewise, even if researchers are exploring a true two-case system, an unknown 

sample may be taken during the transition of the biological organism from one state to the 

other (e.g. you measure it while moving from “healthy” to a “sick” state). If this is the case, 

the model may produce unreliable results that may be misinterpreted. Data taken during 

time-course experiments may be especially susceptible to this state-transition artifact 

without a firm understanding of the underlying biological pathophysiology being studied. 

Extremely well-controlled studies with appropriate replicate numbers are critical.

When we do consider a multi-state model, setting up the initial training study groups is very 

important to the success of this research. Frequently there are biological diseases or 

disorders with multiple etiologies, and there can be several different causes of the underlying 

pathology. If these are mixed into a single “diseased” state, then care must be taken to create 

a large enough training data set that well represents each of the sub-state conditions. It may 

be advantageous to include confounding factors, such as co-infections, at the time of 

training. This could lower the probability of false alarm in the model testing phase. Care 

should be taken not to systematically bias the data as well, e.g. all data from one state taken 

at a single time point, and data taken from another state taken at another time point. All of 

these factors may influence poor model building outcomes and performance.

Finally, it is important to note the effect experimental drift of operating conditions may have 

on model building. If the experiments do not seek to identify specific chemical profiles and 

are relying on the total pattern of GC/DMS response to match a class pattern, it is important 

to rigorously ensure that device operation does not change during the model building or 

model testing phases of the study. Examples might include: large changes to the GC column 

temperature profile which can lead to severe signal misalignment; altering the RF profile 

which would affect CV profile changes for metabolites; large humidity shifts during 

sampling that may affect the DMS reactant ion peak; and variation of sampling time could 

lead to non-uniformity of metabolite abundances between samples.

When used appropriately, we believe that our new data analysis software is likely to be a 

flexible platform that can be useful to many researchers in the community. In this present 

study, we outline one possible order of data processing steps, but the software code itself is 

flexible and can be adapted in the future for new modules developed by others. While we 

initially coded nPLS-DA for model building and testing, it is possible to add a model to the 
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software that was built using other methods, such as genetic algorithms or neural networks. 

It is also possible that other researchers will later enhance the software to incorporate 

alternative model building strategies directly into our procedure as well.

Software

The software operates through MATLAB and was coded on MATLAB Version 8.3.0.532 

(R2014a). It makes use of the Parallel Computing Toolbox, although this is not required for 

operation. The software currently reads input files through a tab-delimited file format which 

contains the compensation voltage and retention time alongside the matrix of recorded data. 

Additionally, data can be read directly from variables in the MATLAB workspace, with 

compensation voltage and retention time assigned by the user while importing the data.

All of the data visualizations within the figures of this manuscript were generated using our 

software, AnalyzeIMS (AIMS), Version 1.11. Examples of the current software interface are 

provided as supplemental figures (Supplemental Figures 1-8).

Software Dissemination

The AnalyzeIMS (AIMS) software is available on GitHub. Please refer to Professor Cristina 

Davis’ webpage for more information. AnalyzeIMS is available as open source for research 

and personal use under a modified BSD license. Commercial licensing may be available, and 

a license fee may be required. The Regents of the University of California own the 

copyrights to the software. Future published scientific manuscripts or reports using this 

software must cite this original publication.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The procedure used to analyze data, implemented using our software. The vertical path 

downwards demonstrates the minimum required to develop a model from a set of raw data 

samples, while the dashed lines are optional steps that could improve the capabilities of the 

developed model or provide value to the researcher. The numbered boxes contain the 

primary steps of the analysis covered in this paper. The boxes inside these steps define 

specific algorithms that we have included in this software (i.e. Savitzky-Golay Smoothing, 

nPLS), but other algorithms can be used to complement or replace the existing ones.
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Fig. 2. 
Interacting with a sample by modifying the scales of the axes and using 3D functionality. (a) 

The full raw data of a sample. (b) Modifying the range of the intensity to less than one fifth 

of its initial length is able to amplify visible features in the sample. (c) Modifying the CV 

Range and RT Range to remove the RIP and focus on the area of activity in the sample. (d) 

A rotation of (c) to demonstrate the ability to view the data in 3 dimensions. This allows 

users to clearly observe peak feature behavior in their samples, enabling the researcher to 

optimize their device and techniques used to collect the samples.
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Fig. 3. 
Baseline removal using Asymmetric Least Squares (ALS) with settings of λ = 100 (102), 

and PPR = 0.01. (a) A sample has been appropriately scaled to the targeted area of activity 

(shown previously, Fig. 2) but has long bleeds appearing after peaks measured by the device. 

(b) A sample after baseline removal, with only the initiating peaks shown and almost all 

evidence of bleeds removed. The intensity shift of the sample as shown by the colorbar also 

indicates the removal of unnecessary baseline so that the data is primarily located near the 

value of 0.
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Fig. 4. 
Smoothing using Savitzky-Golay with a window size of 9, and an M order of 3. (a) A 

sample has baseline removal applied to it (shown previously, Fig. 3), but still contains 

evidence of noise which can obstruct the construction of a model. (b) A sample after 

smoothing is applied removes the noise and the related confounding effects that can obscure 

model building. This can sometimes lead to combining previously separate peaks (as shown 

by white arrow) and care must be taken to minimize this occurrence. The order of 

preprocessing for the model used in this paper is smoothing first and then baseline removal.
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Fig. 5. 
Outlier identification using Principal Component Analysis (PCA). (a) PCA scores plot of 

healthy samples after removal of samples identified through visual inspection. Samples 

shown in red were identified as outliers in this and subsequent runs of PCA before the final 

set of viable samples was identified. (b) PCA score-plot of the final set of samples remaining 

after outlier removal. Samples with a score less than zero on the first principal component 

were sampled on 05 October 2011, while samples with a score greater than zero on the first 

principal component were sampled on 03 October 2011. (c) Loading matrix of the first 

principal component for Fig. 5a. (d) Loading matrix for the first principal component for 

Fig. 5b. Outliers in the PCA that generated the loading in Fig. 5c create a component which 

identifies that the strongest correlation is primarily due to electronic noise shown by many 

small peaks and valleys. The removal of outliers enables PCA to generate the loading in Fig. 

5d, where the unsupervised analysis identifies correlation between large chemical peaks and 

valleys (noted by white arrow) which we suspect correspond to chemical biomarkers that 

effectively discriminate between the data, resulting in separation based on specific days that 

the samples were collected.
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Fig. 6. 
Observed separation of groups based on multiway Partial Least Squares – Discriminant 

Analysis (nPLS-DA). (a) nPLS-DA score plot based on separation of samples identified as 

healthy from other samples. The classifications of asymptomatic and mild are not included 

in the model, but are identified here to show additional groupings that are developed in the 

score plot. A full model with all samples after outlier removal included in the training set is 

used so that constant loadings can be applied to the data for development of a single score 

plot. The first latent variable effectively separates healthy from both classifications of 

infected. The second latent variable improves this separation and also identifies aspects that 

separate asymptomatic from mild without these separate classifications included in the 

building of the model. (b) Box plot of predicted nPLS-DA results using leave-one-out 

methodology to identify healthy from infected samples. (c) The loadings used by the full 

nPLS-DA model to separate healthy samples from other samples.
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Table 1

Confusion matrix of the model developed using the current software on illustrative data previously collected 

and analyzed. TPR is the true positive rate, also known as sensitivity and TNR is the true negative rate, also 

known as specificity. PPV is the positive predictive value, also known as precision, and NPV is the negative 

predictive value. ACC is the total accuracy of the model. This table can be compared to the Fall classifications 

shown in Table 1 of Aksenov AA, Pasamontes A, Peirano DJ, Zhao W, Dandekar AM, Fiehn O, Eshani R, 

Davis CE. (2014) Detection of Huanglongbing disease using differential mobility spectrometry. Analytical 
Chemistry 86(5): 2481-2488.

True Infected (30) True Healthy (40)

Predicted Infected (28) 25 3 PPV: 89.3%

Predicted Healthy (42) 5 37 NPV: 88.1%

TPR: 83.3% TNR: 92.5% ACC: 88.6%
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