
UC Irvine
ICS Technical Reports

Title
A design methodology for interactive behavioral synthesis

Permalink
https://escholarship.org/uc/item/3521t8vj

Authors
Gajski, Daniel D.
Juan, Hsiao-Ping

Publication Date
1995-07-26

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3521t8vj
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

A Design Methodology for
Interactive Behavioral Synthesis

Daniel D. Gajski
Hsiao-Ping Juan

Technical Report y5t95-25
July 26, 1995

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425
(714) 824-7063

gajski@ics.uci.edu
hjuan@ics.uci.edu

5LBM-

Abstract

Due to the recent increases in design complexity, behavioral synthesis has become an
important area of research and company interest. However, there has been market re
sistance to accepting the automatic behavioral synthesis approach as a practical solution
in general because, first, it often produces results inferior to manual designs, and sec
ond, it allows only minimum user control. To develop a feasible approach for behavioral
synthesis to overcome the hurdles faced by the automatic approach, we propose inter
active behavioral synthesis, which attempts to maximally utilize the human designer's
insights. Using interactive behavioral synthesis, the users can control the design process,
observe the effects of design decisions, and manually override synthesis algorithms at
will. In this report, we present a design methodology as how the user interacts with
an interactive behavioral synthesis system, which in contrast to an automatic synthe
sis system, enables the human designer fine-grain control over each synthesis task and
continually supplies feedback in the form of quality measures so that the user can make
informed design-related decisions. To demonstrate the proposed design methodology, we
also present in this report a walk-through square-root approximation (SRA) example.

sifiT
mnQfr,Bfmn ^'iflJtJ i/Jijll"

Contents

1 Introduction

2 Overview of the Design Methodology

3 Previous Work

4 Interactive Synthesis Environment: ISE

4.1 Behavioral Level

4.1.1 Design View 12

4.1.2 Quality Metrics 13

4.1.3 Tasks 14

4.2 Structural Level

4.2.1 Design View 15

4.2.2 Quality Metrics 16

4.2.3 Binding Hints 17

4.2.4 Tasks 18

4.3 Physical Level 19

4.3.1 Design View 19

4.3.2 Quality Metrics 19

4.3.3 Tasks 20

5 Design Methodology 20

5.1 Capture Design Specification 21

5.2 Identify Design Bottlenecks 21

5.3 Optimize the Scheduled Behavior 22

5.3.1 Reduce Area 22

5.3.2 Reduce Execution Time

5.4 Perform Architectural Tradeoffs

5.4.1 Reduce Area

5.4.2 Reduce Execution Time

5.5 Optimize the Floorplan 42

5.5.1 Reduce Area 42

5.5.2 Reduce Execution Time

6 Sample Example Walk-Through

7 Conclusion

8 References

List of Figures

A typical design methodology of an automatic behavioral synthesis system

A design methodology for interactive behavioral synthesis

The design view, quality metrics, and tasks supported in ISE

The state-actions table view

5 The component selection and binding view

6 The floorplan view

7 Techniques to optimize the scheduled behavior

8 The example of reducing area by moving assignments

9 The example of reducing area by splitting a state

10 The example of reducing area by moving variables

11 The example for reducing maximum state delay by moving operators or split

ting states

12 The example for reducing the number of states by merging two states . . .

13 The example for reducing the average execution time

14 The example for reducing the maximum execution time

15 Techniques to perform architectural tradeoffs

16 The example for adding or removing components

17 The example for replacing two components by one multi-functional compo-

18 The example for replacing two components by one pipelined component . .

19 The example for performing component cost/speed tradeoff

20 The example for minimizing the interconnection area during binding

21 The example for minimizing the clock period during binding

22 Techniques to optimize the floorplan

23 The example for changing the placement and aspect ratios of components .

24 The example for minimizing the total wire length

25 The example for altering the positions of I/O ports

26 The specification of the SRA example

27 The state-action table of the SRA example

28 The design of the SRA example after splitting STl and allocation

29 The design of the SRA example after the first re-aUocation . ; 50

30 The design of the SRA example after splitting STl and ST4 50

31 The design of the SRA example after binding 52

32 The design of the SRA example after the second re-aUocation 53

33 The final design of the SRA example 54

1 Introduction

Recent advances in the VLSI technology have allowed companies to build complex de

signs containing over one million transistors on a single chip. As the complexity of the

chips increases, so wiU the need for designing from the behavioral abstraction level where

functionality and tradeoflFs are easier to understand.

Behavioral synthesis is a process of synthesizing a design from a given behavioral descrip

tion to a register-transfer-level (RTL) structure. Behavioral descriptions can be programs,

algorithms, flowcharts, dataflow graphs, instruction sets or generalized finite-state machines,

in which each state can perform arbitrarily complex computations. The RTL structure is a

set of interconnected components that is described by a netlist. Components in the netlist

can be (a) functional units such as ALUs, multipliers, (b) storage units such as memories,

register files, and (c) interconnection units such as muxes and buses.

In general, the design process of behavioral synthesis can be decomposed into three

major tasks. First, the number and type of resources (i.e., functional units, storage units and

interconnection units), used in the design, must be defined. This task of defining necessary

resources is called allocation. Once the resources are known, the behavioral description

can be partitioned into states in such a way that all the variable assignments in each state

can be computed by allocated resources. This task of partitioning the behavior into time

intervals is called scheduling. Although the scheduling task assigns each operation to a

particular state, it does not assign it to a particular component. In order to obtain the

proper implementation, we have to assign each variable to a storage unit, each operation

to a functional unit and each transfer from I/O ports to units and among units to an

interconnect unit. This task is called binding. After binding, an RTL netlist is produced.

Many years of research have been dedicated in the development of automatic behavioral

synthesis tools [2] [4] [7] [11]. Several EDA vendors have also introduced recently commercial

products based on behavioral synthesis. In these systems, designs are obtained with min

imal user interaction. The only means of controlling the output from such systems is via

constraints expressed in terms of area and/or performance. Figure 1 shows a typical design

methodology of an automatic behavioral synthesis system. Note that the order of synthesis

tasks being performed in an automatic synthesis system may vary.

However, automating behavioral synthesis is a very complicated issue. For instance.

Specify design behavior

Set constraints for synthesis system

Allocation

Scheduling

Binding

Placement & Routing

Constraints
\ met? ^

Automatic

Behavioral

Synthesis

Figure 1: A typical design methodology of an automatic behavioral synthesis system

the synthesis tasks are all NP-complete problems. In addition, the order in which these

synthesis tasks are performed also has an impact on both the efficiency and results of the

overall synthesis process. Moreover, the behavioral synthesis tasks are always done before

the physical level tasks, such as placement and routing, start. Yet, these low level tasks

may have great effects, such as wiring delay, on the design and these effects are very difficult

to estimate at behavioral level. Hence, the resultant designs sometimes cannot satisfy the

performance or area demands of real-world constraints. Although it certainly cannot be

denied that progress has been considerable, a practical solution of automating behavioral

synthesis is stiU distant.

When the design produced by automatic behavioral synthesis is not a good one, it

presents the user with the following dilemma. If the user modifies the input description

and constraints and resynthesizes it, then he/she may get a completely different and un

predictable design, which still may not satisfy the constraints. Besides, low level tasks such

as placement and routing, which usually require tremendous amount of time, need to done

in every iteration, and consequently the time to reach an acceptable design is very long.

On the other hand, if the user modifies the output design manually, then he/she needs to

spend considerable effort, if at all possible, to understand the synthesized resrdt and has to

prove the correctness of the modified design.

To develop a feasible approach for behavioral synthesis, we have substituted the goal

of a completely automated, "push-button" synthesis system with one which attempts to

maximally utilize the human designer's insights. This approach, cis opposed to automatic

behavioral synthesis, is called interactive behavioral synthesis. Using interactive be

havioral synthesis, the users can control the design process, observe the effects of design

decisions, and manually override synthesis algorithms at wiU. This interactivity will allow

the synthesis system to generate acceptable-quality high-complexity designs in the immedi

ate future, instead of waiting for the many years of research needed to improve the current

automatic synthesis techniques. With this goal in mind, we have implemented an interac

tive behavioral synthesis system called Interactive Synthesis Environment (ISE). The main

subject of this report is to propose a design methodology for using such an interactive

synthesis system.

In the next section, we shall first give a brief overview of the proposed design method

ology, in contrast to the methodology used by automatic synthesis. Afterwards, we shall

briefly review the previous research in this area. Before we discuss the proposed design

methodology, we introduce the synthesis system ISE in Section 4 in order to present the

reader a clearer view as how the design methodology can be exercised. Then the proposed

design methodology is discussed in detail in Section 5. Finally we present a walk-through

example and give conclusions.

2 Overview of the Design Methodology

Capture design specification

physical
level :

Optimize the
floorplan

Identify the bottleneck

Remove

bottleneck

structural

level

Perform

architectural

Tradeoffs

Optimize the
scheduled

behavior

Placement & Routing

Figure 2: A design methodology for interactive behavioral synthesis

Figure 2 shows the proposed design methodology for interactive behavioral synthesis.

In this methodology, the user first captures the design specification using graphical design

views. Once a specification is captured, the system provides quality metrics to tell the

user whether or not the design meets area and time constraints. The user can acquire

design quality metrics from the system at any given step of the design process. If the

information required for the computation of the acquired metric has not been established

at that stage of the design process, the system will estimate the metric based on knowledge

of the physical design. If there exist any constraint violations, the system can further help

the user to identify the problem spots, i.e. the bottlenecks, in the design. To remove the

design bottlenecks, that is, to improve the cost or performance of the current design, the

user is allowed to work at either behavioral, or structural, or physical level by optimizing

the scheduled behavior, or performing architectural tradeoffs, or optimizing the floorplan,

respectively. Decisions made by the user generate immediate feedbacks as to the quality of

the resulting design. If the updated quality metrics stiU indicate that there are unsatisfied

constraints, the user can continue the tasks of identifying and removing design bottlenecks.

This process is iterated until all the constraints are satisfied, and an RTL netlist and an

implementation-specific fioorplan are obtained as final results. Then this RTL netlist and

the fioorplan become input of the placement and routing tools, which generate the layout

of the design.

There are two remarkable contrasts between the methodology for automatic behavioral

synthesis, shown in Figure 1, and the proposed methodology for interactive behavioral

synthesis. First of all, the proposed methodology allows user decisions and user control in

every task and at every level of the design process. This provides the user complete control

over the synthesis system. Moreover, unlike in automatic behavioral synthesis, there is no

forced ordering of synthesis tasks; the user can perform any synthesis task at any time

during the design process. Thus, the decision of what task to perform at a particular time

during the design process depends only on how to effectively remove the bottlenecks in the

design.

Secondly, the system allows the user to start fioorplanning early in the design process. By

doing so, the system can provide rapid feedbacks of useful physical design characteristics and

quality metrics to every level of design abstraction. That is, the user can take the physical

level fioorplan into account while making design decisions at behavioral or structural level.

As a result, the time-consuming tasks of placement and routing need to be done only once,

when the design is completed and the floorplan is obtained. This greatly reduces the design

We would like to emphasize here that interactive behavioral synthesis does not mean

that the user is required to do the design completely by hand. In addition to allowing

the user to perform design tasks interactively, interactive behavioral synthesis should also

provide automatic algorithms to complete design tasks that are simple yet tedious for the

user to do unaided. At the end of each design step, the user can call automatic algorithms

to either perform one design task for the user or to simply finish the design by completing

the process of allocation, scheduling, binding and fioorplanning. If the results of automatic

algorithms are not satisfactory, the user can manually override the synthesis algorithms.

Conceptually, one may think of interactive behavioral synthesis as providing quality metrics

to the user during manual design, and providing automatic algorithms to rapidly complete

simple yet tedious design tasks. As the design process progresses to more detailed and less

abstract descriptions, the user's experience can be utilized to make the kinds of decisions

no automatic tool can perceive or predict.

3 Previous Work

There are several previous papers addressed the importance of user-interaction with syn

thesis systems. In this section, we wiU differentiate our approach from previous research.

The ACE graphical interface [1] is intended to be the interface between the user and the

synthesis system. It allows the user to place and connect functional nodes to create a graph

that specifies the desired behavior, and thereby precludes the need for an initial textual

input description. After the initial graphical specification is obtained and before synthesis

tasks such as allocation, scheduling and binding start, some transformation techniques can

be applied to the specification to transform it into a better, more efficient input description

of the synthesis system. ACE allows the user to interact with the synthesis system by giving

the user the final say in accepting or rejecting the system's transformation decisions. An

experienced user can also specify transformations manually. Nevertheless, ACE does not

allow the user to interact directly with the synthesis tasks.

RLEXT [9] [10] is an interactive tool which allows a user to manually reschedule a

design's behavior or modify a design's structure by adding or deleting components and

interconnects. The unique aspect of RLEXT is that, if the user makes changes in the

datapath design or the behavior's schedule that would impair the datapath's ability to

carry out the desired schedule, RLEXT wiU automatically repair the datapath so that it is

once again able to execute the specified schedule. However, RLEXT does not provide the

user feedbacks of the current design's quality to help the user making decisions of how to

improve the design.

The system AMICAL [8] allows the user to mix automatic and manual design. The

user may start a design manually and ask AMICAL to finish it. Alternatively, the user can

execute the synthesis tasks step by step. At each step, the user has the choice to continue

the synthesis automatically or manually. Yet, AMICAL has a fixed design flow, that is,

the user has to perform a sequence of synthesis tasks in the order of scheduling, chaining,

allocation and then architecture generation.

A unique aspect of our approach is that it allows the user to start floorplanning early in

the design process. None of the previous research has ever attempted to address physical

design issues with behavioral synthesis, that is, generating feedbacks from the physical

level to help the user making design decisions at behavioral and structural levels. Hence,

the proposed design methodology supports interactive behavioral synthesis to a degree not

presently seen in this research area.

4 Interactive Synthesis Environment: ISE

behavioral

level

structural

level

physical
level

state-actions table view

component selection
and binding view

floorplan view

quality metrics/hints tasks

operator occurrences

variable lifetime

state delay
maximum execution time

average execution time
execution time utilization

add/delete assignments
merge/split states

component delay
component area
component utilization
clock utiiizatoin

binding hints

add/delete components
change component implementations
bind/unbind operators/variables to

components

total area

functional unit area

storage unit area
routing area
wasted area

wire length
total wire length

change component placements
alter the positions of module pins

and I/O ports
route/unroute interconnections

Figure 3: The design view, quality metrics, and tasks supported in ISE

We have implemented an interactive behavioral synthesis system, called ISE. To sup

port user interactivity, ISE provides graphical design views, whereby the user enters and/or

modifies the design and also perceive the consequences of design decisions. Decisions made

by the user generate immediate feedbacks as to the quality of the resulting design. Further

more, to allow the user easy control over the design tasks, such as allocation, scheduling and

binding, ISE divides each tasks into small steps. For example, scheduling can be divided

into splitting and merging states. Figure 3 summerizes the design views, quality metrics

and tasks supported in ISE for design at behavioral, structural and physical levels. We wiU

give a brief description of each of these views, quality metrics and tasks in the following.

The detailed discussions can be found in [6].

4.1 Behavioral Level

4.1.1 Design View

At the behavioral level, ISE provides the state-actions table view to the user for

capturing a design's behavior. The state-actions table format allows a design's behavior to

be captured as a series of states, each state containing a set of operations to be performed

in the state. Note that when a behavior is completely non-scheduled, it can be specified

using one state.

PS SCOND NS AC ACTIONS

Figure 4: The state-actions table view

The state-actions table view displays the behavior and schedule of a design in a tabular

format. Figure 4 shows an example of the state-actions table. The following is a brief

description of each column in the table.

• PS is the present state.

• SCOND gives the condition for a next-state transition.

• NS is the next state.

• AC shows the assignment condition for each action.

• ACTIONS]ists all operations in the behavior.

Using this view, the user can specify a new behavior, modify an existing behavior, or

schedule a behavior. Before the user finalizes the design, the schedule represented in the

state-actions table view is considered "partial" and reflects only the user's conceptualization

of the flow of the behavior. That is, the user is allowed to interactively modify a schedule

at any time in the design process.

4.1.2 Quality Metrics

Since the state-actions table view is used for behavioral capture and scheduling, several

scheduling metrics are implemented to help the user decide how to partition a behavioral

description into control steps.

Two important metrics of design cost are operator occurrences and variable lifetimes.

Operator occurrences metric shows the number of operators of each type used in each

state. The maximum number of occurrences of a certain operator type over all states

determines the required minimum number of functional units to perform that type of oper

ation. Variable lifetimes metric identifies states in which a variable holds a useful value.

The maximum number of variables with overlapped lifetimes over all states determines the

required minimum number of storage units.

Where performance is concerned, ISE provides the user metrics of clock period and

execution time. Since the clock period of a synchronous design can be estimated by the

maximum state delay over all states in the design, ISE provides the user the state delay

metric, which gives the time needed to execute all operations in a state. In addition to

the delay time, the metric can also show the register transfer path that causes the longest

delay in the state, that is, the critical path. By shortening the critical path, the user can

reduce the clock period.

If a performance constraint has been specified, the user must be able to evaluate the

impact of any design decision to determine whether any time constraints are beiiig violated.

Depending on how the performance constraint is specified, the user can use either of two

metrics: the maximum execution time and the average execution time. The maxi

mum execution time metric shows the longest execution time required by the behavior from

start to finish, considering all possible state branching, while the average execution time

shows the average. The maximum execution time is computed by the product of the max

imum state delay and the total number of states on the longest execution path, which

is the sequence of states that causes the maximum execution time. ISE can also highlight

the states reside on the longest execution path to help the user identify the bottleneck of

reducing the maximum execution time.

Other than reducing the clock period and the number of states on execution paths, in

order to improve the performance of a design, the user can also try to minimize the idle

time of components. The clock slack associated with a state represents the portion of

the clock cycle for which the components are idle, that is, the difference between the state

delay and the clock period. Since the total execution time is equivalent to the sum of aU

state delays plus the sum of clock slacks of aU states, we may postulate that a smaller sum

of clock slacks would result in a shorter execution time. ISE provides a metric, execution

time utilization, which indicates the percentage of maximum execution time during which

at least one of the components are being used. This metric is defined as (the sum of state

delays of all states on the longest execution path/the maximum execution time) X 100%.

Hence, the higher the execution time utilization is, the lower the sum of clock slacks is,

the shorter the execution time is. When the execution time utilization is 100%, there is no

clock slack and the total execution time is minimized.

4.1.3 Tasks

In the state-actions table view, ISE provides the user a minimum set of tasks for capturing

and scheduling a design's behavior.

To capture or modify a behavior, the user could either re-write a behavior or re-order

the existing assignments. Re-writing a behavior involves adding new assignments, deleting

existing assignments or modifying existing assignments. Re-ordering assignments involves

deleting an assignment and adding the same assignment in a different state. In ISE, the

user could either add assignments to or delete assignments from the state-actions table.

By performing either one or both of these two tasks, the user can re-write a behavior or

re-order assignments in a behavior. For instance, if the user wants to modify an assignment.

he/she can simply delete the assignment which needs to be modified, and then add the new

assignment to the state-actions table.

Furthermore, the user can modify a design's schedule by either merging states or

splitting states. State merging can be done by selecting two consecutive states and

commanding the system to merge the selected states. As a result, the system will generate a

new state in place of those two selected states. The new state will encompass the operators

performed in the two original states and aU the data dependencies wiU be maintained

automatically. State splitting can be done by selecting a set of operators in a state and

asking the system to split the state at where those operators are. That is, the system will

insert a new state before the state where the selected operators are currently executed and

move the selected operators and their predecessors to the new state. The user can also

modify a schedule by adding/deleting assignments. For example, if the user wants to move

one assignment from one state to another, he/she can first delete the assignment from the

state where it is executed and then add the assignment to another state.

4.2 Structural Level

4.2.1 Design View

At the structural level, the user needs to be able to determine the type and number of

resources used to implement the design and also assign operators or variables to functional

or storage units respectively. In order to allow the user to perform these design tasks, it

would require a view of behavior as weU as available physical components. In ISE, these

tasks can be done in the component selection and binding view.

The component selection and binding view consists of four displays; unit selection dis

play, component capture display, allocation table display and state-actions table display.

Figure 5 shows an example of different displays in the component selection and binding

The unit selection display and component capture display allow the user to select com

ponents from a component library and add instances of those components to the current

design's component set, which is shown in the allocation table display. The unit selection

display shows the available component categories and the parameters for each component.

The user must select parameters values, such as bitwidth, style and functions performed,

in order to specify a unique component type. These parameters can be derived from the

Generators

ADD.SUB

AND

BARREL SHIFTER

BUFFER

unit-selection display

PS SCOND NS AC ACTIONS

• ST2 IIBI
01 = 11 + 12

02 = 11 + 13

Qbind)

(WNgn^ Typ> BItwtiE
ALU 1I adder2 | 8

allocation table display

BITSLICE1 (25600 um, 20 ns)
MACR01 (30000 um, 25 ns)
BITSUICE2 (28000 um, 18 ns)

component capture display

Figure 5: The component selection and binding view

behavior shown in the state-actions table display since the components selected must be

able to perform the operations defined in the behavior. Moreover, the number of compo

nents of each type can also be derived from the behavior because there have to be enough

components allocated to perform the scheduled behavior. Once a component type is given,

the component capture display shows all the available implementations of the given compo

nent type along with the area and maximum pin-to-pin delay of each implementation. The

user can select one implementation with satisfactory area and delay. After components are

allocated, the user can assign operators or variables to components by first selecting one

operator/variable from the state-actions table display and then one functional/storage unit

among the allocated components shown in the allocation table display.

4.2.2 Quality Metrics

Two basic metrics are provided in the allocation table display to indicate to the user the

cost and speed of each component: component area gives the area of a component in mi

crons squared and component delay gives the maximum pin-to-pin delay of a component

in picoseconds.

After the user assigned some operators to components, component utilization and

clock utilization metric can be calculated. Component utilization is defined as (the num

ber of states in which the component is used/the total number of states) X 100%. Clock

utilization metric measures the average percentage of the clock period that is utilized by

the component. The slack of a component in a particular state is defined as the time the

component waits after it completes its computation and before the state changes. Assume

the component is used in n states, its clock utilization can be computed by (l-(the sum of

slacks in all states in which the component is used)/(nx clock period)) x 100%.

4.2.3 Binding Hints

There are several criteria that must be considered when deciding what hardware compo

nent can be bound to a given operator. The most basic criterion is examining function

compatibility to indicate whether or not the component can perform the function required

by the operator. In some cases, the component may be able to perform only part of the com

putation and additional logic wiU be needed. In other cases, the component may perform

more then the required operation, in which case part of the component's circuit is wasted

in doing useless computation. When considering binding alternatives, the performance of

components must be taken into account so that no state will violate clock-width constraints.

Similarly, the cost of a component must also be considered so that the design does not ex

ceed any cost constraint. The bitwidths of ports on the component must be compared to

the bitwidths of variables or operators in the behavior. Mismatches may require additional

techniques if a binding is to be performed. If component port bitwidths are greater than

that required by the behavior, the unused bits must be initialized properly (usually by a

connection to ground) during each computation. Component bitwidths smaller than that

needed by the corresponding behavior may require extra components and additional logic

to perform the operation. Moreover, after some bindings have been performed, examining

hardware component sources and sinks can be done to gain information useful in avoiding

additional bus drivers or interconnect units. When considering a binding for a specific op

erator/variable, if common sources or sinks can be found in operators/variables previously

bound to a component, performing the binding will not require additional interconnect unit

and thus extra cost can be avoided.

Since the binding tasks require the user to consider many criteria at the same time in

order to determine which component should an operator or a variable be bound to, ISE pro

vides binding hints to help the user to make the decision. Different from quality metrics,

which give the user only a set of numbers indicating the quality of the current design, hints

make suggestions to the user of the appropriate actions to take. For example, when the

user selects an operator, binding hints highlight components using different color shades.

These highlighted components are selected by the system as the most likely candidates to

be bound to the selected operator. Binding the selected operator to a component with the

brighter shade wiU give a better resulting cost than binding to the component with the

darker shade, according to the binding hints algorithm. The binding hints are estimated

based on six factors, as explained above: function compatibihty, bitwidth compatibiUty,

sources closeness, sinks closeness, performance and area. The user can specify weights for

different factors to emphasize their degrees of importance.

4.2.4 Tasks

ISE supports interactive allocation by providing a minimum set of tasks that the user can

perform: adding components to the allocation table, deleting components from

the allocation table, and changing component implementations. By performing any

of these tasks, the user can easily modify the allocation table. For instance, if the user would

like to replace an already allocated component by a component of different type, he/she

could simply delete the allocated component from the allocation table and add the new

component to it. If the user would Uke to replace an allocated component by a component

of the same type but different speed or cost, it could be done by changing the implementation

of the allocated component. The task of changing component implementations is achieved

by requesting the system to show aU the implementations of a selected component in the

component capture display and then selecting a desired implementation. The system wiU

then automatically update the component characteristics of speed and cost in the allocation

table.

As mentioned in the discussion of the component selection and binding view, the task

of binding operators/variables to components interactively can be done by the user

selecting an operator or a variable and also a component from the allocation table, and

then requesting the system to perform the binding between the selected operator/variable

and the selected component. The task of unbinding is also required so that the user can

modify binding decisions once a particular binding results in unsatisfactory design.

4.3 Physical Level

4.3.1 Design View

At the physical level, ISE allows the user to perform floorplanning once some hardware

components are chosen to implement the design. Therefore, a floorplan view showing the

shapes of hardware components and the interconnections between them is the basic require

ment. Figure 6 shows an example of the floorplan view.

Figure 6: The floorplan view

4.3.2 Quality Metrics

Specific floorplan metrics to facilitate area optimization include the following. Total

area metric gives the estimated chip area of the design. Functional unit area, storage

unit area and routing area show the area in microns squared as well as the percentage

of the entire chip area being occupied by functional units, storage units and routing respec

tively. Wasted area indicates the amount of "white space" in the floorplan, calculated by

subtracting the sum of component areas plus routing area from the total area of the current

design.

Other than specific area metrics, ISE also provides metrics of wire length since wire

length is often an indication of interconnection delay. For instance, if the user selects

one wire in the floorplan view, wire length metric can teU the user the length of the

selected wire in microns. Moreover, total wire length metric can show the user the

sum of the lengths of all wires in the floorplan. Furthermore, to help the user identify

performance bottleneck, ISF can also highlight the critical path, including the components

and interconnections, in the floorplan.

4.3.3 Tasks

The floorplan view in ISF allows the user to perform interactive placement and routing

by doing one of the following tasks: changing the placement of components, altering

the positions of module pins and I/O ports, and routing interconnections.

The task of changing component placement can be done by rotating and moving com

ponents. The task of altering the positions of module pins and I/O ports can be done by

simply moving selected module pins or I/O ports. A module is a grouping of several hard

ware components. In ISF, the user can perform floorplanning in a hierarchical fashion, that

is, he/she can group several components into a module, and then perform floorplanning on

a set of modules. This hierarchical approach greatly reduces the complexity of floorplan

ning. To route an interconnection, the user can select a not yet routed connection, which is

shown as a point-to-point connection in the floorplan, and then position and size the wire

segments according to the route desired. The user may also unroute a previously routed

set of wire segments resulting in a point-to-point connection being displayed.

5 Design Methodology

In this section, we shall discuss in detail each step in the proposed design methodology

shown in Figure 2. In the discussion, we shall also demonstrate how the quality metrics

and tasks explained in previous section are utilized in the design process. Throughout the

discussion, there are small examples for explanation purpose. In all the examples, when it

is not otherwise specified, the delay of a multiplier is assumed to be 40 ns, the delay of an

adder is assumed to be 20 ns and the setup time of a register is assumed to be 5 ns.

5.1 Capture Design Specification

The first step in the proposed design methodology is to capture the design specification.

Unlike in automatic behavioral synthesis, where the user could only write behavioral de

scriptions using the hardware description language required by the synthesis system, the

user here is allowed to capture a specification at mixed levels. That is, the user can specify

the behavior and schedule of the design using a state-actions table, as well as a set of com

ponents to be used in the implementation and the floorplan of the components. Note that

this is the starting point of the design process; therefore, the specifications at each of these

behavioral, structural and physical levels are most likely to be incomplete. However, after

the initial specification is obtained, the user can modify the specification at any level in an

interactive and iterative fashion until a register-transfer level implementation along with a

floorplan, which satisfy aU design constraints, are completed.

5.2 Identify Design Bottlenecks

At any stage in the design process, the user needs to identify the problem spots, i.e. the

bottlenecks, in the current design and remove these bottlenecks, that is, to improve either

the cost or the performance of the current design.

ISE can identify design bottlenecks for the user by highlighting where the bottlenecks

are in all levels of design. For instance, a design's clock period constraint is violated. In

this case, not only the operators which cause the longest state delay would be highlighted

in the state-actions table, the components to which the operators are bound and the in

terconnections between the components would also be highlighted in the floorplan. This

helps the user to identify the critical path in the behavior, the structure, as well as in the

floorplan of the current design. The importance of this is, in general, bottlenecks can be re

moved by modifying the design at either the behavioral, the structural or the physical level.

For example, after the critical path is identified, it can be shorten by either rescheduling

the behavior, or assigning the operators on the critical path to faster components, or by

shortening the wire lengths between the components on the critical path.

In the subsequent sections, we shall discuss sets of techniques as how to improve a

design's quality by optimizing its scheduled behavior, performing architectural tradeoffs on

the design's datapath structure, or optimizing its floorplan. Fach of the techniques may

produce different degrees of effects and also side-eflFects.

5.3 Optimize the Scheduled Behavior

At the behavioral level, the user can modify or reschedule the state-actions table to min

imize required hardware resources and shorten execution time. Note that each behavioral

construct has its corresponding hardware implementation. For example, behavioral opera

tors will be implemented with functional units and behavioral variables wiU be implemented

with registers or memories. Thus, reducing the number of operators and variables implies

that the required hardware wiU likely be reduced. Similarly, reducing the number of oper

ators on the critical path shortens state delay and the clock period in turn. Figure 7 shows

a set of such techniques that can be applied at the behavioral level to improve either area

or execution time of the design.

5.3.1 Reduce Area

A design's area is contributed by three factors: functional unit area, storage unit area and

interconnection unit area. At the behavioral level, it is very difficult to obtain indications

of interconnection unit area. However, as mentioned before, the functional unit area and

storage unit area can be roughly approximated by the maximum operator occurrence and

the maximum number of variables with overlapped lifetimes, respectively. By reducing the

maximum operator occurrence, the scheduled behavior is likely to result in a design which

requires less number of functional units, which in turn may result in smaller chip area.

Similarly, the storage unit area may be reduced by reducing the maximum number of live

variables in the scheduled behavior.

Goal A: reduce the maximum operator occurrence

This goal can be achieved by either balancing the operator occurrences over all states by

moving assignments or splitting those states which have maximum operator occurrence.

For example, the operator occurrences (Op. Occ.) metric in Figure 8(a) shows that a

maximum number of three additions are performed in state ST2, while there is only one

addition performed in either state STl or ST3. To implement this behavior, at least three

adders are required. Therefore, to reduce the number of adders, the user could try to reduce

the number of additions in state ST2 by moving one of the additions to either STl or ST3.

However, moving operators inappropriately may introduce side-effects. Notice that the

/-educeX
execution

S. time?>'

Goal C: reduce the max state delay

SiSI state delay
the critical path In a state
execution time utilization

1. minimize the number of operators in a
chain by tree height reduction

positive effects: the max state delay is reduced

2. minimize the number of operators in a
chain by moving some operators to
other existing states

positive effects: the max state delay is reduced
negaVve effects: the max operator occurrence

may iricrease

3. split states

positive effects: the max state delay is reduced
the max operator occurrence may
also t}e reduced

negative effects: the number of states increases

Goal D: reduce the number of states

BISl state delay

1, merge states with short state delay

positive effects: bie numtier of states is reduced
the max number of live variables
may decrese

negative effects: the clock period may Increase
the max operator occurrence
may increase

Goal A; reduce the max operator occurrence

I8l!tl operator occurrences

1. balance the operator occurrences over

positive effects: the max operator occurrerx^e is reduced

negative effects: the nutx state delay rriay irtcrease

2. spirt the states with max operator occurrence
positive effects: the max operator occurrerx^e is reduced

the max state delay may also be reduced
tive effects: ttie number of states Increases

Goal B: reduce the max number of live variables

S3] variable lifetimes

1. reduce the overlap of variable lifetimes by
moving assignments

posiOve effects: variatxes whose lifetimes do not overlap
can be merged, so the max numt^r of li'can be merged, so the max number
vartatXes is reduced

negaliw effects: the max operator occurrerx^ may increase
the max state delay may also increase

max exaction time
^xteduceN»^

avg or max
execution

avg exection time

Goal F: reduce the max execution time
over all execution path

B12] the longest execution path and path length

rewnte the state transition such that the
longest execution path tiecomes a false path

positive effects: the max execution time is reduced

negative effects: the controller becomes more complicated

Goal E: reduce the average execution time
leiffii the average execution path length

1 .rewrite tbe state transition sucti ttiat a state is
entered onty when at least one of the operations
in it needs to be executed

positive effects: tfie average execution time is minimized
negative effects: the controller becomes more complicated

Figure 7: Techniques to optimize the scheduled behavior

B 1—fI'-Mi

ST2 T ST3

H m isni

PS SCOND NS AC ACTIONS OP. OCC STDalay

T I ST2 |. Pi:'—
SCOND NS - AC ACTIONS OP. OCC ST Delay

1:1 ^ I I; 1 T I XI =11+ 12 I ,, mmST1 ! T ST2

ST2:: T ST3 = *1
T x3 = x1 + 12

IST3 I I T I ST1 llirT I 02 = X2 + X3 Maal

(b)

m T x2 = XI + 13 4
ST2 T ST3I I I r I T I x3= x1 4 12 I H[|

ST3| I T I ST1 (I T I02=x2+ x3 j, 4J| l

Figure 8: The example of reducing area by moving assignments

PS SCOND NS AC ACTIONS OP. OCC ST Dels

PS SCOND NS AC ACTIONS OP. OCC ST D«iay I | PS SCOND NS AC ACTIONS OP. OCC ST Dela

ST2

s

Figure 9: The example of reducing area by sphttmg a state

state delay metric in Figure 8(a) shows that the maximum state delay is 25 ns. Figure 8(b)

shows the result after moving the assignment a;2 = a:l + IS to state STl. Because of the

data dependency between the assignments xl = 71 + 72.and x2 —xl-\- IS, the state delay

of STl is estimated to be 45 ns by summing up the delays of the two additions and the

register setup time. Thus, the clock period is increased from 25 ns to 45 ns. On the other

hand, there is no data dependency between 01 = 72 + 73 and xl = 71 + 72; therefore,

moving 01 = 72 + 73 from state ST2 to STl as shown in Figure 8(c) incurs no penalty in

performance.

If there is no possible way to move the assignments without increasing the maximum

state delay, the user could try state splitting. Figure 9 shows such an example. To implement

the behavior in Figure 9(a) requires three adders and the clock period is 25 ns. To reduce the

required number of functional units, the user could try to move either one of the additions

in state ST2 to the other states. However, because of the data dependencies, moving either

one of the additions increases the maximum state delay. For instance. Figure 9(b) shows

the result of moving x2 = xl + 73 to state STl. The new clock period is now 45 ns. Instead

of moving operators, the user could split state ST2 as shown in Figure 9(c). A new state

ST4 is inserted between states STl and ST2 and x2 = xl + 73 is moved to the new state.

The mziximum operator occurrence of additions is now reduced from three to two, and the

maximum state delay is maintained at 25 ns. Therefore, only two adders are required now

and the clock period does not increase.

However, the total number of states increases after a state is splitted. Since the total

execution time of a synchronous design is the product of the clock period and the total

number of states, the total execution time increases after state splitting. If reducing the re

quired functional units is the major goal, the user should decide whether to move operators

or to split states by evaluating the amount of extra execution time required. For example.

Figure 9(b) (result of moving operators) requires total execution time 45 x 3=135 ns, while

Figure 9(c) (result of splitting states) requires total execution time 25 x 4=100 ns. Thus,

in this example, splitting state ST2 is a better choice.

Goal B: reduce the maximum number of live variables

In the implementation, variables that have non-overlapping lifetimes can share the same

storage unit. Thus, one way to reduce the total number of storage units required in the

design is to schedule the usage of variables such that minimal lifetime overlapping occurs.

PS SCOND NS AC ACTIONS Var. LT I I PS SCOND NS AC ACTIONS Var. LT

\m\umv
llEEH—EaH T I

lE^nCEli
I x2 = II + 13 If
02 = x1 + 12

x2

LI

lEalDEai°^r •!
x2 - M + 13

Figure 10: The example of reducing area by moving variables

For example, a state table with the lifetimes of variables x\ and x2 are shown in Fig

ure 10(a). Since the lifetimes of variables xl and x2 overlap, this example would require

two registers.

To reduce the number of storage units, the user can reschedule the behavior by swapping

x2 = II IZ va. state ST2 with 02 = xl -|- x2 in state ST3. That is, the user can move

x2 = 71 -|- /3 from ST2 to ST3 and also move 02 = xl -f- x2 from ST3 to ST2. As shown in

Figure 10(b), moving the variables reduces the lifetimes of variables xl and x2 such that it is

possible now that xl and x2 share the same register. Hence the required number of registers

is reduced from two to one. However, this technique has to be applied with care since moving

variables can be done only by moving assignments and moving assignments may change the

operator occurrences of some states. As an undesired side-effect, the maximum operator

occurrence may increase.

5.3.2 Reduce Execution Time

If a behavior is described by straight-Hne code, that is, there is no state branches in the

schedule, the start-to-finish execution time for the behavior is proportional to the clock pe

riod, where the clock period is defined as the maximum time needed to execute a state, and

the number of states. Therefore, to reduce the execution time of a design, the user could

try to reduce either or both of the maximum state delay and the number of states. In the

general case, a scheduled behavior may consist of state branches because of the conditional

(such as if-then-else) and iteration (such as loops) constructs in the behavior. Depending

on the performance constraint, the user may need to reduce either the maximum execution

time or the average execution time. For example, if the throughput of the design is given

as a constraint, the user has to assure that the maximum execution time of the design will

not violate the throughput constraint.

Goal C: reduce the maximum state delay

To reduce the maximum state delay, the user must first identify the state which has the

longest delay and the operators on the critical path which cause the longest delay. And

then the maximum state delay can be reduced by minimizing the number of operators in

a chain, this in turn can be achieved by either applying tree height reduction, moving some

operators to other existing states, or splitting states.

Tree height reduction is a well-known transformation technique, which uses the com-

mutativity and distributivity properties of operators to decrease the height of a long ex

pression chain. For example, the assignment x = (((a + b) + c) + d) + {e + f) has a

critical-path length of four, while after applying tree height reduction, the resulting assign

ment X = ((a -f 6) -f c) -f (d -|- (e -f /)) has a critical-path length of three. Both assignments

have the same behavior since they compute a: = a-|-6-|-c-|-d-l-e-f-/. However, the second

assignment has a shorter tree height, resulting in a shorter critical path, and therefore a

shorter clock period.

Figure 11 gives an example of how to reduce the maximum state delay by moving

operators. In this example, the delay of STl is estimated as 65 ns due to the chaining of a

multiplication, an addition and the register setup time. Since this state has the maximum

state delay, the clock period of the design is 65 ns.

In addition to display state delay, the ISE also highlights operators that determine the

delay of a selected state. For example, the two chained operators in STl requiring a total

delay time of 65 ns are highUghted. The user can reduce this delay by moving the addition

in STl to ST2. By doing so, the state delay of STl is reduced to 45 ns, since only one

multiplication is performed in this state. The maximum state delay for the new schedule

shown in Figure 11(b) is reduced from 65 ns to 45 ns; thus, the new clock period is 45

ns. However, there is also an undesired side-effect. For example, to implement the original

behavior in Figure 11(a) requires one adder and one multiplier. But to implement the new

schedule in Figure 11(b) wiU require one more adder.

PS SCONO NSs «- AC - ACTIONS OP.OCC ST Data

PS SCOND NS AC ACTIONS OP. OCC ST Delay

ST1 |(T I ST? I I T I tem; = m. i; I <||

i T x1 = TEM1 + 13 +:
812 T ST3 T 01 = 11 x 13

|il liil T I x2 =12 +13 ~ *

813 II I I ST1 I I T I 02 . x1 + x2 I ♦

'Jiftwani

TEM1 = II x l2

Figure 11: The example for reducing maximum state delay by moving operators or splitting
states

On the other hand, Figure 11(c) shows the result of splitting state STl into two states.

A new state ST4 is inserted and the addition is moved to the new state. In this behavior,

the clock period is also reduced from 65 ns to 45 ns, but only one adder and one multiplier

are required.

As mentioned previously, the number of states increases after state splitting. Since the

execution time is equivalent to the product of the maximum state delay and the number of

states, it is not necessarily true that reducing maximum state delay by splitting states would

reduce the execution time. Moreover, there are many ways to split states: one state may be

splitted into two or three or even more states and the user can also split more than one state.

To decide how to perform state splitting, the execution time utilization metric is a good

indication: the higher the resulting execution time utilization is, the shorter the execution

time would be. For instance, the execution time utilization of the schedule in Figure 11(a)

is (65+45+25)/(65x3)=69.2%, which shows an improvement of execution time is possible.

After splitting STl into two states, as shown in Figure 11(b), the resulting execution time

utilization is (45+25+45+25)/(45x4)=77.8% and the execution time is reduced from 195

to 180 ns.

On the other hand, moving operators does not increase the number of states. Therefore,

the total execution time resulted from moving operators is generally shorter than the total

execution time resulted from state splitting. For example, the behavior in Figure 11(b) re

quires the total execution time 45 x 3=135 ns, while the behavior in Figure 11(c) requires

45 X 4=180 ns. Therefore, in this example, since both moving operators and splitting states

result in the same reduction of the clock period (from 65 ns to 45 ns), the user has to trade

off between the increase of the number of functional units (one extra adder in Figure 11(b))

and the longer execution time (180 ns in Figure 11(c) as opposed to 135 ns in Figure 11(b)).

Goal D: reduce the number of states

PS SCOND NS AC ACTHDNS OP. OCC ST PS SCOND NS AC ACTIONS OP. OCC ST Data

PS SCOND NS AC ACTIONS OP. OCC ST Dale PS SCOND NS AC ACTIONS OP. OCC ST Dale

lEOmEEIII

Figure 12: The example for reducing the number of states by merging two states

Other than trying to reduce the clock period, the user can also try to reduce the number

of states in order to reduce the total execution time. Figure 12(a) shows an example. This

example consists of four states that are sequentially executed one after another; therefore,

the total execution time is 45 x 4=180 ns. To reduce the number of states, the user can

merge either two of those four states. Figure 12(b) shows the result of merging states ST3

and ST4. The execution time is now 45 X 3=135 ns.

Like the other techniques discussed so far, merging states inappropriately could also

introduce side-effects, that is, the operator occurrences or the state delay may increase. For

example, Figure 12(c) shows the result of merging states STl and ST2. Because of the data

dependency between xl = 11 + 12 and 01 = xl x 73, the state delay is increased from 45 ns

to 65 ns. Thus, the new clock period is 65 ns and the new execution time is 65 x 3=195 ns.

Note that the total execution time increases instead of decreases in this case. Figure 12(d)

shows the result of merging states ST2 and ST3. Although the execution time is reduced

to 45 X 3=135 ns, the behavior now requires two adders and one multiplier as opposed to

one adder and one multiplier for the behavior in Figure 12(a).

Goal E: reduce the average execution time

The average execution time can be reduced by rewriting the state transitions such that

the schedule still performs the same behavior but a state is entered only when at least one

of the operators in it needs to be executed. This is explained by the example shown in

Figure 13.

PS SCOND NS AC ACTIONS

11 01 = xl X 13

x2 = 12 + 13

02 = II X 13

03 = x1 + x2

PS SCOND NS AC ACTIONS

xl = II + 12

Q1 = xl X 13

x2 = 12 + 13

02 = 11 X 13

03 = xl + x2

Figure 13: The example for reducing the average execution time

The average execution time of the schedule shown in Figure 13(a) is 45 X 4=180 ns

since the clock period is 45 ns and the schedule consists of four states that are sequentially

executed. However, notice that in state ST2, if the condition c is false, then none of the

operations executed wiU be assigned to storage units. Hence, all operations performed in

ST2, when c is false, are useless. Therefore, if c is false, the user could skip state ST2 by

branching from STl directly to ST3. Thus, the state transition can be modified such that

STl transits to ST2 only when c is true; otherwise STl transits to ST3. The resulting

schedule is shown in Figure 13(b). This schedule consists of two execution paths: STl —>

ST2 —> ST3 —> ST4, while c is true, and STl —ST3 —ST4, while c is false. If we assume

that the probability of c being true is 0.5, the average number of states required to be

executed during one single execution wiU be 0.5 x 4 + 0.5 x 3 = 3.5. Since the rewriting

of state transitions does not affect the clock period, the average execution time is reduced

from 180 ns to 45 x 3.5=157.5 ns.

Goal F: reduce the meiximum execution time

PS SCOND NS AC ACTIONS

01 = Xl X 13

X2 = 12 + 13

02 = II X 13

03 = xl + x2

PS SCOND NS AC ACTIONS

xl = 1 + 2

01 = xl X 13

X2 = 12 + 13

02 = 11 X 13

03 = xl + x2

Figure 14: The example for reducing the maximum execution time

To reduce the maximum execution time, the user should first identify the longest exe

cution path in the schedule. After the longest execution path is known, the user can then

rewrite the state transitions such that the longest execution path becomes a false path.

This wiU be explained in the following using the example shown in Figure 14.

The longest execution path of the schedule shown in Figure 14(a) is when the condition

c is false, in which case, the execution path has to go through all four states sequentially.

However, notice that when c is false, none of the operators in ST2 need to be executed.

Therefore, the user can factor out the condition c and use it as the state transition condition

to enter the state ST2. That is, only when c is true, ST2 needs to be executed; otherwise,

STl transists to ST3. By doing so, the longest execution path in the original schedule, STl

—> ST2 —ST3 —»• ST4 has now become a false path. And the resultant schedule consists

of only two paths: STl ST2 —> ST4 and STl —>• ST3 —ST4. Hence, the maximum

execution time is reduced from 45 x 4=180 ns to 45 x 3=135 ns.

5.4 Perform Architectural Tradeoffs

At the structural level, the user needs to determine the type and quantity of resources used

in the chip architecture. This task, called allocation, requires the user to make appropriate

tradeoffs between the design's cost and performance. For example, if the original description

contains inherent parallelism, allocating more resources increases area and cost, but it also

creates more opportunities for parallel operations or storage accesses, resulting in better

performance. On the other hand, allocating fewer resources decreases area and cost, but it

also forces operations to execute sequentially, resulting in poorer performance. After each

or aU components have been allocated, the user can determine the binding of behavioral

operators/variables to physical components.

However, at the early stage of design process, choices in choosing components to be used

in the architecture are difficult because they are made with relatively little information.

The tradeoffs may not stiff work after component binding or place and route. At times, the

user may need to modify the allocation or binding in order to satisfy cost or performance

constraints. Figure 15 shows a set of such techniques.

r reduce^
execution

V time?^

Goal C: reduce the clock period

lilM state delay
the critical path in a state
component delay

12.a!locate fasterunits foroperators on critial paths

positive effects: the clock period Is reduced
negative effects: the functional unit area increases

positive effects: the clock period is reduced
negative effects: the number of interconnection units may

increase due to binding operators to
functional units with less common sources/
sinks

Goal D: reduce the number of states

BTOI component area
component utilization

positive effects: the number of states is reduced after
rescheduling

negative effects: the functional unit area increases

Goal A: reduce the functional unit area

Wfil functional unit area

component area

component delay
component utilization

1. remove large and poorly utilized components

positive effects: the number of functional units is reduced
negative effects: the number of states increases after

rescheduling

I2. usea multi-functional unit to replace several
uni-functional units which are seldom used
in the same states

positive effects: the total functional unit area is reduced
negative effects: the number of states increases after

rescheduling
the dock period may increase

3. use a pipelined unit to replace several non-
pipelined units which are often used in the same
states

positive effects: the total functional unit area is reduced
the clock period is reduced

negative effects: the number of states increases after
rescheduling

4. allocate slower units for operators on non-
critical paths

positive effects: the total functional unit area is reduced

Goal B: reduce the Interconnection unit area

ISnn interconnection unit area

the number of common sources/sinks
of an operator and a functional unit

1. bind operators to functional units with
more common sourses/sinks

positive effects: the number of MUXes and connections
is reduced

negative effects: the dock period may increase due to
binding operators on the critical path to
slow units

Figure 15: Techniques to perform architectural tradeoffs

5.4.1 Reduce Area

It is obvious that allocation directly affects the total functional unit area, thus, the func

tional unit area may be reduced by modifying allocation. Similarly, since the binding of

operators to components determines the interconnections between allocated components,

the user can try to reduce the interconnection unit area by modifying binding results.

Goal A: reduce the functional unit area

The most straight-forward way to reduce the functional unit area is to remove some

of the allocated components. This also gives the greatest functional unit area reduction.

However, once some components are removed from the allocation, the behavior needs to be

rescheduled such that the operations in each state can be computed by the remaining com

ponents. The resultant schedule needs longer execution time since there are less resources

and the operators are forced to executed sequentially.

The component utilization metric in the unit selection and binding view, which calculates

the number of states in which the component is used versus the total number of states,

can help the user to decide which component to remove. Low utilization indicates that

the component is inefficiently used. Large components with low utilization are the better

candidates to be removed because the removal can give great area reduction but small

performance penalty. For example, Figure 16(a) shows that the multiplier mult2 is utilized

in only one state. By removing mult2, the total functional unit area can be reduced by

100,000 /xm^. However, removing mult2 requires the state ST2 to be splitted into two

states such that the remaining multiplier multl can be used to perform two multiplications

sequentially. The result is shown in Figure 16(b). The total execution time is increased

from 135 to 180 ns due to the increase in the number of states.

The user can also use a large component to replace several small components, as far as

the resulting total area is smaller. This can be done in two ways: replacing two components

which perform different functions by one multi-functional component, which is capable of

performing both of the functions, or replacing two components which perform the same

functions by one pipelined component.

In practice, multi-functional components cost less than a set of uni-functional com

ponents that perform the same operations. For example, although an adder-subtractor

component costs twenty percent more than an adder or subtractor separately, it is consid-

PS SCOND NS AC ACTIONS Comp. UtII

x1 = 11 + 13

x2 = II X 12

02 = x1 X 12

03 = x2 + x3

04 = x1 + x2

PS SCOND NS AC ACTIONS Comp. UtII ST delay

B
01 = II + 12 + 13

x1 = II + 13

x2 = II x 12 45

02 = x1 X 12

03 = x2 + x3

04 = x1 + x2

1^1^45"

PS SCOND NS

01 = II + 12+ 13

x1 = II + 13

x2 = II X 12

x3 = 12 x 13

02 = x1 X 12

03 = x2 + x3

04 = x1 + x2

1^^

mult2

Bltwidth Area

ADD
8 25600

8 25600

MULT
8 100000

8 100000

total functional unit area = 251200

total execution time = 45 x 3 = 135 ns

sGitiwidth Area Delay
1 adderl

ADD
8 25600 20

20

40

EE5HE1 8 25600

•uBSHIBlQ 8 100000

total functional unit area = 151200

total execution time = 45 x 4 = 180 ns

adderl

ADD

8 25600

emaa 8 25600

adders 8 25600

multl 8 100000

total functional unit area = 276800

total execution time = 45 x 2 = 90 ns

Figure 16: The example for adding or removing components.

PS SCOND NS AC ACTIONS Comp. Utii STctelay

x1 = 11 + 12 25ISSBSIIIISlI
lEaiBEaiami^lUTi

x3 = x1 - 13

PS SCOND NS

ST1 M T I ST2

EBIBII

01 = x2 - x3

AC ACTIONS Comp. UtII ST delay

T I x1 = i1 + 12 1

x2 = 12 + 13

30

x3 = x1 - 13

01 = x2 - x3

adder ADD 8 20

subtracter SUB 8 Ei555l 20

total functional unit area = 53600 um^2

total execution time = 25 x 3 = 75 ns

; Bitw^dth Area Deta

8 34000 25

total functional unit area = 34000 um^2

total execution time = 30 x 4 = 120 ns

Figure 17: The example for replacing two components by one multi-functional component

erably cheaper than using one adder and one subtracter. For example, Figure 17(a) shows

a design using one adder and one subtracter. The maximum state delay of this design is 25

ns. Assume that there exists an ALU, which can perform both addition and subtraction,

in the component library and the area and delay of the ALU are 34,000 and 25 ns. By

using one of such ALUs to replace the allocated adder and subtracter, the total functional

unit area can be reduced by 33%. However, the bar graph Comp. Util in Figure 17(a),

which indicates the states in which each component is used, shows that both adder and

subtracter need to be used in state ST2. Consequently, ST2 needs to be splitted into two

states such that the ALU performs the addition in one state and the subtraction in the

other. Notice that the clock period needs also to be increased from 25 ns to 30 ns because

the ALU is slower than the adder and the subtracter. Figure 17(b) shows the result of

using one ALU instead of one adder and one subtracter. The total execution time is now

increased from 75 to 120 ns. In conclusion, by using one multi-functional component to

replace two components, the total functional unit area is usually reduced, but the execution

time is increased.

On the other hand, when there are two operators executed concurrently in the same

state, these two operators can share the same two-stage pipelined component. This sharing

is possible because each operator uses a different stage of the pipelined component. As a

result, one pipelined component instead of two non-pipelined component can be used for

these two concurrently executed operators. This can give a great area reduction.

PS SCOND NS AC ACTIONS Comp. Util ST delay

STl ST1 ||nj 01 = 11 X 12

02 = 11 X 13

PS SCOND NS AC ACTIONS Comp. Util ST delay |
T I TEM = II xpi 12 li

Pin 1 1 T 101 = xp2 TEM 1
' T TEM = 11 xpi 13

ST3 M T ST1 02 = XP2 TEM

total functional unit area = 200000 um^2

total execution time = 45 ns

Ptpeima Bftwidth Area Data

2-staae 8 IIBSIKI
total functional unit area = 53600 um^2

total execution time = 25 x 3 = 75 ns

Figure 18: The example for replacing two components by one pipelined component

Figure 18(a) shows a one-state design. There are two multiplications executed con

currently in the state and two non-pipelined multipliers are allocated. In Figure 18(b), a

two-stage pipelined multiplier mult.p is used to replace the non-pipelined multipliers. To

use mult^p, the state STl is splitted into three states. The symbol Xpi denotes the first

stage of the pipelined multiplication, while the symbol Xp2 denotes the second stage. The

variable TEM indicates the pipeline register in mult.p. In state STl, the multiplication in

01 = 71X72 uses the first stageof mult.p. In state ST2,while the multipbcation progresses

to the second stage of mult.p, the multiplication in 02 = 71x 73 uses the first stage. Finally,

in state ST3, the multiplication is completed. By using the two-stage pipelined multiplier,

the area is reduced from 200000 to 120000pm^ and the clock period is reduced from 45 ns

to 25 ns.

Notice that using pipelined components also requires the original behavior to be resched

uled. And as a consequence, the number of states increases. Hence, although the clock

period is reduced, the total execution time may become longer. In the example shown in

Figure 18, the total execution time is increased from 45 to 75 ns.

When the required area reduction is not too large, there is one technique which gives

no performance loss. This can be done because component libraries in reality often have

multiple implementations of the same component, each implementation having a different

area/delay characteristic. For example, an addition can be done either quickly with a

large (hence, costly) carry-look-ahead adder or slowly with a small (hence, inexpensive)

ripple-carry adder. Therefore, for each operator in the behavior, an efficient component can

be selected such that the slower and cheaper components would be used by operators on

non-critical paths and the faster and more expensive components would be used only by

operators on the critical path.

PS SCOND N

01 = II + 12 + 13

x1 = II

02 = x1 X 12

PS SCOND NS AC ACTIONS

lEaiHEaiBB
1 = II + 12 + 13

PS SCOND NS ACTIONS

MM
01 = II + 12+ 13

x1 = II + 13

45

55

45

adderl

ADD

8 25600

IKHI
IBH
IRHI

72.7%

adder2 8 25600 72.7%

adders 8 25600 36.4%

mult MULT 8 100000 90.9%

total functional unit area = 176800

total execution time = 55 x 2 = 110 ns

adder4

total tunctional unit area = 169200

total execution time = 55 x 2 = 110 ns

adderl

ADD

8 25600 20 90.9%

adders 8 25600 20

40

40

90.9%

adder4 8 18000 90.9%

mult MULT 8 120000 90.9%

total functional unit area = 189200

total execution time = 45 x 2 = 90 ns

Figure 19: The example for performing component cost/speed tradeoff

The clock utilization metric in the unit selection and binding view gives the average

percentage of clock cycle that is utilized by the component. Components which are used by

operators on non-critical paths are idle after they complete their computation and before

state changes. This is indicated by low clock utilization. Therefore, the components with

low clock utilization can be replaced by slower components which save area and incur no

performance penalty. For example. Figure 19(a) shows that the clock utilization of adderS

is as low as 36.4%. By replacing it with a slower (40 ns) and smaller (1^,000 nm?) adder

adder4, the total functional unit area is reduced from 176800 to 169200 nm? while the total

execution time remains the same.

Goal B; reduce the interconnection unit area

As discussed in previous section, ISE offers hints for binding operators and variables to

allocated components. To use these hints, the user selects one unbound operator or variable,

then asks the hints to suggest components to bind to. The user can further control the

estimation algorithm of these hints by giving different weights to different factors: function

compatibility, bitwidth compatibility, sources closeness, sinks closeness, performance and

area. By varying the weights, the user can make the hints suggesting components so that

the binding can minimize different cost functions such as interconnection area or the clock

period.

The sources/sinks closeness factors measure the commonality between the sources/sinks

of the selected operator/variable and the sources/sinks of the operators/variables that are

already bound to a component. Therefore, given the highest weights to the sources closeness

and the sinks closeness factors, the component highlighted with the brightest shade by

binding hints algorithm should result in a binding such that the number of interconnection

units is minimized.

PS SCOND NS AC ACTIONS

01 = II + 12

02 = II + 13
adderi

adders

Figure 20: The example for minimizing the interconnection area during binding

For example. Figure 20 shows an allocation of two adders. Assume that the first addition

in state STl has been bound to adderi and the second addition has been bound to adder2.

Given the highest weights to the sources closeness and the sinks closeness factors, the

hints highlight both of the adders since both of them can be used to perform the addition.

However, the different shading suggests that adderi is the better choice for binding the

addition in state ST2.

5.4.2 Reduce Execution Time

As mentioned in previous section, a design's execution time can be reduced by either

reducing its clock period, or reducing the number of states.

Goal C: reduce the clock period

By using a pipelined component to replace several non-pipelined components, the user

can reduce not only the functional unit area but also the clock period. This is because, if

the longest state delay is dominated by the component delay of a slow component, by using

a pipelined component to replace this slow component, the clock period can be reduced

from the original component delay to the pipeline stage delay of the pipelined component.

Notice that in the example shown in Figure 18, after the non-pipelined multipliers multl

and mult2 are replaced by the pipelined multiplier mult-p, the clock period is reduced from

45 to 25 ns.

Another technique to reduce the clock period is to allocate faster components for oper

ators on the critical path. Components frequently used by operators on critical paths have

high clock utilization. If they are replaced by faster components, the clock period can often

be reduced. However, since faster components are usually larger, the functional unit area

increases. For example, notice that the multipher mult in Figure 19(b) has the highest clock

utilization, 90.9%. By replacing it with a faster (40 ns) and larger (120,000 pm?) multiplier,

the clock period is reduced to 45 ns and the total execution time is reduced from 110 ns to

90 ns. Yet, the total functional unit area is now increased from 169200 to 189200 pm? due

to the larger multiplier.

The user can also minimize the clock period by binding the operators on the critical

path to the fast components and the operators which are not on the critical path to slow

components. To do this, the user needs to first identify the state with maximum state delay

by looking at the state delay metric, and the system wiU indicate to the user the critical

path in the state. Then the user can select one of the operators on the critical path and

ask for binding hints. By giving the highest weight to the performance factor, the fastest

component available in the allocation should be suggested. Such a binding wiU leave slow

components to the operators which are not on the critical path.

For example. Figure 21(a) shows an allocation of three adders with delays of 20, 30 and

40 ns respectively. Notice that the addition highlighted in Figure 21(a) is on the critical

PS SCOND NS AC ACTIONS

ST1 i T ST2 EIHirnalEl

PS SCONO NS AC ACTIONS

ST1 i T ST2
01 = II + 12

02 = 11 + 13

PS SCOND NS AC ACTIONS

ST1 T ST2

adderl

adder2 ADD

*!!!!» 1 8

S2
adder2

adders

HI iiii iii'?^Piraagriiiill.aL'M

EEBa
adders

PS SCOND NS AC ACTIONS ST dels

ST1 T ST2

Figure 21: The example for minimizing the clock period during binding

path. Giving the highest weight to the performance factor, binding hints highlight all three

adders but suggest that adderl, which is the fastest adder, is the better choice. After the

addition is bound to adder1, if the user asks for binding hints for the second addition high

lighted in Figure 21(b), only adder2 and adderS are highlighted since adderl has been used

to perform the first addition in Figure 21(a). Now adder2, which is the faster one between

adder2 and adderS, is suggested as the better choice. Binding the addition to adder2 leaves

only adders to the third addition, as shown in Figure 21(c). After the binding is done.

Figure 21(d) shows the state delay, which is 55 ns. If the binding is done by any other way,

the state delay will be longer.

Goal D: reduce the number of states

If the behavior contains inherent parallelism, allocating more components requires larger

chip area but it allows more operators to be performed in parallel, resulting in less number

of states and better performance.

In the unit selection and binding view, the component utilization metric helps the user to

decide what component to add to produce the largest performance gain while increasing the

least area. In an allocation, a component having high component utilization indicates that

this component is frequently used. Therefore, increasing the number of this component may

allow some operators which are currently executed sequentially to be executed in parallel.

For example, the adders in Figure 16(a) have high component utilization. By adding one

more adder, the total functional unit area is increased by only 25600 fim? while the required

number of states is decreased from three to two. The result can now be executed within 90

ns, as shown in Figure 16(c).

5.5 Optimize the Floorplan

Once some of the operators or variables are bound to hardware components, the floorplan

view in ISE can show the user the placement of those components, I/O ports, routing and

wasted area. Also, the user is allowed to modify the floorplan to reduce the chip area or

wiring delay. Figure 22 shows a set of floorplanning techniques that the user can perform

to optimize either area or performance of the design at the physical level.

5.5.1 Reduce Area

At the physical level, the user can reduce the chip area by reducing the wasted area or

the routing area.

Goal A: reduce the wasted area

In the floorplan view, the user can reduce the wasted area by changing the placement

of components such that the floorplan becomes more compact. Changing the component

placement can be done by rotating or moving components. However, if the components

on the critical path happen to be placed far apart, then the clock period increases. For

example. Figure 23(a) and (b) show different floorplans of the same design. The floorplan

view highlights the components on the critical path, which are the adder and the multiplier

in this example. Figure 23(a) shows a more compact floorplan where components on the

critical path are placed far apart. Figure 23(b) shows a less compact floorplan but the adder

and the multiplier are placed close together. Since the wiring delay may be an important

portion in the critical path delay, the floorplan in Figure 23(b) gives shorter clock period

but larger chip area, while the floorplan in Figure 23(a) giveslonger clock period but smaller

chip area.

start^^

^ reduce^
execution

V time? >

Goal C: reduce the clock period

Wlfll the length of a set of wires

positive effects: the wiring delay Is reduced,
so the clock period Is reduced

negative effects: the wasted area may Increase

Goal A: reduce the wasted area

QSl wasted area

positive effects: the wasted area Is reduced
negative effects: the wihrtg delay between the

components on the critical path
may Increase

positive effects: the wasted area Is reduced
negative effects: components of different shapes

have different delays, so the clock
period may Increase

Goal B: reduce the routing area

ESSl routing area
total wire length

positive effects: the total wire length Is reduced

negative effects: this may cause heavy wiring
txilldup or congestion

positive effects: the wire length Is shortened,
so the routing area Is reduced

Figure 22: Techniques to optimize the floorplan

Changing the aspect ratios of components can also make a floorplan more compact. How

ever, a component's shape is closely related to its pin-to-pin delay. Thus, by changing a

component's aspect ratio, its delay is also changed and consequently, the clock period of

the design may be affected. For example. Figure 23(c) shows the result of changing the as

pect ratio of the multiplier in Figure 23(b). Assume the new multiplier used in Figure 23(c)

has a longer delay, the clock period is increased because the multiplier is on the critical path.

Multiplie
Multiplier

5300 umA2

2250 umA2 2400 umA2

1250 um''2

Routing area: Routing area Routing area

Wasted area: Wasted area: Wasted area:

Critical path wire length: 542 urn Critical path wire length: 100 um Critical path wire ler>gth: 100 um

Total wire length: 1247 urn Total wire length: 1247 um Total wire length: 1250 um

Figure 23: The example for changing the placement and aspect ratios of components

Goal B: reduce the routing area

The floorplan view provides the user total wire length metric, which can be an indication

of the routing area. By placing heavily connected components close to each other, the total

wire length can be reduced and the eventual routing area may consequently be reduced.

However, this may sometimes lead to heavy wiring buildup or congestion. For example.

Figure 24 shows two possible component placements of a netlist. The one shown in Fig

ure 24(b) has shorter wire length than the one shown in Figure 24(a). However, the one

shown in Figure 24(a) would require only two routing tracks, but the one in Figure 24(b)

would require three because of the connection between components D and G. Therefore,

in this example, the placement that minimizes wire length requires more routing area than

the placement with longer wire length.

ImI H ^

total wire length: 1000 urn total wire length: 900 um

routing area: 700um^2 routing area: 900um^2

Figure 24: The example for minimizing the total wire length

When there are a large number of components, the user may perform floorplanning

hierarchically. In hierarchical floorplan, the components are first grouped into modules.

The floorplanning is then further performed on the set of modules. In this approach, the

1/0 port positions of the modules wiU determine the quality of the routing between modules.

Similarly, on the chip level, the positions of I/O pads wiU affect the routing.

Total area: 5550 um^2 Wasted area: 1150 um^2

F.U. area: 2250 umA2 Critical path wire length: 542 um

S.U. area: 1250 um^2 Total wire length: 1247 um

Routing area: 900um^2

Total area: 5000 um^2 1Wastedarea: IOOOum'^2

F.U. area: 2250 um^2 Critical path wire length: 500 um

S.U. area: 1250 um^2 Total wire length: 1247 um

Routing area: 700um^2

Figure 25: The example for altering the positions of I/O ports

In the floorplan view, the quality metric routing area gives the estimated total area

consumed by routing. To reduced the routing area, the user can alter the I/O port po-

sitions of the modules or the positions of chip's I/O pads manually. Figure 25 shows the

floorplan of a design before a possible improvement and the floorplan of the same design

after. The improvement is accomplished by rearranging the I/O pads and altering the I/O

port positions of the datapath module.

5.5.2 Reduce Execution Time

At the physical level, there is no way that the user can reduce the number of states by

simply optimizing the floorplan. However, the clock period could be reduced by reducing

the wiring delay between components on the critical path.

Goal C: reduce the clock period

We have demonstrated in the example shown in Figure 23(a) and (b) that the clock

period can be reduced by reducing the wire length between the components on the critical

path. And the side-effect of this technique, which is the wasted area being increased as the

floorplan becoming less compact, has also been explained previously.

6 Sample Example Walk-Through

To illustrate the application of the proposed methodology, we shall walk through a simple

design and annotate the key decision points in the design.

Figure 26 shows the specification of this walk-through example, which is designed to

compute the square-root approximation (SRA) [5] of two signed integers, a and 6, by the

following formula:

y/a"^ + « max((0.875x -f 0.5?/), x)

where x —maa:(|a|, |6|), and y —mm(|a|,|6|). According to Figure 26(a), this design has

two input ports, Inl and In2, which are used to read integers a and b, and one output

port Out. As shown in the flow-chart in Figure 26(b), the design reads the input ports and

starts the computation whenever the input control signal Start becomes equal to 1. After

the computation is done, it makes the result available through the Out port for one clock

cycle. At the same time, it sets the control signal Done to 1, in order to signal to the

environment that the data that has appeared at the Out port is a valid result. Figure 26(c)

shows the component library that will be used in implementing this design. This component

component functions delay(ns) area(um'^2)

add +

+, -

16.4 110,880

sub 17.5 119,808

alu 19,8 160,416

min min 23.2 149,472

max max 26.5 162,432

max_min max, min 30.9 180,576

fibs absolute
23.3 149,472

25.5 123,886

reg

2-1 mux

3-1 mux

register

2 to 1 mux

3to1 mux

3.5(setup)
5.4(hold)

5.7

6.0

49,824

29,664

49,536

t1 = lal

t2 = lbl

x = max (t1,12)
y = min (t1, t2)
13 = X » 3

14 = y » 1
15 = x-13

16 = 14 + 15

17 = max (16, X)

Done = 1

Oul = 17

Figure 26: The specification of the SRA example

library is created based on the VLSI Technology, Inc. 1.0 micron CMOS VDP370 datapath

cell library [12]. The constraints for the design are area smaller than 2,500,000 fim^ and

mcLximum execution time no longer than 300 ns.

PS SCOND NS AC ACTIONS OP.OCC

functional unit area = 1,002,411 (unn^2)
max execution time = 119x3 = 357 (ns)

Figure 27: The state-action table of the SRA example

Figure 27 shows the state-action table representation of the design, obtained from Fig

ure 26(b). Alsoshownin this figure are the quality metrics, operator occurrences (OP. OCC)

and state delay (ST Delay). From the operator occurrences metric, it is obvious that the

current schedule requires at least two components for the computation of absolute value,

two components for the computation of maximums, one component each for the compu

tation of minimum, addition, and subtraction. Note that the two shift operations can be

implemented by signal rearrangement and do not require any logic. Therefore, the func

tional unit area is estimated to be 1,002,411 which is the sum of the areas of aU the

required components. At the same time, the state delay metric shows that the longest state

delay is 119 ns; therefore, the clock period is 119 ns. Since the longest execution path

consists of three states (STO —> STl —ST2), the maximum execution time would be 119 x

3 = 357 ns, which clearly violates the performance constraint. To help the user identifying

the performance bottleneck, ISE highlights the operators on the critical path, as shown in

Figure 27. To shorten the critical path, STl is splitted into two states, STl and ST3, as

shown in the state-action table in Figure 28(b). After splitting STl, the new longest state

is now ST3 whose state delay is 69.3 ns. Hence, the clock period is reduced from 119 to 69.3

ns and the maximum execution time is reduced from 357 to 277.2 ns, which now satisfies

the performance constraint. At this point, we can switch our attention to the area of the

design.

Naiiw Tyoe

PS SCOND NS AC ACTIONS OP. OCC ST Dels

max laaPM

1,485,000 uny>2

841,536 um^2

max execution time = 69.3 x 4 = 277.2 (ns)

Figure 28: The design of the SRA example after splitting STl and allocation

From the operator occurrences metric shown in Figure 28(b), we can see that the maxi

mum operator occurrence of the computation of maximums decreases to one after STl was

splitted. Therefore, the current schedule requires two components for the computation of

absolute value, and one component each for the computation of maximum and minimum,

one adder and one subtractor. The allocation is shown in Figure 28(a). After the compo

nents are allocated, ISE allows the user to start floorplanning. Figure 28(c) shows a possible

floorplan. The total area metric estimates that the current design would require 1,485,000

fim?. Note that this does not include the storage unit area, interconnection unit area, rout

ing area, and the controller. Knowing that the storage units, interconnection units and the

controller, etc. may very well occupy more than half of the final design area, we should see

whether it is possible to further reduce the functional unit area.

llSIlOiliESBH
|ES9ES9]

•!gff!iM»5iiil

BitHim DmI

16 1 23.3 1149.472

la

KE Ihi
max [liHy-jM

mkPMKr^E¥^

•EQIiBiinQ

max ftaOM

.. .3B_J ^Mtltltlllii'iM

771.264 um'\2

max execution time = 58.6 x 5 = 293 (ns)
execution time utilization = 52.3%

(b) (c)

Figure 29: The design of the SRA example after the first re-aUocation

PS SCONO NS AC ACTIONS
BHRBHantB

max

« mm (tl t2^ I mm

max

max execution time = 35.4 x 7 = 247.8 (ns)
execution time utilization = 69.1%

Figure 30: The design of the SRA example after splitting STl and ST4

In the component library, there is an ALU which can perform both addition and sub

traction. Knowing that replacing the adder and subtractor by the ALU can reduce the

functional unit area, a new allocation is obtained and shown in Figure 29(a). After mod

ifying the floorplan, the total area is now approximately 1,265,000 ^inn?. However, since

the addition and subtraction are both executed in ST3, ST3 now needs to be splitted into

two states such that one ALU can be used to execute the addition in one state and the

subtraction in another. The state-action table after splitting ST3 is shown in Figure 29(b).

The longest state delay, and the clock period in turn, is now 58.6 ns and the maximum

execution time is increased from 277.2 to 293 ns.

Although the estimated maximum execution time still satisfies the performance con

straint, the quality metric, execution time utilization, shows that only 52.3% of the execu

tion time is being utilized by the components, that is, due to clock slacks, the components

are idled during 47.4% of the execution time. That means, by splitting states to reduce

the clock slacks, the maximum execution time can be improved. Noticing that states STl

and ST4 are approximately twice as long as ST3, we split STl and ST4 and the resulting

state-action table is shown in Figure 30. The execution time utilization is improved from

52.3% to 69.1% and the maximum execution time is reduced from 293 to 247.8 ns.

Now that according to the quality metrics, the performance and area constraints are both

satisfied, we can proceed with the binding task. The operator binding is straight-forward

since there are one component each for maximum, minimum, addition and subtraction, and

two identical components for the computation of absolute values. The operator binding

is shown in Figure 31(a). Variable binding requires us to determine the lifetimes of each

variable since a register can be shared by those variables with non-overlapping lifetimes.

Figure 30 shows the variable lifetime metric (Var. LT) of the current schedule. One of

the common goals during variable binding is to try to have as few registers as possible.

Figure 31(a) shows one possible variable binding which requires only four registers.

After the operator and variable bindings are done, the interconnections between compo

nents and registers can be automatically determined. Multiplexers are also automatically

inserted at the input ports of the components and registers when they have more than one

sources. The controller can also be generated. Figure 31(c) shows a complete netlist and

floorplan of the current design. The total area of the design increases tremendously and

the area constraint is now violated. Moreover, after including the wiring delay and multi-

23.3 149.472

ggWcMKERgCT

•EEliEnQ

reg 16 3.5/5.4 49,824

max(t1.t2). max(t6.x

PS SCOND ACTIONS OP. 000 ST

STO t

max

Bssas^

max executron time = 47.1 x 7 = 329.7 (ns)

(b)

iotai area: 2.660.000 umA2

F.U. area: 1.089.397 um^2

S.U. area: 198.916 umA2

i.U. area: 276,926 um'^2

Routinq area: 775.000 um'^2

Wasted area: 319,761 um'^2

Figure 31: The design of the SRA example after binding

plexer delay, etc., the maximum execution time is now estimated to be 329.7 ns, which also

violates the performance constraint. Note that floorplanning at this early stage enables us

to discover that both performance and area constraints are being violated. Without floor-

planning, the total area can only be computed by summing up the functional unit area,

storage unit area and the interconnection unit area. That gives an estimate of 1,565,239

/im^, which is only 58.8% of the total area.

max(t1,t2). max(t6.x), min(t1,t2

reg 16 3.5/5.4 49,824

PS SCONO NS AC ACTIONS OP. OCC ST

max 1

max execution time = 46.8 x 7 = 327.6 (ns)
execution time utilization = 69.6%

'

F.U. area:

S.U. area:

I.U. area:

Routing area:
Wasted area:

IJ

2,240,000 uny2

838.764 uny2

298.944 um^2

207.648 um^2

750.000 unV2

144.640 uny2

Figure 32: The design of the SRA example after the second re-allocation

To reduce the area, we can go back to the architecture of the current design. Note that

there exists one component which can perform both maximum and minimum. Also, there is

one slower but smaller implementation of the components ABSl and ABS2. Therefore, we

can replace components MAX and MIN by a new component MAX_MIN, and use the smaller

implementation for ABSl and ABS2. The resulting allocation is shown in Figure 32(a).

However, the computation of minimum in ST5 needs to be moved to ST3 such that the

component MAX_MIN can be used to execute both maximum and minimum sequentially.

Figure 32(b) shows the state-action table after moving the computation of minimum to ST3.

After re-allocation and re-scheduling, part of the operator and variable bindings, which are

affected by the re-allocation and re-scheduling, need to be modified. Also, the controller

needs to be re-generated. Figure 32(c) shows the final floorplan. The total area is now

2,240,000fim?, which satisfies the area constraint.

i

Total area:

F.U. area:

S.U. area:

I.U. area:

Routing area:

Wasted area:

7MM

B

2.380.000 unV2

938.764 um^2

298.944 um^2

207.648 um^2

750.000 um^a

184.640 um^2

Figure 33: The final design of the SRA example

However, the maximum execution time of the current design is 327.6 ns, which stiU

violates the performance constraint. Note that the execution time utilization is only 69.6%,

which implies that the maximum execution time can be further improved by reducing clock

slacks. A simple computation teUs us that if we split all the states except STO and ST2 into

two states, the clock period will be reduced to 23.4 ns and the total number of states on the

longest execution path will be increased to 12 states. Hence, the maximum execution time

wiU be 280.8 ns, which satisfies the performance constraint. The splitting of states does

not change any operator and variable bindings, only the controller needs to be re-generated.

Since there are more states in the new schedule, the controller becomes larger. The final

floorplan is shown in Figure 33 and the design of this SRA example is completed with the

total area 2,380,000 fim^ and maximum execution time 280.8 ns.

7 Conclusion

This report details a design methodology for interactive behavioral synthesis. As op

posed to the typical design methodology for automatic behavioral synthesis systems, the

proposed methodology allows user decisions and user control in every task and at every

level of the design process. Moreover, it allows the user to start floorplanning early in the

design process. To demonstrate the design methodology, we also presented a walk-through

square-root approximation example. Note that during the design process of this exam

ple, we utilized different quality metrics and made design improvements while working at

behavioral, structural and even physical levels at the same time.

To realize the idea of interactive behavioral synthesis, we have implemented a system

called ISE. An overview of ISE was also presented in this report. So far in ISE, we have

developed and are continuing to develop new metrics that evaluate a partial or complete

design and return some numerical value of its quality. What is missing at this moment is

bottleneck metrics which wiU direct the designer's attention to congested areas at different

levels of the design. These metrics are also important for developing design hints, which

are procedures running in the environment background which compute design alternatives

for the user that may help remove bottlenecks. The binding hint discussed in this report is

an example of design hints. Therefore, the important future work would be to develop and

implement bottleneck metrics and design hints.

8 References

[1] 0. A. Buset, and M. I. Elmasry, "ACE: A Hierarchical Graphical Interface for Archi

tectural Synthesis," Proc. 26th DAC, 1989.

[2] R. Camposano, and W. Wolf, High-Level VLSI Synthesis, Kluwer Academic Publishers,

1991.

[3] C. M. Chu, M. Potkonjak, M. Thaler, and J. Rabaey, "HYPER: An Interactive Syn

thesis Environment for High Performance Real Time Applications," Proc. ICCD 89,

[4] D. D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Introduction to Chip

and System Design, Kluwer Academic Publishers, 1992.

[5] D. D. Gajski, Principles of Digital Design, Prentice Hall, 1996.

[6] T. Hadley, A System for Interactive High-Level Synthesis, PhD Thesis, UC Irvine, 1995.

[7] P. Hillinger, and J. Rabey, Anatomy of a Silicon Compiler, Kluwer Academic Publish

ers, 1992.

[8] A. Jerraya, I. Park, and K. O'Brien, "Amical: An Interactive High-Level Synthesis

Environment," Proc. EDAC 93, 1993.

[9] D. W. Knapp, "An Interactive Tool for Register-Transfer Level Structure Optimiza

tion," Proc. 26th DAC, 1989.

[10] D. W. Knapp, "Manual Rescheduling and Incremental Repair of Register-Level Data

paths," Proc. ICCAD 89, 1989.

[11] D. E. Thomas, E. D. Langese, R. A. Walker, J.A. Nestor, J. V. Rajan, and R. L.

Blackburn, Algorithmic and Register-Transfer Level Synthesis: The System Architect's

Workbench, Kluwer Academic Publishers, 1990.

[12] VLSI Technology, Inc. VDPS70 Datapath Element Library, 1992.

