Structural and chemical heterogeneities of primary hyperoxaluria kidney stones from pediatric patients

Yuan Dua,1 Vincent Blay Rogerb,1 Jorge Menac, Misun Kangb, Marshall L. Stoller, c Sunita P. Hob, c,*

Summary

Objective
Calcium oxalate stones are the most common type among stone-forming patients and in some cases result from predisposed genetic conditions. In this work, we examined the differences in structure and chemical composition between oxalate stones from patients from three groups: 1) pediatric patients that were genetically predisposed (primary hyperoxaluria) to form stones (PPH); 2) control pediatric patients that did not have such genetic predisposition (PN-PH); 3) adult patients that formed oxalate stones without the genetic predisposition (A-CaOx). A variety of instrumental analyses were conducted to identify physicochemical properties of stones characteristic of predisposed pediatric (PPH), pediatric hyperoxaluria (PN-PH), and adult (A-CaOx) patient populations.

Methods
Genetic variants of 16 stone-forming patients were determined using whole-exome gene sequencing. Components of stones from PPH (n = 6), PN-PH (n = 5), and A-CaOx (n = 5) groups were identified using Fourier transform infrared (FTIR) spectroscopy. Stone morphology and density were evaluated using high resolution X-ray computed tomography (micro-XCT). Stone microstructure and elemental composition were mapped with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy, respectively.

Results
Calcium oxalate bipyramidal crystals were found on stones from all groups. Stones from PPH patients with PH types I and II were composed of calcium oxalate monohydrate (COM) with relatively uniform mineral density (1224 ± 277 mg/cc) and distinct smooth surfaces. By contrast, micro-spherical calcium phosphate particles were found only on PN-PH stones, which also showed a broader range of mineral densities (1266 ± 342 mg/cc). Stones from the PN-PH group also contained phosphorus (P), which was absent in NP-PH stones. A-CaOx stones were of significantly lower mineral density (645 ± 237 mg/cc) than pediatric stones and were more heterogeneous in their elemental composition.

Conclusion
Unique structural and compositional characteristics were identified in stones from pediatric patients with primary hyperoxaluria. These include the absence of phosphorus, a narrower mineral density distribution, and a uniform elemental composition compared to stones from pediatric patients without the genetic predisposition. Thus, characterization of stones at the macro- and micro-scales in combination with genetic testing of patients can provide insights and accurate diagnosis to develop a treatment plan for effective patient care.
Introduction

The incidence rates of first-time and recurring kidney stones in pediatric and adult patients have increased globally in the last decade [1–5]. Although the etiology of kidney stone formation in many cases is unknown, a variety of risk factors for kidney stone formation are known, including environment, diet (e.g., secondary hyperoxaluria), microbiota, and various health conditions [6,7]. In some cases, genetic factors can strongly predispose the patient towards stone formation, as in primary hyperoxaluria [6,8]. According to the Genetic and Rare Diseases Information Center, PH is categorized into three types: PH1, PH2, and PH3. PH1 results from a defect in alanine-glyoxylate and serine-pyruvate aminotransferase (AGXT), PH2 results from a defect in glyoxylate and hydroxypyruvate reductase (GRHPR), and PH3 results from a defect in 4-hydroxy-2-oxoglutarate aldolase 1 (HOGA1). PH1 and PH2 are characterized by high concentrations of oxalate in blood and urine [6,8]. Calcium oxalate crystals aggregate in the filtrate that runs through the nephrons and can deposit in the renal tubules. If not managed adequately, over time, this can cause inflammation, impair glomerular filtration [11–13], and have severe health-related consequences [9]. Primary hyperoxaluria can result in kidney injury if it is not managed adequately.

PPH may go unrecognized for years as it is not a common occurrence. Monitoring urinary pH, volume, and oxalate and calcium concentrations in addition to genetic testing is the current standard of care to diagnose PH. Genetic testing, however, can be complicated in that not all gene variants are pathological, some variants may still be unknown, and mutations may lie in regulatory sequences of genes beyond the DNA region analyzed [8,9]. Thus, in some cases, liver biopsies are necessary to look for enzyme deficiencies and confirm the diagnosis [10]. Furthermore, external shockwave lithotripsy should not be used on PPH patients, given the high levels of energy and time needed to fragment oxalate stones, which can damage the kidney in the process [8,14,15]. Thus, it is crucial to identify PH at a younger age. This allows educating the patient by identifying and building personalized protocols to manage the condition and minimize complications such as chronic kidney disease.

Calcium oxalate kidney stones are one of the most common types of kidney stones [4,5]. Most calcium oxalate stones are formed by mono (C2H2CaO5) and dihydrate (C2H2(OH)2CaO4) phases, which sometimes are accompanied by calcium phosphates. These calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) phases have a...
microscopically identifiable structure. However, limited information exists on whether primary hyperoxaluria leaves specific physicochemical signatures on stones, particularly in pediatric patients. In this work, we studied calcium oxalate stones removed from pediatric patients with (PPH) and without primary hyperoxaluria (PN-PH), as well as in adult patients (A-CaOx). We hypothesized that differences might exist between stones from these different groups as a result of the genetic predisposition. We combined infrared spectroscopy, high-resolution computerized tomography, electron microscopy, and energy-dispersive X-ray spectroscopy to gain complementary information about the nature of stones in these different groups. Results provided insights into the process of stone formation which could help reduce the number of unrecognized PPH cases that otherwise could go unrecognized and lead to complications later in life.

Materials and methods

Stone specimens

Specimens from pediatric patients included stones and blood. These specimens were collected under protocols approved by the ethics committee of Beijing Friendship Hospital (No. 2015-P2-012-01). All studies involving human participants were performed in accordance with the ethical standards and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Inclusion criteria for this study involved primary hyperoxaluria diagnosed by whole-exome sequencing examination and collection of the patients’ kidney stones at our centers. Six pediatric calcium oxalate urinary stones from genetically predisposed primary hyperoxaluria patients (PPH), and five calcium oxalate stones from pediatric patients with no known genetic etiology (PN-PH) were obtained from individuals through intra-renal retrograde surgery (IRS) or percutaneous nephrolithotomy (PCNL). Peripheral blood specimens were used for whole-exome gene sequencing. Exclusion criteria for patients’ whole-exome sequence examination were no evidence of primary hyperoxaluria or not collected kidney stones. Five adult urinary stone specimens (A-CaOx) were obtained endoscopically from consenting patients undergoing IRS or PCNL following a protocol approved by the University of California San Francisco Committee on Human Research Protection Program (IRB 14-14533). A list of patient characteristics (age, gender, weight, body mass index, comorbidities, and procedure type) and stone specimen characteristics (size, mineral density, and compounds determined by electron microscopy and spectroscopy techniques) are tabulated in Table S1.

Whole-exome gene sequencing

Genomic DNA of the patients and their family members were extracted from peripheral blood using an Omega blood genomic DNA Kit (Omega, D3392). All DNA libraries were prepared following the protocols of Agilent SureSelect QXT Library Prep Kit (5500–0127). Before hybridization, library DNA quantity and quality were assessed with an Agilent Bioanalyzer 2100. Sequencing was performed on an Illumina HiSeq platform using a 2 × 150 bp strategy. All

Table 1: Clinical characteristics of calcium oxalate stone formers in this study.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>FUR stone composition</th>
<th>Patient age (years)</th>
<th>Gender</th>
<th>BMI (kg/m²)</th>
<th>Comorbidities</th>
<th>Average mineral density (mg/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>COM</td>
<td>6</td>
<td>Male</td>
<td>19.0</td>
<td>PH 1</td>
<td>1354</td>
</tr>
<tr>
<td>II</td>
<td>COM</td>
<td>8</td>
<td>Male</td>
<td>15.3</td>
<td>PH 1</td>
<td>1097</td>
</tr>
<tr>
<td>III</td>
<td>COM</td>
<td>8</td>
<td>Female</td>
<td>18.9</td>
<td>PH 2</td>
<td>1277</td>
</tr>
<tr>
<td>IV</td>
<td>COM</td>
<td>5</td>
<td>Male</td>
<td>15.3</td>
<td>PH 2</td>
<td>1460</td>
</tr>
<tr>
<td>V</td>
<td>COM</td>
<td>1</td>
<td>Female</td>
<td>15.6</td>
<td>PH 3</td>
<td>1109</td>
</tr>
<tr>
<td>VI</td>
<td>COM</td>
<td>2</td>
<td>Male</td>
<td>12.3</td>
<td>PH 3</td>
<td>1218</td>
</tr>
<tr>
<td>VII</td>
<td>COD + COM</td>
<td>3</td>
<td>Female</td>
<td>13.5</td>
<td>None</td>
<td>1419</td>
</tr>
<tr>
<td>VIII</td>
<td>COD × COM</td>
<td>5</td>
<td>Male</td>
<td>13.0</td>
<td>None</td>
<td>1305</td>
</tr>
<tr>
<td>IX</td>
<td>COD + COM</td>
<td>1</td>
<td>Female</td>
<td>16.6</td>
<td>None</td>
<td>1360</td>
</tr>
<tr>
<td>X</td>
<td>COM</td>
<td>1</td>
<td>Male</td>
<td>16.4</td>
<td>None</td>
<td>1166</td>
</tr>
<tr>
<td>XI</td>
<td>COM + COD</td>
<td>8</td>
<td>Female</td>
<td>18.4</td>
<td>None</td>
<td>1364</td>
</tr>
<tr>
<td>XII</td>
<td>COM + COD</td>
<td>66</td>
<td>Male</td>
<td>29.9</td>
<td>None</td>
<td>972</td>
</tr>
<tr>
<td>XIII</td>
<td>COM + COD</td>
<td>72</td>
<td>Male</td>
<td>19.0</td>
<td>None</td>
<td>890</td>
</tr>
<tr>
<td>XIV</td>
<td>COM + COD</td>
<td>61</td>
<td>Male</td>
<td>36.8</td>
<td>Obesity, obstructive sleep apnea, hypertension, hyperlipidemia</td>
<td>809</td>
</tr>
<tr>
<td>XV</td>
<td>COM + COD</td>
<td>39</td>
<td>Male</td>
<td>22.8</td>
<td>Irritable bowel syndrome, hyperlipidemia</td>
<td>663</td>
</tr>
<tr>
<td>XVI</td>
<td>COM + COD</td>
<td>65</td>
<td>Male</td>
<td>29.7</td>
<td>Urothelial carcinoma, solitary right kidney</td>
<td>844</td>
</tr>
</tbody>
</table>
Figure 1 Structure and mineral density distributions in stones from genetically predisposed pediatric primary hyperoxaluria (PPH) patients (A) and pediatric patients without primary hyperoxaluria (PN-PH) (B). In both A and B, the legend for the respective rows are as follows: a) Light microscopy images of representative PPH and PN-PH stone specimens in this study are shown. b) 3D micro-XCT reconstructions of stones and c) selected virtual slices illustrate heterogeneity in mineral densities. d) Slices segmented using density thershold algorithm illustrate higher and lower mineral density regions.
sequencing reads were quality checked with Trimmomatic [16] using a quality score cutoff of 20 and reads shorter than 40 base pairs were discarded. The remaining reads were aligned to the UCSC human reference genome (hg19, 2005) using the BWA-MEM aligner algorithm [17]. The reads that aligned to the designed target regions were used for subsequent analysis. The consensus sequence and quality of each allele of interest were calculated by GATK [18]. The candidate mutations considered had to pass the following criteria: (i) genotype quality ≥ 20; (ii) sequencing depth ≥ 50; (iii) having a functional consequence, either by affecting gene regulation or its protein product.

Micro X-ray computed tomography of intact stones

Intact stones from patients were scanned at 4× magnification using micro X-ray computed tomography (micro-XCT, Micro-XCT 200, Carl Zeiss Microscopy, Pleasanton, California) with a LE42 source filter, 40 kVp peak voltage and beam hardening constant of 0.3. Mineral densities of stones in milligrams per cubic centimeter of stone volume (mg/cc) were determined using the watershed algorithm in Avizo software 9.0.2 (FEI, Hillsboro, Oregon) [15]. A Gaussian curve was fitted to the density data using a curve-fitting tool in MATLAB software R2018b (MathWorks Inc., Natick, Massachusetts) to obtain an average mineral density distribution for stones within a group and across groups (PPH, PN-PH, and A-CaOx).

Table 2 Summary characteristics of the mineral density distributions of stones from PPH and NP-PH patients (see Supplemental Fig. 2).

Specimen	PPH					Avg. PPH	
	I	II	III	IV	V	VI	
Mean (mg/cc)	1341	1063	1269	1413	1076	1175	1224
s (mg/cc)	201	292	133	258	251	297	277

| Specimen | NP-PH | | | | | Avg. NP-PH |
|----------|---------|---|---|---|---|---|---|
| | VII | VIII | IX | X | XI | Avg. NP-PH |
| Mean (mg/cc) | 1354 | 1266 | 1304 | 1135 | 1274 | 1266 |
| s (mg/cc) | 382 | 345 | 315 | 279 | 339 | 342 |

| W statistic | 2 | p-value | 0.0087 | sample estimate difference (mg/cc) | –86 |

Figure 2 Comparison of the average mineral density distribution across the stone specimens from adult calcium oxalate (A-CaOx), pediatric primary hyperoxaluria (PPH), and pediatric without primary hyperoxaluria (PN-PH) groups. The segmented lines represent Gaussian fits to the average mineral density distributions (mg/cc).
optical microscope in reflected mode (BX51, Olympus Scientific Solutions, Waltham, Massachusetts).

Fourier transform infrared spectroscopy of powdered stone specimens

Chemical characterization of stones was performed using powder-Fourier transform infrared (FTIR) (FTIR-7600, Lambda Scientific, China) spectroscopy. The stones were crushed to powder using a mortar and pestle, and were pelleted with potassium bromide (KBr). Spectra were recorded in the range 400–4000 cm$^{-1}$. Vibrational frequencies characteristic of chemical bonds allowed the identification of various compounds specific to PPH, PN-PH, and A-CaOx stones.

Scanning electron microscopy and energy-dispersive X-ray analysis of sectioned stone specimens

The polished surfaces of the specimens were scanned using a field emission scanning electron microscope (FE-SEM) (Sigma VP500, Carl Zeiss Microscopy, Pleasanton, California) at
1.0 keV. Structures representative of regions (center, middle and edge) within a stone at various magnifications were compared across imaging and spectroscopic data sets. Elemental composition of stones was analyzed using energy-dispersive X-ray spectroscopy (Bruker AXS, Madison, Wisconsin) at a beam energy of 15 keV.

Statistical analysis

Differences between the standard deviations of the mineral density of specimens from both groups were evaluated using an exact one-sided Mann–Whitney–Wilcoxon test, also called Wilcoxon rank-sum test. Notice that in this case, one standard deviation value is derived from each specimen, and thus such standard deviations are considered as independent observations in the analysis. This is a nonparametric test and does not make assumptions about the underlying population distribution of stone densities. Significance of the test was assessed by its p-value.

Results

Primary hyperoxaluria gene mutations

Whole-exome sequencing is a widely used next-generation sequencing (NGS) method that involves sequencing the protein-coding regions of the genome. The human exome represents less than 2% of the genome but contains 85% of currently known disease-related variants, making this method a cost-effective alternative to whole-genome sequencing. Six pediatric patients with primary hyperoxaluria (Table 1) (PPH) were identified and their genotypes, PH1, PH2 or PH3, were confirmed. The mutations are indicated in Table S1 using HGVS nomenclature [20], which describes the specific changes along the gene sequences that are considered relevant with respect to the standard genome (see Methods). One stone specimen from each patient was investigated in detail.

Structural analysis

Light microscopy of stones from all three groups illustrated structural heterogeneity (Fig. 1, Supplemental Fig. 1). Sectioned specimens revealed loose material with small polygonal shaped constituents (I, III, V, Fig. 1). Compared to PH1 and PH2, PH3 specimens presented a branching structure with increased porosity (V, VI). The reconstructed three-dimensional (3D) volumes from micro-XCT virtual slices illustrated smoother peripheries on PH1 and PH2 stones compared to coral-like morphology of PH3 stones (row b in Fig. 1A). Under a light microscope, PN-PH stones illustrated large crystals and abundant voids with no
mineral density than the control (p<0.01), and is particularly useful, as it contains peaks unique to certain compounds. For instance, the absorption bands at 950 and 660 cm⁻¹ are specific to COM, whereas bands at 610 and 912 cm⁻¹ are specific to COD [22,23]. Ratios of absorption intensities in this region, thus, have been proposed to infer the composition of mixtures [23]. Other features along the spectrum have been reported to be characteristic to COM or COD [24]. The spectrum of a pure calcium oxalate monohydrate shows high absorbances at 1600 cm⁻¹ and 1300 cm⁻¹, corresponding to the C=O and C–O stretching vibrations, respectively [25]. In most of our specimens, an absorption peak is present at 1600 cm⁻¹, but it shows a lower intensity than the one at 1300 cm⁻¹. Moreover, we can see that the absorption band characteristic of COD at 912 cm⁻¹ is not apparent in either group (Fig. 3), suggesting that all stones contain a considerable fraction of COM. If we look at the region of 800–500 cm⁻¹, we see that the band at 660 cm⁻¹ is present in specimens VII and IX, which may suggest that they contain a higher fraction of COM. However, in the 3500-3000 cm⁻¹ region, we see multiple peaks characteristic of COM (corresponding to symmetric and antisymmetric –OH stretching [23]) in all the specimens except VII and IX, which display broader spectra more compatible with COD [22]. In fact, this is the criterion often used by clinicians to discern between COM and COD [23]. Additionally, most of the specimens display a weak shoulder at around 1010 cm⁻¹, which could be compatible with the stretching frequency of P–O bonds [25]. Taken together, the data suggest that COM is the main phase across both groups of stones. COD may be present in some of these specimens (particularly VII and IX) and possibly smaller amounts of phosphate. These results are in agreement with the area compositional analyses using EDX, which indicated elemental ratios suggestive of calcium oxalate across all stones. In addition, sodium (Na) and phosphorus (P) were detected in PN-PH stones. Calcium, oxygen, carbon, sodium, and phosphorus were observed in A-CaOx stones (Fig. 4).

Discussion

Kidney stone disease is a globally prevalent condition and occurs in both pediatric and adult populations. COM and/or COD are the most common components of calcium-based stones, which can adhere to epithelia and cell surfaces [26,27]. In this study, six pediatric patients had primary hyperoxaluria as indicated by whole-exome sequencing (Table S1). Of the six PPH patients, two patients per each PH-type were identified (Table S1). The FTIR characterization results in this study agree with previous reports that kidney stones of PH patients typically consist of >95% COM [8]. Indeed, all PH specimens in this work seemed to consist mainly of COM based on their IR absorption spectra (Fig. 3), and only with electron microscopy at a higher resolution could regions of calcium phosphate be detected, particularly among PN-PH patients. The crystal facets
observed in our results (Fig. 4, Supplemental Figs. 3 and 4) exhibit sharp edges that might physically damage renal epithelial cells [27,28]. Calcium oxalate crystals are also known to induce the generation of reactive oxygen species (ROS) by cells and trigger biochemical cascades resulting in apoptosis [29].

Investigating the uroliths using micro-XCT led to very interesting results. Some characteristics of the density distributions are summarized in Table 2. A notable difference is that stones from PPH patients have a significantly narrower density distribution than those from PN-PH (p < 0.01) (Table 2, Fig. 2, Supplemental Fig. S2). A narrower distribution may be related to the higher supersaturation of calcium oxalate induced by the condition, in the form of higher and possibly more constant levels of urinary oxalate than in patients without primary hyperoxaluria [10,30,31]. Indeed, in the case of PH1 and PH2, which cause increased oxalate excretion compared to PH3, the external surfaces were smoother compared to stones from PH3 patients. This smoothness is unusual and had been previously associated with primary hyperoxaluria [32,33]. These observations also agree with previous reports on crystal morphologies in kidney stones [21,34].

The whewellite (COM) stones from PH3 patients, at least in this study, displayed unique characteristics in that they were more porous and illustrated higher mineral density on their periphery. These differences may be related to different levels of urinary oxalate in these patients compared to PH1 and PH2. Their branching structure may help explain why PH3 specimens break and are passed out by urine. PH3 mutations manifest early in life, with high stone recurring rates, although the renal function tends to be much better preserved compared to PH1 and PH2 [35–37]. Higher amounts of calcium oxalate are generated through liver metabolism, leading to crystal aggregation and adhesion in the kidney. In fact, in advanced cases of end-stage renal disease, PH1 and PH2 patients could be in the need of kidney and/or liver transplants due to systemic oxalate crystallization, while there have been no such cases reported for PH3 patients [8]. On the other hand, small phosphate particles were barely detectable in stones from the PH group, which further suggests that the stones formed more rapidly from higher concentrations of calcium oxalate. In a study by Daudon and coworkers [38], a radiating coral-like structure was also observed in PH2 stones. Coral-like structures seem to be associated with higher concentrations of calcium oxalate crystals. By contrast, stones from the PN-PH group displayed many calcium phosphate particles of different morphologies, which are also found in hypercalcuvria and idiopathic calcium-based stones [15,19].

Taken together, the results of this study indicate that kidney stones from pediatric primary hyperoxaluria patients (PPH) have detectable and distinctive physicochemical features compared to control pediatric patients (PN-PH). As summarized in Fig. 5, microscopy and spectroscopy techniques can help identify primary hyperoxaluria, had it not been identified previously, and provide mechanistic insights into degree of hyperoxaluria condition and stone formation. FTIR can be used to assess the most abundant mineral phases present in the stone. In this study, we have found that COM is the main phase formed by pediatric patients with primary hyperoxaluria, whereas, in other individuals, small amounts of COD are usually detected accompanying COM. By using micro-XCT, the density distribution of the calculi can be evaluated. Our results indicate that pediatric PH stones display a more uniform mineral density, whereas stones from other patients generally span a significantly broader mineral density range. Morphological observations can also strengthen some of these conclusions, as described in other studies [34,38]. Lastly, EM and EDX allow observation of microstructural features and chemical composition that seem characteristic of pediatric PH patients, including lower levels of phosphorus or other elements.

The results of this study also suggest that stones from adults exhibit significantly lower mineral density than stones from pediatric patients (Fig. 2, Supplemental Fig. 1). A-CaOx stones displayed a more diverse elemental composition (Fig. 4, Supplemental Figs. 3 and 4), similar to PN-PH stones. Although the adult group in this study came from a different geographic region, we hypothesize that the increased serum calcium concentration in children that supports the development of bone may contribute to the observed higher mineral densities of stones in pediatric patients [39,40], although further studies are needed to validate this.

Some limitations of our study include: 1) a limited number of stones for each group given the rarity of the condition. We thus hope that these first results will stimulate other researchers to validate and extend them. 2) Some of the pediatric specimens were stone fragments instead of intact stones, which may limit the ability to identify other plausible structural features. 3) Complete urine metabolic evaluations were not measured routinely, consequently reducing our understanding of the role of urinary uric acid, citrate, phosphate, and potassium in stone development. Other limitations include 4) the lack of preoperative clinical data, and 5) the geographic heterogeneity of the non-PPH population.

Based on this study, we encourage gene sequencing to be conducted before surgery on pediatric patients presenting bilateral kidney stone, at least for the genes AGXT, HOGA1 and GRHPR. Ideally, whole-exome sequencing is proposed as the standard of care in the near future. This test is current practice at our institutions: it requires 4 ml of blood, and costs less than $500 (Bestnovo and Candygene prices). We also encourage, when the surgical intervention allows, stone fragment collection to enable additional analyses. The findings of this work could be used, and are not to replace, but to complement sequencing tests. Sequencing results exclusively are not conclusive of patients’ conditions. All tests have false positives and false negatives, and expanding the observations in this study to a larger pool of patients may help validate these findings with an overall objective to improve current diagnostics.

Conclusions

Primary hyperoxaluria is a relatively unusual condition, even among the pediatric population. However, if it is not recognized and managed earlier on, it can lead to chronic kidney disease and devastating health problems. In this
work, we characterized a set of stones from pediatric PH and non-PH patients using complementary tomography, microscopy, and spectroscopy techniques, which are becoming increasingly available in laboratories affiliated with hospitals and clinics. This complete characterization reveals that certain stone features (uniform mineral density, microscopically and spectroscopically absent calcium phosphate particulates, smooth surface, absence of phosphorus) collectively can be used as an indicator for genetically predisposed primary hyperoxaluria condition. This set of distinctive characteristics or "signature" is likely a consequence of the unique oxalate profile in urine in children with primary hyperoxaluria and it can provide hints to the clinician about the presence of the condition. Lastly, we have also identified notable differences between stones from adult and pediatric patients in terms of density and composition, which may be influenced by developmental, dietary, and environmental factors. It is important to understand these differences across stone types so that stone formation can be best managed and prevented. We recommend whole-exome gene sequencing to be conducted on both pediatric and adult patients suffering from oxalate kidney stones to enable optimal management and preserve renal health.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

The authors would like to thank Grace Nonomura for help with specimen preparation. The authors thank the Biomaterials and Bioengineering Correlative Microscopy Core (http://bbcmc.ucsf.edu), UCSF for the use of their MicroXCT-200 and SIGMA 500-VP Field Emission Electron Microscope — Scanning and Transmission. This work was supported by the National Institute of Health [R21 DK109912 (SPH, MLS); R01 DE022032 (SPH)].

References

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpurol.2020.11.023.

Nomenclature

A-CaOx Adult Calcium Oxalate
AGXT Alanine-glyoxylate and serine-pyruvate aminotransferase
BMI Body mass index
CaOx Calcium oxalate
CaP Calcium phosphate
COD Calcium oxalate dihydrate
COM Calcium oxalate monohydrate
EDX Energy-Dispersive X-ray
GARD Genetic and Rare Diseases Information Center
GFR Glomerular filtration rate
GRHPR Glyoxylate and hydroxy-pyruvate reductase
HOGA1 4-hydroxy-2-oxoglutarate aldolase 1
Micro-XCT High-resolution X-ray computed tomography
PH Primary hyperoxaluria
PH1 Primary hyperoxaluria type I
PH2 Primary hyperoxaluria type II
PH3 Primary hyperoxaluria type III
PN-PH Pediatric without primary hyperoxaluria
PPH Pediatric primary hyperoxaluria
ROS Reactive oxygen species
SEM Scanning Electron Microscopy