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CYP1B1-RMDN2 Alzheimer’s disease
endophenotype locus identified for
cerebral tau PET

A list of authors and their affiliations appears at the end of the paper

Determining the genetic architecture of Alzheimer’s disease pathologies can
enhance mechanistic understanding and inform precision medicine strategies.
Here, we perform a genome-wide association study of cortical tau quantified by
positron emission tomography in 3046 participants from 12 independent stu-
dies. The CYP1B1-RMDN2 locus is associated with tau deposition. The most
significant signal is at rs2113389, explaining 4.3% of the variation in cortical tau,
whileAPOE4 rs429358 accounts for 3.6%. rs2113389 is associatedwith higher tau
and faster cognitive decline. Additive effects, but no interactions, are observed
between rs2113389 and diagnosis, APOE4, and amyloid beta positivity. CYP1B1
expression is upregulated in AD. rs2113389 is associated with higher CYP1B1
expression and methylation levels. Mouse model studies provide additional
functional evidence for a relationship between CYP1B1 and tau deposition but
not amyloid beta. These results provide insight into the genetic basis of cerebral
tau deposition and support novel pathways for therapeutic development in AD.

Alzheimer’s disease (AD) is a neurodegenerative disease featuring
amyloid-beta (Aβ) plaques and neurofibrillary tau tangles1. Aβ and tau
measurements using positron emission tomography (PET) are com-
mon in research (i.e., amyloid/tau/neurodegeneration (A/T/N))2.

Genetic factors conferring susceptibility to or protection fromAD
are important for identifying biological pathways for drug develop-
ment and personalized medicine3. Large-scale genome-wide associa-
tion studies (GWAS) using case-control designs have identified risk
genes in immune, tau, Aβ, lipid, and other pathways4,5. The strongest
AD genetic risk locus is APOE (apolipoprotein E) ε4 (APOE4)6. Large
case-control studies are often limited because participant neuro-
pathology is unknown.

Endophenotype studies complement case-control studies by
testing genetic variants against disease pathology7. Studies have
assessed genetic predictors of Aβ PET measures8–13. Most genetic stu-
dies of tau have utilized cerebrospinal fluid (CSF) taumeasures due to
non-availability of large tau PET datasets14. One study investigated the
association of [18F]flortaucipir PET with BIN1, finding an association
between a known BIN1 risk single nucleotide polymorphism (SNP;
rs744373) and greater tau15. Another performed a GWAS on tau PET
endophenotypes and identified two genetic loci (PPP2R2B and

IGF2BP3), but a modest sample size (n = 754) and no replication
sample16,17. Guo et al. performed a GWAS on tau PET (n = 543) and
identified twogenetic loci (ZBTB20 and EYA4) associatedwith elevated
tau accumulation and worse clinical performance18.

Here, we perform the largest GWAS of PET-based cortical tau to
date (n = 3046).We include data from twelve independent cohorts.We
also assess the relationship of the top SNP with cognitive decline and
additive and interaction effects with diagnosis, APOE ε4 status, and Aβ
positivity. We map topographic distribution of the top variant effect
on voxel-wise tau deposition. We perform a gene-set enrichment
analysis, assess gene expression levels in human brain tissue and
single-nucleus RNA-Seq data, map the expression of the top genes in
the Allen Human Brain Atlas, and performmethylation and expression
quantitative trait loci (eQTL) analyses. Finally, we investigate expres-
sion levels of the top gene in tau and Aβ mouse models19–21.

Results
Genome-wide association analysis (GWAS)
Meta-analyzed GWAS results from seven discovery cohorts (n = 1446)
are shown as quantile-quantile (Fig. 1A) and Manhattan (Fig. 1B) plots.
No systematic p-value inflation was found (genomic inflation factor
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λ = 1.025; Fig. 1A). We identified a genome-wide significant association
of cortical tau with a novel locus at 2p22.2 (Fig. 1B), with two SNPs
reaching genome-wide significance (p-value ≤ 5 × 10−8). The strongest
associated SNP is rs2113389, which was directly genotyped. The other
SNP (rs918804) is in strong linkage disequilibrium (LD, r2 = 0.91 and
D’ = 0.95). rs2113389 is located on 2p22.2 between RMDN2,CYP1B1, and
non-coding RNA, CYP1B1-AS1 (Fig. 1C). The minor allele T of rs2113389
(MAF= 0.146) was associated with higher tau (Z score = 5.68;
p-value = 1.37 × 10−8; Heterogeneity I2 = 27.8; Heterogeneity
p-value = 2.17 × 10−1). A replication meta-analysis in five additional
cohorts (n = 1600) showed that the significant SNPs (rs2113389 and
rs918804) in the discovery stage were replicated with the same asso-
ciation direction (Z Score=3.83, p-value = 1.26 × 10−4, Heterogeneity
I2 = 52.0, Heterogeneity p-value = 8.02 × 10−2; Z-score = −2.97,
p-value = 2.97 × 10−3, Heterogeneity I2 = 59.5; Heterogeneity
p-value = 5.99 × 10−2, respectively; Supplementary Fig. 1). ~4.3% of the

estimated proportional variation in cortical tau in ADNI is explained by
rs2113389 and APOE4 (rs429358).

Association of rs2113389 genotype with regional and global tau
Figure 2 shows that both additive (Fig. 2A,B) and dominant models
(Fig. 2C,D) demonstrated higher MTL and cortical tau deposition in
rs2113389minor allele (T) carriers. Similar results were observed when
stratified by sex (Supplementary Figs. 2,3) andwhenusing SUVRvalues
rather than those with rank-based inverse normal transformation
(Supplementary Fig. 4).

Interaction of rs2113389 genotype with variables of interest
Main effects of diagnosis and rs2113389 genotype were observed but
no interaction effect (Fig. 3A,B). As the pattern of the RMDN2-CYP1B1
association is similar across diagnoses, this effect is not being fully
driven by MCI/AD patients. The effect was similar in both males and

Fig. 1 | Results of Discovery GWAS for cortical tau deposition.Quantile-quantile
(QQ) (A), Manhattan (B), and LocusZoom (C) plots of genome-wide association
study (GWAS) results from seven discovery cohorts (N = 1446) using a linear
regression model with age, sex, two principal component (PC) factors from
population stratification, APOE4 status, and diagnosis as covariates are shown. The
genomic inflation factor is λ = 1.025 in the Manhattan plot (B), the horizontal blue
and red lines represent the -log10(10

−5) and -log10(5.0 × 10−8) threshold levels,
respectively. Two single nucleotide polymorphisms (SNPs) on chromosome
2 showed highly significant ( < 5.0 × 10−8) associations with cerebral tau deposition.

The regional association plot (C) for the locus that passed genome-wide sig-
nificance shows the region around the most significant SNP (rs2113389) at the
RMDN2-CYP1B1 locus. SNPs were plotted based on their GWAS −log10 p-values and
genomic position. The red color scale of r2 values was used to label SNPs based on
their degree of linkage disequilibrium with the most significant SNP. Recombina-
tion rates calculated from 1000 Genomes Project reference data are also displayed
in a blue line corresponding to the right vertical axis. Note: cerebral tau endophe-
notype measured as an inverse normal transformed variable of cortical tau SUVR.
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females (Supplementary Fig. 5). Main effects, but no interaction effect,
for rs2113389 genotype and APOE4were also observed (Fig. 3C,D). The
sex-stratified analysis showed similar results in bothmales and females
(Supplementary Fig. 6). Finally, main effects of Aβ positivity and
rs2113389 genotype, but no interaction effect were observed
(Fig. 3E,F). In the sex-stratified analysis, males and females showed
similar results (Supplementary Fig. 7), except for an interaction effect
of Aβ positivity and rs2113389 genotype on MTL tau deposition in
females (Supplementary Fig. 7C). Similar results were also observed
using SUVR values rather than the rank-based inverse normal trans-
formed values (Supplementary Fig. 8).

Voxel-wise association of rs2113389 genotype with tau
A voxel-wise analysis of the effect of rs2113389 (voxel-wise p <0.05
(FWE corrected), minimum cluster size (k) = 100 voxels; Fig. 4 and
Supplementary Fig. 9) evaluated the topographic pattern of the asso-
ciation. In the dominant model, rs2113389 minor allele carriers (CT or
TT; n = 327) demonstrated greater tau than rs2113389 CC individuals
(n = 834; Fig. 4A). Beta-value maps supported the statistical map,
showing widespread areas where rs2113389-T carriers show higher tau
than non-carriers (Fig. 4B). Using an additive model, rs2113389 CT
individuals (n = 300) showed higher tau than CC individuals (n = 834)
in the temporal, parietal, and frontal lobes (Supplementary Fig. 9A),
while rs2113389 TT (n = 27) showed a focal region of higher frontal tau
relative to CC individuals (Supplementary Fig. 9B). Beta-value maps
revealed rs2113389 CT individuals showing higher temporal and par-
ietal tau relative to rs2113389 CC individuals (Supplementary Fig. 9C).
rs2113389 TT individuals showed widespread higher tau relative to
rs2113389CC individuals, especially in the frontal lobe (Supplementary

Fig. 9D). Finally, the beta-values map shows that rs2113389 TT homo-
zygotes show higher frontal tau than rs2113389 CT heterozygotes
(Supplementary Fig. 9E), although this did not reach statistical
significance.

Association of rs2113389 genotype with CSF tau biomarkers
In addition to the findings with PET, rs2113389 genotype was asso-
ciated with CSF levels of both total tau and phosphorylated tau 181
(pTau181), with the rs2113389 T-allele associated with higher levels of
CSF total tau and pTau181 both in the additive model (Supplementary
Fig. 10A,B) and dominant model (Supplementary Fig. 10C,D). We
reviewed the GWAS summary statistics from two large-scale GWAS for
CSF biomarkers14,22. rs1478361 was associated with CSF total-tau levels
but not CSF p-Tau levels. rs1478361, which is in strong LD with
rs2113389 (r2 = 0.96 and D’ = 1.00), was associated with CSF total tau
levels (n = 3,076; β =0.0176; p-value = 0.0295)14. Within the CYP1B1
locus, the most significant SNPs for CSF p-Tau levels were rs12463523
(p-value = 0.0026) from the Deming et al. paper14 and rs9341266 (p-
value = 0.0029) from the Jansen et al. paper22.

Pathway analysis
When gene ontology (GO) termswere considered, 480 gene-sets were
significant after correction for multiple testing. GO for cell-cell adhe-
sion was the most significant pathway identified (Supplementary
Table 13A). GO terms for MHC protein complex, postsynaptic density,
regulation of synaptic transmission, and calcium ion transport were
also significant. For the KEGG pathway, 44 gene-sets were significant,
including cell adhesion molecules, calcium signaling pathways, and
axon guidance (Supplementary Table 13B). GO terms for several

Fig. 2 | Association of the most significant SNP (rs2113389) at the RMDN2-
CYP1B1 locus with regional and global cortical tau burden. Using an additive
model, the minor allele (T) of rs2113389 is associated with higher tau deposition
across participants, with both rs2113389 CT and TT individuals showing sig-
nificantly greater medial temporal lobe (MTL; A) and cortical (B) tau deposition
than rs2113389 CC individuals. Similar results are seen using a dominant model.
Specifically, individuals with one or more minor alleles of rs2113389 show sig-
nificantly greater tau deposition in the medial temporal lobe (C) and cortex (D)

than rs2113389 CC individuals. One-way ANCOVA models are used with rs2113389
genotype as the independent variable, covaried for age, sex, Aβ positivity, APOE4
carrier status, and diagnosis. Plots represent mean ± standard error of the mean.
Panels include 1,161 individuals (forA,B, 834 CC, 300 CT, 27 TT); for (C,D), 834 CC,
327 CT/TT). Source data are provided as a Source Data file. Aβ amyloid-beta;
ANCOVAanalysisof covariance; APOEapolipoprotein E;MTLmedial temporal lobe;
SUVR standardized uptake value ratio. Note: tau measured as an inverse normal
transformed variable of medial temporal and cortical tau SUVR.
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Fig. 3 | Interaction effect of themost significant SNP (rs2113389) at the RMDN2-
CYP1B1 locus with diagnosis, APOE ε4 carrier status, and Aβ positivity on
regional and cortical tau deposition. Both diagnosis and rs2113389 dominant
genotype are significantly associated with medial temporal lobe (MTL; A) and
cortical (B) tau deposition. APOE4 carrier status and rs2113389 dominant genotype
are significantly associatedwithMTL (C) and cortical (D) tau deposition. Significant
effects of both Aβ positivity and rs2113389 dominant genotype on MTL (E) and
cortical (F) tau deposition are observed. Two-way ANCOVA models, covaried for
age, sex, as well as diagnosis, APOE4 carrier status, and Aβ positivity where
appropriate, are used. Plots are displayed as mean + /−standard error of the mean.

Panels (A) and (B) include 1161 participants (568CN-CC, 222CN-CT/TT, 195MCI-CC,
75MCI-CT/TT, 71AD-CC, 30AD-CT/TT); panels (C) and (D) include 1161 participants
(468 APOE4-/CC, 199APOE4-/CT/TT, 366 APOE4 + /CC, 128 APOE4 + /CT/TT); panels
(E) and (F) include 1154 participants (338 Aβ-/CC, 131 Aβ-/CT/TT, 491 Aβ + /CC, 194
Aβ + /CT/TT). Source data are provided as a Source Data file. Aβ amyloid-beta; AD
Alzheimer’s disease; ANCOVA analysis of covariance; APOE apolipoprotein E; CN
cognitively normal; DX diagnosis; Dom rs2113389 dominant genotype (CC vs. CT/
TT); Int. interaction; MCI mild cognitive impairment; MTL medial temporal lobe;
SUVR standardized uptake value ratio. Note: tau measured as an inverse normal
transformed variable of medial temporal and cortical tau SUVR.
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pathways containing genes near the CYP1B1 locus were significant,
including those that regulate reactive oxygen species, metabolic pro-
cesses, monooxygenase activity, Golgi organization, and endoplasmic
reticulum organization, as well as the KEGG pathway for steroid hor-
mone biosynthesis.

Gene expression analysis and eQTL analysis
Our genome-wide gene-based association analysis identified two pro-
tein coding genes (CYP1B1 (corrected p-value = 0.040)), RMDN2 (cor-
rected p-value = 0.040)), and one non-coding RNA (CYP1B1-AS1
(corrected p-value = 0.040)) associated with tau. Then, our Allen
Human Brain Atlas visualization showed that CYP1B1 was expressed
across the whole brain, especially in the insula, orbitofrontal cortex,
and temporal lobe. RMDN2 was also expressed throughout the brain,
especially the temporal lobe, visual cortex, frontal and posterior
default mode network regions, and sensorimotor cortex (Supple-
mentary Fig. 11). Processed bulk RNA-Seq data from 1917 samples
downloaded from theAMP-ADKnowledeg Portal23–26 was evaluated for
these genes. Differential expression of RMDN2 was seen in the para-
hippocampal gyrus (p-value = 0.004; Fig. 5A), with down-regulation in
AD. CYP1B1 demonstrated differential expression in the temporal
cortex (p-value = 0.001; Fig. 5B), with upregulation in AD. In eQTL
analysis, the rs2113389 was associated with CYP1B1 expression levels in
the temporal cortex, but not with RMDN2 expression. Specifically, the
rs2113389 T-allele was associated with higher temporal CYP1B1
expression (β =0.25; p-value = 0.02; Fig. 5C). Finally, the rs2113389
T-allele was associated with higher CYP1B1 expression levels in blood
from the eQTLGen consortium database (n = 31,684; Z Score=24.93; p-
value = 3.6 × 10−137).

Cell type-specific expression and eQTL analysis of CYP1B1
Single-cell expression of CYP1B1 in ROSMAP single-nucleus RNA-Seq
data from the dorsolateral prefrontal cortex downloaded from the
AMP-AD Knowledge Portal showed that fibroblasts (Fib) had the
highestCYP1B1gene expression across all cell types27. Among the eight
major brain cell types, excitatory neurons (Exc) had the highestCYP1B1
expression (Fig. 5D). Finally, eQTL analysis of cell type specific CYP1B1

expression in excitatory neurons showed that the rs2113389 T-allele
was associated with higher cell type-specific CYP1B1 expression levels
(p-value = 0.035; Fig. 5E).

Blood-based DNA methylation QTLs of rs2113389
The DNAmethylation QTL (meQTL) analysis of rs2113389with CpGs in
CYP1B1 in blood identified three CpGs located in the CYP1B1 gene
body28 associated with rs2113389 (p-value < 1 × 10−5; Fig. 5F). The
rs2113389 T-allele was associated with higher CpG expression levels.

Cyp1b1 expression and expression changes in the brain of
AD mice
Cyp1b1 expression was increased in the cortex of 6-month-old hTAU
mice (p-value = 0.038; Fig. 5G). Cyp1b1 expression also significantly
changed with time (genotype*age) in rTg4510 mice (FDR corrected p-
value = 0.040) but not J20 mice relative to wild-type mice (Fig. 5H, I)21.
Cyp1b1 differential expression over time in the TG rTg4510 mice was
associated with entorhinal cortex tau pathology (FDR-corrected p-
value = 0.002; Supplementary Table S5 in Castanho et al.)21.

Discussion
Weperformed aGWASof cortical tau PET and identified and replicated
a novel SNP at the CYP1B1-RMDN2 locus at 2p22.2. Themost significant
SNP at the locus was rs2113389, with the minor allele (T) of rs2113389
associated with higher tau across diagnoses. An additive effect of the
T-allele with APOE4 status and Aβ positivity was also observed, with
APOE4+ andAβ+minor T-allele carriers having the highest tau levels. In
sex-stratified analyses, generally similar resultswere observed. Overall,
these results provide converging evidence that the minor allele (T) of
rs2113389 is a risk variant for high tau. Voxel-wise whole brain analysis
confirmed that the rs2113389 T-allele was associated with tau in AD-
related cortical regions. These findings also support a previous GWAS
of CSF tau, where rs1478361, which is in strong LD with rs2113389
(r2 = 0.96 and D’ = 1.00), was associated with CSF total tau levels
(n = 3,076; β =0.0176; p-value = 0.0295)14. However, recent large-scale
AD GWAS studies have shown that the two SNPs were not significantly
associated with AD with different association directions across the

Fig. 4 | Voxel-wise analysis and visualization of the effect of rs2113389 domi-
nant genotype on tau deposition. A Widespread regions of association between
rs2113389 dominant genotype and tau deposition are observed in the inferior
frontal, parietal, andmedial and lateral temporal lobes, such that those with one or
more minor alleles (T) at rs2113389 show greater tau deposition than CC rs2113389
individuals. Images are displayed at a voxel-wise threshold of p <0.05 with family-
wise error correction for multiple comparisons and a minimum cluster size

(k) = 100 voxels. B Beta-value maps show widespread regions of higher tau
deposition in rs2113389-T carriers relative to non-carriers. Specifically, temporal,
parietal, and frontal lobe tau is greater in minor allele carriers than non-carriers. A
one-way ANCOVA model is used, covaried for age, sex, diagnosis, APOE4 carrier
status, and Aβ positivity. Analyzes include 1154 individuals (829 CC, 325 CT/TT). Aβ
amyloid-beta; ANCOVA analysis of covariance; APOE apolipoprotein E.
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studies (p-value > 0.05)4,29–31. This lack of significant association may
reflect heterogeneity in case-control ascertainment based on clinical
diagnosis and is consistent with a selective association elucidated
using quantitative endophenotype analysis.

The two protein coding genes at the locus identified in this ana-
lysis (CYP1B1 and RMDN2) are highly expressed in the brain in the
frontal and temporal lobes (CYP1B1) and the cortex (RMDN2). Regions

showing higher expression levels overlap with the typical patterns of
tau deposition, suggesting a spatial relationship between gene
expression levels and tau deposition. RMDN2 (Regulator of Micro-
tubuleDynamics 2) is down-regulated in the parahippocampal gyrus in
AD, whileCYP1B1 (CytochromeP450Family 1 Subfamily BMember 1) is
up-regulated in the temporal cortex in AD. The rs2113389 minor allele
is associated with higher temporal cortex CYP1B1 expression levels.
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Fibroblasts andexcitatoryneurons had the highest expression levels of
the CYP1B1, and in excitatory neurons, the rs2113389 minor allele was
associated with higher CYP1B1 expression levels. Blood-based meQTL
analysis also supported the impact of rs2113389 on CpGs within the
CYP1B1 gene, with the rs2113389 T-allele associated with higher CpG
expression. Finally, Cyp1b1 expression was higher in the cortex of 6-
month-old hTAU mice relative to controls. In longitudinal analysis,
Cyp1b1 expression changed with aging in rTg4510 mice but not J20
mice, suggesting Cyp1b1 expression is associated with tau but not
amyloid pathology.

CYP1B1 is of particular interest as the eQTL analysis shows altered
temporal lobe expression in AD patients, and the rs2113389 genotype
is linked to temporal lobe CYP1B1 expression. CYP1B1 is a member of
the cytochrome p450 enzyme family (CYP). CYP is present and active
in the brain and expressed in a region- and cell-specific manner,
including in the blood-brain barrier32–34. CYP is responsible for oxida-
tive metabolism of exogenous and endogenous substrates, potentially
having both neuroprotective and pathologic roles33. CYP is also
involved in modulating blood flow, metabolism of fatty acids, choles-
terol, and neurotransmitters, and mobilization of intracellular
calcium35–38, suggesting multiple potential roles in AD. Previously,
genetic variants in CYP genes have been associated with neurode-
generative diseases, including AD39,40, as well as Aβ and tau35,41–43.
CYP1B1 regulates endogenous pathways involved in themetabolism of
drugs and the synthesis of cholesterols, steroids, and other lipids44.
While several cytochrome P450 family genes have been implicated in
AD, CYP1B1 has not previously been directly implicated in AD39,40,43.
However, CYP1B1 may have multiple potential roles related to AD-
related tau pathology and has been shown to be a regulator of oxi-
dative stress, which promotes angiogenesis45,46. CYP1B1 also promotes
angiogenesis by suppressing NF-kB activity, which is also implicated in
inflammation47. Previous studies suggest that CYP1B1 inhibition
reduced oxidative stress andmetabolized cell products thatmodulate
intracellular oxidative stress; however, a lack of CYP1B1 leads to
increased intracellular oxidative stress in the endothelium48–50. CYP1B1
may play an important role in high fat diet-associated learning and
memory deficits and oxidative damage50. Increased brain oxidative
stress causes cell damage with aging and is an important pathogenic
factor in AD, contributing to tau phosphorylation and the formation of
neurofibrillary tangles51–53. Functional studies for RMDN2 are limited,
only showing that it encodes a protein important for regulating
microtubule dynamics.

Pathway-based analysis identified enrichment in pathways related
to the MHC, postsynaptic membrane, postsynaptic density, synapse

organization, and calcium channel activity. MHC pathways have been
implicated in large-scale AD genetic associations4,29,54, along with spe-
cific MHC alleles55. Microglial activation via MHC class II signaling is
increased in regions of phosphorylated tau56. Dysfunctional synaptic
connections are involved early in AD-related cognitive impairment57,
and tau deposition may induce synaptic impairment and learning
deficits58,59. Studies also suggest a role for tau at dendritic spines in
affecting the trafficking of postsynaptic receptors60,61. Finally, the Ca2+

signaling and homeostasis are implicated in AD pathology62 and have
been linked to tau phosphorylation63,64. Treatments targeting calcium
channels are potential pathways for novel therapeutics for neurode-
generative diseases64.

There are some notable limitations, as this study was primarily
observational and composed only of European ancestry cohorts.
Multiethnic studies are important, and to be generalizable to other
populations, our findings require replication using large community
studies or international collaborations. Although similar methodol-
ogies were used in all cohorts, subtle differences due to Freesurfer
version or slightly different reference regions for SUVR calculation
are possible. Further, all cohorts except AIBL-2 employed the same
tau PET tracer ([18F]flortaucipir), which may have introduced addi-
tional variability. However, the replication of the genetic association
in an independent cohort using a different tau PET tracer lends
confidence to the generalizability of the findings. Minor sex differ-
ences were observed in the pattern of results. Although sex differ-
ences are increasingly recognized as important for precision
medicine in ADRD, the current studywas not designed or powered to
thoroughly test these effects. Future studies that assess the presence
and pattern of sex differences in longitudinal studies with larger
samples are warranted. Even though a number of the cohorts inclu-
ded in the present manuscript have longitudinal follow-up, the cur-
rent study focused primarily on cross-sectional associations. Future
studies to evaluate longitudinal follow-up in these cohorts, including
analyses of longitudinal tau PET phenotypes, are also warranted. The
Allen Human Brain Atlas results suggest that the genes identified in
this analysis are expressed in tau-relevant brain regions. However,
these findings do not indicate that expression of these genes is
exclusive to brain regions with high tau. Notably, the AHBA did not
include patients with ADRD, which limits their utility for disease-
related hypotheses. Finally, although we performed the largest
GWAS of tau PET to date, our meta-analysis had limited statistical
power due to the moderate sample size for genetic association.
Additional independent large cohorts with tau PET and GWAS data
are needed.

Fig. 5 | Gene expression analysis of RMDN2 and CYP1B1 and expression quan-
titative trait locus (eQTL) and DNA methylation QTL (meQTL) analysis of
rs2113389. AD patients show downregulated expression of RMDN2 in the para-
hippocampal gyri (A) and upregulated expression of CYP1B1 in the temporal cortex
(B) relative to CN using brain tissue-based RNA-Seq data from the AMP-AD project
(Panel (A), n = 135 (26 CN, 109 AD); Panel (B), n = 151 (71 CN, 80 AD)). C In an eQTL
analysis, the identified SNP (rs2113389) is associated with CYP1B1 expression levels
in the temporal cortex (n = 257 (188 CC, 69 CT/TT)). One-way ANCOVAmodels are
used in Panels (A–C), and plots represent the mean ± standard error of the mean.
Source data are provided for panels (A–C) as a Source Data file. Cell type-specific
expression levels (D) and eQTL in the excitatory neuron (E) of CYP1B1 gene
(N = 424) are shown. In (D), the x-axis is cell types in ROSMAPDLPFC single-nucleus
RNA-Seq data. The y-axis is the log2 of counts per million mapped reads (CPM) of
CYP1B1gene. Expression levels are computedat thedonor level by aggregating cells
from the same donor. Rare cell types are observed only in a small fraction of
donors. Areas of violin plots are scaled to the number of donors. Fibroblasts (Fib)
has the highest expression of CYP1B1 gene. Among major cell types, excitatory
neurons (Exc) has the highest expression. In (E), the minor allele (T) of rs2113389 is
associated with higher cell type-specific CYP1B1 expression levels in the excitatory
neuron (p-value = 0.035).FDNAmethylationQTL analysis (cis-meQTL) of rs2113389

with CpGs in CYP1B1measured in blood samples from 634 ADNI participants
demonstrate three CpGs, located in the CYP1B1 gene body region, as significantly
associated with rs2113389 (p-value = 7.04× 10−8, 5.43 × 10−9, and 4.73 × 10−12,
respectively). G Cyp1b1 expression (relative mRNA expression levels by qPCR) is
increased in the cortex of 6-month-old hTAU mice consistent with our findings in
human LOAD (p-value = 0.038). The error bars represent the standard error of the
mean. H Cyp1b1 expression (normalized RNA-Seq read counts) significantly chan-
ges with time (genotype*age) in TG rTg4510 mice, suggesting Cyp1b1 is associated
with disease progression in the rTg4510 model. I Cyp1b1 expression (normalized
RNA-Seq read counts) does not change with time (genotype*age) in J20 mice,
suggesting that Cyp1b1 is not associated with amyloid pathology progression. AD
Alzheimer’s disease; ADNI Alzheimer’s Disease Neuroimaging Initiative; AMP-AD
Accelerating Medicines Partnership-AD; ANCOVA analysis of covariance; cis-
meQTL DNA methylation quantitative trait loci; CN cognitively normal; CpG cyto-
sines followed by guanine residues; CPM counts per million; DLPFC dorsolateral
prefrontal cortex; DNA Deoxyribonucleic acid; eQTL expression quantitative trait
loci; Exc excitatory neurons; Fib fibroblasts; hTAU humanized tau; ROSMAP Reli-
gious Orders Study/Memory and Aging Project; RNA-Seq Ribonucleic acid
sequencing; SNP single nucleotide polymorphism.
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In summary, GWASof tau PET identifiednovel genetic variants in a
locus (CYP1B1-RMDN2) that influences MTL and cortical tau levels. The
mechanistic significance of this locus was supported by a range of
independent functional genomic observations in humans and model
systems. Taken together, these results can inform future biomarker
and therapeutic development.

Methods
Participants
The study complies with all relevant ethical regulations. Informed
consent was obtained for all participants according to the Declaration
of Helsinki, and studies were approved by the Human Subjects &
Institutional Review Boards (IRB) at Indiana University (Alzheimer’s
Disease Genomics: Systems Biology and Endophenotypes,
1806870105) as well as the Institutional Review Boards at each parti-
cipating site. All animal studies were performed in accordancewith US
National Institutes of Health guidelines on animal care and were
approved by appropriate Institutional Animal Care and Use
Committees21. Descriptions of all cohorts are found in the Supple-
mentary information (Supplementary Tables 1–12). Participants were
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI; http://
adni.loni.usc.edu), ADNI-Department of Defense (ADNI-DoD), Indiana
Memory and Aging Study (IMAS), Avid A05 clinical trial (A05), Anti-
Amyloid Treatment in Asymptomatic Alzheimer’s (A4) and Long-
itudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN)
studies, Harvard Aging Brain Study (HABS), University of Pittsburgh
Alzheimer’s Disease Research Center (UPitt ADRC), Mayo Clinic Study
of Aging (MCSA), Memory and Aging Project (MAP) at the Knight
Alzheimer’s Disease Research Center (Knight-ADRC), the Australian
Imaging, Biomarker and Lifestyle Study (AIBL; (https://aibl.org.au/),
and the Berkeley Aging Cohort Study (BACS). The discovery sample
included ADNI, ADNI-DoD, IMAS, A05, A4, HABS, UPitt ADRC. The
replication sample included MCSA, MAP-Knight ADRC, AIBL, and
BACS. Post-hoc analyzes of interactions with diagnosis, APOE4, and Aβ
positivity, and voxel-wise analyzes were performed in 1161 individuals
from ADNI, ADNI-DoD, IMAS, A05, A4, and LEARN.

Genotyping and imputation
Participants were genotyped using several genotyping platforms. Un-
genotyped SNPs were imputed separately in each cohort using the
Haplotype Reference Consortium (HRC) data as a reference panel65.
Before imputation, standard sample and SNP quality control (QC)
procedures were performed66. Only non-Hispanic participants of Eur-
opean ancestry by multidimensional scaling analysis were selected67.
Imputation and QC procedures were performed as described
previously68.

Statistical analysis
Genome-wide association analysis (GWAS). Cortical tau deposition
(the weighted average SUVR of all cortical regions from FreeSurfer
version 6.1 parcellation (aparc)) followed a normal distribution after a
rank-based inverse normal transformation. Using imputed genotypes,
a GWAS of cortical tau was performed using a linear regression model
with age, sex, two principal component (PC) factors from population
stratification, APOE4 status, and diagnosis as covariates using PLINK69.
APOE4 status was included as a covariate because its effect was
modeled to understand the contribution of the discovered CYP1B1-
RMDN2 locus above and beyond APOE4 and to assess whether there is
epistasis with APOE4. A fixed effect meta-analysis with an inverse var-
iance weighted approach was performed using METAL, and a hetero-
geneity analysis in METAL was performed to evaluate the possible
effect of study heterogeneity on the results31,54,70. See Supplementary
information for more details. The proportion of variance in tau
explained was assessed using the Genome-wide Complex Trait Analy-
sis (GCTA) tool71.

Gene-set enrichment analysis. Gene-set enrichment analysis was
performed using GWAS summary statistics to identify pathways and
functional gene sets associated with cortical tau deposition using the
GSA-SNP software72, as described in the Supplementary information.

Gene-based association analysis. Genome-wide gene-based asso-
ciation analysis was performed using GWAS p-values and the KGG
software as described previously73,74 and in the Supplementary
information.

Interaction with diagnosis, APOE genotype, and Aβ positivity. The
effect of the top identified SNP (rs2113389 – dominant model) and its
interaction with diagnosis, APOE4 status, and Aβ positivity, on global
and medial temporal lobe (MTL) tau was assessed. Differential effects
by sex were also evaluated using stratified analysis. See methods
in Supplementary information.

Detailed whole-brain imaging analysis. Tau PET SUVR images
(n = 1161) were used in a voxel-wise statistical analysis of the effect of
the top identified SNP on tau using SPM12 (www.fil.ion.ucl.ac.uk/spm/)
in a post-hoc analysis (described in the Supplementary information).

CSF tau analysis. CSF total tau and phosphorylated tau 181 values
from the Roche Elecsys assay75,76 were available for a subset (n = 525;
332 CN, 153 MCI, 40 AD) of the ADNI and ADNI-DoD cohorts. Total tau
and pTau181 levels were not normally distributed, and thus, we
transformed using a natural log before analysis. A one-way ANOVA
with rs2113389 genotype as the independent variable using both an
additivemodel anddominantmodelwas used to test the associationof
rs2113389 genotype and CSF total tau and pTau181 levels, covaried for
age, sex, APOE ε4 carrier status, and diagnosis.

AMP-AD bulk RNA-Seq data in the post‑mortem human brain. Pro-
cessed RNA-Seq data from seven brain regions in three cohorts were
downloaded from the AMP-AD Knowledge Portal (https://doi.org/10.
7303/syn2580853) and analyzed as discussed in the Supplementary
information26. The eQTLGen77 consortium database (n = 31,684) was
used for eQTL of rs2113389 with CYP1B1 expression in blood.

Single-nucleus RNA-Seq (snRNA-Seq) preprocessing and analysis.
Processed snRNA-Seq data from frozen brain tissue specimens
(n = 479) from the dorsolateral prefrontal cortex in the Religious
Orders Study/Memory and Aging Project (ROSMAP) was downloaded
from the AMP-AD Knowledge Portal (https://www.synapse.org/#!
Synapse:syn31512863)27,78.

AllenHumanBrainAtlasdata andanalysis. Regional gene expression
profiles for CYP1B1 and RMDN2 were downloaded from brain-wide
microarray-based transcriptome data from the Allen Human Brain
Atlas (https://human.brain-map.org/microarray/search), as described
in the Supplementary information79,80.

ADNI DNA methylation data. ADNI DNA methylation data was
downloaded from theADNI LONI database (https://adni.loni.usc.edu/),
where Illumina EPIC chips (Illumina, Inc., San Diego, CA, USA) were
used to profile DNAmethylation in 1920 blood or buffy coats samples
including 200duplicate samples according to the Illumina protocols28.
A detailed protocol has been published previously28,81,82, and further
methods are described in the Supplementary information.

AD pathology mouse model analysis. hTau mouse model: Genera-
tion of the hTAU mice, as well as brain extraction and tissue proces-
sing, was described previously19,20,83,84 and in the Supplementary
information. Student’s t-test was performed for qPCR results com-
paring C57BL/6 J (B6; wild type) and hTAU mice. rTg4510 and J20
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mouse model: Mice harboring human tau (rTg4510) and amyloid
precursor protein (J20) mutations were used to investigate gene
expression changes of the top identified gene21. The rTg4510 and J20
mousemodels and experimentalmodels andmethods were described
previously21,85–88, and are briefly summarized, along with statistical
methods used, in the Supplementary information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics for the discovery analysis are available in the Alz-
heimer’s Disease Neuroimaging Initiative Laboratory of NeuroImaging
repository (ADNI LONI; https://ida.loni.usc.edu/pages/access/
studyData.jsp?categoryId=18&subCategoryId=28). Referenced data,
including imaging, cognitive, clinical and genetic data from ADNI, A4,
and ADNI-DoD can be requested through the Laboratory of
NeuroImaging (LONI; https://www.loni.usc.edu/). Imaging data for
AIBL is available through the Laboratory of NeuroImaging (LONI;
https://www.loni.usc.edu/), while genetic and other data is available by
request from the study PIs. Referenced imaging, cognitive, clinical, and
genetic data from the other human cohorts (IMAS, A05, HABS, UPitt
ADRC, BCSA,MCSA, and theKnight ADRC) is not publicly available and
must be requested directly from the study PIs. ADNI DNAmethylation
data was downloaded from the ADNI LONI database (https://adni.loni.
usc.edu/)28. Brain-wide microarray-based transcriptome data from the
AllenHumanBrain Atlas is available through theAllen BrainMapportal
(https://human.brain-map.org/microarray/search). RNA-Seq data is
available through the AMP-AD Knowledge Portal (https://doi.org/10.
7303/syn2580853)26. ROSMAP single-nucleus RNA-Seq data is available
through the AD Knowledge Portal (https://www.synapse.org/#!
Synapse:syn31512863)27. Data is available for general research use
according to the following requirements for data access and data
attribution (https://adknowledgeportal.synapse.org/DataAccess/
Instructions). The data from the rTg4510 and J20 mouse models is
available in a previous paper21. The data from the hTaumousemodel is
provided. No primary data was generated in this study, as all data used
were reference datasets. Source data for the figures included in this
paper are provided. Source data are provided with this paper.
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