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Abstract

Pseudoexfoliation syndrome is a systemic disorder of the extracellular matrix (ECM) with ocular 

manifestations in the form of chronic open angle glaucoma. Elevated levels of TGFβ3 in the 

aqueous humor of individuals with pseudoexfoliation glaucoma (PEX) have been reported. The 

influence of TGFβ3 on the biochemical composition and biomechanics of ECM of human 

trabecular meshwork (HTM) cells was investigated. HTM cells from eye bank donor eyes were 

isolated, plated on aminosilane functionalized glass substrates and cultured in the presence or 

absence of 1 ng/mL TGFβ3 for 4 weeks. After incubation, samples were decellularized and 

decellularization was verified by immunostaining. The mechanics of the remaining ECM that was 

deposited by the treated or the control cells were measured by atomic force microscopy (AFM). 

Imaged by AFM, the surface features of the ECM from both sets of samples had a similar 

roughness/topography (as determined by RMS values) suggesting surface features of the ECM 

were similar in both cases; however, the ECM from the HTM cells treated with TGFβ3 was 

between 3- and 5-fold stiffer than that produced by the control HTM cells. Proteins present in the 

ECM were solubilized and analyzed using liquid chromatography tandem mass spectroscopy (LC-

MS/MS). Data indicate that multiple proteins previously reported to be altered in glaucoma were 

changed in the ECM as a result of the presence of TGFβ3, including inhibitors of the BMP and 

Wnt signaling pathways. Gremlin1and 4, SERPINE1 and 2, periostin, secreted frizzled related 

protein (SFRP) 1 and 4, and ANGPTL4 were among those proteins that were overexpressed in the 

ECM after TGFβ3 treatment.
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INTRODUCTION

The structural organization and biochemical composition of the extracellular matrix (ECM) 

has a profound influence on cellular function. Structural proteins of the ECM, such as 

elastin, collagen, fibronectin, laminin, and fibrillin provide mechanical support for cellular 

adhesion and migration. The ECM is also composed of a number of matricellular proteins 

[thrombospondin, tenacin, cysteine-rich angiogenic inducer 61 (CYR61), secreted protein 

acidic and rich in cysteine (SPARC)], matrix adhesion receptors and molecules (integrins, 

syndecans), and growth factors (transforming growth factor β (TGFβ), connective tissue 

growth factor (CTGF)). Although some of these proteins lend no structural support to the 

ECM, they provide critical functional cues (e.g., growth factor receptor binding, enzymes, 

cell-adhesion, etc.) to facilitate cellular function and cell−matrix interactions. Enzymes that 

cleave peptides, such as matrix metalloproteinases (MMPs), and those that form functional 

cross-links by post-translational modification, such as transglutaminase and lysyl oxidase, 

are also constituents of the ECM microenvironment. Various nonproteinaceous components 

[glycosaminoglycans (GAG)] interact with ECM proteins to form chains of carbohydrate 

rich elements called proteoglycans to facilitate molecular transport, tissue swelling and 

compressibility. Maintaining the integrity and homeostasis of the ECM is vital for normal 

healthy tissue function. Dysregulation of the ultrastructure, protein or GAG composition, 

and enzymatic activity of the matrix all lead to remodeling of the ECM, deposition of 

plaque-like material, and to the progression and maintenance of the diseased state. 

Therefore, understanding the dynamic bidirectional interaction between cells and their 

matrix microenvironment is vital in understanding the homeostasis of the cell.

Pseudoexfoliation syndrome is a systemic disorder of the ECM that affects the eye and other 

organs. The ocular manifestations include the occurrence of small white deposits of fibrillar 

material in the anterior segment, elevated intraocular pressure (IOP), chronic open-angle 

Raghunathan et al. Page 2

ACS Biomater Sci Eng. Author manuscript; available in PMC 2019 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



glaucoma, and cataract.1,2 Resistance to aqueous humor outflow by the trabecular meshwork 

(TM) is one of the primary causes for the increase in intraocular pressure (IOP). In PEX, 

whether this increased resistance is due to the exfoliation material or altered tissue 

morphology or composition of the ECM and/or a combination of both is not known. 

Although the biomechanical characterization of normal and POAG TM has previously been 

reported by our group and others,3−5 the difficulty in obtaining human tissues makes it 

challenging to characterize the mechanics in all types of glaucoma. Also, currently there is a 

paucity of in vivo models for studying cell-ECM dynamics in PEX. However, there is 

consensus that a number of proteins of the ECM and aqueous humor are altered in PEX 

patients.

The protein content in the aqueous humor of patients with PEX is remarkably higher than 

age-matched control patients, or in patients with cataract, or individuals with other primary 

or secondary open angle glaucoma.6−9 Transforming growth factor β (TGFβ) superfamily of 

proteins (TGFβ1, TGFβ2, and TGFβ3) play an essential role in cellular signaling and ECM 

remodeling and is elevated in the aqueous humor of patients with glaucoma.10−14 While 

most studies document elevated levels of TGFβ2 in open angle glaucoma and TGFβ1 in 

PEX, Yoneda et al. demonstrated that TGFβ3 was the most significantly elevated (>10-fold) 

protein from the TGFβ family in aqueous humor of patients with PEX.14 That TGFβ1 and 

TGFβ2 can significantly modulate ECM expressing genes and/or modulate IOP in TM is 

well established.15−18 Surprisingly little is known about the role of TGFβ3 in regulating IOP 

changes or in modulating the biophysical properties and biochemical composition of TM 

ECM. Here, we report the effect of TGFβ3 on the composition and mechanical properties of 

ECM derived from human trabecular meshwork (HTM) cells in vitro and discuss the 

relevancy of findings in the context of ECM changes in TM function.

EXPERIMENTAL SECTION

Isolation and Culture of HTM Cells.

Primary HTM cells were isolated from donor corneoscleral rims (Saving Sight, Columbia, 

MO) as described previously.19 All experiments involving human tissue/cells were 

performed in compliance with the Declaration of Helsinki. HTM cells isolated from three 

donors were used for each experiment and were routinely maintained in Dulbecco’s 

Modified Eagle Medium/Nutrient Mixture F-12 (50:50; DMEM/F-12) supplemented with 

10% fetal bovine serum (FBS), and 1% penicillin/streptomycin/fungizone (Life 

Technologies, Carlsbad, CA). Cells were used between passages three and seven for all 

experiments. The verification of all cultures as HTM cells was determined by response to 

dexamethasone treatment by upregulating myocilin expression.

Treatment with Transforming Growth Factor Beta-3 (TGFβ3).

Cells (25 000 cells/cm2) were cultured on amino-silane modified glass coverslips (for ECM 

mechanics) or glass slides (for ECM proteomics). Briefly, glass substrates were incubated 

with 3-aminopropyl trimethoxysilane overnight under vacuum. Silanized coverslips were 

heat treated at 200 °C for 20 min. Freshly silanized substrates were used for all experiments. 

Primary HTM cells were seeded on these silanized substrates as described above. Cells were 
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treated with TGFβ3 (1 ng/mL) twice a week for 4 weeks. The four week time point was 

chosen to allow sufficient time for matrix deposition and remodeling.

Preparation of Decellularized Matrices.

Following treatment with TGFβ3 or vehicle (phosphate buffered saline), cells were washed 

twice in Hank’s buffered saline solution (HBSS), and then serially washed five times with 20 

mM NH4OH and 0.05% Triton X-100 to rid the matrix of all cells. The matrix was 

subsequently washed five times in HBSS and decellularization was confirmed by 

immunocytochemistry. A schematic for the generation of these matrices is illustrated in 

Figure 1.

Immunocytochemistry.

Decellularization was confirmed by immunocytochemistry. Briefly, cell derived matrices 

were washed gently yet thoroughly in HBSS, fixed in 4% formaldehyde for 20 min. The 

matrix was then labeled for pan-collagen (1:1000 dilution, Abcam, MA), F-actin (1:500 

dilution, AlexaFluor-568 conjugated Phalloidin, Life Technologies, CA), and counterstained 

with DAPI (5 ng/mL final concentration, Life Technologies, CA) for the presence of nuclear 

material. The samples were then imaged using a Zeiss 200 M inverted epifluorescence 

microscope (Carl Zeiss, Germany).

ECM Characterization by Proteomics.

Following 4 weeks of treatment with vehicle (PBS) or 1 ng/mL TGFβ3, samples were 

decellularized as described above. Subsequently, they were rinsed five times in HBSS and 

incubated for 3 min with 150 μL of ECM extraction buffer comprising 4 M guanidine 

hydrochloride and 10 mM dithiothreitol (DTT) in deionized water (dH2O). Samples were 

scraped into a microfuge tube, vortexed for 2 min to ensure dissolution of the ECM, and 

used for proteomic analysis.

Sample Digestion.

Samples were precipitated using the ProteoExtract protein precipitation kit (EMD Millipore, 

MA, USA). The resulting protein pellet was solubilized in 100 μL of 6 M urea in 50 mM 

ammonium bicarbonate (AMBIC). Dithiothreitol (DTT) was added to a final concentration 

of 5 mM and samples were incubated for 30 min at 37 °C. Next, 20 mM iodoacetamide 

(IAA) was added to a final concentration of 15 mM and incubated for 30 min at room 

temperature, followed by the addition of 20 μL of 200 mM DTT to quench the IAA reaction. 

Lys-C/trypsin (Promega, USA) was next added in a 1:25 ratio (enzyme:protein) and 

incubated at 37 °C for 4 h. Samples were then diluted to <1 M urea by the addition of 50 

mM AMBIC and digested overnight at 37 °C. The following day, samples were desalted 

using C18 Macro Spin columns (Nest Group) and dried down by vacuum centrifugation.

LC-MS/MS Analysis.

LC separation was done on a Waters Nano Acquity UHPLC (Waters Corporation, MA) with 

a Proxeon nanospray source. The digested peptides were reconstituted in 2% acetonitrile/

0.1% trifluoroacetic acid and roughly 3 μg (estimated by A280 levels using NanoDrop, DE, 
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USA) of each sample was loaded onto a 100 μm × 25 mm Magic C18 100 Å 5U reverse 

phase trap where they were desalted online before being separated on a 75 μm × 150 mm 

Magic C18 200 Å 3U reverse phase column. Peptides were eluted using a gradient of 0.1% 

formic acid (A) and 100% acetonitrile (B) with a flow rate of 300 nL/min. A 120 min 

gradient was ran with 5 to 35% B over 100 min, 35 to 80% B over 8 min, 80% B for 1 min, 

80 to 5% B over 1 min, and finally held at 5% B for 10 min. Each of the gradients was 

followed by a 1 h column wash.

Mass spectra were collected on an Orbitrap Q Exactive Plus mass spectrometer (Thermo 

Fisher Scientific, CA) in a data-dependent mode with one MS precursor scan followed by 15 

MS/MS scans. A dynamic exclusion of 15 s was used. MS spectra were acquired with a 

resolution of 70,000 and a target of 1 × 106 ions or a maximum injection time of 30 ms. 

MS/MS spectra were acquired with a resolution of 17 500 and a target of 5 × 104 ions or a 

maximum injection time of 50 ms. Peptide fragmentation was performed using higher-

energy collision dissociation (HCD) with a normalized collision energy (NCE) value of 27. 

Unassigned charge states as well as +1 and ions >+5 were excluded from MS/MS 

fragmentation.

Data Analysis.

Database Searching.—Tandem mass spectra were extracted and charge states were 

deconvoluted and deisotoped. All MS/MS samples were analyzed using X! Tandem (The 

GPM, thegpm.org; version X! Tandem Sledgehammer (2013.09.01.1)). X! Tandem was set 

up to search the Uniprot Homo sapiens database (July 2014, 68370 entries) plus an equal 

number of reverse sequences and 60 common nonhuman laboratory contaminant proteins. 

X! Tandem was searched with a fragment ion mass tolerance of 20 PPM and a parent ion 

tolerance of 20 PPM. Carbamidomethyl of cysteine was specified in X! Tandem as a fixed 

modification. Glu → pyro-Glu of the N-terminus, ammonia-loss of the N-terminus, gln → 
pyro-Glu of the N-terminus, deamidation of asparagine and glutamine, oxidation of 

methionine and tryptophan, and dioxidation of methionine and tryptophan were specified in 

X! Tandem as variable modifications.

Criteria for Protein Identification.—Scaffold (version Scaffold_4.3.0, Proteome 

Software Inc., Portland, OR) was used to validate MS/MS-based peptide and protein 

identifications. Peptide identifications were accepted if they could be established at a 99.0% 

probability by the Scaffold Local FDR algorithm this corresponded to a 0.23% spectra decoy 

FDR and a 4% protein decoy FDR with 1 identified peptide per protein. Protein probabilities 

were assigned by the Protein Prophet algorithm.20 Proteins that contained similar peptides 

and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the 

principles of parsimony. Proteins sharing significant peptide homology were grouped into 

clusters.

Contact Mechanics.

The mechanical properties of cell derived ECM were determined using the MFP-3D Bio 

AFM (Asylum Research, Santa Barbara, CA) coupled with a Zeiss Axio Observer inverted 

microscope (Carl Zeiss, Thornwood, NY). Force curves were obtained using silicon nitride 
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cantilevers (PNP-TR-50, nominal spring constant (κ) of 0.32 N/m and half angle opening of 

35°, NanoAndMore, Lady’s Island, SC) modified by incorporation of a borosilicate bead 

(nominal radius, R = 5 μm, ThermoScientific, Fremont, CA, USA) at the free end of the 

cantilever; These colloidal probes were calibrated for deflection inverse optical lever 

sensitivity (Defl InvOLS) by indentation in HBSS on glass and then the actual spring 

constant of the cantilever was determined by the thermal method using the Asylum Research 

software. All samples were equilibrated in HBSS for 30 min prior to obtaining 

measurements. For all samples, five force curves were obtained from at least seven different 

positions.

Elastic modulus of each sample was obtained by fitting indentation force vs indentation 

depth of the sample with an overlay of the theoretical force based on the geometry-

appropriate Hertz model for spherical tip (eq 1) as described previously.21−23

F = 4
3

E
1 − ν2δ3/2R1/2 (1)

where F is force applied by the indenter, E is Young’s modulus, v is Poisson’s ratio, δ is 

indentation depth, and R is radius of the tip. All biological samples were assumed as 

incompressible materials because of their high water content and therefore the Poisson’s 

ratio was assumed to be 0.5.24−28 Determining the accurate indentation depth across which 

the biological sample behaves as a linear-elastic material is difficult from the F vs δ curves. 

Thus, the elastic regime of a viscoeleastic tissue, where E is constant over a restricted 

indentation depth, was determined from a plot of E versus δ values.29

Imaging the ECM.

Immediately after obtaining force measurements on the decellularized ECM samples, they 

were rinsed thoroughly in dH2O and air-dried overnight at 37 °C. ECM samples were then 

imaged in contact mode using an AC240TS cantilever (nominal κ = 1.5 N/m; 

NanoAndMore) at 500 pN applied force and 0.3 Hz.

Statistical Analysis.

All mechanics data are represented as box and whisker plots to demonstrate data 

distribution. Statistical comparison of mechanics between vehicle and TGFβ3 treated cells 

was done using Mann−Whitney U-test and results are indicated in the plots. Shotgun 

proteomics data were analyzed using Scaffold Viewer (Proteome Software Inc., OR). Using 

the built-in features of the software normalized total spectral counts from the three different 

cell cultures were compared for fold-change between the control and TGFβ3 samples. The 

relative abundance between the two groups was compared using Fisher’s exact test.30

RESULTS

HTM cells from all three donors were cultured for 4 weeks in the presence or absence of 1 

ng/mL TGFβ3 to allow for deposition of ECM. Decellularization after treatment with 

NH4OH was confirmed by immunocytochemistry (Figure 2). All ECM samples stained 
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positively for pan-collagen simultaneously being devoid of cytoskeletal or nuclear 

components as evidenced by a lack of F-actin or DAPI staining, respectively. Analysis of 

force vs indentation curves to determine the elastic moduli of HTM cell derived ECM 

revealed that TGFβ3 treated cells deposited a significantly stiffer ECM compared with 

control cultures (Figure 3). The elastic moduli for ECM derived from control cells ranged 

between 0.17−0.34 kPa with a mean of 0.26 ± 0.12 kPa (mean ± standard deviation), 

whereas those derived after TGFβ3 treatment were between 0.90 and 1.07 kPa with a mean 

of 0.98 ± 0.13 kPa (mean ± standard deviation).

Concurrent with changes to the elastic moduli of the ECM, morphological (topographical) 

alterations to the deposited ECM were assessed by imaging using the AFM. Surface 

topography of the ECM deposited by TGFβ3 treated cells appeared similar to control cells. 

Quantitative analysis of 4 random locations revealed that the root-mean-square (RMS) of 

control-cell-derived ECM was 70 ± 18.31 nm (mean ± standard deviation) and that of 

TGFβ3-derived matrix was 97.69 ± 7.01 nm (mean ± standard deviation) (Figure 4). 

Although TGFb3 treated cells deposited a stiffer matrix, no statistically significant 

differences were observed between the two groups with regards to surface topography of the 

ECM as determined by RMS values. Further studies are required to determine subtle 

alterations in the three-dimensional ultra-strcutre of ECM between the two groups.

Biochemical composition of ECM derived from control and TGFβ3-treated cells were 

determined by performing mass spectrometry and subsequent analyses of spectral counts; 

4935 proteins were identified. Only proteins that were altered by at least 1.3-fold with p-

values less than 0.05 (Fisher’s exact test) in all three cell cultures for either control or 

TGFβ3-treated samples were used for functional analysis (Figure 5 and Table 1). Of specific 

interest, secreted frizzled-related protein 1 and 4 (SFRP1 and SFRP4), plasminogen activator 

inhibitor type 1 (SERPINE1), angiopoietin-like 4 (ANGPTL4), periostin (POSTN), gremlin 

1 (GREM1), and fibroblast growth factor 5 (FGF5) were overexpressed greater than 2-fold, 

whereas interalpha-trypsin inhibitor heavy chain 3 (ITIH3) and melanotransferrin (MFI2) 

were decreased 2-fold in the ECM derived from TGFβ3 treated cells (Table 2). The data set 

from this study can be downloaded from the MassIVE proteomics repository (MassIVE ID# 

MSV000078897) at ftp://MSV000078897@massive.ucsd.edu.

DISCUSSION

The deposition and turnover of ECM in the TM is critical to understanding regulation of 

outflow facility, intraocular pressure and the mechanobiology of glaucoma. In PEX, elevated 

IOP has been largely attributed to the blockage of the TM by exfoliation material;31 

however, the extent to which TM cell dysfunction contributes to ocular hypertension is less 

known. The precise extent to which either of these contributes to the inhibition of outflow 

facility is poorly understood. Although a number of studies indicate a significant 

involvement of the TGFβ superfamily of proteins in this disease,12,14,32−37 most have 

concentrated on the role of TGFβ1 and 2. Little is known of the effects of TGFβ3 on ECM 

remodeling in the TM, although its ability to stimulate ECM deposition by corneal 

keratocytes has been previously demonstrated.38
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Here, we demonstrate that chronic TGFβ3 treatment significantly alters the biophysical 

properties and biochemical composition of matrix proteins deposited by TM cells. Tellingly, 

the ECM deposited by TGFβ3 treated cells was three-to-5-fold stiffer (greater elastic 

modulus) than that deposited by control HTM cells. Our group and others have 

demonstrated that substrate stiffness can alter cytoskeletal organization and protein/gene 

expression in various cell types including HTM cells.39−44 Although most studies performed 

to investigate the short-term effect of substratum stiffness employ polymeric hydrogels or 

collagen scaffolds/gels, to the best of the authors’ knowledge, there are no studies that have 

investigated the effects of altered biomechanical properties of cell-derived matrices on 

cellular function. The methodology described here to generate TM cell-derived matrices 

provides a novel and potentially important tool for studying HTM cell− ECM interactions 

during differentiation, mechanotransduction, and ECM remodeling.

With TGFβ3 treatment, not only was the ECM stiffer, but a number of proteins in the 

extracellular milieu pertinent to HTM function were significantly altered. Most notably, 

secreted frizzled related protein, periostin, gremlin, angiopoietin like protein, and 

plasminogen activator inhibitor protein 1 were all overexpressed 2-fold or greater in ECM 

deposited by TGFβ3-treated cells. Gremlin, an antagonist of bone morphogenic protein 

signaling (BMP), is reported to be overexpressed in fibrosis and in epithelial-mesenchymal 

transition (EMT).45−48 Of particular importance, gremlin was reported to inhibit BMP-4 

activity, thereby promoting TGFβ2 signaling in cultured HTM cells and was shown to 

increase outflow resistance in perfusion cultured human eye.49 Although it has been 

speculated that gremlin may exaggerate the pro-fibrotic effects of TGFβ1 and 2 in the TM, 

our data suggest that TGFβ3 may participate in increasing gremlin expression in the 

extracellular microenvironment, thus resulting in adverse TGFβ signaling feedback for 

remodeling the TM ECM.

Angiopoietin-like (ANGPTL) proteins are a family of glycoproteins that have long been 

known to mediate glucose and lipid metabolism and inflammation. The most widely 

reported protein of this family in glaucoma is ANGPTL-7, which is known to be 

overexpressed in aqueous humor of glaucomatous patients50 and in TM cells treated with 

dexamethasone and TGFβ2.18,51−53 TGFβ3 stimulated expression of ANGPTL4 has 

previously been reported during chondrogenic differentiation of mesenchymal stem cells.54 

Little is known of the role of ANGPTL4 in the TM. ANGPTL4 in its active form can bind to 

heparin sulfate proteoglycans, fibronectin, and vitronectin, thus delaying their degradation 

by matrix metalloproteinases (MMPs).55,56 Delayed degradation of ECM proteins can 

potentially impact the cell−ECM interactions, such as cell spreading and migration, via 

altered integrin signaling, focal adhesions, and cytoskeletal remodelling. Specifically, 

ANGPTL4 is known to directly interact with integrins β1 and β5.57 The direct interaction of 

integrin αvβ1 with fibronectin allows for a stronger force to be exerted by cells on rigid 

matrices.58 The extent to which ANGPTL4 may compete with fibronectin to bind to β1 

integrins in HTM cells or its subsequent impact on cell−ECM interaction is not known at 

this time.

Another ECM protein that can associate with TGFβ, tenascin, and fibronectin is periostin. 

Overexpressed in the ECM deposited by TGFβ3 treated cells, periostin is a critical 

Raghunathan et al. Page 8

ACS Biomater Sci Eng. Author manuscript; available in PMC 2019 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



matricellular protein whose expression levels strongly correlate with calcification, collagen 

deposition, collagen cross-linking, and fibrillogenesis.59−62 Cross-linking of collagen would 

alter biomechanical properties resulting in a stiffer ECM. Indeed, perisotin was up-regulated 

in TM cells subjected to mechanical stretch and in the optic nerve head of rat models with 

elevated IOP.63,64 Another protein that accumulates with collagen fibers and is a positive 

regulator of fibrosis is the extracellular isoform of adipocyte enhancer binding protein 1 

(AEBP1).65−67 AEBP-1 was also found to be overexpressed with TGFβ3 stimulated HTM 

derived ECM.

Both ex vivo and in vivo studies have demonstrated that treatment of TM cells with the Wnt 

antagonist, secreted frizzled related protein (SFRP1) elevates IOP and reduces outflow 

facility.68 We have previously shown in vitro that HTM cells cultured on substrates whose 

stiffness mimics glaucoma-tous TM had elevated SFRP1 expression.39 In this study, we 

report that chronic TGFβ3 treatment resulted in elevated secretion of SFRP1 and 4 by HTM 

cells demonstrating a link between Wnt inhibition, TGFβ signaling, and stiffness. The 

extended presence of Wnt inhibitors in the extracellular milieu may perturb Wnt signaling, a 

major pathway implicated in glaucoma, in HTM cells. The co-occurrence of these factors 

suggests complex and redundant interactions between the molecules implicated in the onset 

and progression of glaucoma, where activation of a single signaling process leads to the 

induction of other factors known to independently induce glaucoma.

Although a number of proteins could potentially result in Wnt antagonism or collagen cross-

linking, or for those promoting fibrosis that were overexpressed, the most markedly inhibited 

proteins were inter-α-trypsin inhibitor heavy chain 3 (ITIH3) and melanotransferrin (MFI). 

ITIH3 is most recognized to interact with hyaluronan, a nonsulfated glycosaminoglycan, to 

stabilize the matrix.69,70 Hylauronan is a major component of the TM ECM; but a role of 

ITIH in glaucoma, remodeling of the TM ECM or in pseudoexfoliation has not been 

previously reported. Melanotransferrin (MFI), a glycosylated protein, is known to activate 

plasminogen activator (PA) and result in cell detachment.71,72 Inhibited expression of MFI 

combined with overexpression of plasminogen activator inhibitor 1 (PAI-1/SERPINE1) in 

ECM of TGFβ3-treated HTM cells suggests the likelihood of stronger cell attachment. In 

aggregate, these changes in protein expression identify new mechanistic targets for research 

in PEX, and further research will be required to understand their contribution to the cellular 

and extracellular milieu of the TM.

CONCLUSION

The results presented in this study, taken in aggregate, suggest that TGFβ3 may play a 

significant role in modulating the biomechanics and biochemical composition of ECM 

deposited by TM cells. Specifically, overexpression of proteins that are markers of fibrosis, 

calcification, enhancers of cell−substratum adhesion and force dynamics, and inhibitors of 

matrix degradation indicates that TGFβ3 signaling in the TM may be a critical contributor to 

the increased resistance to outflow facility of the TM and the elevation of IOP in PEX.
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Figure 1. 
Schematic illustrating the methodology to generate cell derived extracellular matrices 

(ECM). (A) Glass coverslips were functionalized with 3-aminopropyl trimethoxysilane. (B, 

C) HTM cells were cultured on silanized glass coverslips for 4 weeks either untreated or 

treated with 1 ng/mL TGFβ3. (D) Cultures were decellularized using ammonium hydroxide 

to expose the ECM deposited by cells.
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Figure 2. 
Representative images of HTM cell-derived ECM from control or TGFβ3 treated cultures. 

Absence of staining for F-actin (Phalloidin/red) and nuclei (DAPI/blue) with abundant signal 

for pan-collagen immunostaining (green) demonstrated the presence of ECM devoid of 

HTM cells after they were removed with ammonium hydroxide. Scale bar represents 50 μm.
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Figure 3. 
Elastic modulus of ECM, measured by atomic force microscopy (AFM) using a colloidal 

probe (~5 μm radius), derived from TGFβ3 treated cells were significantly higher than those 

from control cultures. Results are mean ± standard error in mean from 7 to 10 locations, 5 

force curves each location, from three donors. ***p <0.001 Mann−Whitney U-test.

Raghunathan et al. Page 17

ACS Biomater Sci Eng. Author manuscript; available in PMC 2019 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Representative atomic force microscopy (AFM) images (height trace) of surface topography 

of ECM derived from TGFβ3-treated and control cells in contact mode in air. There were no 

apparent diffrerences visible between ECM obtained from either treatment. This was 

validated by the lack of difference observed in root-mean-square (RMS; an indicator of 

surface roughness) values of the ECM topography.
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Figure 5. 
Histogram illustrating log to the base 2-fold changes of ECM protein expression comparing 

TGFβ3 with control cultures as identified by X! Tandem LC-MS/MS. Proteins that were 

upregulated are in blue and those downregulated are in red comparing TGFβ3 with control 

cultures.
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Table 1.

Gene Ontology (GO) Classification of Proteins Identified by Proteomicsa

category GO:TERM genes P-value

extracellular region GO:0005576 FGF5, AEBP1, A2M, LTBP3, POSTN, GREM1, GREM2, TIMP3, 
AHSG, SERPINE2, CTGF, SERPINE1, COL12A1, ITIH3, TFPI2, 
PRSS12, CYR61, ANGPTL4, PLEK, MFI2, CCDC80, NID2, SFRP1, 
THSD4, SFRP4, SULF1, MEGF6

0.0000000001

extracellular region part GO:0044421 FGF5, A2M, CCDC80, POSTN, NID2, GREM1, GREM2, TIMP3, 
AHSG, SERPINE2, SFRP1, CTGF, THSD4, SFRP4, SULF1, 
COL12A1, TFPI2, PRSS12, ANGPTL4

0.0000000008

Extracellular matrix GO:0031012 CTGF, THSD4, CCDC80, COL12A1, POSTN, NID2, TFPI2, TIMP3, 
PRSS12, AHSG, ANGPTL4

0.0000001976

proteinaceous extracellular matrix GO:0005578 CTGF, THSD4, CCDC80, COL12A1, POSTN, NID2, TFPI2, TIMP3, 
ANGPTL4

0.0000114225

extracellular space GO:0005615 FGF5, A2M, SERPINE2, SFRP1, SULF1, SFRP4, GREM1, GREM2, 
AHSG, ANGPTL4

0.0004519762

extracellula matrix part GO:0044420 CCDC80, COL12A1, NID2, TIMP3, PRSS12 0.0006823987

actin cytoskeleton GO:0015629 PFN1, LIMA1, CALD1, TPM2, FLNB 0.0134600894

basement membrane GO:0005604 CCDC80, NID2, TIMP3 0.0294793790

a
Table documents the important biological functions (with greatest statistical significance for enrichment) as defined by the GO classification in the 

collected proteome data set of ECM from TGFβ3 treated cells that were altered at least 1.3-fold in comparison with control cultures using DAVID 
proteomic tool. The enrichment P-value (compared to the theoretical human proteome) is calculated based on EASE score, a modified Fisher’s 
exact test, and ranges from 0 to 1. Fisher’s Exact P-value = 0 represents perfect enrichment.
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Table 2.

Gene Ontology (GO) Classification of Proteins, Altered 2-fold, Identified by Proteomicsa

category term genes P-value

extracellular region GO:0005576 FGF5, AEBP1, PLEK, SFRP1, SFRP4, MFI2, SERPINE1, POSTN, ITIH3, GREM1, 
ANGPTL4

0.00006

extracellular region part GO:0044421 FGF5, SFRP1, SFRP4, POSTN, GREM1, ANGPTL4 0.00683

extracellular space GO:0005615 FGF5, SFRP1, SFRP4, GREM1, ANGPTL4 0.01112

a
Table documents the important biological functions (with greatest statistical significance;cance for enrichment) as defined by GO classification in 

the collected proteome data set of ECM from TGFβ3-treated cells that were altered at least 2-fold in comparison with control cultures using 
DAVID proteomic tool. The enrichment P-value (compared to the theoretical human proteome) is calculated based on EASE score, a modified 
Fisher’s exact test, and ranges from 0 to 1. Fisher’s exact P-value = 0 represents perfect enrichment.
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