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ABSTRACT OF THE DISSERTATION

Methods and applications of integrating single nucleus and bulk tissue RNA sequencing

by

Marcus Fernando Alvarez

Doctor of Philosophy in Human Genetics

University of California, Los Angeles, 2022

Professor Päivi E. Pajukanta, Chair

Obesity typically precedes and accompanies the development of cardiometabolic diseases (CMD)

that lead to increased morbidity and mortality. One of these disorders is non-alcoholic fatty liver

disease (NAFLD), which encompasses a spectrum of varying degrees of fat accumulation and

inflammation in the liver. More severe forms of NAFLD, such as non-alcoholic steatohepatitis

(NASH), lead to a higher risk of developing hepatocellular carcinoma (HCC), the most prevalent

form of liver cancer. Adipose tissue dysfunction in obesity can lead to increased circulating free

fatty acids, and thus to ectopic lipid deposition in the liver. Left unchecked, lipotoxicity in the

liver can result in inflammation, cell death, fibrosis, and ultimately the development of HCC. In

both adipose and liver tissues, non-parenchymal cells, such as vascular and immune cell-types,

play important roles in the normal function of these tissues and the pathophysiology of obesity,

NAFLD, and HCC. A holistic approach to studying cell-types in a global manner would therefore

greatly enhance our understanding of these common obesity-related diseases.

Single-cell technologies, such as single-cell RNA-sequencing (scRNA-seq), assay individual

cells and provide an excellent tool to study cell-type changes. While these approaches provide

high resolution, they are currently costly and low-throughput. Traditional methods that measure
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molecular phenotypes at the tissue level are therefore still more practical. These assess a composite

sum of cells present in the sample or biopsy, leading to inherent uncertainty in whether observed

results are due to changes at the compositional level, cellular level, or both. Given these limitations,

I aimed to integrate bulk-tissue RNA-sequencing (RNA-seq) and scRNA-seq data to leverage larger

sample sizes in bulk RNA-seq and higher resolution in scRNA-seq.

The application of single-cell technologies is especially promising for biobanks, as they can

contain multiple levels of data on participants to uncover novel associations. Tissues are typically

stored frozen, however, and this usually requires nuclei suspensions for single-nucleus RNA-seq

(snRNA-seq), whereas whole cells would typically be used for scRNA-seq. This presents chal-

lenges for current droplet-based technologies. RNA from the ambient pool of lysed cells and

nuclei can encapsulate into droplets, confounding results. In Chapter 2, I present a computational

method to remove empty droplets from gene expression data (Alvarez et al. 2020). This allows for

cleaner downstream data analysis by ensuring that only droplets with nuclei or cells are used.

As current scRNA-seq technologies are low-throughput, their application to population-based

studies and cohorts are limited. Present scRNA-seq technologies have lower throughput compared

to bulk-tissue RNA-seq, which are typically available in higher sample sizes. In Chapter 3, I

developed a method to help address this methodological gap. This approach, called Bisque (Jew

et al. 2020), estimates cell-type composition in bulk RNA-seq data sets using single cell level

reference data from the same tissue. The estimated cell-type proportions can be associated with

sample-level data to uncover relevant cell-types, or they can be included as covariates in a model

to reduce confounding caused by cell-type heterogeneity. One advantage of our method is that it

requires only a minimum amount of information in the form of cell-type markers. This makes it

attractive for existing data sets, which may not have accompanying single-cell level RNA-seq data.

In the fourth chapter of this dissertation, I present our application of snRNA-seq to HCC.

Carcinomas, such as HCC, are typically characterized by high amounts of tissue heterogeneity.

Larger scale cancer cohorts usually lack single-cell level data, making interpretation of bulk-tissue

results challenging. Here, I integrated HCC single-cell level experiments with relatively large
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HCC case-control bulk RNA-seq cohorts. The results from these analyses highlighted the role that

proliferating cells play in HCC (Alvarez et al. 2022). These cycling cells were highly enriched

in cancer tissue, as expected, and were prognostic of poor survival outcomes consistently in two

independent cohorts. Furthermore, we observed that individuals with TP53 mutations have higher

levels of these proliferating cells. Thus, our integration helped to interpret tumor gene expression

changes as cell-type composition changes.

In the fifth chapter, I present our human adipose tissue snRNA-seq results, showing changes in

obesity and insulin resistance (Alvarez et al. manuscript in preparation). We applied multiplexing

to increase our snRNA-seq sample size to roughly 100 subcutaneous adipose samples and over

100,000 nuclei, providing unprecedented resolution of human adipose tissue. This allowed us to

identify finer resolution subcell-types, or cell states, which are more challenging to study as they

are lower in frequency and exhibit more subtle differences. In addition to substantiating previous

findings, we identified subcell-types associated with CMD. Then, we apply integrative approaches

to corroborate these cell state changes in adipose bulk RNA-seq. Overall, our results show that

both main cell-type and subcell-type variations are associated with metabolic traits.

In summary, this dissertation presents my work on the integration of snRNA-seq and bulk-

tissue RNA-seq to leverage distinct advantages provided by each. This has allowed us to gain a

better understanding of the origin of gene expression changes in CMD.
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experiments and analysis.

Chapter 5 titled “Human adipose single nucleus RNA-seq reveals an adipocyte axis associ-

ated with cardiometabolic disease” is a manuscript currently in preparation. The authors that con-

tributed to this study were Marcus Alvarez, Elior Rahmani, Zeyuan Chen, Oren Avram, Birgitta W.

van der Kolk, Niko Darci-Maher, Karen L. Mohlke, Kirsi H. Pietiläinen, Eran Halperin, Markku
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CHAPTER 1

Introduction and background

1.1 Obesity-related cardiometabolic disorders

Obesity afflicts a large percentage of the population and predisposes individuals to more threat-

ening comorbidities, such as type 2 diabetes (T2D) and cardiovascular disease (CVD). Obesity

has risen in prevalence globally due to fat and sugar rich diets combined with physical inactivity.

Current studies estimate the rate of obese adults in the U.S. at around 34% [1], and some studies

predict nearly 1 in 2 adults will be obese by 2050 [2]. As a high BMI level is a substantial risk

factor for these common comorbidities, obesity also imposes vast economic costs on the society

[3]. Obtaining more refined cell-type and tissue level knowledge on the pathophysiology of obesity

will ultimately help better address this health epidemic.

Given the widespread nature of obesity, we have a general understanding of its risk factors.

Two factors, in varying degrees, interact to give a higher obesity predisposition: environment and

genetics. The environment of an individual includes contexts and behaviors that lead to higher en-

ergy intake compared to expenditure, such as calorie-rich diets and physical inactivity [4]. Genetic

factors encompass a spectrum of rare and common variation that typically, but not exclusively and

deterministically, affect appetite control in humans [5]. While numerous genetic studies of obesity

and BMI have revealed hundreds of associations, many loci maintain an elusive mechanism by

which they act. For example, the association at the FTO locus is one of the strongest and most

validated for BMI, yet studies have shown distinct mechanisms through which this gene acts [6].

Therefore, we still have an incomplete understanding of the pathogenesis of aberrant weight gain.
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The principal site of action in obesity is adipose tissue, the fat-storing organ of the body. Ex-

cess energy intake leads to fat storage in the form of triglycerides (TGs), which are energy-dense

molecules that can be efficiently packed into lipid droplets. Adipose tissue expands and remodels

to accommodate increasing amounts of these TGs [7]. Adipocytes, the parenchymal fat-storing

cells of adipose, can expand in size (hypertrophy) and increase in number (hyperplasia) to drive

this volume expansion [8]. While fat storage is a physiologically normal process, its excess can

be accompanied by unhealthy abnormalities. A major feature of obesity is systemic inflammation

characterized by inflammatory cytokines in the blood [9]. This is paralleled by local immune cell

infiltration in the adipose tissue. Macrophages were one of the first immune cells found enriched

in obese fat depots [10]. Additionally, T cells have been found to increase with weight gain [11].

Overall, fat tissue expansion is accompanied by complex interactions with different organs and

between various cells within adipose tissue itself.

One of the key interacting organs in obesity is the liver. Adipose releases free fatty acids (FFAs)

from hydrolysis of TG and the liver takes them in from the blood. These FFAs are stored again

as TGs in lipid droplets, which can later be secreted in VLDL particles or degraded. In obesity,

and especially in insulin resistant states, excessive FFA release and liver uptake can lead to an

imbalance favoring lipid droplet formation. This excess of lipid droplets in the liver is known as

hepatic steatosis, which is part of a spectrum of non-alcoholic fatty liver disease (NAFLD). The

positive connection between obesity and NAFLD has been shown in epidemiological studies [12].

Furthermore, the presence of additional metabolic disorders, such as T2D and hypertension, is

associated with more severe forms of liver disease [13]. These include the presence of inflam-

mation, known as non-alcoholic steatohepatitis (NASH), and liver fibrosis and cirrhosis. While

simple steatosis is usually benign, the progression of NASH and fibrosis can lead to hepatocellular

carcinoma (HCC), the most common form of liver cancer with a high mortality rate [14]. This

involves multiple mechanisms and cell-types that include the DNA damage response, metabolic

stress, stellate cell activation, and inflammation [14].

Obesity, its associated CMDs, NAFLD/NASH, and HCC are characterized by complex pro-
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cesses involving changes in parenchymal cells and their interactions with non-parenchymal cells,

such as vascular and immune cells. While progress has been made in characterizing these changes,

much is still unknown. For example, adipocyte morphology changes in obesity and insulin re-

sistance have been studied [15] but the precise changes of molecular pathways in vivo are still

unknown. Detailed investigations of these processes in humans could therefore elucidate many

additional mechanisms involved in the pathogenesis of these CMDs.

1.2 Single-cell technologies

Gene expression in cells or tissues can provide valuable insights into biological processes. The

encoded proteins serve specific functions, and they typically act in concerted networks to form

pathways involved in a myriad of cellular processes [16]. Gene expression can therefore reflect

the state of a cell. The comparison of gene expression across two contexts, i.e. differential gene

expression, is also useful to discover changes in cellular pathways.

RNA sequencing (RNA-seq) is a powerful approach to measure gene expression and carry out

differential gene expression [17]. RNA is isolated from a sample of interest, converted to cDNA,

and adapted into a library for sequencing [17]. A distinguishing feature of RNA-seq is the ability

to profile transcription genome-wide, permitting hypothesis-free discoveries. Numerous studies

across various fields have successfully applied RNA-seq to perform differential gene expression

in human tissues [18, 19]. Although many insights can be derived from the application of bulk-

tissue RNA-seq, the measure is a composite sum of all cells present in the sample. Consequently,

the source of observed changes in gene expression is uncertain. Variation in cell-type proportion,

cell-type-specific expression, or both could cause differences in expression [19].

The limitations of bulk-tissue approaches have brought forth the field of single-cell genomics.

The overarching goal of this field is to provide measurements on individual cells from a sam-

ple. Single-cell RNA-seq can thus provide insight into cell-types present in heterogeneous tissues.

Earlier methods accomplished cell separation using flow sorting or micropipettes [20]. These
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plate-based methods typically work in the order of hundreds of cells. Later developments using

microfluidics have allowed experiments to scale to thousands of cells simultaneously [21, 22]. Var-

ious adaptations in technologies and sequencing methods have provided assays to measure diverse

molecular phenotypes, such as the epigenome [23]. The use of nuclei instead of cells for single-

nucleus RNA-seq (snRNA-seq) permits profiling of frozen tissues, where isolation of cells would

be challenging [23, 24].

The ability to profile single cells within a heterogenous pool is particularly suited to appli-

cations of complex solid tissues. Single-cell studies in the brain have revealed many previously

unknown subtypes within known major cell-types [25]. By leveraging splicing dynamics, it also

is possible to infer a temporal ordering of cells along differentiation trajectories [26]. Further-

more, single-cell applications have been especially successful in the field of cancer genomics by

dissecting tumor heterogeneity [5] and profiling T cell exhaustion [22].

Although powerful in its resolution, single-cell genomics is currently limited by its relatively

small scale capabilities. The current cost and low-throughput nature of these approaches mean that

the sample sizes are roughly 10-100 times smaller than with bulk-tissue methods. Methodologies

have been adapted to circumvent this limitation. Samples with natural genetic variation, such

a cohort of individuals, can be pooled and later de-multiplexed by leveraging genetic variation

inherently profiled in sequencing reads [28]. Deconvolution and decomposition methods estimate

cell-type proportions in bulk-tissue data with larger sample sizes [29, 30, 2]. Thus, the development

of approaches that increase sample sizes and integrate across bulk-tissue experiments allow for

population-based association studies at cell-type resolution.

1.3 Contributions of this thesis work to the current state of knowledge

The second chapter of this thesis details our work in developing a method to computationally pro-

cess single-cell level RNA-seq data from frozen human tissues [1]. Proof-of-concept experiments

for single-cell technologies have typically used fresh tissues, such as blood, in which isolation of
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a cell suspension is relatively straightforward. However, many well-phenotyped biobanks store

frozen tissue, for which obtaining a clean suspension of cells or nuclei is technically challenging.

Cells are susceptible to lysis when thawed, and higher amounts of ambient RNA tend to encapsu-

late in droplets. This makes cell/nucleus identification more difficult. Our approach, called Debris

Identification using Expectation Maximization (DIEM), removes empty and highly contaminated

droplets from single-cell and single-nucleus RNA-seq experiments. We show that this results in

a higher level of certainty in clustering and downstream results. Overall, our tool can help re-

searchers take advantage of frozen tissues for single-cell level investigations.

In the third chapter of this thesis, I describe our computational approach that helps integrate

single-cell and bulk-tissue RNA-seq [2]. This integration leverages the advantages of each method

for association studies where larger sample sizes are required. Our tool, called Bisque, estimates

cell-type proportions in bulk-tissue RNA-seq using single-cell level data. Either overlapping sam-

ples or cell-type marker information can be used to decompose bulk samples. This approach is

useful for researchers to estimate cell-type proportions for use in association studies. Cell-type

abundance can be studied directly to infer novel biological connections or included as a covariate

to remove this variation if treated as a confounder.

The fourth chapter of this thesis presents an application of the above two methods to single-cell

level RNA-seq data of HCC liver tumor and non-tumor samples [3]. Previous single-cell stud-

ies in HCC have been limited by their sample sizes, making population-level inferences of HCC

cell-types challenging. We first integrated our own HCC snRNA-seq data with two previously pub-

lished data sets to maximize our power to detect cell-types. Then, we used this integrated reference

to estimate proportions in bulk RNA-seq cohorts. This integration elucidated the importance of a

proliferating cell-type in HCC survival outcomes and its association with TP53 mutations.

In the fifth chapter of this thesis, I describe results from our adipose tissue snRNA-seq analy-

sis (Alvarez et al manuscript in preparation). Here, we multiplexed samples using natural genetic

variation to sequence subcutaneous adipose tissue nuclei from over 100 individuals. In addition,

we combined adipose bulk-tissue RNA-seq data, consisting of over 300 individuals, to validate our
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results. The main contributions of this work are our subcell-type analysis. We carefully identified

cell states within the major known cell-types in the adipose tissue. Then, we discovered associa-

tions between subcell-type abundance and cardiometabolic traits. Furthermore, these correlations

were present in our integrative analysis that applied canonical correlation analysis (CCA) between

the single-nucleus and bulk-tissue RNA-seq data sets. Our results show that cell-type specific

signals were present in bulk-tissue data and associated with cardiometabolic traits.
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single‑nucleus RnA‑seq resolution 
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learning classifier DIEM
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Single‑nucleus RnA sequencing (snRnA‑seq) measures gene expression in individual nuclei instead 
of cells, allowing for unbiased cell type characterization in solid tissues. We observe that snRNA-seq 
is commonly subject to contamination by high amounts of ambient RNA, which can lead to biased 
downstream analyses, such as identification of spurious cell types if overlooked. We present a novel 
approach to quantify contamination and filter droplets in snRNA-seq experiments, called Debris 
Identification using Expectation Maximization (DIEM). Our likelihood-based approach models the 
gene expression distribution of debris and cell types, which are estimated using EM. We evaluated 
DIEM using three snRNA-seq data sets: (1) human differentiating preadipocytes in vitro, (2) fresh 
mouse brain tissue, and (3) human frozen adipose tissue (AT) from six individuals. All three data sets 
showed evidence of extranuclear RNA contamination, and we observed that existing methods fail to 
account for contaminated droplets and led to spurious cell types. When compared to filtering using 
these state of the art methods, DIEM better removed droplets containing high levels of extranuclear 
RNA and led to higher quality clusters. Although DIEM was designed for snRNA-seq, our clustering 
strategy also successfully filtered single-cell RNA-seq data. To conclude, our novel method DIEM 
removes debris-contaminated droplets from single-cell-based data fast and effectively, leading to 
cleaner downstream analysis. Our code is freely available for use at https ://githu b.com/marca lva/
diem.

Single-cell RNA sequencing (scRNA-seq) has grown considerably in use over the previous decade and permitted a 
transcriptomic view into the composition of heterogeneous mixtures of  cells1,2. Recent advances in droplet-based 
microfluidics have created a high-throughput opportunity to assay single cells by scaling up previous well-based 
technologies to tens to hundreds of thousands of  cells3. Single-nucleus RNA sequencing (snRNA-seq), where 
nuclei are used instead of cells, has allowed the critical extension of single-cell based technologies to solid tissues 
where isolation and suspension of individual cells is difficult or  impossible4. For example, snRNA-seq has been 
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used successfully to identify cell types in the  brain5. Another practically important application of sequencing 
nuclei is identifying cell types in frozen tissue, from which it is often not feasible to isolate intact cells, whereas 
nuclei can still be successfully  isolated6.

Droplet-based snRNA-seq encapsulates individual nuclei into a water-in-oil emulsion that contains reagents 
for generating cDNA and ligating droplet-specific oligonucleotide barcodes. After library construction and 
sequencing, the mapped reads can be assigned to droplets of origin. The input nuclei suspension is prepared so 
that all reads associated with one barcode originate from one nucleus. However, RNA originating from lysed 
cellular components (such as the cytoplasm) or from outside the cell can become encapsulated in droplets as well. 
Since these reads have the same barcode, contaminated RNA cannot be readily distinguished from nuclear RNA. 
To apply snRNA-seq to tissues, homogenization of the tissue is usually required to break apart the extracellular 
matrix and release nuclei from  cells4. This can release higher amounts of debris and lead to more background 
RNA  contamination7. This contamination of droplets with extranuclear RNA can lead to a biased increase in 
expression of these genes. Using mitochondrial RNA, we show that this results in clusters driven by background 
RNA, as well as contamination of clusters representing true cell types. As droplet-based snRNA-seq is increasingly 
applied to various solid tissues, there is an urgent need to accurately filter contaminated droplets.

A common practice to distinguish cell/nuclei- vs. background-containing barcodes relies on removing 
droplets below a hard cutoff of the number of reads, unique molecular indexes (UMI), or genes detected in a 
 droplet3,8–11. This ad hoc cutoff is typically set by ranking barcodes by their total UMI counts and visually selecting 
a knee point, where a steep dropoff in counts  occurs3,12. Droplets with higher counts are expected to contain cells 
or nuclei, whereas droplets with lower counts are expected to contain ambient RNA. However, a clear separation 
between the two may not occur, especially if the amount of debris is high and the droplet RNA content is low, 
as we show is the case with frozen solid tissues. Additionally, an ad hoc cutoff of the percent of reads originat-
ing from the mitochondria (a measure of extranuclear contamination) can help to filter  droplets12. Again, the 
choice of a cutoff may be arbitrary or unclear. The recent method  EmptyDrops12 addresses this filtering issue for 
scRNA-seq by estimating a Dirichlet-Multinomial distribution of the ambient RNA. It then removes droplets by 
testing if their expression profile deviates significantly from the ambient profile using a Monte Carlo  approach12. 
However, while this works for single-cell, we show that these methods underperform when applied to snRNA-seq.

Here we show that, in snRNA-seq, using a hard cutoff to remove droplets can result in a substantial loss of 
nuclear droplets and inclusion of debris droplets. Importantly, we demonstrate that including these contaminated 
droplets can lead to spurious clustering and false positive cell types. To overcome this, we built a fast filtering 
pipeline that uses a likelihood-based approach to model debris and cell type RNA distributions with a multino-
mial distribution. The parameters of the model are inferred using semi-supervised  EM13,14, where all droplets 
below a hard count threshold are fixed as debris. Then, the droplets are scored based on their expression of genes 
enriched in the debris set. This multinomial-based clustering approach has been successfully applied to the 
information retrieval and text mining  fields15. Similar to reads, word occurrences in a document can be mod-
eled with a multinomial distribution, and documents can belong to separate topics, leading to a mixture model.

We developed this pipeline into an approach, termed Debris Identification using EM (DIEM), which robustly 
removes background droplets from both scRNA-seq and snRNA-seq data. In contrast to hard count and Emp-
tyDrops filtering, DIEM accurately models debris and cell types and can quantify the amount of contamination 
in individual droplets. This resulted in more accurate filtering and higher quality clustering of snRNA-seq data, 
particularly when applied to frozen tissue. We also found that DIEM can effectively filter scRNA-seq data.

Results
snRNA-seq produces clusters driven by high amounts of background RNA contamina‑
tion. Isolation of nuclei for snRNA-seq relies on lysis of the cell membrane, releasing cytoplasmic RNA, in 
addition to cell-free RNA, into the solution. This extranuclear RNA can become encapsulated into droplets, with 
or without nuclei, and lead to biases in downstream analysis; particularly, it may lead to spurious or contami-
nated cell-types in downstream clustering. We evaluated the extent of contamination and its effect on clustering 
in three distinct snRNA-seq data sets: 1. in vitro differentiating human preadipocytes (DiffPA) (n = 1), 2. freshly 
dissected mouse brain tissue (n = 1), and 3. frozen human subcutaneous adipose tissue (AT) (n = 6). We initially 
ran a clustering analysis in the three data sets by filtering out droplets with a hard-count  threshold3,8–11. This 
threshold can be selected manually, as the knee  point3, or by dividing the total count of the 99% quantile of 
expected cells by  1016. Since we observed that the knee point could not be reliably estimated or was not evident 
in the AT samples (Fig. 1a), we used the quantile-based threshold for further analyses.

To assess levels of extranuclear RNA contamination, we primarily used the percentage of reads that are spliced 
in a droplet. The poly-T capture probes used in drop-seq 3 and the 10X platform can also hybridize to adeno-
sine tracts present in introns, allowing for quantification of unspliced pre-mRNAs17. We expected that a higher 
percent of cytoplasmic ambient RNA would be spliced in comparison to nuclear RNA, and thus contaminated 
droplets would have a higher proportion of spliced reads. We found that in all three data sets, the percent of 
spliced reads correlated negatively with total UMI counts (Fig. S1a). Furthermore, we found that the percent-
age of reads spliced generally showed a bimodal distribution, with nuclear and background droplets centered 
below and above roughly 50%, respectively (Fig. S1b). For each of the 8 experiments, we calculated a midpoint 
to separate the nuclear and background distributions (see “Methods”). This was performed independently for 
each experiment as they exhibited distinct distributions (Fig. S1b). To evaluate clusters, we specified those with 
a mean percent of reads spliced of at least 50% as debris and classified those with less than 50% as cell types 
consistent with expressed marker genes, as we observed this was the average value across the experiments and 
that the 6 adipose tissue samples were combined. In addition to the percentage of reads spliced, we evaluated 
extranuclear contamination using the percentage of UMIs aligning to the mitochondria (MT%) and to the 
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nuclear-localized lincRNA MALAT118 (MALAT1%). We chose to incorporate mitochondrial RNA as a measure 
extranuclear RNA contamination because it is one of the only true sources of background RNA and is present 

Figure 1.  Applying a hard count threshold fails to remove droplets contaminated with background RNA in 
snRNA-seq. (a) Barcode-rank plots showing the droplet size (the total number of UMI read counts) of each 
droplet in descending order for the differentiating preadipocytes (DiffPA), mouse brain, and six human frozen 
adipose tissue (AT) snRNA-seq samples. The dotted red line indicates the quantile-based threshold. (b) The 
number of droplets above and below the quantile-based hard-count threshold is shown. The height of the red 
bar indicates the number of background droplets in the category indicated in the x-axis, while the height of 
the blue bar indicates the number of nuclear droplets. Background and nuclear droplets are defined using the 
percent spliced reads. Ideally, all nuclear droplets would occur above the threshold and all background droplets 
would occur below. (c)  UMAP33 visualization of droplets in each of the three data sets with droplets colored by 
the percent of reads spliced. (d) The droplets above the quantile threshold were clustered using  Seurat20. The 
x-axis shows the clusters, and the y-axis shows the distribution of the percent of reads spliced for each cluster. 
Background droplets with a high percent of reads spliced tend to cluster together.
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in all snRNA-seq data sets. However, we note that other sources of extranuclear RNA can exist. Hemoglobin 
mRNA, which is predominantly expressed in erythrocytes, can also serve as another negative control for tissues 
where blood is  present19. We also found that the percentage of reads spliced correlated positively with MT% 
and negatively with MALAT1% (Fig. S1c, d). As the percentage of spliced reads is more independent from gene 
expression, we primarily used this metric as an estimate of contamination within droplets.

To test whether a hard count threshold could effectively remove debris-contaminated nuclei, we investigated 
the relationship between total counts and the percent of reads spliced. We selected the hard count threshold for 
each of the 8 independent samples based on a  quantile16 (Fig. 1a). We found that this threshold failed to remove 
all background droplets and incorrectly removed nuclear droplets (Fig. 1b, c). For example, in the DiffPA dataset, 
the quantile threshold correctly kept a large proportion of nuclear droplets (908 of 944) but incorrectly removed 
457 droplets (Fig. 1b). Of the 11,331 passing droplets in the 6 adipose tissue samples, only 9,578 (84.5%) droplets 
were nuclear (Fig. 1b). We found that no single count threshold could effectively discriminate the nuclear and 
background droplets (Fig. S1a). We further investigated the downstream effect on clustering to see if there was 
any evidence of background RNA driving spurious clusters. In the DiffPA, mouse brain, and adipose tissue data 
sets, there were 2, 1, and 2 clusters that had a mean percent reads spliced greater than 50%, respectively (Fig. 1d). 
Additionally, we observed droplets with a high MT% and clusters that were enriched for mitochondrial RNA 
(Fig. S2). Overall, a hard count threshold failed to discriminate nucleus-containing droplets from debris droplets 
when using percent reads spliced and MT% to quantify contamination.

Nuclear and debris droplets demonstrate distinct RNA profiles. Since the total UMI count in a 
droplet does not always distinguish nuclei from debris, we postulated that the expression profile of a droplet 
could be used to differentiate them if there were sufficient differences in RNA abundance between cell types 
and debris. Specifically, we hypothesized that there would be genes with sub-cellular localized RNA products 
that show differential abundance between droplets containing nuclear vs. ambient RNA. Thus, we evaluated 
the extent of differences between the debris and nuclear RNA profiles. We separated droplets into debris- and 
nuclear-enriched groups using a threshold of 100 total UMI counts. Although a large number of droplets above 
100 UMI counts consist of debris and would lead to a loss of power, we use this threshold to ensure that no drop-
lets below it contain nuclei. We evaluated the difference between the debris and nuclear RNA profiles by running 
a paired differential expression (DE) analysis in the six human AT samples. Of 19,934 genes detected, 3,417 
(17.1%) were DE between the nuclear- and debris-enriched groups at a Bonferroni-adjusted p-value threshold of 
0.05 (Fig. 2a). To see if these differences were preserved across the DiffPA, mouse brain, and six AT data sets, we 
correlated the nuclear vs. debris log fold changes of the genes in common. Among the 8,924 genes expressed in 
all three data sets, we found that all log fold changes were significantly correlated (p < 2.2 × 10−16) across all pairs 
(mean R = 0.56), with the human data sets showing the highest correlations (Fig .S3).

Since the nuclear-enriched group is not homogeneous, but rather originates from distinct cell types with 
different RNA distributions, we also looked at differences between the debris group and cell types. In addition, 
we compared the cell type-debris differences with the cell type-cell type differences. Using the six AT samples, 
we ran a paired DE analysis between the cell types and debris droplets (total UMI counts < 100). Among 14 
debris-cell type pairs, the average percent of genes that are DE was 5.8% (Fig. 2b). We then compared this to the 
DE between a cell type and all other cell types. Among these 14 pairs, the average percent of genes DE between 
cell types was slightly lower at 4.5% (t-test p = 0.23; Fig. 2b, c). Overall, we found significant differences between 
debris and nuclei RNA profiles, and that the differences between debris and cell types were within the same order 
of magnitude as the cell type-cell type differences.

Overview of a novel EM-based approach to cluster and remove debris droplets from snRNA-seq 
data. Since we observed differences in RNA abundance between cell types and debris, we developed an 
approach to remove debris-containing droplets based on the distribution of read counts. Our approach assigns 
individual debris scores to filter out droplets. We first cluster droplets using a multinomial mixture model. To 
estimate the parameters of the mixture model, we run semi-supervised expectation  maximization13,14 by fixing 
droplets that fall below a threshold of 100 counts as debris. The majority of these droplets are assumed to contain 
ambient RNA, and thus we leverage this feature by fixing the labels throughout EM. After fitting the model, we 
assign droplets to clusters based on their posterior probability. Then, droplets are scored based on their expres-
sion of genes enriched in the debris set. DIEM then filters out droplets based on their individual scores. Figure 3a 
shows an overview of this model. We termed this method Debris Identification using Expectation Maximization 
(DIEM). We ran DIEM on the DiffPA, mouse brain, and six AT sample and compared our approach with the 
quantile-based method and the EmptyDrops method in the DropletUtils  package12.

Although debris scores are used to filter out individual droplets, we run clustering to better initialize the 
debris and cell type groups. Droplets are clustered using a multinomial mixture model and the parameters are 
fit using semi-supervised EM. To initialize the EM, we run k-means with a pre-specified number of cell types k. 
After the initialization, semi-supervised EM estimates the parameters of the multinomial mixture model while 
fixing the labels of the low-count droplets to the debris cluster. The mixture model consists of k + 1 clusters cor-
responding to the debris cluster along with the cell type clusters initialized by k-means (Fig. 3a). Here, we set k 
to 20 for all experiments, although we noticed robust results across a range of k greater than 1 to 50 (Fig. S4). 
While it is possible to remove droplets that have high posterior probability of belonging to the debris cluster, we 
noticed that some of the cell type clusters produced by the mixture model contained contaminated droplets with 
high a percent of reads spliced in the snRNA-seq data sets (Fig. S5). Since only removing the debris cluster would 
fail to account for this, we developed an approach to estimate contamination in individual droplets instead (see 
“Methods”). Briefly, DIEM runs differential expression between the droplets in the debris and cell type clusters 
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and calculates a debris score based on the debris-enriched genes. We found that this debris score correlated 
highly with the percent of spliced reads in all 8 independent snRNA-seq experiments (mean Pearson R = 0.89; 
Fig. 3b). To filter our droplets, we use a threshold t where those with a score above this value are removed. We 
investigated the effect of varying t from 0 to 1. As expected, the number of passing droplets increased with t 
(Fig. S6). However, the proportion of background droplets and contamination in the kept droplets also increased 
as t was increased (Fig. S6). We therefore set t to 0.5 for all experiments in the manuscript. Intuitively, this value 
represents the threshold that lies between the least contaminated cluster and the debris cluster.

The incorporation of clusters should result in a more realistic model of the snRNA-seq data. DIEM directly 
models debris and cell type clusters to more accurately specify the debris and cell type droplets for calculating 
the debris score. We asked whether the clusters identified by DIEM corresponded to valid biological cell types. 
DIEM identified 3 major cell types in the DiffPA, consisting of preadipocyte-like, fibroblast-like, and adipocyte 

Figure 2.  Debris-containing and nuclei-containing droplets show distinct gene expression profiles. (a) 
Differential expression (DE) between droplets with less than 100 UMI counts (debris) and greater than or equal 
to 100 UMI counts (nuclei) in the 6 human adipose tissue (AT) samples. The volcano plot shows the log fold 
change on the x-axis and negative log transformed p-value on the y-axis. The genes colored in blue are DE with 
a Bonferroni-corrected p-value < 0.05. A positive log fold change indicates over-expression in the debris group. 
(b, c) For each of the 14 cell types identified after clustering the quantile filtered droplets, we ran differential 
expression between the cell type and the debris group, or between the cell type and all other cell types in the 
combined adipose tissue data set. Cell types are estimated from clustering droplets that pass quantile-based 
filtering. A (b) box plot shows the percent of expressed genes that are DE (Bonferroni p < 0.05) between a cell 
type-debris pair, and a cell type-cell type pair. The p-value was calculated from a student’s t-test between cell 
type-debris percent and cell type-cell type percent. The (c) heatmap shows the percent of total genes expressed 
in the cell type (x-axis column) that are significantly differentially expressed between the debris droplets (first 
row) or droplets in all other cell types (second row). This shows that the DE between a cell type and the debris 
group is similar to the DE between different cell types.
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cells (Fig. S7a). In the adipose tissue data sets, we found that the up-regulated cluster markers corresponded 
to the known major cell types in adipose, including immune, endothelial, fibroblast, and adipocyte cell-types 
(Fig. S7b). We then compared the DIEM clusters to those identified by the established method  Seurat20 We found 
that the Seurat clusters generally overlapped with the DIEM clusters (mean percent overlap 73.0% across the 8 
independent samples; Fig. S7c). Together, these results suggest that DIEM accurately identifies cell types and 
can leverage this cell-type heterogeneity to filter debris droplets.

DIEM filtering results in a higher proportion of nuclear droplets and less contaminated clusters 
in snRNA-seq. We ran DIEM on the adipocyte, mouse brain, and six adipose tissue samples. We observed 
that DIEM removed droplets across a range of total UMI counts (Fig. 3c). We then evaluated the extent of extra-
nuclear contamination, as well as its effect on clustering, across the quantile, EmptyDrops, and DIEM methods. 
We first quantified the number of nuclear and background droplets that passed filtering in each of the 8 experi-
ments. In the DiffPA data set, the DIEM and quantile methods kept a larger proportion of nuclear droplets. 
Among the passing droplets, 1,337 of 1,339 (99.9%), 1,360 of 1,579 (86.1%), and 908 of 944 (96.2%) were nuclear 
in the DIEM, EmptyDrops, and quantile droplets, respectively (Fig. 4a). In the mouse brain data set, all three 
methods produced similar results. We found that 1,850 of 2,010 (92.0%), 1,868 of 2,080 (89.8%), and 1,832 
of 2,083 (87.6%) passing droplets were nuclear in the DIEM, EmptyDrops, and quantile droplets, respectively 
(Fig. 4a). Across all 6 adipose tissue samples, 12,117 of 12,715 (95.7%), 10,110 of 11,502 (87.9%), and 9,578 of 
11,331 (84.5%) passing droplets were nuclear in the DIEM, EmptyDrops, and quantile droplets, respectively 
(Fig. 4a). We further investigated these filtering methods in each of the adipose tissue samples. We found that 
the percent of DIEM passing droplets that were nuclear was significantly higher when compared to EmptyDrops 

Figure 3.  Debris scoring predicts background RNA contamination in snRNA-seq droplets. (a) Overview of 
DIEM approach to remove debris-contaminated droplets. Expectation Maximization (EM) is used to estimate 
the parameters of a multinomial mixture model consisting of debris and cell type groups. The label assignments 
of droplets below a pre-specified threshold (100 total counts) are fixed to the debris group, while the test set 
droplets above this rank are allowed to change group membership. The mixture model is initialized by running 
k-means. After parameter estimation, droplets are grouped into the debris cluster(s) or cell type clusters based 
on their posterior probabilities. Debris scores are calculated for each droplet by summing the normalized 
expression of debris-enriched genes, which are specified by differential expression between the debris and 
cell type clusters. Droplets can be filtered based on their cluster assignment or on their debris score. (b) The
debris score of a droplet and the percent of reads spliced exhibit a significant correlation in the differentiating 
preadipocytes (DiffPA), mouse brain, and human frozen adipose tissue (AT) data sets (mean R = 0.89). The
horizontal red line indicates the sample-specific midpoint that separates nuclear and background droplets. The 
vertical blue line indicates the threshold cutoff of 0.5 we used, where droplets with a debris score less than 0.5 
are classified as clean. c, Scatterplots of droplets from snRNA-seq of the DiffPA, mouse brain, and AT data sets,
with total unique molecular index (UMI) counts on the x-axis and total number of genes detected on the y-axis. 
Droplets are colored by the DIEM classification. Those in red are removed as debris while the blue droplets are 
kept as nuclei.
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and the quantile approach (paired Wilcoxon p = 0.03). Overall, the DIEM method tended to keep a higher num-
ber and proportion of nuclear droplets in the 8 snRNA-seq experiments.

Next, we compared the fraction of spliced reads in individual droplets for the independent experiments using 
a Mann–Whitney U test (Fig. 4b). When compared to EmptyDrops, DIEM had a significantly lower spliced reads 
fraction for the DiffPA, AT2, AT3, and AT6 samples. Although DIEM droplets had a lower mean of percent 
spliced reads for the AT4 sample, the Mann–Whitney U test yielded a significantly higher rank for the spliced 
reads fraction when compared to EmptyDrops (Bonferroni-corrected p < 0.05; Fig. 4b). When compared to the 
quantile-passing droplets, DIEM had a significantly lower spliced reads fraction for the mouse brain and 5 of the 
6 adipose tissue samples (Bonferroni-corrected p < 0.05; Fig. 4b). None of the quantile-filtered droplets produced 
samples with a lower percent of reads spliced than DIEM, suggesting the quantile droplets contain more ambi-
ent RNA. Taken together, these results suggest that the DIEM-passing droplets comprise more nuclear droplets 
when using the percent of reads spliced as a measure of contamination.

We then looked at the effect of filtering on clustering results. We clustered passing droplets using  Seurat20 
to unbiasedly evaluate the clustering results based on each of the three methods. We considered clusters with a 

Figure 4.  DIEM filtering keeps an increased number and proportion of nuclear droplets in snRNA-seq. (a) The 
bar plots show the number and type of droplets that pass the indicated filtering method in the differentiating 
preadipocytes (DiffPA), mouse brain, and six human frozen adipose tissue (AT) snRNA-seq samples. The 
height of the blue bar indicates the number of nuclear droplets that pass filtering, while the height of the red 
bar indicates the number of background droplets. DIEM filtering tends to result in a higher number and 
proportion of nuclear droplets. Background and nuclear droplets are defined using the percent spliced reads. 
(b) The percent of reads spliced is shown in a boxplot for droplets that pass the indicated filtering method in 
the DiffPA, mouse brain, and six AT snRNA-seq samples. The horizontal red line indicates the sample-specific 
midpoint, where droplets above and below are background and nuclear, respectively. A Mann-Whitney U test 
was performed between DIEM and  EmptyDrops12, and DIEM and quantile-filtered droplets. DIEM shows a
decrease in percent spliced reads for all comparisons (black bar and asterisks) except for AT4 with EmptyDrops 
(red bar and asterisks). P-values were corrected for multiple testing using Bonferroni and are shown in the upper 
portion of the plot (*p < 0.05; **p < 0.005; ***p < 0.0005). (c)  UMAP33 visualization of clusters after filtering with
the indicated method in the combined adipose tissue snRNA-seq data set. Clusters were identified with  Seurat20

and classified as adipocyte (Adp), doublet (Dblt), myeloid (Myl), T cell, mast, and stromal (Stm) cell types 
according to their up-regulated genes. A cluster was classified as debris (Dbr) if it had a mean percent of spliced 
reads above 50%.

17



Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:11019  | https://doi.org/10.1038/s41598-020-67513-5

www.nature.com/scientificreports/

mean percent spliced reads of at least 50% as debris clusters and classified those with less than 50% as cell types 
consistent with expressed marker genes (see “Methods”). In the DiffPA dataset, DIEM removed a debris cluster 
that was present after filtering with both the quantile and EmptyDrops methods (Fig. S8a, b). Additionally, 
both EmptyDrops and DIEM identified a low count cluster that showed evidence of containing nuclei (Fig. S9), 
highlighting how a hard count threshold can result in removing cell types with lower counts. In the mouse brain 
data set, both EmptyDrops and DIEM removed a background cluster (median spliced reads 88.5%) that was 
present in the quantile method (Fig. S8c, d). For the adipose tissue data set, we combined the 6 individual filtered 
data sets and ran Seurat clustering with a resolution value of 2 to accommodate the larger number of droplets. 
DIEM resulted in 21 clusters, while EmptyDrops and the quantile method yielded 23 clusters. We then classi-
fied clusters based on their marker genes (Figs. 4c–e and S10). None of the DIEM clusters had a mean percent 
of reads spliced above 50% (Fig. S11a). However, EmptyDrops filtering resulted in 3 debris clusters while the 
quantile approach yielded 4 (Fig. S11a). There was a high overlap of over 50% in the major cell types between all 
3 methods, but clusters consisting of smaller numbers of droplets tended to be spread across related cell types 
(Fig. S11b). Overall, these results suggest that DIEM preserves cell types while removing clusters characterized 
by high extranuclear contamination when compared to the EmptyDrops and quantile approaches.

DIEM filtering removes a higher proportion of contaminated droplets and clusters in 
snRNA-seq. We next investigated whether filtering incorrectly removed nucleus-containing droplets and 
possibly true cell types. Similar to the above analysis, we quantified the number of nuclear and debris droplets 
that were removed by each of the three methods. In the DiffPA dataset, 1,542 of 1,570 (98.2%), 1,325 of 1,330 
(99.6%), and 1,508 of 1,965 (76.7%) removed droplets were background droplets after DIEM, EmptyDrops, 
and quantile filtering, respectively (Fig. 5a). The DIEM and EmptyDrops methods performed similarly in the 
mouse brain data set, and both outperformed the quantile approach. We found that 117 of 171 (68.4%), 65 of 
101 (64.4%), and 26 of 98 (26.5%) removed droplets were classified as background in the DIEM, EmptyDrops, 
and quantile filtering, respectively (Fig. 5a). Across all adipose tissue samples, we found that the DIEM-removed 
droplets consisted of a higher proportion of background-derived droplets. We found that 2,499 of 3,140 (79.6%), 
1,651 of 4,353 (37.9%), 1,290 of 4,524 (28.5%) removed droplets were background droplets in the DIEM, Empty-
Drops, and quantile filtering, respectively (Fig. 5a). We investigated the percent of background droplets in those 
removed in each of the 6 adipose tissue samples as well. The percent of the removed droplets that were back-
ground was significantly higher with DIEM when compared to EmptyDrops and the quantile approach (paired 
Wilcoxon p = 0.03). We found that EmptyDrops incorrectly removed a much higher number of nuclear droplets 
in the AT4 and AT5 samples (Fig. 5a). EmptyDrops filtered out 1,038 in the AT4 and 782 in the AT5 samples, 
whereas DIEM removed 63 and 36 nuclear droplets, respectively (Fig. 5a). Overall, DIEM tended to remove a 
higher number and proportion of background droplets than EmptyDrops or the quantile approach.

We next investigated the amount of extranuclear contamination in the individual filtered-out droplets using 
a Mann–Whitney U test. We found that DIEM removed more background droplets with a significantly higher 
percent of reads spliced in all 8 experiments when compared to the quantile approach (Bonferroni-corrected 
p < 0.05; Fig. 5b). When compared to EmptyDrops, DIEM-removed droplets had a significantly higher percent 
of spliced reads for 5 of the 6 adipose tissue samples (Bonferroni-corrected p < 0.05; Fig. 5b). Neither the Empty-
Drops nor the quantile method resulted in significantly more contamination in the removed debris droplets than 
DIEM. These results suggest that the DIEM-removed droplets contained fewer nuclei when using the percent of 
reads spliced as a measure of contamination.

Among the droplets removed by the three filtering methods, we sought further evidence that they originated 
from cell types. We clustered the removed droplets in the adipose tissue and looked to see if they consisted of 
biological cell types. We again considered clusters with a mean percent of reads spliced of at least 50% as debris 
clusters and classified those with less than 50% as cell types consistent with expressed marker genes (Figs. S1 and 
S12). Among the 8 clusters present in the DIEM-removed droplets, all had an average percent of reads spliced 
above 50%, suggesting that these consist of largely contaminated droplets (Figs. 5c and S12a). The EmptyDrops-
removed droplets formed 11 clusters, 6 of which were debris. The other 5 clusters consisted of adipocyte, vas-
cular, and stromal cell types (Figs. 5d and S12a). The quantile-removed droplets formed 7 cell type and 2 debris 
clusters. The cell type clusters consisted of adipocyte, stromal, T cell, myeloid, and mast cell types (Figs. 5e and 
S12a). Taken together, we found that the clusters formed by DIEM-removed droplets had more extranuclear 
contamination than those from EmptyDrops and the quantile method.

Interestingly, we found that the debris clusters formed by all filtering methods exhibited cell type-specific 
expression (Fig. S12b–e). This suggests that nucleus-containing droplets exhibit a range of extranuclear con-
tamination in snRNA-seq experiments from frozen tissue. Furthermore, we found that droplets that had high 
read counts of the macrophage marker CD1421 tended to have higher extranuclear contamination and were more 
often filtered out by DIEM (Figs. S10f and S12d). This suggests that CD14 + macrophages are more susceptible 
to damage or contamination and may imply that nuclei isolation or the snRNA-seq assay may introduce a bias 
in cell type capture.

DIEM filtering removes debris from single-cell RNA-seq. In addition to filtering snRNA-seq, we also 
investigated whether our approach could be applied to single-cell RNA-seq data. We found that the debris scor-
ing approach of individual droplets did not effectively distinguish empty vs. cell droplets in the 68,000 PBMC 
single-cell RNA-seq  experiment16 (Fig.  S13). DIEM gave a high debris score to a cell type cluster with high 
read counts, suggesting the debris-enriched genes and thus the debris score were less specific in discriminating 
debris droplets from all cell types in this PBMC single-cell RNA-seq data set. Although the threshold could be 
increased to accommodate this cell type, we found that simply removing droplets belonging to the fixed debris 
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cluster was effective in removing empty droplets in the single cell RNA-seq data. Both DIEM and EmptyDrops 
kept all 69,981 droplets that had at least 200 genes detected. To evaluate the effect of filtering, we removed this 
threshold to more completely characterize the two methods. Among 78,024 comparable droplets with at least 
100 UMI counts, EmptyDrops kept 77,585 and DIEM kept 75,847. The 1,927 droplets unique to EmptyDrops 
showed a high percent of reads aligning to the mitochondria and to MALAT1 (Fig. 6a). The 189 unique droplets 
to DIEM showed MT% and MALAT1% levels similar to the shared droplets that passed both filtering methods 
(Fig. 6a). Although these metrics no longer serve as negative and positive controls as they do in snRNA-seq, they 
are consistent with a ruptured cell membrane. This suggests that EmptyDrops retains droplets with dying cells 
whereas DIEM removes them. We next evaluated the clusters formed by these droplets. DIEM-filtered droplets 
formed 18 clusters while EmptyDrops resulted in 19 clusters. As expected, there was a general one-to-one cor-
respondence between the clusters. However, the droplets with high MT% and MALAT1% formed a cluster that 
was absent in the DIEM results (Fig. 6b, c). Overall, we found that EmptyDrops and DIEM provided similar 
results in the PBMC single-cell RNA-seq data.

Figure 5.  DIEM filtering removes fewer numbers of nuclei in snRNA-seq. (a) The bar plots show the number 
and type of droplets that are removed by the indicated filtering method in the differentiating preadipocytes 
(DiffPA), mouse brain, and six human frozen adipose tissue (AT) snRNA-seq samples. The height of the blue 
bar indicates the number of nuclear droplets that are removed while the height of the red bar indicates the 
number of background droplets. Background and nuclear droplets are defined using the percent spliced reads. 
DIEM filtering tends to result in a higher number and proportion of nuclear droplets. Removal of large numbers 
of nuclear droplets and low numbers of background droplets indicates poor performance. (b) The percent of 
reads spliced is shown in a boxplot for droplets removed by the filtering method in the DiffPA, mouse brain, 
and six AT snRNA-seq samples. The horizontal red line indicates the sample-specific midpoint, where droplets 
above and below are background and nuclear, respectively. A Mann-Whitney U test was performed between 
DIEM and  EmptyDrops12, and DIEM and quantile removed droplets. DIEM shows an increase in percent of 
reads spliced for all comparisons. P-values were corrected for multiple testing using Bonferroni and are shown 
in the upper portion of the plot (*p < 0.05; **p < 0.005; ***p < 0.0005). (c)  UMAP33 visualization of clustering of 
removed droplets with the indicated method in the combined adipose tissue snRNA-seq data set. Clusters were 
classified as adipocyte (Adp), doublet (Dblt), myeloid (Myl), T cell, mast, and stromal (Stm) cell types according 
to their up-regulated genes. A cluster was classified as debris (Dbr) if it had a mean percent of spliced reads 
above 50%.
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Discussion
The snRNA-seq approach is an adaptation of scRNA-seq that allows for cell-type identification when isolation 
of a cell suspension is not possible, such as in frozen tissues. We have shown here that snRNA-seq is subject to 
background contamination from extranuclear RNA and that it can drive spurious clusters and false positive 
cell-types if not properly accounted for. We also show that current methods, such as the commonly applied hard 
count threshold, do not effectively address this problem in snRNA-seq. To this end, we searched for and found 
differences in the gene expression profiles from the debris and cell types. This motivated us to develop DIEM 
in order to use the RNA profile of a droplet for filtering contaminated snRNA-seq experiments. We found that 
DIEM efficiently removed debris-contaminated droplets while preserving cell types in snRNA-seq data from 
fresh cells, fresh tissue, and frozen tissue inputs.

DIEM first clusters all droplets generated from the experiment to identify droplets belonging either to the 
debris cluster or putative cell type clusters. This allows for a general separation of droplets into debris and cell 
type groups, and thus more accurate differential expression analysis between background and cell type drop-
lets. Although it is possible to simply remove droplets that cluster as debris, we found that clusters with high 
amounts of contamination still existed in snRNA-seq. Therefore, scoring and filtering individual droplets allow 
for finer classification as well as quantification of the amount of contamination. The debris score threshold that 
removes droplets can be adjusted according to the desired tolerance for contamination. In addition, this estimate 
can be used as a covariate in downstream analyses, such as clustering and differential expression analyses. The 
debris score, however, cannot be assumed to exist on the same scale in independent experiments. The scores 
are normalized relative to the best and worst cluster means within the sample. Thus, when integrating multiple 
samples, the debris scores may not be comparable, particularly if the distribution of extranuclear RNA is different 
across the samples. Finally, the scoring approach relies on accurate estimation of debris-enriched genes. If there 
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Figure 6.  DIEM filtering in single-cell RNA-seq of fresh PBMCs results in robust cell type identification. (a) 
Boxplots showing the percent of unique molecular indices (UMIs) mapping to the mitochondria (left) and the 
percent of MALAT1 UMIs (right) in the fresh 68 K peripheral blood mononuclear cells (PBMC) data  set16. 
The DIEM and  EmptyDrops12 set includes the droplets identified by both DIEM and EmptyDrops (n = 75,658), 
while the EmptyDrops only set (n = 1,927) and the DIEM only set (n = 189) include droplets uniquely kept 
by each method. The droplets uniquely kept by EmptyDrops have a higher percent of reads aligned to the 
mitochondrial and MALAT1 genes, consistent with a ruptured cell membrane. (b, c) Boxplots show the percent 
of UMIs aligning to the mitochondrial genome (MT%), to the nuclear-localized  MALAT118 (MALAT1%), and 
the log total number of UMIs in a droplet for clusters in the PBMC single-cell RNA-seq data set. These measures 
are plotted for the (b) clusters from the DIEM-kept droplets and the (c) clusters from the EmptyDrops-kept 
droplets. Clusters were identified with  Seurat20. The droplets uniquely kept by EmptyDrops form a distinct 
cluster with high MT% and MALAT1%.
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are little or no genes that are increased in the background distribution, the resulting debris score will likely be 
inaccurate. Although we found that the debris scores in all 8 snRNA-seq experiments were correlated with the 
level of extranuclear contamination as measured by the percent of reads spliced, this was less successful in the 
PBMC single-cell RNA-seq data. This may be due to smaller differences between the background and cell type 
profiles in scRNA-seq.

Since we found that extranuclear RNA contamination exists across a wide range of UMI counts, using a hard 
count threshold underperformed in comparison to EmptyDrops and DIEM. Both DIEM and  EmptyDrops12 
remove droplets based on their expression distribution. When compared to the EmptyDrops  method12, however, 
we found that DIEM had a higher accuracy in filtering heterogeneous snRNA-seq data sets as assessed by the 
percent of reads that are spliced as a metric of extranuclear RNA. EmptyDrops, however, was originally devel-
oped and tested on single cell data and thus, the assumptions behind the model are different than that of DIEM. 
EmptyDrops only models the background RNA distribution and uses Monte Carlo sampling to determine how 
significant the deviation of a droplet is from it. It also safeguards from removing cell-types that are similar to 
the background by assuming that all droplets above a calculated knee point are true cell-containing droplets. 
DIEM directly models cell types by clustering and this may allow for more accurate grouping of debris droplets. 
We have shown that the difference between the cell types and the debris are within the same order of magnitude 
as the differences between the cell types, highlighting the need to account for heterogeneity. We found that 
both EmptyDrops and the quantile approach removed more nuclear droplets and kept a higher proportion of 
contaminated droplets, but the major adipose cell types were still identified. However, since the DIEM-filtered 
droplets contained less extranuclear contamination, the resulting clusters were also characterized by less debris 
on average. This is beneficial for both accurate cell type clustering and identification.

Even though snRNA-seq recovers less RNA than scRNA-seq and thus retrieves less information about cell 
types, there are advantages to using nuclei over cells. For example, snRNA-seq has been shown to reduce dissocia-
tion biases present in scRNA-seq, leading to more accurate profiling of cell types in  tissue22. Another important 
reason to use snRNA-seq is that scRNA-seq may be practically impossible. This can occur with frozen tissues, 
since thawing cells is known to lyse the outer membranes and preclude a suspension of single cells required for 
droplet-based  technologies3. This prevents the application of scRNA-seq to biobanked snap-frozen human tissues. 
In order to leverage existing, phenotyped human datasets with biobanked tissues, snRNA-seq may be the only 
viable option to profile cell types. We have shown that snRNA-seq of frozen tissue results in contamination of 
droplets across a large range of UMI counts, making it difficult to remove background debris while maintaining 
an accurate cell type composition of the tissue. Even from fresh tissue and cells, we still observed downstream 
clusters affected by the extranuclear RNA. Therefore, we expect DIEM to help produce cleaner snRNA-seq data 
sets from a variety of input sources, but especially from frozen tissues.

We focused the application of our approach on snRNA-seq data because there is a pressing need for debris 
filtering in data sets with lower RNA content. In single-cell RNA-seq, the higher RNA content of cells typically 
allows the total UMI count of a droplet to serve as a sufficient discriminator between debris and  cells3, although 
this may not always be the  case12. However, running scRNA-seq on fresh human tissue at a large scale may 
be prohibitively difficult considering the requirement to immediately process a fresh biopsy for scRNA-seq. 
Therefore, snRNA-seq of frozen tissues offers a viable alternative to process samples at a higher throughput. Our 
method was designed to computationally remove background debris contamination from snRNA-seq data of 
frozen tissues. We expect that DIEM will enable the analysis of a larger number of samples from frozen tissue 
snRNA-seq data, thereby removing the need to coordinate the acquisition of fresh tissue samples and processing 
of single cell libraries.

Methods
Single-nucleus RNA-seq of human subcutaneous adipose tissue, differentiating preadipo‑
cytes, and mouse brain. Frozen subcutaneous adipose tissue was processed separately for each of the 6 
samples. Tissue was minced over dry ice and transferred into ice-cold lysis buffer consisting of 0.1% IGEPAL, 
10  mM Tris–Hcl, 10  mM NaCl, and 3  mM  MgCl2. After a 10  min incubation period, the lysate was gently 
homogenized using a dounce homogenizer and filtered through a 70 μm MACS smart strainer (Miltenyi Bio-
tec #130-098-462) to remove debris. Nuclei were centrifuged at 500×g for 5 min at 4 °C and washed in 1 ml of 
resuspension buffer (RSB) consisting of 1X PBS, 1.0% BSA, and 0.2 U/μl RNase inhibitor. We further filtered 
nuclei using a 40 μm Flowmi cell strainer (Sigma Aldrich # BAH136800040) and centrifuged at 500×g for 5 min 
at 4 °C. Pelleted nuclei were re-suspended in wash buffer and immediately processed with the 10X Chromium 
platform following the Single Cell 3′ v2 protocol. After library generation with the 10X platform, libraries were 
sequenced on an Illumina NovaSeq S2 at a sequencing depth of 50,000 reads per cell. Reads were aligned to the 
GRCh38 human genome reference with Gencode v26 gene  annotations23 using the 10X CellRanger 2.1.1 pipe-
line. A custom pre-mRNA reference was generated to account for unspliced mRNA by merging all introns and 
exons of a gene into a single meta-exon.

We obtained and cultured the primary human white preadipocyte cells as recommended by PromoCell 
(PromoCell C-12731, lot 395Z024) for preadipocyte growth and differentiation into adipocytes. Cell media 
(PromoCell) was supplemented with 1% penicillin–streptomycin. We maintained the cells at 37 °C in a humidi-
fied atmosphere at 5% CO2. On day 6 of differentiation, we rinsed the cells with 1 × PBS and added ice-cold lysis 
buffer (3 mM  MgCl2, 10 mM Tris–HCl, 0.5% Igepal CA-630, 10 mM NaCl). The cells were gently scraped from 
the plate and centrifuged at 500×g for 5 min at 4 °C. Nuclei were washed with 1 ml of resuspension buffer (RSB; 
1% BSA, 100 μl RNase inhibitor in 1 × PBS) and centrifuged again to remove cellular debris. After the second 
centrifugation, nuclei were washed with 1 ml RSB and filtered through a 40 μm filter. Cells were counted, then 
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centrifuged again and resuspended in the proper volume of RSB to obtain 2000 nuclei/μl. The 10X library prepa-
ration, sequencing, and data processing were done using the same protocol as for the adipose tissue.

For the mouse brain data, we downloaded the raw UMI count data matrix from the 10X website. The data set 
titled “2K Brain Nuclei from an Adult Mouse (> 8 weeks)” was downloaded from https ://suppo rt.10xge nomic 
s.com/singl e-cell-gene-expre ssion /datas ets/2.1.0/nucle i_2k. The 10X human 68K PBMC data were downloaded
from https ://suppo rt.10xge nomic s.com/singl e-cell-gene-expre ssion /datas ets/1.1.0/fresh _68k_pbmc_donor _a.

Filtering droplets using a quantile threshold, EmptyDrops, and DIEM. Common methods for 
removing debris from snRNA-seq data rely on using a hard count  threshold3,8–11. In the three data sets, we applied 
a quantile-based cutoff, similar to that implemented by the 10X CellRanger software. Droplets are ranked in 
decreasing order of total counts. The 99th percent quantile of the top C barcodes of total counts is divided by 10 
to obtain the threshold T, where C is 3,000 for our  analyses16. The 99th percentile is used to exclude any doublets 
from the derivation. Droplets with greater than or equal to T counts were included as nuclei. For comparison 
with  EmptyDrops12, we ran the method using default parameters. EmptyDrops calculates a Monte Carlo p-value 
that gives the probability that a droplet’s expression profile is the same as that of the ambient RNA. We removed 
droplets with a false discovery rate (FDR) q value greater than 0.05. For the six adipose tissue samples, we applied 
filtering to each sample independently, as these are the result of individual experiments. We also tested DIEM 
filtering after combining the counts in the 6 adipose tissue samples and observed similar results (Fig. S14).

Estimating extranuclear RNA contamination in droplets from snRNA-seq. We used three met-
rics to estimate contamination of background RNA in the snRNA-seq data sets. We quantified the fraction of 
spliced reads using  velocyto17. The BAM files from CellRanger were sorted by barcode ID using  samtools24, and 
spliced, unspliced, and ambiguous read counts were quantified for each gene. We then removed mitochondria 
(MT) reads to avoid confounding of the estimates, as the MT genes do not have introns. For each droplet, the 
unspliced and spliced UMI counts were added, and the percent of reads spliced was calculated as the fraction 
of all spliced reads over the sum of spliced and unspliced reads. We calculated the percent of UMIs aligned to 
the mitochondria (MT%) as the sum of reads aligned to the mitochondrial genome over the droplet’s total UMI 
counts. The percent of UMIs aligned to MALAT1 (MALAT1%) was calculated similarly.

We classified droplets as background or nuclear according to their percent of reads spliced. Since this met-
ric showed a bimodal distribution that was distinct in each sample, we calculated the midpoint between the 
two distributions. To do so, we modeled the percent of reads spliced as a mixture of two gaussians. We fit the 
parameters using EM with the R package  mixtools25. Then, the midpoint was calculated as the value in which 
the probability density was equal in the two distributions. Droplets with a percent of reads spliced above and 
below the midpoint were classified as background and nuclear, respectively. For clusters, we specified those with 
an average percent of reads spliced of at least 50% as debris and classified those with less than 50% as nuclear, 
as we observed that 50% was the average value of the midpoint across the experiments and that the 6 adipose 
tissue samples were combined.

Differential expression between nuclear-enriched and debris-enriched droplets. To identify 
genes differentially expressed (DE) between the background-enriched and nuclear-enriched groups, we set a 
hard count threshold to naively assign droplets to either group. Droplets with total UMI counts below 100 and 
greater than or equal to 100 were assigned to the background-enriched and nuclear-enriched groups, respec-
tively. This ensures that the majority of droplets containing nuclei are found in the nuclear-enriched group. For 
each gene, reads were summed across all droplets in each of the two groups to estimate the RNA profiles. Read 
counts were normalized using trimmed mean of M-values (TMM) as implemented in  edgeR26,27. For identify-
ing differentially expressed genes, we used a paired design with the six adipose tissue samples by treating the 
background-enriched and nuclear-enriched counts of an individual as a paired sample (total n = 12). We then 
used the edgeR  package26,27 to run differential expression. We only kept genes with a counts per million (CPM) 
of greater than 0 in at least 6 of the 12 groups. Next, we used the estimateDisp function to estimate the disper-
sion with the paired design matrix. The quasi-likelihood fit and F test functions glmQLFit and glmQLFTest were 
used to calculate statistical significance. We adjusted for multiple testing using a Bonferroni-corrected p-value 
threshold of 0.05.

To identify DE genes between the debris and cell types, we used the clusters identified after quantile-based 
filtering to approximate the cell types. For each of the six samples, we subsampled the debris droplets (with total 
UMI counts less than 100) to 9,000 droplets to obtain a similar read depth as contained in the cell type groups. 
For the debris and cell type groups, reads were summed across the corresponding droplets to obtain the RNA 
profile used as input. Differential expression was performed by comparing debris vs. cell type or cell type vs. all 
other cell types using a paired design. The filtering and analysis was performed in the same manner as the debris 
vs. nuclear DE analysis above.

DIEM algorithm. DIEM first assigns droplets as originating from debris or cell types, and then calculates 
the level of contamination within droplets using the debris-enriched genes. To assign droplets to either debris or 
cell types, our filtering approach models droplet-based single-cell or single-nucleus data with a mixture of mul-
tinomial distributions. Particularly, droplet read counts are assumed to follow a multinomial with parameters 
conditional on the cluster. However, the parameters and droplet assignments are unknown for the droplets of 
interest. In addition, it is assumed that the majority of low count droplets contain ambient RNA. Therefore, we 
estimate the parameters of the model using semi-supervised expectation maximization (EM)13,14. This allows us 
to calculate the probability of the latent group variable given the data, and thus group debris and cell type drop-
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lets. To initialize the parameters for EM, we cluster the droplets with k-means, where the number of cell types k is 
specified by the user. We include only droplets with at least 200 genes detected in this initialization step to avoid 
fitting clusters driven by empty debris droplets. After fitting the mixture model with EM, we calculate a debris 
score for each droplet based on the expression of genes enriched in the debris set.

In more detail, let X denote a g x N matrix containing the read/UMI counts from a single-cell or single-nucleus 
data set with g genes and N droplets. We include droplets with at least 1 read/UMI count. Our goal is to assign the 
N droplets into one of K + 1 groups (K cell types and debris). We define xi as the ith column of X giving the counts 
of droplet i and assume that it follows a multinomial distribution with the gene probabilities αk = p1,k, …, pG,k 
conditional on group k ∈ {1, ...,K ,K + 1} . We model droplet expression using a multinomial distribution, and 
further model cell types and debris using a mixture of multinomials. The log-likelihood of the data is therefore:

Here, ui is the total number of read/UMI counts in droplet i, αk contains the multinomial parameters for 
group k, πk is the mixing coefficient for group k, and Mult denotes the probability mass function of the multino-
mial distribution. Since an analytical solution cannot be derived based on the likelihood of the model, we define 
zi ∈ {1, ...,K} for each i as a latent indicator variable that describes the cell type or debris origin of the droplet. 
The complete log-likelihood of the data and the latent variables Z = {zi}

N
i=1 now becomes:

where I{zi = k} is an indicator variable for the assignment of droplet i. This formulation allows us to employ 
an EM algorithm and estimate the parameters α1 , …, αk and π1, …, πk by maximizing the expected complete data 
log-likelihood. The latent indicator variables for the debris droplets with UMI counts below 100 remain fixed, 
thus effectively resulting in a semi-supervised EM.

Although it is possible to remove droplets that contain a high posterior probability of belonging to the fixed 
debris cluster, we employ a scoring strategy to quantify the level of contamination within individual droplets. 
This provides both a finer resolution in debris filtering and a direct estimate that can be used as a covariate in 
downstream analysis.

Droplets are divided into a test set and a debris set. The test set consists of the droplets we would like to clas-
sify, while the debris set consists of droplets that we assume to contain debris with high probability. The labels of 
droplets in the debris set are fixed throughout the EM iterations, while those of the test set are allowed to change. 
We define the test set as those droplets with at least T total counts, where we set T to a default value of 100. Only 
expressed genes with a counts per million (CPM) > 0 are included in the analysis.

Initialization of parameters for EM. The EM algorithm requires starting values for the parameters of the 
model. The parameters α and π are initialized from the PCs of the cluster set of droplets using k-means. A proper 
initialization is important because mixture models can be sensitive to local  optima28. Therefore, we run k-means, 
which has been shown to provide reasonable initial values for  EM29,30. As the test set may contain many more 
empty droplets than the droplets of interest, we further define a cluster set for k-means as those droplets with at 
least 200 genes detected 20. K-means is run on the on the first 30 PCs of the data using the kmeans function in R. 
Before running PCA, we first select the top V = 2,000 variable  genes20,31. To do so, we first account for the rela-
tionship between the mean and  variance31,32. The mean and variance of the raw gene counts are calculated and 
log transformed. To learn the relationship, we fit a locally weighted smoothing (LOESS) regression line between 
the normalized mean and variance using the loess function in R with a span = 0.3. We correct the variance for 
the expression level of a gene by subtracting the fitted variance from the observed variance. Finally, we rank the 
genes by their standardized variance and take the top V = 2,000 genes. PCA is run on the normalized counts, 
where the total droplet read counts are scaled to sum to the median read depth and then log transformed. PCA is 
performed on the adjusted counts on the cluster set and the variable genes, and the top 30 principal components 
are returned. Finally, k-means is run on these PCs, with the number of cell types k specified by the user. We use 
k = 20 for all experiments in the manuscript, unless otherwise specified. The initial parameters are estimated 
from the droplets assigned to these resulting clusters.

Estimation. The EM algorithm iteratively estimates the parameters and the posterior probabilities. Given α̂ 
and π̂ , estimates of α and π, we calculate the posterior probability that droplet Xi belongs to cluster k

where p(Xi|Zi ,αk) follows the multinomial given the parameters αk for cluster k and p(πk) follows a cat-
egorical distribution. The debris droplets with total counts below T = 100 have their zi values kept fixed to the 
debris group. The maximum likelihood estimate of αk is calculated as the mean of the droplet counts weighted 
by their posterior probability of belonging to cluster k. We add a pseudocount of  10−10 to avoid collapsing the 
likelihood to 0. For πk, the maximum likelihood estimate is calculated as the sum of p(Z = k|X) divided by the 
total number of droplets, so that π1, …, πK sum to one. These two steps iterate during EM, and the algorithm 
converges when the change in parameters is below ε, which we set to  10−4. Droplets are assigned to the cluster 
that gives the maximum posterior probability.

logP(X) =
∑N

i=1
log

(∑K+1

k=1
πkMult(xi|αk , ui)

)

logP(X ,Z) =
∑N

i=1

∑K+1

k=1
I{zi = k}[logπk + logMult(xi|αk , ui)]

p(zi = k|xi , α̂k , π̂) =
p
(
π̂k

)
p(xi|zi = k, α̂k)∑K

j=1p
(
π̂ j

)
p(xi|zi = j, α̂j)
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Debris scoring and filtering of individual droplets. We assign a debris score to individual droplets to 
obtain a finer estimate of the amount of contamination. After clustering, we specify the set of debris clusters as 
the fixed cluster as well as any clusters that have an average number of genes detected less than d, where we set d 
to 200. The cell type group then consists of all other clusters. We estimate the debris score by summing a droplet’s 
expression values of genes enriched in this debris set. To identify debris-enriched genes, we first run a Welch’s 
t-test between the test set droplets in the debris and cell type clusters. Read counts are normalized by scaling
the counts to sum to 1 and then log normalizing after adding a constant of 1. Then, genes with a log fold change 
greater than 0 and an FDR-corrected p-value less than 0.05 are specified as debris-enriched genes.

The debris score is estimated by summing the normalized expression values of the debris-enriched genes. 
Since the magnitude of this score is dependent on the number and expression of the debris-enriched genes, 
we scale the scores. We calculate the mean of all clusters, subtract the scores by the lowest cluster average, and 
divide them by average of the droplets in the debris cluster(s). This has the effect of setting the average of the 
lowest cluster to 0 and the debris cluster(s) to 1, so that scores are scaled relative to these clusters. Droplets in the 
snRNA-seq experiments are filtered using a threshold for the debris score. We keep droplets with a normalized 
debris score below t, where we set t to 0.5, although we note that these can be adjusted by the user accordingly.

Identifying cell types after filtering droplets. For all experiments, we ran a standardized cluster-
ing pipeline using Seurat v3.1.220. After applying filtering, we only considered droplets with at least 200 genes 
detected 4 to ensure that each droplet had enough information for clustering. The count data were log-normal-
ized using the NormalizeData function in Seurat, using a scaling factor equal to the median of total counts across 
droplets. For the six adipose tissue samples, we used a scaling factor equal to 1,000 to ensure that all samples were 
normalized equally. Additionally, we merged the normalized data of the six adipose tissue samples without batch 
correction, as we saw high overlap of clusters among the six samples (data not shown). The top 2,000 variable 
genes were then calculated using the FindVariableFeatures function.

Normalized read counts for each gene were scaled to mean 0 and variance 1. We calculated the first 30 PCs to 
use as input for clustering. We then ran the Seurat functions FindNeighbors and FindClusters with 30 PCs. In the 
FindClusters function, we used the default parameters with standard Louvain clustering and a default clustering 
resolution of 0.8, unless otherwise stated. For visualization, we ran  UMAP33 on the 30 PCs with default values. 
To identify marker genes for each cluster, we ran a Wilcoxon rank-sum test using the function FindAllMarkers 
with default parameters and only.pos = TRUE. We corrected for multiple testing using a false discovery rate 
(FDR) threshold of 0.05. Clusters were classified as doublets if the top marker genes consisted of an identifiable 
mixture of top markers between two cell types.

Ethics approval and consent to participate. All research was performed in accordance with the rel-
evant institutional guidelines and regulations. Each of the 6 participants gave a written informed consent. The 
study protocol was approved by the Ethics Committee at the Helsinki University Hospital, Helsinki, Finland.

Data availability
The human single nucleus RNA-seq datasets generated and analyzed during the current study are available upon 
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Figure S1. The percent of reads spliced separates nuclear from background RNA in 

snRNA-seq droplets. 

The percent of reads spliced per droplet was calculated for each of the 8 independent samples 

in order to quantify extranuclear RNA contamination. To assess the effectiveness of this metric, 

we plotted the percent reads spliced against (a) total counts, (b) the density, (c) the percent of 

reads aligning to the mitochondria (MT%), and (d) the percent of reads aligning to MALAT1 

(MALAT1%). The human adipose tissue (AT) dataset was performed over 6 independent 

experiments. The spliced reads percent was calculated using Velocyto17 after removing 

mitochondrial reads. As each sample demonstrated a distinct distribution of spliced reads, we 

estimated a cutoff (see methods) for each sample (vertical red line). Droplets with a percent of 
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reads spliced below the cutoff were classified as nuclear, and those greater than or equal to the 

cutoff as background. 
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Figure S2. A hard count threshold fails to remove contaminated droplets and results in 

spurious clusters when assessed using MT%. 

The estimation of background RNA when estimated using mitochondrial percent (MT%) in a 

droplet shows how a hard count threshold fails to remove contaminated droplets a, UMAP33 

visualizations for the differentiating preadipocytes (DiffPA), mouse brain, and human frozen 

adipose tissue (AT) data sets show clustering of contaminated droplets. b, boxplots of MT% in 

clusters after processing the filtered droplets with Seurat20. The quantile-based approach was 

used to select the hard count threshold. 
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Figure S3. Preservation of differential RNA profiles between nuclear-enriched and 

background-enriched droplets. 

Correlation plots of log fold changes across different snRNA-seq experiments. For each of the 8 

experiments (differentiating preadipocytes (DiffPA), mouse brain, and six human frozen adipose 

tissue (AT) snRNA-seq samples), the log2 fold change of the counts per million (CPM) for each 

gene is calculated between the nuclear-enriched and background-enriched droplets. Nuclear-
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enriched and background-enriched droplets are those with UMI counts greater than or equal to, 

and less than 100 UMI counts, respectively.  
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Figure S4. Effect of the number of clusters on classification accuracy in a mixture model. 

The number of clusters k was varied across values of 1, 5, …, 50 in the six adipose tissue 

samples. DIEM was run for each indicated k using a threshold value t of 0.5. The (a) number of 

droplets passing filtering and with a number of genes detected of at least 200, (b) the average 

percent of reads spliced, (c) the percent of passing droplets that are nuclear, and (d) the 

percent of removed droplets that are nuclear are shown. Nuclear droplets are defined as those 

with a percent of spliced reads below the sample-specific midpoint. Background and nuclear 

droplets are defined using the percent spliced reads.  
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Figure S5. Single-nucleus RNA-seq produces clusters with high levels of background 

contamination. 

The clusters produced by DIEM for the differentiating preadipocytes (DiffPA), mouse brain, and 

human frozen adipose tissue (AT) data sets are shown. Cluster 1 corresponds to the fixed 

debris cluster. The average number of genes detected in a cluster is plotted against the average 

percent of reads spliced. As each sample demonstrated a distinct distribution of spliced reads, 

we estimated a cutoff that separates nuclear and background droplets (see methods) for each 

sample (horizontal line). Clusters above and below the line indicate the background and nuclear 

clusters, respectively. This shows that clusters with high numbers of genes are susceptible to 

contamination. 
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Figure S6. Increasing the threshold parameter t increases sensitivity and decreases 

specificity. 

The figure shows the effect of varying the threshold parameter t from 0 to 1. DIEM was run on 

the differentiating preadipocytes (DiffPA), mouse brain, and human frozen adipose tissue (AT) 

data sets using k=20 clusters. a, The number of droplets that pass filtering and with a number of 

genes detected of at least 200. b, The average percent of reads spliced in droplets that pass 

DIEM filtering. c,d, The true positive and true negative rates are calculated for droplets with at 

least 200 genes detected. Nuclear and background droplets are defined as those with a percent 

of spliced reads below and above the sample-specific midpoint. c, The true positive rate 

(sensitivity), calculated as the percent of all nuclear droplets that correctly pass filtering, is 
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plotted against the threshold value. d, The true negative rate (specificity), calculated as the 

percent of all background droplets that are correctly removed, is plotted against the threshold 

value.  
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Figure S7. Accurate modeling of major cell types by the multinomial mixture model in 

DIEM. 

a,b, UMAP33 visualizations of clustering results after applying DIEM filtering for the (a) 

differentiating preadipocytes (DiffPA), and (b) adipose tissue sample 2 (AT2). The top panel 

shows the clusters identified by Seurat20, while the bottom clusters show cell type marker 

expression in these clusters. The DiffPA data set consists of preadipocytes (expressing CFD), 

fibroblasts (expressing FN1), and adipocytes (expressing GPAM), while the AT consists of 

adipocyte (expressing GPAM), immune (expressing CD14), endothelial (expressing VWF), and 
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stromal cell types. c, Overlap of clusters identified by the DIEM mixture model with those from 

Seurat. Each panel shows the results from one of the eight independent data sets. The rows of 

the heatmap correspond to clusters identified by DIEM, while the columns correspond to Seurat 

clusters. Brighter values indicate a higher overlap. The percent overlap is defined as the number 

of shared droplets divided by the minimum size of the clusters in the pair. The average overlap 

was 73.0% across corresponding clusters for the DIEM clusters. 
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Figure S8. DIEM filtering reduces contamination in clusters in the differentiating pre-

adipocyte and mouse brain single-nucleus RNA-seq experiments. 

a,b, The (a) distribution of the percent of reads spliced for droplets in clusters identified by 

Seurat20 after filtering with each of the three methods in the differentiating preadipocytes 

(DiffPA) is shown in a box plot. The (b) overlap of the resulting DiffPA clusters between the 

three filtering methods is shown in a heatmap. c,d, The (c) distribution of the percent of reads 

spliced for droplets in Seurat clustering after filtering with each of the three methods in the 

mouse brain is shown in a box plot. The (d) overlap of the resulting mouse brain clusters 

between the three filtering methods is shown in a heatmap. Brighter values in the heatmap 

indicate a higher percent overlap between the methods. Major cell types are preserved across 

the filtering methods. 
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Figure S9. DIEM removes clusters with high MALAT1 expression and is able to keep 

clusters with low read counts in the DiffPA snRNA-seq data set. 

a, Boxplots showing the percent of UMIs mapping to MALAT1 (MALAT1%) per droplet in the 

differentiating preadipocytes (DiffPA). MALAT1% of clusters are compared across the quantile-

based, EmptyDrops12, and DIEM filtering methods. MALAT1 is a nuclear-localized lincRNA18, 

which suggests that the RNA is of nuclear origin. b, Boxplots showing the total number of UMIs 
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per droplet in the differentiating preadipocytes (DiffPA). Clusters are compared across the three 

filtering methods. 
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CHAPTER 3

Accurate estimation of cell composition in bulk expression

through robust integration of single-cell information
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ARTICLE

Accurate estimation of cell composition in bulk
expression through robust integration of single-cell
information
Brandon Jew 1,10, Marcus Alvarez2,10, Elior Rahmani3, Zong Miao1,2, Arthur Ko 2, Kristina M. Garske 2,

Jae Hoon Sul1,4, Kirsi H. Pietiläinen5,6, Päivi Pajukanta 1,2,7✉ & Eran Halperin 2,3,7,8,9✉

We present Bisque, a tool for estimating cell type proportions in bulk expression. Bisque

implements a regression-based approach that utilizes single-cell RNA-seq (scRNA-seq) or

single-nucleus RNA-seq (snRNA-seq) data to generate a reference expression profile and

learn gene-specific bulk expression transformations to robustly decompose RNA-seq data.

These transformations significantly improve decomposition performance compared to

existing methods when there is significant technical variation in the generation of the

reference profile and observed bulk expression. Importantly, compared to existing methods,

our approach is extremely efficient, making it suitable for the analysis of large genomic

datasets that are becoming ubiquitous. When applied to subcutaneous adipose and dorso-

lateral prefrontal cortex expression datasets with both bulk RNA-seq and snRNA-seq data,

Bisque replicates previously reported associations between cell type proportions and mea-

sured phenotypes across abundant and rare cell types. We further propose an additional

mode of operation that merely requires a set of known marker genes.
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Bulk RNA-seq experiments typically measure total gene
expression from heterogeneous tissues, such as tumor and
blood samples1,2. Variability in cell-type composition can

significantly confound analyses of these data, such as in identi-
fication of expression quantitative trait loci (eQTLs) or differen-
tially expressed genes3. Cell-type heterogeneity may also be of
interest in profiling changes in tissue composition associated with
disease, such as cancer4 or diabetes5. In addition, measures of cell
composition can be leveraged to identify cell-specific eQTLs6,7 or
differential expression6 from bulk data.

Traditional methods for determining cell-type composition,
such as immunohistochemistry or flow cytometry, rely on a
limited set of molecular markers and lack in scalability relative to
the current rate of data generation8. Single-cell technologies
provide a high-resolution view into cellular heterogeneity and
cell-type-specific expression9–11. However, these experiments
remain costly and noisy compared to bulk RNA-seq12. Collection
of bulk expression data remains an attractive approach for
identifying population-level associations, such as differential
expression regardless of cell-type specificity. Moreover, many
bulk RNA-seq studies that have been performed in recent years
resulted in a large body of data that is available public databases
such as dbGAP and GEO. Given the wide availability of these
bulk data, the estimation of cell-type proportions, often termed
decomposition, can be used to extract large-scale cell-type-
specific information.

There exist a number of methods for decomposing bulk
expression, many of which are regression-based and leverage cell-
type-specific expression data as a reference profile13. CIBER-
SORT14 is a SVM-regression-based approach, originally designed
for microarray data that utilizes a reference generated from
purified cell populations. A major limitation of this approach is
the reliance on sorting cells to estimate a reference gene expres-
sion panel. BSEQ-sc15 instead generates a reference profile from
single-cell expression data that is used in the CIBERSORT model.
MuSiC16 also leverages single-cell expression as a reference,
instead using a weighted non-negative least-squares regression
(NNLS) model for decomposition, with improved performance
over BSEQ-sc in several datasets.

The distinct nature of the technologies used to generate bulk
and single-cell sequencing data may present an issue for
decomposition models that assume a direct proportional rela-
tionship between the single-cell-based reference and observed
bulk mixture. For example, the capture of mRNA and chemistry
of library preparation can differ significantly between bulk tissue
and single-cell RNA-seq methods, as well as between different
single-cell technologies17,18. Moreover, some technologies may be
measuring different parts of the transcriptome, such as nuclear
pre-mRNA in single-nucleus RNA-seq (snRNA-seq) experiments
as opposed to cellular and extra-cellular mRNA observed in
traditional bulk RNA-seq experiments. As we show later, these
differences may introduce gene-specific biases that break down
the correlation between cell-type-specific and bulk tissue mea-
surements. Thus, while single-cell RNA-seq technologies have
provided unprecedented resolution in identifying expression
profiles of cell types in heterogeneous tissues, these profiles
generally may not follow the direct proportionality assumptions
of regression-based methods, as we demonstrate here.

We present Bisque, a highly efficient tool to measure cellular
heterogeneity in bulk expression through robust integration of
single-cell information, accounting for biases introduced in the
single-cell sequencing protocols. The goal of Bisque is to inte-
grate the different chemistries/technologies of single-cell and
bulk tissue RNA-seq to estimate cell-type proportions from
tissue-level gene expression measurements across a larger set of
samples. Our reference-based model decomposes bulk samples

using a single-cell-based reference profile and, while not
required, can leverage single-cell and bulk measurements for the
same samples for further improved decomposition accuracy.
This approach employs gene-specific transformations of bulk
expression to account for biases in sequencing technologies as
described above. When a reference profile is not available, we
propose BisqueMarker, a semi-supervised model that extracts
trends in cellular composition from normalized bulk expression
samples using only cell-specific marker genes that could be
obtained using single-cell data. We demonstrate using simulated
and real datasets from brain and adipose tissue that our method
is significantly more accurate than existing methods. Further-
more, it is extremely efficient, requiring seconds in cases where
other methods require hours; thus, it is scalable to large genomic
datasets that are now becoming available.

Results
Method overview (Bisque). A graphical overview of Bisque is
presented in Fig. 1. Our reference-based decomposition model
requires bulk RNA-seq counts data and a reference dataset with
read counts from single-cell RNA-seq. In addition, the single-cell
data should be labeled with cell types to be quantified. A reference
profile is generated by averaging read count abundances within
each cell type in the single-cell data. Given the reference profile
and cell proportions observed in the single-cell data, our method
learns gene-specific transformations of the bulk data to account
for technical biases between the sequencing technologies. Bisque
can then estimate cell proportions from the bulk RNA-seq data
using the reference and the transformed bulk expression data
using non-negative least-squares (NNLS) regression.

Evaluation of decomposition performance in adipose tissue.
We applied our method to 106 bulk RNA-seq subcutaneous
adipose tissue samples collected from both lean and obese indi-
viduals, where 6 samples have both bulk RNA-seq and snRNA-
seq data available (Table 1). Each of the participants gave a
written informed consent. The study protocol was approved by
the Ethics Committee at the Helsinki University Hospital, Hel-
sinki, Finland. Adipose tissue consists of several cell types,
including adipocytes that are expected to be the most abundant
population. Adipose tissue also contains structural cell types (i.e.
fibroblasts and endothelial cells) and immune cells (i.e. macro-
phages and T cells)19. These 5 cell-type populations were iden-
tified from the snRNA-seq data (Supplementary Fig. 1a).

We observed significant biases between the snRNA-seq and
bulk RNA-seq data in samples that had both data available. We
found that the linear relationship between the pseudo-bulk
(summed snRNA-seq reads across cells) and the true bulk
expression varied significantly by each gene (Fig. 2a). Specifically,
we observed best fit lines relating these expression levels between
technologies with a mean slope of roughly 0.30 and a variance in
slope of 5.67. In our model, a slope of 1 would indicate no bias
between technologies. We further investigated whether gene
expression differences between the bulk and snRNA-seq were the
same across individuals and experiments. Comparing log-ratios
of RNA-seq to snRNA-seq expression levels, we found that the
majority of gene biases were preserved across individuals, tissues,
and experiments (R= 0.75 across experiments) (Supplementary
Fig. 3), providing evidence that technological differences drive
consistent gene expression differences across bulk and snRNA-
seq methods.

We performed simulations based on the adipose snRNA-seq
data to demonstrate the effect of technology-based biases between
the reference profile and bulk expression on decomposition
performance. In these analyses, we benchmarked Bisque and
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three existing methods (MuSiC, BSEQ-sc, and CIBERSORT).
Briefly, we simulated bulk expression for 6 individuals by
summing the observed snRNA-seq read counts. To model
discordance between the reference and bulk, we applied gene-
specific linear transformations of the simulated bulk expression.
For each gene, the coefficient and intercept of the linear
transformation were sampled from half-normal distributions
with increasing variance. In this model, a higher variance
corresponds to a larger bias between sequencing experiments.
Although these transformations closely mirrored the Bisque
decomposition model, they utilized the true snRNA-seq counts
for each individual whereas Bisque learned these transformations
using the reference profile generated from averaging these counts
across all cells. Hence, this simulation framework introduced
additional noise that Bisque does not entirely model. We
evaluated decomposition performance by comparing proportion
estimates to the proportions observed in the snRNA-seq data in
terms of global Pearson correlation (R) and root-mean squared

deviation (RMSD). Owing to the small number of samples, we
applied leave-one-out cross-validation to predict the cell
composition of each individual using the remaining snRNA-seq
samples as training data for each method. In these simulations,
Bisque remained robust (R ≈ 0.85, RMSD ≈ 0.07) at higher levels
of simulated bias between the bulk and snRNA-seq-based
reference (Fig. 2b).

Next, we performed this cross-validation benchmark on the
observed bulk RNA-seq data for these 6 individuals and found
that Bisque (R= 0.923, RMSD= 0.074) provided significantly
improved global accuracy in detecting each cell type over existing
methods (Table 2, Supplementary Fig. 1b). MuSiC (R=−0.111,
RMSD= 0.427), BSEQ-sc (R=−0.113, RMSD= 0.432), and
CIBERSORT (R=−0.131, RMSD= 0.416) severely underesti-
mated the proportion of adipocytes (the most abundant
population in adipose tissue) while overestimating the endothelial
cell fraction. We also benchmarked CIBERSORTx20, which
employs a batch correction mode to account for biases in
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Fig. 1 Graphical overview of the Bisque decomposition method. We integrate single-cell and bulk expression by learning gene-specific bulk
transformations (pictured on right) that align the two datasets for accurate decomposition.

Table 1 Summary of snRNA-seq and bulk expression datasets used for benchmarking Bisque and existing methods.

Tissue Number of
samples

Bulk RNA-seq
platform

snRNA-seq
platform

snRNA-seq
samples

Total nuclei Average nuclei
per individual

Number of
cell types

Subcutaneous adipose 106 Illumina NovaSeq 10x Genomics
Chromium

6 10,947 1824 5

Dorsolateral
prefrontal cortex

636 Illumina HiSeq 10x Genomics
Chromium

8 68,028 8503 11
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sequencing technologies. Although CIBERSORTx (R= 0.687,
RMSD= 0.099) outperformed existing methods, Bisque provided
improved accuracy. It should be noted that cell-specific accuracy
is more informative than global R and RMSD; however, these
small sample sizes did not provide robust measures of within-cell-

type performance in this cross-validation framework (Supple-
mentary Fig. 1c). We were able to slightly improve the number of
detected cell populations by MuSiC, BSEQ-sc, and CIBERSORT
when we considered only snRNA-seq reads aligning to exonic
regions of the transcriptome, indicating that intronic reads
introduced increasing discrepancy between snRNA-seq and bulk
RNA-seq in the context of decomposition. However, given that a
significant portion of the nuclear transcriptome consists of pre-
mRNA, this filtering process removed over 40% of cells detected
in the snRNA-seq data. Moreover, Bisque provided improved
accuracy over existing methods using this exonic subset of the
snRNA-seq data (Supplementary Fig. 1d).

We then applied these decomposition methods to the
remaining 100 bulk samples and found that the distribution of
cell-proportion estimates produced by Bisque were most
concordant with the expected distribution inferred from the
limited number of snRNA-seq samples and previously reported
proportions21,22 (Fig. 3a). Although these benchmarks provided a
measure of calibration (i.e. the ability to detect cell populations in
expected ranges), they did not provide measurements of cell-
specific proportion accuracy across individuals. In order to
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Fig. 2 The effect of discrepancies between a single-cell-based reference and bulk expression on decomposition. a Observed discrepancies in real data
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Table 2 Leave-one-out cross-validation in subcutaneous
adipose using 6 samples with snRNA-seq and bulk RNA-seq
data available.

Method R RMSD

Bisque 0.923 ± 0.064 0.074 ± 0.034
CIBERSORTx 0.687 ± 0.450 0.099 ± 0.046
MuSiC −0.111 ± 0.182 0.427 ± 0.058
BSEQ-sc −0.113 ± 0.180 0.432 ± 0.058
CIBERSORT −0.131 ± 0.176 0.416 ± 0.059

Proportions based on snRNA-seq were used as a proxy for the true proportions. Performance
measured in Pearson correlation (R) and root-mean-square deviation (RMSD) across all 5
identified cell types in each sample. Reported values were averaged across the 6 samples with
standard deviation indicated. Bold values indicate the highest performing method with respect to
each metric. Source data are provided as a Source Data file.
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evaluate cell-specific accuracy, we replicated previously reported
associations between cell proportions and measured phenotypes.
Specifically, we compared cell-proportion estimates from each
method to body mass index (BMI) and Matsuda index, a measure
of insulin resistance. We measured the significance of these
association based on t-values estimated in a linear-mixed model
accounting for age, age-squared, and sex as fixed effects and
relatedness as a random effect.

Obesity is associated with adipocyte hypertrophy, the expan-
sion of the volume of fat cells23; thus, we expected a negative

association between adipocyte proportion and BMI. Bisque,
MuSiC, and CIBERSORTx produced adipocyte proportion
estimates that replicate this behavior, while BSEQ-sc and
CIBERSORT were unable to detect this cell population (Fig. 3b).
The adipocyte proportion estimates produced by Bisque (p=
0.030) and CIBERSORTx (p= 0.001) had a significant negative
association with BMI (Supplementary Table 1a). In addition,
macrophage abundance has been shown to increase in adipose
tissue with higher levels of obesity, concomitant with a state of
low grade inflammation24. Each method detected macrophage
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populations that positively associated with BMI; however, only
Bisque (p < 0.001), BSEQ-sc (p= 0.004), and CIBERSORTx (p=
0.034) reached significance (Supplementary Table 1b).

T cells were the least abundant cell-type population identified
from the snRNA-seq data, constituting around 4% of all
sequenced nuclei. The abundance of T cells has been observed
to positively correlate with insulin resistance25. Thus, we
compared decomposition estimates for T-cell proportions to
Matsuda index. As a lower Matsuda index indicates higher insulin
resistance, we expect a negative association between T-cell
proportion and Matsuda index. Proportion estimates produced
by Bisque and CIBERSORTx followed this trend while the
remaining existing methods did not identify T cells in the bulk
samples (Fig. 3c). We found this association significant for Bisque
(p= 0.002) and CIBERSORTx (p= 0.046) (Supplementary
Table 1c) after correcting for diabetes status, as Matsuda index
may not be informative in these individuals26.

Evaluation of decomposition performance in cortex tissue. We
also benchmarked these decomposition methods using expres-
sion data collected from the dorsolateral prefrontal cortex
(DLPFC). This dataset was generated by the Rush Alzheimer’s
Disease (AD) Center27 and includes 636 postmortem bulk RNA-
seq samples. The Religious Orders Study and Rush Memory and
Aging Project were approved by an IRB of Rush University
Medical Center. Both bulk RNA-seq and snRNA-seq data were
collected from 8 of the individuals (Table 1). Using the same
pipeline we used to process the adipose dataset, we identified
11 clusters: 3 neuronal subtypes, 2 interneuronal subtypes, 2
astrocyte subtypes, oligodendrocytes, oligodendrocyte progenitor
cells, and microglia (Supplementary Fig. 2a). We observed a
higher overlap in marker genes for these clusters than in those
identified in the adipose dataset (average of 10% of marker genes
shared between clusters in DLPFC compared to 3% in adipose)
(Supplementary Fig. 4a, b).

We again applied leave-one-out cross-validation on the 8
individuals with both RNA-seq and snRNA-seq data available. In
this example, we randomly sampled 25% of the nuclei in the
snRNA-seq data to accommodate CIBERSORTx (which is
currently web-based and restricts the size of files that can be
processed). Bisque was able to detect each cell population
identified from the snRNA-seq data with high global accuracy
(R= 0.924, RMSD= 0.029) while MuSiC (R=−0.192, RMSD=
0.173), BSEQ-sc (R= 0.098, RMSD= 0.120), and CIBERSORT
(R=−0.281, RMSD= 0.197) did not detect a number of
cell populations (Table 3, Supplementary Fig. 2b, c). Bisque
also provided higher accuracy than CIBERSORTx (R= 0.671,
RMSD= 0.070). However, we found that the performance of the

existing methods improved when estimates with subtypes were
summed together (Supplementary Fig. 2d). Although each
method was able to quantify major cell populations after
merging subtypes, Bisque was able to distinguish between these
closely related cell populations. Interestingly, we found that in
both adipose and DLPFC, endothelial cell proportions were
overestimated by each of the existing methods.

We applied these decomposition methods to the remaining 628
individuals and compared the distribution of estimates to the
proportions observed in the 8 snRNA-seq samples. We found
that Bisque was able to detect each cell population and produced
estimates that were closest in mean to the snRNA-seq observa-
tions (Fig. 4a). The increased accuracy of Bisque over existing
methods persisted when we merged closely related subtypes
(Supplementary Fig. 2e). Moreover, immunohistochemistry
(IHC) analyses on a 70 of these samples found similar
proportions of major cell populations28, confirming the relative
accuracy of snRNA-seq-based estimates of cell proportions.

Again, to determine cell-specific decomposition accuracy, we
replicated known associations between cell-type proportions and
measured phenotypes in the 628 individuals. For these analyses,
we compared cell-proportion estimates to each individual’s Braak
stage and physician cognitive diagnostic category at time of death.
Braak stage is a semiquantitative measure of neurofibrillary
tangles, ranging in value from 0 to 5 with increasing severity. The
cognitive diagnostic category provides a semiquantitative measure
of dementia severity, where a code of 1 indicates no cognitive
impairment and 5 indicates a confident diagnosis of AD by
physicians. We determined the significance of these associations
based on t-values estimated by a linear regression model that
accounted for age, age-squared, and sex.

Neuronal death is a hallmark symptom of AD29. Therefore, we
expected to find a negative association between cognitive
diagnosis and neuron proportion. We found that each decom-
position method provides estimates of total neuron proportion
that tend to decrease with cognitive diagnostic category (Fig. 4b).
Each method generates proportions with negative association
with cognitive diagnosis. Each method, excluding BSEQ-sc,
reached significance in this model (p ≤ 0.001 for each method)
(Supplementary Table 2a). As another example, we compared
each individual’s Braak stage to their estimated proportion of
microglia, a relatively small cell population that constituted
roughly 5% of the sequenced nuclei. Microglia activation has been
observed to increase with AD severity30. We used Braak stage as a
proxy for AD severity and expected a positive association between
microglia proportion and Braak stage. Bisque and MuSiC
provided estimates that follow this expected trend (Fig. 4c). Only
Bisque produced estimates with a significant positive association
(p= 0.001) (Supplementary Table 2b). Interestingly, we observed
a decrease in microglia proportions estimated by Bisque in Braak
stage 6 individuals, which has been previously observed in AD
patients31.

Runtime comparison of reference-based decomposition meth-
ods. Given the large amounts of transcriptomic data that are
becoming available, we also benchmarked these decomposition
methods in terms of runtime. In the subcutaneous adipose
dataset, which included 100 bulk RNA-seq samples and 6
snRNA-seq samples with about 1800 nuclei sequenced per indi-
vidual, Bisque was able to estimate cell proportions efficiently
compared to existing methods. Bisque (1 s) and MuSiC (1 s)
provided decomposition estimates faster than BSEQ-sc (26 s),
CIBERSORT (27 s), and CIBERSORTx (389 s) (Fig. 5a). Bisque
also provided improved efficiency in processing the reduced
DLPFC dataset, which included 628 bulk RNA-seq samples and 8

Table 3 Leave-one-out cross-validation in dorsolateral
prefrontal cortex using 8 samples with snRNA-seq and bulk
RNA-seq data available.

Method R RMSD

Bisque 0.924 ± 0.062 0.029 ± 0.010
CIBERSORTx 0.671 ± 0.153 0.070 ± 0.019
MuSiC −0.192 ± 0.107 0.173 ± 0.013
BSEQ-sc 0.098 ± 0.216 0.120 ± 0.023
CIBERSORT −0.281 ± 0.049 0.197 ± 0.012

Proportions based on snRNA-seq were used as a proxy for the true proportions. Performance
measured in Pearson correlation (R) and root-mean-square deviation across all 11 identified cell
types in each sample. Reported values were averaged across the 8 samples with standard
deviation indicated. We performed these experiments with 25% of the snRNA-seq data in order
to accommodate the file size limit of the current web-based implementation of CIBERSORTx.
Bold values indicate the highest performing method with respect to each metric. Source data are
provided as a Source Data file.
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snRNA-seq samples with around 2125 nuclei per individual.
Bisque (4 s) and MuSiC (10 s) estimated cell proportions rela-
tively quickly compared to BSEQ-sc (273 s), CIBERSORT (298 s),
and CIBERSORTx (6566 s) (Fig. 5b).

Robustness of the reference-based decomposition model. Our
reference-based decomposition method is based on the assumption
that cell populations are equally represented in single-cell and bulk

RNA sequencing of the same tissue samples. As this assumption
may be violated32, we explored the performance of our model as we
relaxed this assumption in simulations. First, we simulated snRNA-
seq data where cell proportions were increasingly biased. Using the
DLPFC snRNA-seq data, we downsampled or upsampled the cells
identified as microglia at varying levels and performed decom-
position. Indeed, the absolute estimates produced by Bisque pro-
pagated these shifts in snRNA-seq proportions. However, we found
that our estimated microglia proportions, regardless of these shifts,
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Fig. 4 Decomposition benchmark in human dorsolateral prefrontal cortex tissue. We randomly sampled 25% of the nuclei in the snRNA-seq data to
accommodate the file size limit of the web-based implementation of CIBERSORTx at the time of writing. a Comparison of decomposition estimates from 628
individuals with estimates from 8 individuals with snRNA-seq data available. Each color represents a benchmarked method. Boxes indicate the quartiles of
the estimated proportions with whiskers extending 1.5 times the interquartile range. Points are individual samples that are represented by the boxplot.
b, c Violin plots depicting association of decomposition estimates aggregated into major cell types with measured phenotypes in 628 individuals. Reported
‘rho’ corresponds to Spearman correlation and p-values indicate the significance of these correlations, with an asterisk denoting both an expected effect
direction and significance after correction for covariates. Examples shown are for the most abundant (neurons) and least abundant (microglia) populations
detected in the snRNA-seq data. Significance of associations reported in Supplementary Table 2. b Neuronal degeneration has been observed in patients
diagnosed with Alzheimer’s disease (AD). Cognitive diagnostic category measures a physician’s diagnosis of cognitive impairment (CI), with 0 indicating no
CI and 4 indicating a confident AD diagnosis. We expected a negative correlation between neuron proportion and cognitive diagnostic category. c Microglia
proportion has been observed to positively correlate with increased severity of AD symptoms, such as neurofibrillary tangles. Braak stage provides a
semiquantitative measure of tangle severity, so we expected an overall positive correlation between microglia proportion and Braak stage. In addition, a
decrease in microglia abundance has been previously reported at Braak stages 5 through 6 in AD patients. Only Bisque produced estimates with a significant
positive association (p = 0.001) after correcting for sex, age, and age-squared in a linear regression model. Source data are provided as a Source Data file.
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maintained an expected positive association with Braak stage. This
positive association served as evidence for the correlation between
these estimates and the true microglia proportions (Supplementary
Fig. 5a). Given these results, we suggest that users take note of this
behavior if both the mean abundances are important for down-
stream analysis and the single-cell reference data is known to be
significantly biased against specific cell populations of interest.

Next, we simulated a situation where an unknown cell
population contributes to bulk expression but is not represented
in the snRNA-seq reference data. For situations where this
unknown contribution varies across the bulk dataset, we
simulated bulk expression by mixing the observed bulk expres-
sion for the DLPFC dataset with increasing amounts of
expression observed in the adipose dataset. To determine the
effect of unknown cell populations on our model, we analyzed
the distribution of residual norms produced by the method. These
residual norms provide a measure of the difference between the
vector of observed bulk and expression reference weighted by
the estimated proportions across all genes for each individual. As
we increased the contribution from unknown cell types, the

residual norm values tend to increase (Supplementary Fig. 5b). In
our simulation framework, this variability in unknown cell-type
contribution could be qualitatively identified by the presence of a
multimodal residual norm distribution.

Given that single-cell datasets still remain relatively small
compared to bulk datasets, we also explored the impact of sample
size in the reference single-cell data on the performance of Bisque.
In the DLPFC dataset, we saw a drop in performance when using
less than four randomly selected snRNA-seq samples (Supple-
mentary Fig. 5c). This threshold is likely to differ between
experiments, though we recommend at least three single-cell
samples to generate reference data.

Finally, as marker gene selection can vary between studies, we
were interested in the performance of Bisque as we varied the
number of marker genes. Again, we measured cell-type propor-
tion estimation performance for microglia in the DLPFC dataset
by correlating the estimates with Braak stage, which is known to
have a positive association. We recalculated this correlation as we
removed marker genes for this cell type. We removed marker
genes in order of both decreasing and increasing log-fold change,
which provides a measure of the importance of marker genes for
identifying this cell type. In both procedures, we observe that as
we remove an increasing percentage of the 102 identified marker
genes, performance remains stable until a shared drop off point
around 75% (Supplementary Fig. 5d). As we observed this trend
in both marker gene removal schemes, we assume that a relatively
few number of marker genes, regardless of their log-fold change
magnitude, can be used to accurately estimate cell-type propor-
tions. These results suggest that as long as a core set of marker
genes are present, variations in less important marker genes will
have little effect on downstream analyses.

Marker-based decomposition using cell-type marker genes.
Although a reference profile from snRNA-seq can help to
decompose bulk-level gene expression, it may not be available for
the same dataset. The majority of bulk RNA-seq datasets do not
have corresponding snRNA-seq data in the same set of indivi-
duals. However, marker gene information from prior experiments
can still be applied to distinct expression datasets of the same
tissue. The basis of most decomposition methods relies on the
logic that as the proportion of a cell type varies across individuals,
the expression of its marker genes will tend to correlate in the
same direction as its cell-type proportion. This linear co-variation
can be captured in a principal components analysis (PCA). Under
the same argument, the more cell-type-specific a marker gene is,
the more its expression will reflect its cell-type proportion. These
observations form the basis for BisqueMarker, a weighted PCA-
based (wPCA) decomposition approach. Genes that are more
specifically expressed within a cell type will provide more infor-
mation than genes with shared expression across cell types. To
estimate cell-type proportions without the use of cell-type-specific
gene expression information, we applied wPCA to bulk-level
adipose tissue expression.

For each cell type, we extracted the first PC from a wPCA of
the expression matrix of its markers. The expression matrix was
corrected for the first global expression PC as a covariate so that
wPCA estimates would not reflect technical variation. We first
confirmed that these genes were distinct across cell types. If 2 cell
types share a high proportion of marker genes, the wPCA
estimates from bulk RNA-seq will correlate highly. We then
investigated whether the second or third PC could have
represented cell-type proportions. The percent of variance
explained by the first PC was typically 30–60% across adipose
cell types, and additionally, over 90% of the markers correlated in
the same direction as the first PC. In contrast, roughly 50–70% of
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markers correlated in the same direction as the second or third
PC. As performed for reference-based decomposition, we
correlated phenotypes with cell-type proportions estimated by
BisqueMarker. We identified the same associations as with
reference-based decomposition, demonstrating its validity when a
reference is not available (Supplementary Table 1). Similarly, we
observed the same trends between estimated cell-type abundances
and phenotypes as we did using our reference-based method in
the DLPFC cohort (Supplementary Table 2).

Discussion
Bisque effectively leverages single-cell information to decompose
bulk expression samples, outperforming existing methods in
datasets with snRNA-seq data available. In simulations, we
demonstrated that the decomposition accuracy of Bisque is robust
to increasing variation between the generation of the reference
profile and bulk expression, which is a significant issue when
comparing snRNA-seq and bulk RNA-seq data. In observed bulk
expression, our reference-based method accurately estimates cell
proportions that are consistent with previously reported dis-
tributions and reliably detects rare cell types. We found that these
estimates consistently follow expected trends with measured
phenotypes, suggesting that cell-specific estimates of proportion
are sufficiently accurate to extract relevant biological signals. In
addition, differences in tissue structure can lead to significant
differences in the quality of single-cell expression data33. We
demonstrated the improved performance of our method in adi-
pose and DLPFC, two distinct tissues, suggesting that Bisque is
robust across different tissue types.

The cell-type proportion estimates determined by Bisque may
be utilized to effectively identify cell-type-specific interactions,
such as expression quantitative trait loci (eQTLs), and adjust for
confounding effects from variability in cell populations. With this
reference-based approach, single-cell sequencing of a subset of
samples from large-scale bulk expression cohorts can provide
high power to detect cell-specific associations in complex phe-
notypes and diseases.

However, we note that there are limitations to this reference-
based method that users should consider. First, if the number of
individuals with single-cell data available is small, the reference
profile and gene-specific transformations may become unreliable.
In addition, a key assumption of our transformation framework is
that single-cell-based estimates of cell proportions accurately
reflect the true proportions we wish to estimate. As a result of this
assumption, Bisque provides estimates of cell proportions
reported by the single-cell technology used to generate the
reference data. Given that snRNA-seq can provide less bias in
isolating specific cell types compared to scRNA-seq34,35, we
expect these estimates to be useful for downstream analyses such
as those previously discussed. Nevertheless, the accuracy of Bis-
que may decrease if the proportion of cell types captured by
single-cell experiments differs significantly from the true phy-
siological distributions. Therefore, we advise users to take caution
if there is a known significant bias in the single-cell measurements
of a tissue, such as severe underrepresentation of a cell type of
interest32,35, that can affect downstream analysis. Our results
demonstrate that even with these limitations, Bisque can be used
to provide cell-type specific biological insight in relevant datasets.

In cases where these described issues may be significant, Bis-
queMarker provides cell-type abundance estimations using only
known marker genes. Although this reference-free method may
be less accurate than reference-based methods, it does not depend
on single-cell based estimates of cell proportions or expression
profiles, but rather on the fact that the expression in certain genes
differs across different cell types; moreover, this method also does

not model explicitly the expression level, and it is thus robust to
biases in the single-cell sequencing protocol. We found that
BisqueMarker estimates followed expected trends with measured
phenotypes; however, it should be noted that this method esti-
mates relative differences in abundances that cannot be compared
across cell types. Also, given the semi-supervised nature of this
method, these cell-type abundance estimates may include signals
from technical or other biological variation in the data. Therefore,
we highly suggest applying this method to data that is properly
normalized with sources of undesired variation removed.

Methods
Processing bulk expression data. Paired-end reads were aligned with STAR
v2.5.1 using default options. Gene counts were quantified using featureCounts
v1.6.3. For featureCounts, fragments were counted at the gene-name level. Align-
ment and gene counts were generated against the GRCh38.p12 genome assembly.
STAR v2.5.1 and GRCh38.p12 were included with CellRanger 3.0.2, which was
used to process the single-nucleus data.

Processing single-nucleus expression data. Reads from single nuclei sequenced
on the 10x Genomics Chromium platform were aligned and quantified using the
CellRanger 3.0.2 count function against the GRCh38.p12 genome assembly. To
account for reads aligning to both exonic and intronic regions, each gene transcript
in this reference assembly was relabeled as an exon as CellRanger counts exonic
reads only. We perform this additional step since snRNA-seq captures both mature
mRNA and pre-mRNA, the latter of which includes intronic regions.

After aggregating each single-nucleus sample with the CellRanger aggr function,
the full dataset was processed using Seurat v3.0.036. The data were initially filtered
for genes expressed in at least 3 cells and filtered for cells with reads quantified for
between 200 and 2500 genes. We further filtered for cells that had percentage of
counts coming from mitochondrial genes less than or equal to 5%. The data were
normalized, scaled, and corrected for mitochondrial read percentages with
sctransform v0.2.037 using default options.

To identify clusters, Seurat employs a shared nearest neighbor approach. We
identified clusters using the top 10 principal components of the processed
expression data with resolution set at 0.2. The resolution parameter controls the
number of clusters that will be identified, and suggested values vary depending on
the size and quality of the dataset. We chose a value that produced 6 clusters in the
adipose dataset and 13 clusters in the DLPFC dataset and visualized the clustering
results with UMAP38.

Marker genes were identified by determining the average log-fold change of
expression of each cluster compared to the rest of the cells. We identified marker
genes as those with an average log-fold change above 0.25. The significance of the
differential expression of these genes was determined using a Wilcoxon rank sum
test. Only genes that were detected in at least 25% of cells were considered. Clusters
with many mitochondrial genes as markers (nine genes detected in both datasets)
were removed from both datasets. In addition, a cluster with only three marker
genes was removed from the DLPFC datasets. Finally, we remove mitochondrial
genes from the list of marker genes for decomposition as we assume reads aligning
to the mitochondrial genome originate from extra-nuclear RNA in the snRNA-seq
dataset (targeting nuclear RNA).

Clusters were labeled by considering cell types associated with the identified
marker genes. Marker genes were downloaded from PanglaoDB39 and filtered for
entries validated in human cells. For each gene, we count the possible cell-type
labels. Each cluster was labeled as the most frequent cell type across all of its
marker genes, with each label associated with a gene weighted by the average log-
fold change. If multiple clusters shared a cell-type label, we consider each cluster a
subtype of this label.

Exon-aligned reads were processed in the same exact procedure but snRNA-seq
data was aligned to just exonic regions. Cluster names were manually changed for
both datasets when aligned to exons to match the clusters from intronic reads as
well. Specifically, for clusters identified in the exonic data not found in the full data,
we relabeled as the label with the highest score found in the full data. These
relabeled clusters were similar in proportion to the corresponding cluster in the full
dataset.

Bisque reference-based decomposition model. We assume that only a subset of
genes are relevant for estimating cell-type composition. For the adipose and
DLPFC datasets, we selected the marker genes identified by Seurat as described
previously. Moreover, we filter out genes with zero variance in the single-cell data,
unexpressed genes in the bulk expression, and mitochondrial genes. We convert
the remaining gene counts to counts-per-million to account for variable sequencing
depth. For m genes and k cell types, a reference profile Z ∊ Rm × k is generated by
averaging relative abundances within each cell type across the entire single-cell
dataset.

Although there is a strong positive correlation between bulk and single-cell-
based pseudo-bulk (summed single-cell counts) expression data, we observe that
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the relationship is not one-to-one and varies between genes. This behavior
indicates that the distribution of observed bulk expression may significantly differ
from the distribution of the single-cell profile weighted by cell proportions. We
propose transforming the bulk data to maximize the global linear relationship
across all genes for improved decomposition. Our goal is to recover a one-to-one
relationship between the transformed bulk and expected convolutions of the
reference profile based on single-cell based estimates of cell proportions. This
transformed bulk expression better satisfies the assumptions of regression-based
approaches under sum-to-one constraints.

Cell-type proportions p ∊ Rk × n′ are determined by counting the cells with each
label in the single-cell data for n′ individuals. Given these proportions and the
reference profile Z, we calculate the pseudo-bulk for the single-cell samples as Y=
Zp, where Y ∊ Rm × n′. For each gene j, our goal is to transform the observed bulk
expression across all n bulk samples Xj ∊ Rn to match the mean and variance of Yj

∊ Rn′; hence, the transformation of Xj will be a linear transformation.
If individuals with both single-cell and bulk expression are available, we fit a

linear regression model to learn this transformation. Let X′j ∊ Rn′ denote the
expression values for these n′ overlapping individuals. We fit the following model
(with an intercept) and apply the model to the remaining bulk samples as our
transformation:

Yj ¼ βjX
0
j þ ϵj ð1Þ

If there are no single-cell samples that have bulk expression available, we
assume that the observed mean of Yj is the true mean of our goal distribution for
the transformed Xj. We further assume that the sample variance observed in Yj is
larger than the true variance of the goal distribution, as the number of single-cell
samples is typically small. We use a shrinkage estimator of the sample variance of
Yj that minimizes the mean squared error and results in a smaller variance than the
unbiased estimator:

σ̂2j ¼ 1
n0 þ 1

Xn0

i¼1

ðYi;j � �YjÞ2 ð2Þ

We transform the remaining bulk as follows:

Xj;transformed ¼ Xj � �Xj

σXj

σ̂j þ �Yj ð3Þ

where a bar indicates the mean value of the observed data and σXj is the unbiased
sample variance of Xj.

To estimate cell-type proportions, we apply non-negative least-squares
regression with an additional sum-to-one constraint to the transformed bulk data.
For individual i, we minimize the following with respect to the cell-proportion
estimate pi :

jjZpi � Xi;transformedjj2s:t:pi ≥ 0;
X

pi ¼ 1 ð4Þ

Simulating bulk expression based on single-nucleus counts. We simulate the
base bulk expression as the sum of all counts across cells/nuclei sequenced from an
individual. To introduce gene-specific variation between the bulk and single-cell
data, we sample a coefficient βj and an intercept αj from a half-normal (HN)
distributions:

βj � HNðσÞ þ 1 ð5Þ

αJ � HNðσÞ ð6Þ
At σ= 0, the base simulated bulk expression remains unchanged. We used a

HN distribution to ensure coefficients and intercepts are positive. Although our
method can handle negative coefficients, this simulation model assumes expression
levels have a positive correlation across technologies. We performed 10 replicates of
this data-generating process at each σ in 0, 5, 10, 20. Decomposition performance
on these data were measured in terms of global R and RMSD and plotted with 95%
confidence intervals based on bootstrapping.

Measuring significance of cell proportion-trait association. Reported associa-
tions were measured in terms of Spearman correlation. To determine the statistical
significance of these associations while accounting for possible confounding fac-
tors, we applied two approaches. For the adipose dataset, which consisted entirely
of twin pairs, we applied a linear-mixed-effects model (R nlme package) with
random effects accounting for family. For the DLPFC dataset, we assumed indi-
viduals were unrelated and fit a simple linear model (R base package). In each
model, we include cell-type proportion, age, age-squared, and sex as covariates. We
introduced an additional covariate for diabetes status when regressing Matsuda
index due to a known significant association between these two variables. We test
whether the cell proportion-effect estimates deviate significantly from 0 using a
t-test. Each R method implements the described model fitting and significance
testing.

Bisque marker-based decomposition model. In order to estimate cell-type
proportions across individuals without the use of a cell-type-specific gene

expression panel as reference, we use a weighted PCA approach. BisqueMarker
requires a set of marker genes for each cell type as well as the specificity of each
marker determined by the fold-change from a differential expression analysis.
Typical single-cell RNA-seq workflows calculate marker genes and provide both
p-values and fold-changes, as in Seurat36. For each cell type, we take statistically
significant marker genes (FDR < 0.05) ranked by p-value. A weighted PCA is
calculated on the expression matrix using a subset of the marker genes by first
scaling the expression matrix and multiplying each gene column by its weight (the
log-fold change) XW, where X is the sample by gene expression matrix and W is a
diagonal matrix with entries equal to log-fold change of the corresponding gene.
The bulk expression X should be corrected for global covariates so that the pro-
portion estimates do not reflect this global variation. The first PC calculated from
XW is used as the estimate of the cell-type proportion. This allows cell-type-
specific genes to be prioritized over more broadly expressed genes. Alternatively, if
weights are not available, PCA can be run on the matrix X and the first PC can
be used.

In order to select marker genes, we iteratively run the above PCA procedure on
a specified range of markers (from 25 to 200) and calculate the ratio of the first
eigenvalue to the second. We then select the number of marker genes to use that
maximizes this ratio. This procedure is similar to other methods which select the
number of markers to use by maximizing the condition number of the reference
matrix13.

Software used. Single-nucleus RNA-seq data were aligned using CellRanger 3.0.2
against the GRCh38.p12 genome assembly. Bulk RNA-seq data were aligned with
STAR 2.5.1 and quantified using featureCounts 1.6.3, both against the GRCh38.p12
genome assembly. R 3.5.1 was used for further processing and decomposition
experiments. The Seurat v3.0.0 R package was used to filter, cluster, and identify
cell-type marker genes from the single-nucleus data. The sctransform 0.2.0 R
package was used to normalize and scale the single-nucleus data. Bisque 1.0, xbioc
0.1.7, Biobase 2.4.2, MuSiC 0.1.1, bseqsc 1.0, CIBERSORT v1.06, and CIBERT-
SORTx were all used for decomposition using the processed bulk and single-
nucleus RNA-seq data. The R nlme 3.1-127 package was used for linear-mixed-
model association. All visualizations and were generated with Python 3.7.2 using
Seaborn 0.9.0, Matplotlib 3.0.3, Pandas 0.24.2, and Numpy 1.16.2, sklearn 0.20.3,
and scipy 1.2.1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The adipose data used in these analyses are available from the corresponding authors
upon reasonable request. The DLPFC data are available on Synapse (10.7303/
syn3219045). Single-nucleus RNA-seq data (https://www.synapse.org/#!Synapse:
syn16780177), bulk RNA-seq data (https://www.synapse.org/#!Synapse:syn3388564), and
phenotypes (https://www.synapse.org/#!Synapse:syn3191087) are available under
controlled use conditions set by human privacy regulations. A data use agreement is
required to access these data. The source data underlying Tables 2 and 3, Figs. 2–5,
Supplementary Tables 1 and 2, and Supplementary Figs. 1, 2, 3, 4, 5 are provided as a
Source Data file.

Code availability
Bisque is available as an R package named “BisqueRNA” that is available on CRAN and
Bioconda. The source code for this package is available at https://github.com/cozygene/
bisque and is under the GPL-3 license.
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Supplementary Tables

a Association of adipocyte proportion estimates in adipose tissue with BMI

Method Spearman
Correlation

Spearman
p-value

Effect
Estimate

Effect
Standard
Error

Effect
t-value

Effect
p-value

Bisque -0.178 0.090 -0.282 0.126 -2.240 0.030

MuSiC 0.038 0.719 -0.081 0.108 -0.754 0.455

BSEQ-sc - - - - - -

CIBERSORT - - - - - -

CIBERSORTx -0.300 0.004 -0.361 0.100 -3.624 0.001

BisqueMarker -0.227 0.030 -0.304 0.096 -3.154 0.003

b Association of macrophage proportion estimates in adipose tissue with BMI

Method Spearman
Correlation

Spearman
p-value

Effect
Estimate

Effect
Standard
Error

Effect
t-value

Effect
p-value

Bisque 0.389 1.291e-04 0.460 0.099 4.671 3.078e-05

MuSiC 0.065 0.540 0.034 0.110 0.308 0.760

BSEQ-sc 0.238 0.022 0.278 0.092 3.013 0.004

CIBERSORT 0.239 0.022 0.162 0.102 1.597 0.118

CIBERSORTx 0.273 0.009 0.224 0.102 2.192 0.034

BisqueMarker 0.296 0.004 0.253 0.103 2.465 0.018
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c Association of T cell proportion estimates in adipose tissue with Matsuda index

Method Spearman
Correlation

Spearman
p-value

Effect
Estimate

Effect
Standard
Error

Effect
t-value

Effect
p-value

Bisque -0.195 0.075 -0.387 0.116 -3.328 0.002

MuSiC - - - - - -

BSEQ-sc - - - - - -

CIBERSORT - - - - - -

CIBERSORTx -0.317 0.003 -0.230 0.111 -2.068 0.046

BisqueMarker -0.294 0.007 -0.188 0.100 -1.874 0.069

Supplementary Table 1: Significance of associations of estimated cell proportions and measured phenotypes in 100
subcutaneous adipose tissue samples. We fit a linear mixed-effects model (LMM) to account for the twin structure of the
dataset as a random effect, with additional fixed effects to account for age, age-squared, and sex. Expected effect directions
were based on previously reported findings. An entry of ‘-’ indicates that the method did not detect the indicated cell
population in any of the samples. Bold values were found to be significant at α = 0.05 and in expected directions.
a Association of adipocyte proportion with BMI. A negative association was expected.
b Association of macrophage proportion with BMI. A positive association was expected.
c Association of T cell proportion with Matusda index, a measure of insulin resistance. A negative association was
expected. An additional covariate accounting for diabetes status was added to the LMM due to previously reported
significant associations with Matsuda index.
Source data are provided as a Source Data file.
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a Association of neuron proportion estimates in DLPFC tissue with cognitive diagnosis

Method Spearman
Correlation

Spearman
p-value

Effect
Estimate

Effect
Standard
Error

Effect
t-value

Effect
p-value

Bisque -0.167 3.123e-05 -0.145 0.039 -3.705 2.305e-04

MuSiC -0.167 3.102e-05 -0.147 0.039 -3.742 1.995e-04

BSEQ-sc -0.142 3.944e-04 -0.053 0.039 -1.341 0.180

CIBERSORT -0.173 1.643e-05 -0.155 0.039 -3.971 7.998e-05

CIBERSORTx -0.162 5.229e-05 -0.127 0.039 -3.237 0.001

BisqueMarker -0.141 4.383e-04 -0.142 0.039 -3.645 2.897e-04

b Association of microglia proportion estimates in DLPFC tissue with Braak stage

Method Spearman
Correlation

Spearman
p-value

Effect
Estimate

Effect
Standard
Error

Effect
t-value

Effect
p-value

Bisque 0.094 0.018 0.118 0.037 3.220 0.001

MuSiC 0.057 0.151 0.019 0.037 0.509 0.611

BSEQ-sc -0.190 1.683e-06 -0.166 0.037 -4.525 7.244e-06

CIBERSORT 0.003 0.943 -0.005 0.037 -0.137 0.891

CIBERSORTx 0.109 0.006 0.056 0.037 1.517 0.130

BisqueMarker 0.092 0.021 0.054 0.037 1.444 0.149

Supplementary Table 2: Significance of associations of estimated cell proportions and measured phenotypes in 628
DLPFC tissue samples. We fit a linear model with covariates to account for age, age-squared, and sex. Expected effect
directions were based on previously reported findings. Bold values were found to be significant at α = 0.05 and in expected
directions.
a Association of neuron proportion with cognitive diagnosis category. A negative association was expected.
b Association of microglia proportion with Braak stage, a measure of neurofibrillary tangles. A positive association was
expected.
Source data are provided as a Source Data file.
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Supplementary Figures
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Supplementary Figure 1: Decomposition of human subcutaneous adipose tissue.
a UMAP projection of snRNA-seq data with 5 identified cell type clusters labeled.
b Leave-one-out cross-validation using 6 samples with snRNA-seq and bulk RNA-seq data available. Proportions based on
snRNA-seq were used as a proxy for the true proportions on the x-axis. Estimated proportions for an individual were
generated by each decomposition method using the remaining 5 individuals as training data. Each color represents one of
the 5 identified cell populations.
c Leave-one-out cross-validation performance after normalization of estimates within each cell type to determine
cell-specific accuracy. Normalized estimates are robust to inflation of global Pearson correlation by large cell populations;
however, these metrics are noisy when considering only six individuals.
d Leave-one-out cross-validation performance on exon-aligned snRNA-seq data. Existing methods are able to detect
additional cell populations using the exonic subset of the snRNA-seq data, though around 40% of the sequenced cells are
filtered out.
Source data are provided as a Source Data file.
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Supplementary Figure 2: Decomposition of human DLPFC tissue.
a UMAP projection of snRNA-seq data with 11 identified cell type clusters labeled.
b Leave-one-out cross validation using 8 samples with snRNA-seq and bulk RNA-seq data available. Proportions based on
snRNA-seq were used as a proxy for the true proportions on the x-axis. Estimated proportions for an individual were
generated by each decomposition method using the remaining 7 individuals as training data. Each color represents one of
the 11 identified cell populations.
c Leave-one-out cross-validation performance after normalization of estimates within each cell type to determine
cell-specific accuracy. As described previously, performance metrics on normalized data provide better measure of global
accuracy but are noisy with small sample sizes.
d Leave-one-out cross-validation performance after merging closely related cell subtypes into 6 clusters. Performance of
existing methods increases compared to decomposition into 11 clusters with related subtypes.
e Decomposition of remaining 628 individuals with cell subtype merging. The aggregated cell type proportions estimated
from the 8 snRNA-seq samples are similar to IHC estimates for neurons and astrocytes from 70 individuals in the cohort
(data not shown). Boxes indicate the quartiles of the estimated proportions with whiskers extending 1.5 times the
interquartile range. Points are individual samples that are represented by the boxplot.
Source data are provided as a Source Data file.
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Supplementary Figure 3: Consistency of snRNA-seq to bulk RNA-seq expression log-ratios across individuals, tissues,
and experiments.
a Heatmap depicting Pearson correlation between pairs of individual’s log-ratios of snRNA-seq expression to bulk RNA-seq
gene expression measured in counts per million (CPM). A sample prefix of ‘A’ indicates an individual from the adipose
dataset and ‘C’ indicates an individual from the cortex dataset. Correlation is high between individuals within experiments
as well as between experiments/tissues, indicating the same genes are over/under-expressed in snRNA-seq when compared
to bulk RNA-seq.
b Scatterplot of average snRNA-seq to bulk RNA-seq gene expression log-ratios across individuals in adipose dataset
(x-axis) and cortex dataset (y-axis). Each point corresponds to a gene detected in both experiments, depicting the average
ratio across all individuals for that tissue. The snRNA-seq to bulk RNA-seq ratios vary across genes and correlate
(R=0.747) between these two experiments.
Source data are provided as a Source Data file.
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Supplementary Figure 4: Shared marker genes between identified clusters in snRNA-seq data. Heatmaps of proportion
of shared marker genes where an entry indicates the proportion of marker genes for the cluster on the x-axis that are found
in the cluster on the y-axis.
a The 5 clusters identified in adipose tissue are relatively distinct in their marker genes.
b The 11 clusters identified in DLPFC tissue have several closely related subtypes, such as neurons and astrocytes.
Source data are provided as a Source Data file.
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Supplementary Figure 5: Robustness of the reference-based decomposition model.
a Microglia cells in the 8 DLPFC snRNA-seq samples were upsampled or downsampled at various percentages, denoted as
bias on the x-axis, to simulate reference data that may overrepresent or underrepresent a cell type of interest compared to
bulk data. Decomposition performance, measured as the estimated effect size of microglia proportion on Braak stage
(which is expected to be positive) on the y-axis was consistent for each method as the bias in the snRNA-seq reference
varied (left). Effect sizes were fit in a linear regression model on 628 samples adjusting for age at death, age at death
squared, and sex. Since Bisque utilizes proportions observed in the reference data under the assumption that they reflect
physiological compositions, the simulated bias propagates to the estimated proportions (right). Shaded regions indicate
standard error of estimates. On the left, the line indicates the estimated effect size of the linear model. On the right, the
line indicates the mean cell proportion estimate.
b The DLPFC bulk RNA-seq data was mixed with the adipose bulk RNA-seq data at various proportions to simulate an
unknown cell population in the bulk data that is not represented in the snRNA-seq reference data. In order to model the
severity of the sample discordance, we compared the amount of adipose contamination, denoted as unknown proportion on
the x-axis, to the residuals from the Bisque model (y-axis). As this simulated unknown proportion increases, the residuals
of Bisque also increase. Each boxplot represents a distinct random subset of 100 samples from the DLPFC dataset that
were mixed with 100 randomly selected samples from the adipose data. Boxes indicate the quartiles of the observed residual
norms with whiskers extending 1.5 times the interquartile range. Points are outliers beyond this range.
c Leave-one-out cross-validation performance across the 8 samples in the DLPFC dataset after utilizing random subsamples
of the snRNA-seq data as a reference. Performance, in terms of Pearson correlation (left) and RMSD (right), began to drop
when using less than 4 individuals in the reference dataset. Shaded regions indicate 95% confidence interval with a line
indicating the mean observed value.
d An increasing number of marker genes for the microglia cells in the DLPFC dataset were removed to determine the effect
on decomposition performance. At each amount of genes removed (x-axis), performance was measured as the effect size of
the estimated microglia proportion on Braak stage (y-axis). Effect sizes were fit in a linear regression model on 628 samples
adjusting for age at death, age at death squared, and sex. Genes were removed in order of decreasing (left) or increasing
(right) log-fold-change. In both settings, performance remained relatively consistent until around 75% of the 102 identified
marker genes were removed. Shaded regions indicate standard error of estimated effects with a line indicating the actual
estimated effect.
Source data are provided as a Source Data file.
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Human liver single nucleus and single cell 
RNA sequencing identify a hepatocellular 
carcinoma-associated cell-type affecting 
survival
Marcus Alvarez1†  , Jihane N. Benhammou2,3†, Nicholas Darci‑Maher1, Samuel W. French4, Steven B. Han5, 
Janet S. Sinsheimer1,6,7, Vatche G. Agopian8, Joseph R. Pisegna1,3 and Päivi Pajukanta1,7,9* 

Abstract 

Background: Hepatocellular carcinoma (HCC) is a common primary liver cancer with poor overall survival. We 
hypothesized that there are HCC‑associated cell‑types that impact patient survival.

Methods: We combined liver single nucleus (snRNA‑seq), single cell (scRNA‑seq), and bulk RNA‑sequencing (RNA‑
seq) data to search for cell‑type differences in HCC. To first identify cell‑types in HCC, adjacent non‑tumor tissue, and 
normal liver, we integrated single‑cell level data from a healthy liver cohort (n = 9 non‑HCC samples) collected in the
Strasbourg University Hospital; an HCC cohort (n = 1 non‑HCC, n = 14 HCC‑tumor, and n = 14 adjacent non‑tumor 
samples) collected in the Singapore General Hospital and National University; and another HCC cohort (n = 3 HCC‑
tumor and n = 3 adjacent non‑tumor samples) collected in the Dumont‑UCLA Liver Cancer Center. We then leveraged
these single cell level data to decompose the cell‑types in liver bulk RNA‑seq data from HCC patients’ tumor (n = 361) 
and adjacent non‑tumor tissue (n = 49) from the Cancer Genome Atlas (TCGA) multi‑center cohort. For replication, 
we decomposed 221 HCC and 209 adjacent non‑tumor liver microarray samples from the Liver Cancer Institute (LCI) 
cohort collected by the Liver Cancer Institute and Zhongshan Hospital of Fudan University.

Results: We discovered a tumor‑associated proliferative cell‑type, Prol (80.4% tumor cells), enriched for cell cycle 
and mitosis genes. In the liver bulk tissue from the TCGA cohort, the proportion of the Prol cell‑type is significantly 
increased in HCC and associates with a worse overall survival. Independently from our decomposition analysis, we 
reciprocally show that Prol nuclei/cells significantly over‑express both tumor‑elevated and survival‑decreasing genes 
obtained from the bulk tissue. Our replication analysis in the LCI cohort confirmed that an increased estimated pro‑
portion of the Prol cell‑type in HCC is a significant marker for a shorter overall survival. Finally, we show that somatic 
mutations in the tumor suppressor genes TP53 and RB1 are linked to an increase of the Prol cell‑type in HCC.
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Background
Hepatocellular carcinoma (HCC) is the third lead-
ing cause of cancer-related death world-wide [1]. 
Although early detection has been associated with 
improved overall survival [2], most patients present in 
later stages, which prevents curative therapies such as 
hepatic resection and liver transplantation, resulting in 
a 5-year survival of only 18% [3]. Previous studies have 
demonstrated that tumor heterogeneity is common in 
HCC [4], which may explain some of the differences 
in survival outcomes and responses to therapies [5, 6]. 
Sub-classification of HCCs by molecular and cellular 
characteristics could help guide biomarker discovery 
and treatment options, especially in NAFLD-related 
HCCs, which remain poorly understood and underrep-
resented in most transcriptomic HCC studies.

Single-cell RNA sequencing (scRNA-seq) has 
advanced the study of complex admixtures of cells, 
shedding light on cellular functions at the single cell 
level in unprecedented ways [7–10]. However, applying 
scRNA-seq technology to precious, archived human 
tissues, such as liver biopsies or resections, has proven 
to be challenging as it is not possible to dissociate intact 
cells from these existing biopsies of solid tissues. Sin-
gle nucleus RNA sequencing (snRNA-seq) techniques 
[11] have overcome these technical challenges [12]
and enabled cell-type level characterization of frozen
solid tissues [13–16]. As scRNA-seq and snRNA-seq
technologies improve, their use for solid tissues, such
as liver, has expanded [17, 18]. However, studies inte-
grating data from multiple single cell level cohorts are
needed to improve power of small individual cohorts.

In the field of tumor biology, scRNA-seq and snRNA-
seq have helped elucidate the presence of tumor 
heterogeneity, which is commonly observed at the 
molecular and clinical level in HCC [19–21]. ScRNA-
seq and snRNA-seq have provided ways to further 
identify and characterize cell-types at finer resolu-
tions [14–18, 21], which was not possible using bulk 
RNA-seq. In addition, many scRNA-seq studies have 
investigated tumor microenvironment by immune 
cells as this has been shown to be an important target 
in HCC treatment in the era of immunotherapy, with 
potential prognostic utilities [22, 23]. The importance 
of understanding tumor heterogeneity is further illus-
trated by the clinical observation that NAFLD-related 
HCC cases may be more resistant to new systemic 

immunotherapies [24], as shown at the molecular level 
both in human studies and murine models [22]. Thus, 
given the changing landscape of HCC etiologies and 
the observed clinical heterogeneity, additional cell-type 
level transcriptomics studies of HCC are warranted.

We hypothesized that snRNA-seq can complement 
the existing scRNA and bulk expression data from liver 
HCC and normal liver cohorts and that these data can 
be integrated to identify currently unknown HCC-asso-
ciated cell-types that affect survival when their propor-
tions expand in the tumor tissue. To this end, we first 
used a liver snRNA-seq data set that we previously 
generated from HCC tumor and adjacent non-tumor 
liver biopsies from patients with NAFLD-related HCC 
[25], and then integrated these data with two existing 
liver scRNA-seq data sets, representing multiple eti-
ologies of HCC and normal liver [7, 8]. Thus, we gen-
erated a powerful reference data set, comprising both 
viral and non-viral origin HCC, adjacent non-tumor, 
and normal liver samples at the single cell resolution. 
We then leveraged the cell-type marker genes identified 
in these three reference data sets to decompose cell-
type proportions in liver bulk RNA-seq data from the 
well-phenotyped Cancer Genome Atlas (TCGA) cohort 
[26] (361 HCC tumor and 49 adjacent non-tumor biop-
sies) to first accurately estimate the tumor/non-tumor
cell-type proportions and then test the effects of the
identified HCC-enriched cell-types on survival out-
comes. To replicate and further validate the results, we
used the Liver Cancer Institute (LCI) cohort [27] (221
HCCs and 209 adjacent non-tumor tissue biopsies),
collected by the Liver Cancer Institute and Zhongshan
Hospital of Fudan University, which consists predomi-
nantly of chronic hepatitis B-HCCs. Using these two
independent HCC cohorts, we discovered a replicated,
proliferative cell-type, Prol, characterized by 656 mito-
sis and cell-cycle enriched cell-type marker genes, that
is significantly more present in the HCC cases than in
adjacent non-tumor liver tissue both in TCGA and LCI,
in line with our single cell level data. Previous studies
have not identified HCC cell-types associated with sur-
vival. Thus, our discovery that HCCs with a high Prol
cell-type content have significantly worse survival out-
comes advances the field by elucidating a key HCC risk
cell-type. Importantly, we observed this same result
both in TCGA and LCI, which increases the scientific
rigor of our finding.

Conclusions: By integrating liver single cell, single nucleus, and bulk expression data from multiple cohorts we iden‑
tified a proliferating cell‑type (Prol) enriched in HCC tumors, associated with a decreased overall survival, and linked to 
TP53 and RB1 somatic mutations.
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Multiple cancer genes and mutations have been identi-
fied in HCC, including mutations in tumor suppressors, 
such as tumor protein P53 (TP53) [6]. However, it is not 
known whether these somatic mutations are also asso-
ciated with cell-type changes in HCC. To address this 
knowledge gap and elucidate the molecular mechanisms 
of the identified cell-types, we investigated the HCC risk 
cell-type, Prol, for accumulation of known somatic can-
cer mutations [6, 28]. Using somatic mutation of origin 
analysis, we discovered that somatic TP53 and RB1 muta-
tions are linked to the identified increase of Prol in HCC.

Methods
Study design
To identify cell-types associated with HCC and its sur-
vival outcomes, we first analyzed three liver single cell 
level data sets from an existing snRNA-seq cohort of 
NAFLD-related HCC [25], an existing scRNA-seq cohort 
of HCC from various etiologies [8], and a healthy liver 
scRNA-seq cohort [7] to identify and characterize their 
cell-types. Next, we leveraged these liver cell-type ref-
erence data to decompose cell-type proportions in the 
liver bulk RNA-seq data from the Cancer Genome Atlas 
(TCGA) cohort [26] and subsequently tested the esti-
mated cell-type proportions for associations with HCC 
and survival outcomes. Then, the HCC and survival 
associated cell-types identified in TCGA were tested for 
replication in independent liver bulk microarray expres-
sion data from the previously published LCI cohort [27]. 
Finally, we searched for associations between cell-type 
proportions and somatic mutations in the TCGA cohort.

snRNA‑seq cohort
We identified NAFLD-related HCC cases among patients 
undergoing surgical resection for HCC treatment at the 
Dumont-UCLA Liver Cancer Center [25]. The 3 patients 
with NAFLD-related HCC were women with a mean 
age of 77.9 ± 3.1 years and a mean body mass index of
25.3 ± 2.9 kg/m2, who had components of the metabolic
syndrome (hypertension, dyslipidemia and insulin resist-
ance). All patients exhibited features of nonalcoholic 
steatohepatitis (NASH) on liver histopathology (steato-
sis, ballooning and lobular inflammation [29]), and none 
had cirrhosis, as assessed by the METAVIR fibrosis score 
[30] (Additional file 1: Fig. S1). All patients also presented
with clinically heterogeneous tumors, based on sizes,
histological stages of differentiation (moderate to poorly
differentiated), and serum alpha fetoprotein (AFP) levels,
with one patient exhibiting an AFP of > 400 ng/mL.

Tissues were characterized by a pathologist using H&E 
and immunohistochemical stains, which confirmed 
the diagnoses of HCC (n = 3) and adjacent non-tumor
(n = 3). Samples were snap frozen and kept at −  800C

until extraction of the nuclei. All histopathology slides 
were reviewed by the same pathologist. We abstracted 
clinical data and other demographics from the electronic 
health records. The study was approved by the UCLA 
IRB, and all participants provided a written informed 
consent.

Two existing scRNA‑seq cohorts
Along with the snRNA-seq data  [25], we also incorpo-
rated liver scRNA-seq data from two previously pub-
lished cohorts into our single cell level analysis [1]: HCC 
patients with viral origin of HCC (n = 4), HCC patients
with unspecific origin of HCC (n = 10), and adjacent con-
trol liver samples (n = 14), as well as a healthy normal
donor, collected in the Singapore General Hospital and 
National University Hospital [8], and [2] normal liver 
samples (n = 9), collected in the Strasbourg University
Hospital [7]. Data from Sharma et  al. [8] were down-
loaded from https:// data. mende ley. com/ datas ets/ 6wmzc 
skt6k/1. Read counts for filtered droplets (n = 73,589) 
from the 14 HCC patients and 1 control were extracted 
from the downloaded HCC.h5ad file. Read counts for 
the 9 normal liver samples from Aizarani et al. [7] were 
downloaded from GEO under the accession number 
GSE124395. We used the filtered set of droplets provided 
by the authors (n = 10,372) for analysis.

Processing of The Cancer Genome Atlas (TCGA) bulk 
RNA‑seq, mutation, and clinical data
To expand our cell-type composition analysis to a larger 
number of HCC samples, we leveraged data from The 
Cancer Genome Atlas Liver Hepatocellular Carcinoma 
(TCGA-LIHC) (referenced as TCGA in the text) [26]. 
The TCGA-LIHC cohort includes 361 cases with pri-
mary tumors. We included only those cases that were 
designated as non-recurrent primary HCC and excluded 
cholangiocarcinomas, HCC-cholangiocarcinoma mixed 
tumors, and other rarer types of HCC, such as fibrola-
mellar, as these have different pathogenesis and clinical 
outcomes. We integrated bulk RNA-seq, mutation, clini-
cal, and survival data with our single cell level RNA-seq 
data to identify HCC-associated cell-types.

Clinical data were downloaded from Genomics Data 
Commons (GDC) portal [31] (https:// portal. gdc. cancer. 
gov/ proje cts/ TCGA- LIHC). We abstracted the avail-
able clinical and biospecimen data from Genomic Com-
mon Data portal, which included age, sex, ethnicity, and 
HCC tumor size, as well as node and metastatic Ameri-
can Joint Committee on Cancer (AJCC) TNM staging, 
and RNA integration number (RIN). Some other clini-
cal characteristics were missing in TCGA, and thus, we 
had no data on cirrhosis status, the Model for End-Stage 
Liver Disease (MELD), serum AFP levels, or additional 
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clinical phenotypes (e.g., diabetes and medication). End-
point data for the survival analysis were downloaded 
from Table  S1 from Liu et  al. [32], and redacted cases 
were removed before analysis.

Liver bulk RNA-seq expression data were down-
loaded from the GDC portal [31] as HTSeq counts for 
all TCGA-LIHC individuals. We included counts for the 
361 primary tumor samples, as well as for 49 matched 
non-tumor samples. For downstream analysis, the counts 
were Trimmed Mean of M-values (TMM) normalized 
with edgeR [33] and log10 transformed after adding a 
prior count of 1. Finally, RIN was regressed out to obtain 
the final normalized expression data.

Somatic mutation data collected from whole exome 
sequencing of tumor biopsies for the TCGA-LIHC were 
downloaded from the Broad Genome Data Analysis 
Center (GDAC) (http:// gdac. broad insti tute. org). The 
Analysis Results file from the MutSig2CV under Muta-
tion Analyses were downloaded on May 18, 2021. These 
included a MAF file of somatic mutations for each sam-
ple (LIHC-TP.final_analysis_set.maf), as well as a list of 
69 significantly frequently mutated HCC genes (q < 0.1) 
(sig_genes.txt).

The Liver Cancer Institute (LCI) cohort used for replication 
analyses
To validate the results obtained in TCGA, we analyzed 
a previously published HCC microarray dataset [27, 34]. 
This study recruited the HCC patients from the Liver 
Cancer Institute (LCI) and Zhongshan Hospital of Fudan 
University, most of whom had a history of chronic hepa-
titis B (HBV) infection. We obtained tumor microarray 
expression, clinical, and overall survival (OS) outcome 
data for a total of 221 patients. Additionally, 209 of these 
patients had expression data for adjacent non-tumor 
liver biopsies. RMA-normalized microarray expres-
sion data in log space were directly downloaded from 
GSE14520 in GEO. The clinical data, including OS end-
points, were downloaded as the extra endpoint text file 
from GSE14520. The expression data had been normal-
ized by the authors [27], and thus, we used them directly 
for downstream analysis.

Liver single nucleus extraction for snRNA‑seq
For the snRNA-seq of the 3 NAFLD-related HCC and 3 
adjacent non-tumor control biopsies, we cut the frozen 
samples over dry ice and placed them in glass tubes, as 
described earlier [25]. Briefly, we added 4 ml of lysis buffer 
consisting of 0.1% IGEPAL, 10 mM Tris-HCl, 10 mM 
NaCl, and 3 mM MgCl2 to the tissue. After 10 min on ice, 
we mechanically homogenized the tissue using a Dounce 
homogenizer, and then filtered them through a 70-μm 
MACS smart strainer (Miltenyi Biotec #130-098-462) to 

remove debris. We isolated the nuclei by spinning the 
homogenate at 500 x g for 5 minutes at 4 °C and washed 
the nuclei in 1 ml of resuspension buffer (RSB) consist-
ing of 1X PBS, 1.0% BSA, and 0.2 U/μl RNase inhibitor. 
We filtered the nuclei a second time using 40 μm Flowmi 
cell strainer (Sigma Aldrich # BAH136800040) and 
centrifuged them at 500×g for 5 min at 4 °C. We resus-
pended the nuclei in the wash buffer and kept them on 
ice. To assess nuclei isolation (for clumping and intact 
membrane), we labeled the nuclei with Hoechst stain and 
counted them using BZ-X710 fluorescent microscope. 
Nuclei were immediately processed them with the 10X 
Chromium platform following the Single Cell 3′ v2 pro-
tocol. We generated libraries with the 10X platform and 
sequenced the nuclei on an Illumina NovaSeq S2 at a 
sequencing depth of 300–400 million reads per sample.

Processing of the snRNA‑seq data
Before read alignment, we trimmed template switch oli-
gos, primers, and polyA sequences greater than 20 base 
pairs from the fastq reads using cutadapt (https:// cutad 
apt. readt hedocs. io/ en/ stable/). We aligned reads to the 
GRCh38 human genome reference and Gencode v26 [35] 
gene annotations using STARSolo in STAR v2.7.3a [36]. 
Gene counts were taken from the full pre-mRNA tran-
script using the “—soloFeatures GeneFull” option. We 
filtered empty and contaminated droplets using Debris 
Identification using Expectation Maximization (DIEM) 
[13], where we further adapted estimation of the multino-
mial mixture model parameters by adding a prior count 
of 1 to the gene mean estimates and the cluster member-
ship estimates to avoid overfitting. To further remove 
doublets and contaminated clusters from the snRNA-seq 
data, we separately clustered parenchymal hepatocytes 
and non-parenchymal nuclei. Nuclei were clustered in a 
first pass and assigned to hepatocyte and non-hepatocyte 
cell-types. Each group was clustered again separately. 
Then, we removed nuclei belonging to clusters expressing 
markers from multiple cell-types, leaving the filtered set 
of nuclei (n = 39,995).

Integration and clustering of the single cell level data 
from the three cohorts
To analyze the single-cell level data across the cohorts, 
we first removed cohort- and experiment-specific 
effects by performing data integration. Counts were 
first normalized using sctransform [37] and integrated 
using canonical correlation analysis (CCA) [38]. Inte-
grations were performed across the 6 NASH-HCC sam-
ples, the 15 patients (14 HCC and 1 healthy control) in 
the Sharma [8] data set, and the single combined set of 
9 samples in the Aizarani [7] data set. The 22 samples 
across the 3 cohorts were used for independent samples 
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during normalization and integration. Each of the 22 
samples were normalized with sctransform using 3000 
genes for the number of variable features. To reduce 
the time required for integration, we selected a sub-
set of the 22 samples for use as a reference during the 
FindIntegrationAnchors step. We selected 11 samples, 
including the combined sample from Aizarani et  al. 
[7] to serve as a healthy control, and 10 additional ran-
domly selected samples. After anchor identification, all
22 samples from the 3 cohorts were integrated with the
IntegrateData function in Seurat [38] using 30 dimen-
sions. This resulted in corrected counts for the 123,956
droplets. Finally, we performed clustering on these cor-
rected counts for downstream cell-type assignment.
We ran principal component analysis (PCA) and con-
structed the shared nearest neighbor (SNN) graph with
30 PCs. This graph was used as the input to Louvain
clustering by running the FindClusters function with
a resolution of 1 [38]. We chose a resolution of 1 to
accommodate the large number of cells and nuclei and
better identify subtypes. To evaluate the effect of inte-
gration, we also clustered cells and nuclei in the three
cohorts by clustering the merged data without CCA
integration. Sctransform was run on the merged counts
as described above, treating the cells and nuclei from
the three cohorts as a single sample. PCA and cluster-
ing were performed on the sctransformed counts in the
same manner as for the integrated data.

Marker gene identification and cell‑type assignment 
of single cell level data
For cell-type classification, we obtained the upregu-
lated marker genes and log-fold changes for each clus-
ter using the uncorrected, log-normalized counts. Raw 
counts for all droplets were multiplied by a scaling fac-
tor to sum to 1,000 as this was the approximate median 
across all droplets, and then log-transformed. To iden-
tify marker genes, we performed a logistic regression 
test using the FindAllMarkers function in Seurat [38] 
and kept marker genes with an average  log2 fold change 
of at least 0.1 and Bonferroni-adjusted p-value < 0.05 
corrected for the total number of genes in the data set. 
For the pathway enrichment analysis, we also obtained 
the log fold changes for all expressed genes by calcu-
lating the difference in  log2 means between the counts 
of droplets classified within and outside of the cluster. 
Cell-types were assigned based on manual curation of 
known marker genes [26]. Throughout the manuscript, 
we call the 25 assigned clusters the subcell-types. We 
further merged the subcell-types into the 8 main cell-
types based on their common lineage, expressed genes, 
and enriched pathways.

Pathway enrichment analyses of the single cell level data
To gain insight into cell-type functions in the liver sin-
gle cell level data, we performed pathway enrichment 
analysis of upregulated marker genes for each liver sub-
cell-type. We used the clusterProfiler [39] R package to 
run gene set enrichment analysis (GSEA) [40]. We tested 
for enrichments of the pathways in the Reactome data-
base [41, 42]. For each subcell-type, its log fold changes 
were used to rank the gene set as input to the gsePath-
way function, using 10,000 permutations and an epsilon 
of 1 ×  10−50. p-values were corrected for multiple testing
using FDR.

Clustering of Prol cells and nuclei
The Prol cluster that we identified in the integrated anal-
ysis expressed markers involved in cell division; however, 
our integrated analysis did not further separate these 
cells/nuclei, so we subclustered the 1,743 Prol cells/
nuclei to identify its composition. We ran a clustering 
pipeline similar to the whole data set, with modifications 
to account for the lower number of cells. The Prol cells/
nuclei were first split by cohort, and sctransform was 
run on the raw counts for each of the three samples. We 
then ran CCA integration with the k.filter and k.weight 
parameters set to 75 to account for the small number of 
cells/nuclei in each cohort, as only 92 Prol cells were pre-
sent in the healthy liver tissues from the Aizarani data 
set [7]. Cluster assignments and UMAPs were generated 
using 30 PCs with a resolution of 0.2 to accommodate the 
lower number of cells/nuclei and to match clusters with 
the main cell-types.

To assign Prol cells/nuclei to the main liver cell-types, 
we used SingleR [43]. For classification, we first gener-
ated a reference of the 7 main cell-types (excluding the 
Prol cluster) from the integrated liver data. Briefly, pair-
wise T-tests were performed across the 7 main cell-types 
and the top 100 markers were extracted. A reference was 
derived on the log-normalized counts using these top 
markers with the trainSingleR function. To account for 
the single-cell level nature of the reference, the counts 
were aggregated to pseudobulk samples with the aggr.ref 
parameter. Finally, we ran the classifySingleR function on 
the droplets in the Prol cluster and assigned their cell-
type to the pruned labels.

Estimating cell‑type proportions and correlation analyses 
of the cell‑type marker genes in the liver bulk RNA‑seq 
from TCGA and microarray data from LCI
To estimate cell-type proportions in the bulk liver expres-
sion data in the TCGA-LIHC cohort [26], we used a co-
expression based approach implemented in Bisque [14]. 
Briefly, this approach performs PCA on the top cell-type 
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marker genes for each cell-type. We used normalized 
RNA-seq expression and cell-type markers as input, 
requiring a minimum of 20 genes and a maximum of 300 
genes for the set of markers for PCA. The marker genes 
were obtained from our single cell level reference data. 
Decomposition was performed for the 8 main cell-types 
and 25 subcell-types. As we observed high correlation 
(R > 0.9) between proportion estimates of subcell-types 
within their main classification, we used only the propor-
tion estimates for the main cell-types for downstream 
analysis.

In order to replicate our results with the decomposed 
proportion estimates observed in TCGA, we ran the 
same decomposition in the LCI cohort. We ran Bisque 
on the normalized microarray expression data using the 
same parameters and marker gene input described above. 
To assess the reliability of the TCGA and LCI proportion 
estimates, we analyzed the co-expression patterns of the 
marker genes in each cohort. We found that for the LCI 
cohort, the B cell marker genes did not show positive cor-
relations across their expression. As our decomposition 
approach relies on co-expression of marker genes, we 
excluded B cells from the LCI main cell-type proportion 
estimates.

Cell‑type proportion differences between tumor 
and non‑tumor in the single cell level and bulk data
To identify tumor-enriched or depleted cell-types, we 
performed paired Wilcoxon signed-rank tests between 
tumor and non-tumor samples. In the single-cell-level 
data, we calculated differences in the observed propor-
tions between paired tumor and non-tumor samples in 
the 17 patients with matched biopsies. Differences were 
calculated for each subcell-type. The observed subcell-
type proportions for each tumor or non-tumor sample 
were calculated by dividing the number of cells/nuclei in 
the subcell-type by the total number in the sample. For 
the tumor samples in the Sharma data set [8], the core 
and peripheral tumor droplets were combined. p-values 
were corrected for testing 25 subcell-types using FDR.

For calculating differences in cell-type proportion 
estimates between tumor and adjacent non-tumor sam-
ples in the TCGA and LCI bulk tissue cohorts, we per-
formed a paired Wilcoxon test in TCGA (n = 49) and LCI
(n = 209). p-values were corrected for testing 8 and 7 cell-
types in the TCGA and LCI cohorts, respectively, using 
FDR.

Survival outcome associations with cell‑type proportion 
estimates
To investigate the effect of cell-types on survival out-
comes, we performed associations between survival out-
comes and cell-type proportion estimates. Associations 

were carried out with Cox proportional hazard regres-
sions for overall survival (OS) and progression free 
interval (PFI) in TCGA, and OS in the LCI validation 
cohort. We included age, sex, and ethnicity as covari-
ates in TCGA, and age and sex in the LCI cohort, as most 
patients from this cohort were of Asian descent. In addi-
tion, we included tumor stage as a binary covariate where 
specified, where patients with stage I and II were grouped 
into the low group and those with stage III and IV were 
grouped into the high group. Patients with any missing 
covariate data were excluded. All p-values were corrected 
for multiple testing using false discovery rate (FDR). All 
survival analyses were performed with the survival pack-
age in R [44]. We tested survival differences between low 
vs. high proportion groups, splitting the participants by 
median or quartile. In the median analysis, tumor sam-
ples with proportion estimates below and above the 
median were grouped into low and high, respectively. 
Similarly, the quartile analysis was performed using the 
lower and upper 25% quartiles of the cell-type propor-
tion estimates as cutoffs. Plots were generated using the 
Kaplan-Meier method without any covariates. Unless 
otherwise specified, all cell-type effects were corrected 
for testing 8 and 7 cell-types in the TCGA and LCI 
cohorts, respectively, using FDR.

Mutation analyses in TCGA‑LIHC
We hypothesized that mutations in distinct genes would 
lead to increased Prol proportions in HCC tumor sam-
ples. We thus tested for differences in proportions 
between tumor samples with and without a somatic 
mutation in TCGA-LIHC, as LCI did not profile tumor 
mutations. Somatic mutations in TCGA-LIHC were col-
lected from exome sequencing data processed by GDAC 
(http:// gdac. broad insti tute. org). We restricted our analy-
sis to 69 genes frequently and significantly mutated in 
HCC, as reported previously in the TCGA-LIHC cohort 
(http:// gdac. broad insti tute. org) [45]. A gene was con-
sidered significantly mutated if its q-value was less than 
0.1, as determined by MutSig2CV [46]. Tumor samples 
with at least one synonymous, nonsense, in frame, splice 
site, missense, or frame shift variant were considered as 
having a somatic mutation (mut.). Tumor samples with-
out any somatic mutation detected were considered as 
wildtype (WT). For each gene and each main cell-type, 
we used a Wilcoxon test to assess the difference in cell-
type proportion estimates between tumor samples with 
a somatic mutation detected and tumor samples without 
a somatic mutation. For TP53, we also tested for tumor 
proportion differences between wildtype (WT) cases and 
each of the somatic mutation types listed previously. Wil-
coxon p-values were adjusted for multiple testing across 
all gene-main-cell-type pairs using FDR.
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Bulk liver differential expression (DE) analyses
In addition to estimating cell-type proportions, we also 
reciprocally evaluated the significance of cell-types in 
HCC by assessing single cell expression of genome-
wide significant bulk tumor-elevated, survival decreas-
ing, and mutation-elevated genes. To first obtain the 
genome-wide tumor-elevated genes in TCGA and LCI, 
we ran differential expression (DE) genome-wide in 
both the TCGA and LCI bulk expression cohorts. DE 
was run on the 49 and 209 paired samples in the TCGA 
and LCI, respectively, that contained the matched 
tumor and adjacent non-tumor samples. For the TCGA 
RNA-seq data, we first filtered for expressed genes by 
removing those with an average number of reads less 
than 10 across the 98 samples. We then ran edgeR [33] 
on the TMM normalized counts with the generalized 
linear model (GLM) framework (glmFit and glmLRT 
functions) and setting a prior count of 1. For the LCI 
microarray data, we used the gene-filtered and normal-
ized data provided. We then ran limma [47] to fit a lin-
ear model (lmFit function) and compute test statistics 
with empirical Bayes shrinkage of variances (eBayes 
function). For both the TCGA and LCI, we accounted 
for the paired status of the samples by including the 
patient as an indicator covariate.

Next, to obtain the genome-wide survival-decreasing 
genes in the bulk expression cohorts, i.e., OS- and PFI-
decreasing genes in TCGA and OS-decreasing genes in 
LCI, we performed Cox proportional hazard regressions 
for OS and PFI in TCGA, and OS in the LCI validation 
cohort. As with the proportion analyses, we included age, 
sex, and ethnicity as covariates in TCGA, and age and sex 
in the LCI cohort. Patients with any missing covariate 
data were excluded. We then ran Cox proportional haz-
ards regression testing normalized gene expression val-
ues as a quantitative predictor against survival outcomes. 
The statistical significance of these survival-decreasing 
genes was corrected for genome-wide testing using FDR. 
Regressions were performed with the survival package in 
R [44].

Similarly, to identify genes upregulated in the context 
of a somatic mutation in TP53 and RB1, we also per-
formed genome-wide DE between somatic mutation 
(mut.) and wildtype (WT) carriers in the TCGA cohort. 
We broadly included genes with greater than 0 counts in 
at least 50% of the 410 samples. To test for DE, we ran the 
GLM framework in edgeR [33] using TMM normaliza-
tion. DE was run on the 357 primary tumor samples with 
both mutation and RNA-seq data. We tested for differ-
ences in bulk liver expression between participants that 
were wildtype (WT) and those that had a somatic muta-
tion (mut.) in the particular gene. A genome-wide DE 
analysis was performed for both TP53 and RB1.

Scoring of the cell‑cycle, tumor‑elevated, OS‑ 
and PFI‑decreasing, and mutation upregulated bulk genes 
in the single cell level data
To assess cell/nuclei expression of the cell-cycle genes 
[48] (42 S phase genes and 54 G2 and M phase genes)
as well as the tumor-elevated, OS- and PFI-decreasing,
and mutation upregulated genes identified in our bulk
DE analyses (see above), we assigned module scores with
the AddModuleScore function implemented in the Seu-
rat package [38]. Briefly, module scores are derived by
calculating the average expression of the gene set and
subtracting the average expression of gene sets. Control
gene sets are randomly selected from bins based on aver-
age expression. The expression data of cells/nuclei for
module scoring were calculated by multiplying raw read
counts to sum to 1,000 and log transforming them.

For cell cycle scoring, the gene sets included 42 S phase 
genes and 54 G2 and M phase genes provided in the Seu-
rat package [38, 48]. For tumor-elevated scores, we used 
the genes identified in the bulk liver DE analysis that had 
a log fold change greater than 1 of tumor over non-tumor 
and an FDR-corrected p-value < 0.05. The tumor-elevated 
gene set included 1065 genes in TCGA and 335 genes in 
LCI. For the OS- and PFI-decreasing gene sets, we ana-
lyzed the genes identified in the genome-wide survival 
analysis of the bulk liver data that had a hazard ratio > 1 
(increased expression leading to a worse prognosis) and 
an FDR-corrected p-value < 0.05. There were 740 OS-
decreasing genes and 528 PFI-decreasing genes in TCGA 
and 36 OS-decreasing genes in LCI. For the mutation 
upregulated genes, we included those from the genome-
wide DE mutation analysis for TP53 and RB1 that had 
a log fold change greater than 0.5 and an FDR adjusted 
p-value < 0.05. This resulted in a set of 1358 TP53 mut.
upregulated genes and a set of 774 RB1 mut. upregulated
genes.

Differences in tumor-elevated, OS-decreasing, PFI-
decreasing, and mutation upregulated gene scores 
between the Prol and all other clusters were assessed by 
running a Wilcoxon test between droplet scores within 
and outside of the Prol cluster.

Results
Overview of study design
HCCs are poorly characterized at the cell-type level. To 
address this scientific and biomedical knowledge gap, 
we utilized the following three single cell level RNA-seq 
data sets to produce a comprehensive cell-type reference 
for HCC tumor, adjacent non-tumor tissue, and nor-
mal livers [1]: liver snRNA-seq data that we previously 
generated from HCC samples (n = 3) and adjacent non-
tumor control tissue samples (n = 3) from patients with
NAFLD-related HCC undergoing hepatic resection [25] 
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[2]; existing liver scRNA-seq data from HCC patients 
with viral origin of HCC (n = 4), HCC patients with
unknown etiology of origin of HCC (n = 10), adja-
cent non-tumor control tissue samples (n = 14), and a
healthy control liver sample (n = 1) [8]; and [3] existing
liver scRNA-seq data from normal liver samples (n = 9) 
[7]. After integrating these data and identifying the cell-
types, we leveraged the cell-type transcriptional profiles 
to estimate cell-type proportions (decompose) in bulk 
liver RNA-seq samples from the well-established TCGA 
cohort [26] (361 patients with primary HCC tumors, 49 
of whom have paired adjacent non-tumor tissue samples) 
and searched for cell-types that are significantly enriched 
in HCC. To replicate these findings, we used the LCI 
cohort [27] with microarray data from 221 patients with 
primary HCC tumors, of whom 209 have paired adja-
cent non-tumor biopsies. Next, we tested the effect of 
the HCC-increased cell-type on survival outcomes in the 
TCGA and LCI cohorts. Finally, we searched for associa-
tions between somatic mutations and the increased cell-
type proportion estimates in HCC (for the overall study 
design, see Additional file 1: Fig. S2).

Data integration, clustering, and cell‑type assignment 
in three single cell level RNA‑seq cohorts
To decompose liver bulk RNA-seq cell-types in the 
TCGA and LCI cohorts, we first set up a single cell level 
reference data set. We utilized three single cell level 
cohorts generated using either snRNA-seq or scRNA-
seq to build a powerful liver cell-type reference data set 
with a large number of cells and multiple HCC etiologies 
represented. Briefly, the included cohorts consist of both 
viral and non-viral origin HCC biopsy samples, adjacent 
non-tumor control samples, and normal liver samples 
(for cohort descriptions see Methods). Merging of the 
three data sets without integration resulted in cohort-
specific clustering, indicating the presence of batch 
effects (Additional file 1: Fig. S3). When merging without 

integration, we also observed evidence of inter-patient 
heterogeneity across the 17 paired HCC samples (Addi-
tional file 1: Fig. S3). In order to identify shared cell-types 
and correct for these batch effects, we integrated these 
single cell level expression data using the CCA approach 
[38, 49] that should retain biologically meaningful signals 
while reducing technical variance (Fig.  1a,b). The inte-
grated data were clustered using Seurat [38], resulting in 
the identification of 25 cell-types (Fig. 1a,b).

Discovery of an HCC‑associated, cell‑cycle‑related cell‑type 
in the single cell level data
Clustering of the integrated single cell level data (123,956 
analyzed nuclei/cells) identified 25 subcell-types in total 
(Fig.  1b), which we merged and classified into 8 main 
cell-types based on their lineage (Fig.  1a). Subcell-types 
and main-cell types were classified based on expression 
of known marker genes and enriched pathways (Fig. 1c; 
Additional file 1: Fig. S4; Additional file 2: Table S1 and 
Additional file 3: Table S2). We then searched for subcell-
types/cell-types enriched or depleted in HCC tumor cells 
(Fig. 1d). We observed a significant enrichment of tumor 
cells (80.4%) in a new cell-type cluster that we named Pro-
liferative (Prol) cell-type (Fig. 1d,e). The pathway analysis 
of its marker genes suggested that this tumor-enriched 
cell-type consists of mitotic cells (Fig.  1c, see below). 
We also observed a significantly increased number of 
tumor cells in T, myeloid, and hepatocyte subcell-types 
and a decreased number of tumor cells in natural killer 
T subcell-type (Fig. 1d). Thus, our multi-cohort integra-
tion of both snRNA-seq and scRNA-seq data allowed us 
to identify the tumor cell-enriched Prol cell-type that had 
not been identified previously. The top pathway enrich-
ments of the Prol marker genes were oxidative phospho-
rylation and cell cycle, suggesting that their functions are 
related to growth and cell division (Fig.  1c). To further 
investigate the proliferative capacity of Prol, we assigned 
G2M and S module scores based on average expres-
sion of G2M and S cell cycle genes [48] (see Methods), 

Fig. 1 Multi‑cohort integration of three liver HCC single cell level data sets identifies and characterizes an HCC‑associated cell‑type. We assessed 
liver cell‑types and HCC‑related cell‑type changes by integrating Aizarani et al. [7] scRNA‑seq data (n = 9 non‑HCC samples), Sharma et al. [8] 
scRNA‑seq data (n = 1 non‑HCC, n = 14 HCC‑tumor, and n = 14 adjacent non‑tumor samples), and Rao et al. [25] snRNA‑seq data (n = 3 HCC‑tumor 
and n = 3 non‑tumor samples). a, b Uniform Manifold Approximation and Projection (UMAP) visualization of 123,956 cells and nuclei integrated to 
remove cohort‑specific effects. Clusters were assigned to (a) 8 major cell‑types and (b) 25 subcell‑types. c Pathway gene set enrichment analysis 
of the expression profiles for each subcell‑type using the Reactome pathway database. The enr values indicate normalized enrichment scores and 
q‑values denote Benjamini‑Hochberg‑adjusted p‑values. Full pathway names are shown in Additional file 3: Table S2. d The bar plot shows the 
proportion of cells/nuclei in the full set of 123,956 cells/nuclei originating from HCC tumor and non‑tumor samples separated by subcell‑type. 
Darker fills indicate an FDR‑adjusted p‑value < 0.05 from a paired Wilcoxon test between proportions of HCC tumor and non‑tumor samples. e
Proportions of the Proliferative (Prol) cell‑type are significantly higher in the 17 HCC tumor samples than in their 17 adjacent paired non‑tumor 
samples after correcting for multiple testing with FDR, as assessed by a paired Wilcoxon test. f, g UMAP plots with cells/nuclei colored by their cell 
cycle score in the full single‑cell level RNA‑seq data of 123,956 droplets show that the Prol cluster consists of droplets with higher expression of (f) 
G2M phase genes and (g) S phase genes. The asterisks denote the significance of a difference between G2M and S phase gene scores between Prol 
and non‑Prol cells/nuclei. Significance levels for p‑values in (e–g) *p < 0.05, **p < 0.005, ***p < 0.0005. B indicates B cells; Chol, cholangiocytes; Endo, 
endothelial cells; Hep, hepatocytes; Myel, myeloid cells; Stell, stellate cells; and T, T cells

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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respectively. We found that cells/nuclei from Prol dem-
onstrated significantly higher S and G2M phase module 
scores when compared to other cell-types (Fig. 1f,g). The 
higher cell cycle scores imply that Prol consists of actively 
dividing cells. To determine the cell-type composition of 
these proliferating cells, we re-classified the Prol cells/
nuclei into main cell-types using a reference trained on 
the non-Prol cells/nuclei. In addition to hepatocytes, 
all non-parenchymal cell-types were observed in this 
tumor-enriched cluster (Additional  file  1: Fig. S5). This 
presence of dividing non-hepatocyte cells observed in the 
tumor-enriched Prol cluster highlights the importance of 
the microenvironment in supporting HCC growth [50].

We next explored the marker genes within the Prol 
cell-type to further understand its biology. We identified 
656 protein-coding marker genes in Prol, of which 15 had 
a log fold change > 1 for differential expression between 
the Prol and other cell-types (Additional file 2: Table S2). 
Most of these 15 strongest Prol marker genes (12/15; 
80%) had previously been identified in HCC pathogenesis 
or associated with clinical features of the disease [51–58]. 
Consistent with our findings, liver bulk expression of the 
histone protein, H2AFZ, a marker gene in Prol, was also 
identified in an independent HCC study to be associ-
ated with cell cycle genes regulated by TP53 [59]. How-
ever, among the 15, we discovered three genes, HMGN2, 
RARRES2, and HIST1H4C, which have previously been 
described in other malignancies [60, 61] but not in HCC. 
Two of these, HIST1H4C and HMGN2, are nuclear pro-
teins that bind to nucleosomal DNA, consistent with Prol 
having higher S and G2M scores (Fig. 1f, g).

Overall, the single cell level reference data suggest that 
the Prol cell-type is associated with HCC. Therefore, 
we next used this single cell level reference data set to 
decompose cell-type proportions in the liver bulk RNA-
seq HCC cohorts, TCGA and LCI, and then tested them 
for cell-type proportion differences between the HCC 
tumor and adjacent non-tumor control tissues.

Decomposition of cell‑type proportions in HCC 
and adjacent non‑tumor samples discovers high 
proportions of the proliferative cell‑type Prol in HCC
Next, we sought to determine whether cell-type com-
position changes observed in our single cell level refer-
ence data were conserved and universally present in 
HCCs. Therefore, we estimated cell-type proportions 
for the 8 main cell-types and 25 subcell-types from bulk 
liver RNA-seq data in the TCGA Liver Hepatocellu-
lar Carcinoma (TCGA-LIHC) cohort, consisting of 361 
non-recurrent primary tumors and 49 paired adjacent 
non-tumor samples (total n = 410). We investigated the
proportion estimates only for the 8 main cell-types as we 
found that estimates of the 25 subcell-types showed high 

intra-group correlation within their broader classifica-
tions (Additional file 1: Fig. S6), and these types of high 
correlations typically prevent accurate decomposition of 
subcell-types in bulk tissues [14]. For cell-type decom-
position, we utilized Bisque [14], as described in detail 
in the Methods, resulting in proportion estimates for the 
8 main cell-types. The marker genes of these main cell-
types used for decomposition in Bisque (Additional file 4: 
Table  S3) show high intra-cell-type co-expression and 
correlation with their respective proportion estimates 
(Additional  file  1: Fig. S7a), suggesting their validity for 
estimating proportions. We then searched for differ-
ences in the abundance of these 8 cell-types between the 
paired HCC tumor and non-tumor tissue in TCGA. Of 
the 8 cell-types, we found that only Prol was significantly 
increased (Wilcoxon adjusted p = 5.68 ×  10−14) in the
49 HCC tumors when compared to the paired adjacent 
non-tumor samples in TCGA, while 5 cell-types signifi-
cantly decreased in tumors (Fig. 2a and Additional file 5: 
Table S4). This increase in Prol abundance was consistent 
with our observations in the single cell level data (Fig. 2a 
and Fig. 1d).

To replicate the cell-type differences we identified in 
the TCGA cohort, we investigated the LCI cohort that 
consists of mainly Asian HCC patients with HBV-HCC. 
We estimated the proportions of 7 of the 8 main cell-
types in the liver microarray data from tumor (n = 221) 
and adjacent non-tumor (n = 209) biopsies (see Meth-
ods). We excluded B cells, as its marker genes showed 
little to no co-expression in the microarray data of this 
cohort, and thus the proportions could not be estimated 
reliably (Additional  file  1: Fig. S7b). All of the other 7 
main cell-types demonstrated higher intra-cell-type co-
expression and correlations with their respective pro-
portion estimates (Additional  file  1: Fig. S7b). Then, we 
tested for differences between the tumor and adjacent 
non-tumor biopsies. We found strikingly similar cell-type 
changes between the tumor and non-tumor tissues in 
the LCI and TCGA cohorts (Fig. 2b and Additional file 5: 
Table  S4). Only the Prol cell-type was significantly 
increased in HCC in the LCI cohort (Fig. 2b), while the 
myeloid, T, and Hep clusters were significantly decreased 
in both TCGA and LCI, with Hep showing the largest 
decrease (Fig. 2b). These replicated results show that Prol 
is the only consistently upregulated cell-type in HCC 
tumors using both the TCGA and LCI cohorts.

We then sought to validate the observed increase in the 
Prol proportion estimates in HCC tumors by analyzing 
gene-level differential expression between tumors and 
adjacent non-tumors from the bulk liver data. We first 
took the most specific cell-type marker genes with a log 
fold change > 0.5 in the single-cell level data and searched 
for differences in expression between the tumor and 
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non-tumors in the bulk. The marker genes for the Prol 
cluster had the highest average log fold changes in both 
the TCGA and LCI cohorts when compared to all other 
cell types (Fig.  2c,d). We then performed a reciprocal 
analysis by taking all tumor upregulated genes with a log 
fold change greater than 1 in the bulk data and scoring 
cells/nuclei in the single-cell level data for their average 
expression using the module score option in Seurat [38]. 
We found that cells/nuclei from Prol had the highest bulk 
tumor scores when using the strongest tumor-upregu-
lated genes from both TCGA (Wilcoxon p < 2.2 ×  10−16)
and LCI (Wilcoxon p < 2.2 ×  10−16) (Fig.  2e–h). Taken
together, the significantly increased expression of Prol 
marker genes at the bulk HCC tissue level, and vice versa 
the highest expression of the bulk tumor-upregulated 
genes in the Prol cell-type, support an increased abun-
dance of the Prol cell-type itself in HCCs.

The Prol cell‑type is associated with HCC survival outcomes 
in TCGA and LCI
To determine the clinical significance of the Prol cell-
type on survival outcomes in TCGA [32], we assessed 
its impact on overall survival (OS) and progression-free 
interval (PFI) in the 361 HCC patients. We hypothesized 
that an increased proportion of the tumor-associated 
Prol cell-type may be associated with poorer OS and PFI 
outcomes. To investigate this, we first associated the Prol 
cell-type proportions with survival outcomes in TCGA. 
We stratified the HCC patients into low and high cell-
type proportion groups using the median (see Methods) 
and performed a Cox proportional hazards regression 
adjusting for age, sex, and ethnicity (Additional  file  6: 
Table S5). Noteworthy, in TCGA, Prol had a statistically 
significant hazard ratio above 1 for both OS (HR = 1.76; 
p = 4.77 ×  10−3) and PFI (HR = 1.89; p = 1.25 ×  10−4)
(Table  1, Fig.  3a,b). The Prol survival associations were 
even more pronounced after stratifying by quartile and 

remained significant after adjusting for tumor stage 
(Table  1). As expected, the other cell-types did not sig-
nificantly decrease OS or PFI in TCGA (Additional file 6: 
Table S5). These results suggest that a high estimated Prol 
cell-type proportion is associated with poor survival out-
comes and plays a key role in HCC tumor aggressiveness.

Next, we sought to replicate the effect of the HCC 
risk cell-type Prol on survival in the LCI cohort. As 
OS was the only available overlapping outcome in 
LCI, we used OS for our validation analysis. We per-
formed Cox proportional hazards regression adjusting 
for age and sex. Testing the effect of the Prol cell-type 
on OS in LCI resulted in a significant hazard ratio 
(HR = 1.79; p = 8.79 ×  10−3) (Table  1 and Fig.  3c) and
remained significant after adjusting for stage (HR = 1.67; 
p = 2.34 ×  10−2). This result replicated our finding
observed in TCGA, demonstrating that a higher Prol 
is associated with a worse OS outcome in LCI as well. 
Taken together, the negative link between the tumor Prol 
cell-type and survival is robust and reproducible across 
independent HCC cohorts.

We again sought to validate our proportion-based 
results at the gene level. To do so, we analyzed the rela-
tionship between survival outcomes and gene expression 
of individual cell-type markers. We first performed Cox 
proportional hazards regression adjusting for age, sex, 
and ethnicity for all expressed genes in the TCGA HCC 
liver expression data for OS and PFI as outcomes. We 
observed that a higher number of Prol-specific marker 
genes (log fold change > 0.5) had a hazard ratio over 
1 for OS (71.7%) and PFI (58.7%) compared to those of 
all other cell-types (Fig.  3d,e). Additionally, 23.9% and 
17.4% of Prol markers had a genome-wide significant 
hazard ratio for OS and PFI, respectively, all of which 
were associated with a worse prognosis (Additional file 1: 
Fig. S8a,b). To replicate these findings, we performed 
Cox proportional hazards regression for OS in the LCI 

(See figure on next page.)
Fig. 2 Among all cell‑types decomposed in the TCGA and LCI bulk liver cohorts, Prol has the highest enrichment in HCC when compared to 
adjacent non‑tumor tissue. The Prol cell‑type shows consistent upregulation in HCC tumors in two independent liver bulk cohorts. a, b Proportions 
were estimated in the liver bulk RNA‑seq data for the major cell‑types identified in the single‑cell level data and then tested for differential 
abundance between the tumor and non‑tumor samples. The upper panel shows the T‑statistic from a paired t‑test between tumor and adjacent 
non‑tumor tissue, with FDR‑adjusted p‑values calculated from a paired Wilcoxon test. The bottom panel shows a bar plot of the proportion 
estimates separated by tumor status. The differential abundance tests highlight the Prol cell‑type as upregulated in the (a) TCGA (n = 49) and (b) 
LCI (n = 209) cohorts. B cell proportions were not estimated for LCI (b) as its marker genes did not show evidence of co‑expression. c, d Association 
of the Prol cell‑type with HCC tumors is highlighted by the  log2 fold‑changes  (log2FC) of tumor over adjacent non‑tumor samples for the marker 
genes of the cell‑types that are indicated on the y‑axis.  Log2FC values were derived from a paired differential expression (DE) analysis in (c) 
TCGA (n = 49) and (d) LCI (n = 209) cohorts. e–h The Prol cells/nuclei significantly express tumor‑elevated genes, as shown by droplet scores in 
the single‑cell level data for tumor‑elevated genes derived from the TCGA and LCI cohorts. Genome‑wide DE analysis was performed between 
the paired tumor and non‑tumor samples, and genes with an FDR‑adjusted p‑value less than 0.05 and a  log2FC greater than 1 were considered 
tumor‑elevated genes. Module scores of the tumor‑elevated genes for each droplet were calculated based on their expression compared to 
a background set. e, f UMAP plots for (e) TCGA and (f) LCI are shown with cells and nuclei colored by their tumor module score. g, h Bar plots 
show the droplet tumor scores calculated from (g) TCGA and (h) LCI tumor‑elevated genes separated by major cell‑type. e–h Asterisks denote a 
significant difference in gene scores between Prol and non‑Prol cells/nuclei as assessed by a Wilcoxon test. Significance levels for p‑values: *p < 0.05, 
**p < 0.005, ***p < 0.0005
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cohort. Although we did not observe a notable number 
of genome-wide significant effects, we found a similar 
enrichment of Prol marker genes with a hazard ratio over 
1 for OS (63.6%) (Fig. 3f and Additional file 1: Fig. S8c). 
These marker gene results further support the conclusion 
that the Prol cell-type itself is associated with survival.

Finally, we evaluated the cell-type enrichment for all 
genes with a significant association with OS and PFI in 

the bulk TCGA cohort and with OS in the LCI cohort. 
Cells/nuclei in the single-cell level data were assigned 
survival-decreasing module scores using Seurat for 
expression of the 740 and 528 genes with a significant 
hazard ratio above 1 for OS and PFI in the TCGA bulk 
RNA-seq data, respectively (FDR adjusted p < 0.05). We 
found that the Prol nuclei/cells had the highest aver-
age OS-decreasing (Wilcoxon p < 2.2 ×  10−16) and PFI-
decreasing (Wilcoxon p < 2.2 ×  10−16) scores (Fig.  3g,
h and Fig.  3j, k), indicating that Prol over-expresses DE 
genes associated with poor survival outcomes in TCGA 
more prominently than all other cell-types. In order to 
replicate these results in the LCI cohort, we scored cells/
nuclei for expression of the 36 genes that among all genes 
had a significant hazard ratio above 1 for OS in LCI (FDR 
adjusted p < 0.05). Again, the Prol cluster had the highest 
average OS-decreasing score from the LCI association 
results (Wilcoxon p = 2.98 ×  10−151) (Fig.  3i, l). Thus, by
taking all genome-wide significant results in an unbiased 
manner, we highlight the Prol cell-type in poor survival 
outcomes. Overall, our bulk-based single cell level find-
ings, showing that Prol nuclei/cells significantly over-
express both tumor-elevated bulk DE genes (Fig.  2e–h) 
and survival-decreasing bulk DE genes (Fig.  3g–l), sup-
port the association of the Prol cell-type with HCC and 
worse survival independently from our decomposition 
analysis.

Somatic TP53 mutations are associated with increased 
proportions of the Prol cell‑type in HCC
Somatic mutations in HCC have been characterized 
in several cohorts, and although heterogeneous, these 
studies have identified commonly mutated driver genes 
[5]. However, it has remained elusive whether somatic 
mutations can lead to specific tumor cell-type expan-
sions or depletions. Therefore, we performed associa-
tions between cell-type profiles against mutations in 

Table 1 Increased abundance of the tumor‑associated cell‑type 
Prol is associated with a worse prognosis both in the TCGA and 
LCI cohorts

Hazard ratios of overall survival and progression free interval based on the Prol 
cell-type proportion in the TCGA HCC cases (n = 361) and hazard ratios of overall 
survival in the LCI HCC cases (n = 221) show that an increased abundance of 
Prol is associated with decreased survival. Cox proportional hazard regression 
was performed for the event and model indicated. The Prol model indicates 
the predictor tested. The median model stratifies the cases into low and high 
abundance groups based on whether the individual’s estimated Prol proportion 
was below or above the median, respectively. The median adjusted (adj.) stage 
results are obtained by including in the median model a covariate for the low 
and high AJCC tumor stage status, where stage I and II form the low stage 
and stage III and IV form the high stage. The quartile model tests low and high 
abundance groups by splitting participants below and above the 25th and 
75th percentile of Prol proportion estimates, respectively. All tests in TCGA were 
adjusted for age, sex, and ethnicity. All tests in LCI were adjusted for age and sex. 
Unadjusted p-values are shown. HR indicates hazard ratio, CI confidence interval, 
OS overall survival, PFI progression free interval

Cohort Event Prol model Multivariable 
HR

95% CI p‑value

TCGA OS Median 1.76 1.19–2.61 4.77 ×  10−3

TCGA OS Median adj. 
stage

1.52 1.02–2.26 4.20 ×  10−2

TCGA OS Quartile 3.25 1.84–5.72 4.62 ×  10−5

TCGA PFI Median 1.89 1.37–2.63 1.25 ×  10−4

TCGA PFI Median adj. 
stage

1.73 1.24–2.41 1.14 ×  10−3

TCGA PFI Quartile 2.85 1.76–4.63 2.14 ×  10−5

LCI OS Median 1.79 1.16–2.76 8.79 ×  10−3

LCI OS Median adj. 
stage

1.67 1.07–2.60 2.34 ×  10−2

Fig. 3 The HCC‑enriched Prol cell‑type associates with overall survival (OS) and progression free interval (PFI) in TCGA and with OS in LCI. Increased 
Prol cell‑type proportion estimates are associated with poor survival outcomes in TCGA and LCI. a–c Kaplan‑Meier survival curves for (a) overall 
survival (OS) and (b) progression free interval (PFI) in TCGA and (c) OS in LCI show worse survival outcomes for patients with high liver Prol 
cell‑type frequency estimates. Patients with Prol frequency (freq.) estimates above and below the median were classified into high and low groups, 
respectively. The “+” signs on the line indicate right censoring of the event. The hazard ratios (HR) and FDR adjusted p‑values were calculated from 
a Cox proportional hazards regression adjusting for age, sex, and for TCGA, race. d–f Association of the Prol cell‑type with poor survival outcomes is 
highlighted by the HR values for cell‑type marker genes calculated from a Cox proportional hazards regression of their expression in TCGA and LCI. 
Survival tests were performed for (d) OS and (e) PFI in TCGA and (f) OS in LCI. Each dot indicates a gene, with its HR on the x‑axis and its cell‑type on 
the y‑axis. g–l Module scores of survival‑decreasing genes in the single‑cell level data are significantly higher in cells/nuclei from the Prol cell‑type. 
Survival‑decreasing genes were derived from genome‑wide Cox proportional hazards regression analyses of all genes for the indicated event and 
cohort and taking the genes with FDR‑adjusted p‑values less than 0.05 and HR values greater than 1.0 into the module score analyses in (g–l). g–i 
UMAP plots show cells/nuclei colored by (g) TCGA OS score, (h) TCGA PFI score, and (i) LCI OS scores. j, l Bar plots of survival‑decreasing module 
scores for (j) TCGA OS, (k) TCGA PFI, and (l) LCI OS separated by the cell‑type. g–l Asterisks denote a significant difference in survival‑decreasing 
gene scores between Prol and non‑Prol cells/nuclei as assessed by a Wilcoxon test. Significance levels for p‑values: *p < 0.05, **p < 0.005, ***p 
< 0.0005

(See figure on next page.)
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the 69 significantly mutated genes that have previously 
been characterized in TCGA HCCs (https:// gdac. broad 
insti tute. org). We identified 3 genes associated with a 
higher cell-type abundance (Wilcoxon adjusted p < 0.05) 
(Additional file 7: Table S6). Among these, mutations in 
TP53 (Wilcoxon adjusted p = 7.58 ×  10−9) and in RB1
(Wilcoxon adjusted p = 9.45 ×  10−3) led to a significant
increase in the estimated proportions of the Prol tumor 
cell-type (Fig. 4a and Additional file 1: Fig. S9). Further-
more, Prol was the only significantly increased cell-type 
in individuals with TP53 mutations or RB1 mutations 
(Fig. 4b). Interestingly, we also observed that BAP1 muta-
tions are associated with an increase in cholangiocyte 
proportion estimates. BAP1 has been shown to be fre-
quently inactivated in cholangiocarcinomas [62].

Many mutations in TP53 are known to lead to a loss of 
the tumor suppressor function of p53 and consequently 
uncontrolled cell growth [63]. We therefore tested the 
effect of distinct TP53 mutation types on Prol abundance. 
We observed that TP53 missense, frame shift, and non-
sense mutations led to significantly higher proportions 
of Prol (Fig.  4c). While frame shift and nonsense muta-
tions are likely to lead to a total loss of function, missense 
mutations in TP53 have been found to occur mainly in 
the DNA-binding domain of the protein, also leading to 
a loss of its tumor suppressor function [63]. To further 
investigate whether the Prol cell-type is the main conse-
quence of TP53 mutations, we first identified 1358 mut. 
over-expressed genes with significant log fold changes 
greater than 0.5 between mutation (mut.) carriers and 
wildtype (WT) cases in TCGA. We then assigned mod-
ule scores to droplets in the single-cell level data based 
on expression of these mut. upregulated genes. We found 
that the Prol cells/nuclei had significantly higher TP53 
mutation scores than all other cells/nuclei (Wilcoxon p 
< 2.2 ×  10−16) (Fig. 4d, f ). We performed the same analysis
for 774 RB1 DE genes and found a similar enrichment of 
mut. upregulated gene scores in Prol droplets (Wilcoxon 

p < 2.2 ×  10−16) (Fig. 4e, g). Overall, these results suggest
that distinct somatic mutations can lead to a tumor cell-
type expansion and highlight the role of TP53 mutations 
in proliferation and uncontrolled cell growth.

Discussion
We developed a new framework using comprehensive 
single cell level reference data from multiple etiologies 
of HCC, adjacent non-tumor, and normal liver tissue to 
decompose cell-types in liver bulk RNA-seq and micro-
array expression data generated from HCC and adja-
cent non-tumor tissue in the TCGA and LCI cohorts. 
This integrative transcriptomics framework identified 
an HCC-associated proliferative cell-type, Prol, the high 
proportion of which in HCC tumors is associated with 
significantly worse survival outcomes. Noteworthy, we 
first observed this survival effect in TCGA, and then rep-
licated our finding in LCI. Our results should be robust 
not only because we replicated our findings in an inde-
pendent cohort, but also because they do not depend on 
the technology used to measure single cell and tissue-
level gene expression in the liver, given that both scRNA-
seq and snRNA-seq were used to build the reference data 
set and both bulk RNA-seq in TCGA and microarray 
technology in LCI were used to decompose the cell-types 
in the liver tissue. Furthermore, our reciprocal module 
score analyses show that Prol nuclei/cells significantly 
over-express both tumor-elevated DE genes and survival-
decreasing DE genes obtained from the bulk expression 
data in the TCGA and LCI cohorts. Thus, these bulk-
based single cell level results further support the associa-
tion of the Prol cell-type with HCC and worse survival 
independently from the decomposition analysis. When 
searching for mutated driver genes of the HCC cell-
types, we found that among 69 genes with somatic muta-
tions catalogued in TCGA earlier (https:// gdac. broad insti 
tute. org), Prol is the only significantly increased cell-type 
in individuals with TP53 and RB1 mutations. Thus, we 

(See figure on next page.)
Fig. 4 Associations between estimated cell‑type proportions and somatic mutations in the TCGA cohort link TP53 and RB1 mutations to increased 
Prol abundance. Mutations associated with changes in the bulk TCGA liver proportion estimates of the Prol cell‑type. a Prol proportion estimates 
are significantly higher in the HCC cases harboring a mutation (Mut) in TP53 (left panel) and RB1 (right panel) compared to those with both 
wildtype (WT) alleles. b The Prol cell type is highlighted as the only cell‑type significantly increased in HCC cases with Mut TP53 and Mut RB1. 
Differential abundance for the 8 cell‑types testing for differences in proportions between Mut vs. WT TP53 (top panel) and RB1 (bottom panel) cases. 
Differential abundance was performed with a Wilcoxon test (n = 357 tumor samples). The difference in means of the scaled proportions is plotted 
in the x‑axis and the ‑log10 p‑value in the y‑axis. The vertical red line (x = 0) indicates no difference. c Prol proportion estimates are plotted against
no TP53 mutation (None) and different TP53 mutation types. Prol estimates are significantly increased in individuals with loss of function (LOF) 
mutations in TP53. d–g The cells/nuclei in the Prol cell‑type significantly express mutation‑upregulated genes, as shown by the droplet module 
scores of mutation upregulated genes for the indicated mutation in TCGA. Mutation upregulated genes were derived by running genome‑wide 
differential expression (DE) between patients with and without a somatic mutation in the indicated gene and taking those over‑expressed in HCC 
patients harboring a mutation and with an FDR‑adjusted p value less than 0.05. Droplet module scores were calculated by comparing the average 
expression of mutation upregulated genes to a background set of genes. d, e UMAP of the single‑cell‑level data showing droplets colored by 
scores for genes upregulated in patients with (d) TP53 and (e) RB1 mutations. f, g Bar plots of the (e) TP53 mutation upregulated scores and (g) RB1 
mutation upregulated scores separated by cell‑type. d, g Asterisks denote a significant increase in mutation upregulated gene scores between Prol 
and non‑Prol cells/nuclei as assessed by a Wilcoxon test. Significance levels for nominal p‑values in (a, c, d‑g): *p < 0.05, **p < 0.005, ***p < 0.0005
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show that mutations in these tumor suppressor genes are 
associated with the expansion of the tumor-associated 
Prol cell-type in HCC.

Exploring cell-type heterogeneity provides a novel 
avenue to study microenvironment in cancer cells. The 
notion that tumor microenvironment, specifically of 
immune cells, may affect tumor progression and affect 
survival first stemmed from non-HCC studies, such as 
ovarian tumors [64]. This was subsequently investigated 
in HCC [19, 65], which has clinical implications given 
that only ~ 18% of patients responded to therapies tar-
geted to immune-dependent pathways with checkpoint 
inhibitors (programmed death 1 or PD1) in early clinical 
trials [66]. Losic and colleagues used scRNA-seq from 2 
patients across multiple regions within the same tumor 
to demonstrate tumor heterogeneity, which provided 
early evidence that the immune microenvironment is 
heterogeneous between patients and within samples [19]. 
In line with these studies, we observed similar heteroge-
neity in cell-type composition within HCC patients from 
multiple etiologies. Using single cell level data generated 
by both scRNA-seq and snRNA-seq, we found patient-
specific clusters when not correcting for this heterogene-
ity with integration (Additional file 1: Fig. S3).

Large existing cohorts, such as TCGA [26] and LCI 
[27], provide invaluable tools to the research commu-
nity. Accordingly, we leveraged our integrated liver single 
cell level data to identify cell-types associated with HCC 
and their clinically significant outcomes in TCGA and 
LCI, both with long-term follow-up data. The system-
atic identification of the Prol cell-type across the single 
cell level reference data with multiple etiologies of HCC, 
the TCGA cohort (mostly viral etiologies with HBV and 
HCV), and the LCI cohort (HBV-predominant origin of 
HCC) suggests universal points of convergence in HCC 
pathogenesis that can be further investigated at the single 
cell level. Understanding tumor biology at the cell-type 
level instead of the bulk tissue level provides more insight 
into the underlying tumor biology [67]. Several of the 
Prol marker genes have previously been associated with 
poor survival outcomes [52–59, 68]; however, our study 
discovered that these genes form a distinct HCC-associ-
ated cell-type. Furthermore, we discovered that somatic 
mutations in TP53 and RB1 are associated with increased 
Prol proportions in HCC. Interestingly, differences in 
somatic mutations have also been observed in various 
etiologies of HCC, with the TP53 mutations being linked 
to viral and alcohol etiologies of HCC [69] (similar to 
the patient composition of the TCGA and LCI cohorts), 
while ACVR2A (activin A receptor type 2A) mutations 
have been more commonly found in NASH-HCC [69].

Previous studies have identified molecular sub-classes 
of HCC that correlate with tumor phenotypes and 

clinical outcomes [6, 26, 70–72]. About half of all HCCs 
consist of the proliferative sub-class that predominantly 
have TP53 mutations [6], which we also identified as 
significant mutations in our cell-type analyses. Our data 
suggest that somatic mutations in the tumor suppressor 
gene, TP53, result in dysregulation of mitosis and cell-
cycle pathways, in line with their enrichment in the Prol 
cell-type. Consistent with our findings, in an independ-
ent study, the histone protein, H2AFZ that we identified 
as a marker gene in Prol, was associated with cell cycle 
genes and reported to be regulated by TP53 in HCC [59]. 
Overall, our integrative approach identified a cell-type 
with somatic mutations in a tumor suppressor gene that 
is significantly associated with worse overall survival. 
These results may improve current HCC subclassification 
and provide insight into co-dependent biological mecha-
nisms of HCC.

Several of the genes identified in the Prol cell-type 
have previously been associated with poor overall or 
recurrence-free survival outcomes in HCC, including 
PTMA [52, 68], HMGB2 [53], HMGB1 [54], H2AFZ [59], 
GAPDH [55], TUBB [57], STMN1 [56], and TUBA1B 
[58]. However, despite this growing body of literature 
identifying individual HCC genes with prognostic poten-
tial in the TCGA and other cohorts, our study used a sin-
gle cell level-based decomposition approach to identify 
an HCC-associated cell-type, the proportion of which 
is significantly increased in HCC tumors with poor sur-
vival. The Prol cell-type suggests uncontrolled mitosis 
and cell-cycle dysregulation as converging mechanisms 
for worse survival. Furthermore, the Prol cell-type not 
only contains previously known HCC genes [52–59, 
68], but also provides new targets, including HMGN2, 
RARRES2, and HIST1H4C that have not been explored 
yet. Overall, our integrative multi-cohort approach pro-
vided hundreds of Prol cell-type marker genes, which can 
be used to advance our understanding of the complex 
HCC biology in future studies.

Given the poor survival outcomes in patients diagnosed 
with HCC [3, 66], it is critical to further our understand-
ing of factors affecting survival. We demonstrate that 
the use of cell-type markers could be of clinical utility as 
a potential future biomarker to guide treatment options 
and determining clinical outcomes. Current clinical 
prognostic tools of HCC mostly rely on the number and 
size of tumors, AFP, the presence of underlying chronic 
liver disease, and the patient’s medical status. The use of 
cell-type markers as a tool to understand tumor biology 
can improve current clinical practice. Our Prol marker 
genes could serve as a basis for developing new expres-
sion-based prognostic technologies. For example, quan-
titative PCR could be used to rapidly perform predictive 
gene expression panel tests [73]. As RNA sequencing 
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matures, clinical labs can detect global gene expression 
patterns with prognostic value [74]. Assays such as these 
could measure Prol markers to evaluate the abundance 
of the two cell types and test if they predict clinical out-
comes. Whether this cell-type is prognostic for HCC 
recurrence post resections or liver transplantation would 
also need to be determined. Our pipeline utilizing single 
cell level reference data to decompose cell-types in bulk 
RNA-seq can also be applied to other malignancies that 
have an admixture of heterogeneous cells to identify pre-
dominant cancer cell-types.

Although this study improves our understanding of 
new HCC cell-types with a potential for clinical implica-
tions, it is not without limitations. As HCC prevalence 
continues to rise and liver transplantation allocation 
policies are changing [75], larger studies with different 
HCC etiologies are needed in cirrhosis and non-cirrhosis 
backgrounds, especially given the observed differences in 
treatment responses [22]. In addition, cell-type changes 
in recurrent HCCs would have to be investigated in 
future studies. It should also be noted that although our 
survival analyses in TCGA discovered the significance 
of the Prol cell-type in OS and PFI, even after adjusting 
for tumor stage, other clinically relevant factors in HCC 
outcomes, including AFP levels, extent of chronic liver 
disease, presence of lymph vascular invasion on histo-
pathology, and tumor size could not be explored in our 
models because up to 35% of the 361 individuals had 
missing data for these parameters. Thus, future studies 
are warranted to assess their correlations with the Prol 
tumor-associated cell-type.

Conclusions
In conclusion, using comprehensive single cell level refer-
ence data to decompose cell-types in the TCGA and LCI 
liver bulk tissue cohorts, we discover the important role 
of the previously unknown Prol cell-type in HCC and 
survival outcomes in TCGA, which replicated in LCI. We 
also linked somatic mutations in the tumor suppressors 
TP53 and RB1 to Prol cell-type expansion in HCC. Our 
integrative transcriptomics pipeline can be extrapolated 
to other cancer cohorts to identify key tumor cell-types 
using single cell level samples as the cell-type reference 
data. The detection of tissue-specific and cancer-associ-
ated cell-types can advance our understanding of tumor 
biology with a great potential for biomarker discovery in 
larger, prospective validation studies.
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Supplementary Figures 

 

 

Fig. S1. Histopathology of tumor and adjacent non-tumor biopsies in the 3 NAFLD-related 

HCC cases. 

Histopathology slides using hematoxylin and eosin and trichrome stains demonstrate tumor and 

patient heterogeneity. 
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Fig. S2. Overview of study design to profile cell composition changes in HCC. 

Single-cell and single-nucleus RNA-seq (scRNA-seq and snRNA-seq) were used to profile cell-

type transcriptomes in human livers from non-HCC, HCC tumor, and adjacent non-tumor tissue. 

We performed snRNA-seq on tumor and adjacent non-tumor biopsies from three patients with 

fatty liver related HCC. Our snRNA-seq was integrated with two single-cell RNA-seq data sets 

from Aizarani et al. 7 and Sharma et al. 8 to characterize transcriptional profiles across various 

etiologies of HCC. The identified cell-types and their gene expression were used to estimate their 

proportions in larger bulk liver HCC RNA-seq cohorts with survival outcome data. These analyses 

highlighted the role of a tumor-associated mitotic cell-type Prol, associated with survival outcomes 

and TP53 mutations. 
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Fig. S3. Un-integrated merging of the three single cell level cohorts results in cohort- and 

patient-specific batch effects. 
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a-c, UMAP plots of the three single cell level cohorts after merging without integration. Raw 

counts were normalized with sctransform 37, and clustering was performed on the PCs with a 

resolution of 1.0. Cells and nuclei are colored by a, cluster, b, patient, and c, cohort (source). d,e, 

The heatmap plots show the prevalence of cohort and patient effects in the merged data without 

integration. Each heatmap indicates the proportion of droplets in a cluster that originate from d, 

cohort (source) and e, HCC patient (excluding the Aizarani et al. cohort 7 that comprises only 

healthy controls and the healthy control from the Sharma et al. data 8). For each of the 54 clusters, 

the column proportions sum to 1. Cells and nuclei from a cohort cluster together, indicating the 

presence batch effects, while several clusters show patient-specific effects and suggest inter-

patient heterogeneity. 
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Fig. S4. Expression of top up-regulated marker genes across cell-types in the integrated 

single cell level data supports the functional identity of the assigned cell-types. 
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a,b, Expression of the top marker genes for a, main cell-types and b, subcell-types supports the 

functional identity of the assigned cell-types. The a, top 8 marker genes per main cell-type and b, 

top 3 marker genes per subcell-type are shown. A logistic regression in Seurat 38 was used to test 

the difference in expression between droplets in the indicated main cell-type/subcell-type and all 

other droplets. The percent of droplets expressing the marker gene indicates the percent which 

have at least one UMI aligned to the gene. The average log fold change indicates the log2 fold 

change of the average expression of the main cell-type/subcell-type droplets over the average 

expression of all other droplets. Main cell-types were assigned by merging subcell-types based on 

their major lineage. Cells and nuclei from T_7 contain no statistically significant marker genes. 
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Fig. S5. Cells and nuclei from the Prol cell-type subcluster into main liver cell-types. 

a, UMAP of cells and nuclei from Prol colored by subcluster. The 1,743 droplets from the Prol 

cluster identified in the full single-cell-level data set were subclustered after sctransform 37 and 

CCA integration by cohort using a resolution of 0.2 38. b, Proportion of cells/nuclei in the Prol 

cell-type classified into all other major cell-types. Classifications were performed using SingleR 

43 with a reference trained on the full data set that excluded the Prol cluster. c, UMAP of Prol cells 

and nuclei colored by SingleR classification to all other main cell-types (consisting of 41.7% 
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hepatocyte, 33.8% T, 9.9% myeloid, 7.7% cholangiocyte, 4.4% endothelial, 1.6% stellate, and 

0.9% B cells). d-i, UMAP of Prol cells/nuclei colored by log-normalized gene expression. 

Expression of the marker genes d, ASGR1 (Hepatocyte), e, LYVE1 (Endothelial), f, CD3E (T), g, 

CD68 (Macrophage), h, MUC6 (Cholangiocyte), i, ACTA2 (Stellate) are shown in subclusters. 
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Fig. S6. Proportion estimates for sub cell-types within a main group show high correlation 

in TCGA. 

The heatmap shows the pairwise Pearson correlation coefficients (R) between sub cell-type 

proportion estimates in TCGA. Proportions were estimated in the 410 bulk liver RNA-seq liver 

samples using Bisque 14. Cell-types from the same main group (for example, hepatocytes) show 

high correlations. 
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Fig. S7. High intra-cell-type co-expression of main cell-type markers supports decomposed 

proportion estimates in TCGA and LCI. 

Marker gene co-expression and proportion correlation for the main cell-types validates the 

reference-free approach to decompose cell-type frequency estimates. The plots show the co-

expression of the top subset of marker genes ordered by cell-type as well as the expression-

proportion correlations in a, TCGA (n=410) and b, LCI (n=430). Each tile displays the Pearson 

correlation coefficient (R). The left panel shows the correlation between of the expression of 

marker pairs, where marker genes within the same cell-type display higher co-expression than 

outside the cell-type. The right panel shows the correlation between the expression of marker genes 

and proportion estimates. The co-expressed marker genes show high correlations with their cell-

type proportion estimates, validating that the proportion estimates are reflective of marker gene 

RNA abundance. The top subset of single cell markers and proportion estimates were calculated 

by Bisque 14 in the reference-free decomposition procedure. Marker genes for the B cell-type in 

the LCI cohort show lower intra-correlations when compared to marker gene sets of the other main 

cell-types, indicating that their expression is not indicative of B cell abundance. 
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Fig. S8. Expression of Prol marker genes are associated with poor survival outcomes in 

TCGA and LCI. 

a-c, The bar plots show the percent of marker genes that are positively and significantly associated 

with a, overall survival (OS) and b, progression free interval (PFI) in TCGA and c, OS in LCI. We 

considered marker genes as those with a log2 fold change (logFC) greater than 0.5 and an FDR-

adjusted p-value less than 0.05. For each main cell-type, the percent of its marker genes that 

decrease survival outcomes (HR > 1) and increase survival outcomes (HR < 1) are shown by color. 

The percent of these genes that pass genome-wide multiple testing with an FDR-adjusted p-value 

less than 0.05 are shown by the darker fill for each direction. 
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Fig. S9. Prol proportions are increased with TP53 and RB1 mutations. 

The plot shows the proportion estimates of significantly increased cell-types (bottom) by somatic 

mutation (top). Proportions were tested for differences between individuals with and without a 

somatic mutation in significantly mutated HCC genes with a Wilcoxon test (n=357). Significant 

gene-cell-type pairs with an increase in proportions are shown (FDR-adjusted p < 0.05). The top 

panel shows the somatic mutation (colored by type) present in each of the 357 primary tumor 

samples, while the bottom panel shows their estimated cell-type proportions (scaled). 
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CHAPTER 5

Human adipose single nucleus RNA-sequencing reveals an

adipocyte axis associated with cardiometabolic disease

5.1 Introduction

This chapter presents the current results section of our manuscript in preparation (Alvarez et al.

manuscript in preparation). The aim of this study is to characterize how the cell-type composition

of subcutaneous adipose tissue changes in obesity, insulin resistance, and hyperlipidemia that are

the key risk factors for T2D and CVD. All experiments have been completed and a large portion

of the analysis is finished. Not included in these results are bulk and snRNA integrations which

provide further evidence to substantiate our findings. In addition, we have identified expression

quantitative trait loci (eQTLs) that affect gene expression in a cell-type-specific manner, which

we will investigate for the relevance to GWAS associations. These results will then form the final

manuscript for publication.

5.2 Results

5.2.1 Description of cohorts

Cell-type composition in adipose tissue is altered in obesity and insulin [1, 10]. To investigate

this heterogeneity in an unbiased manner, we performed single-nucleus RNA-seq on subcutaneous

adipose tissue biopsies from four cohorts: the METabolic Syndrome In Men (METSIM) cohort
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(n=84) [3]; a BMI-discordant monozygotic twin study (n = 13) [4, 5]; a weight-loss study [6, 7, 8]

(n = 8); and random samples from individuals who underwent liposuction (n = 6). Samples from

the METSIM cohort were multiplexed in random sets of 4 for snRNA-seq to maximize the final

sample size. All cohorts except the liposuction cohort had data available for clinical traits. In

addition, we had 335 samples from the METSIM cohort with subcutaneous adipose tissue bulk

RNA-seq data. The 84 METSIM snRNA samples overlapped fully with this adipose bulk RNA-

seq cohort. Findings from the snRNA-seq analyses were validated via cell-type decomposition of

the bulk tissue data.

5.2.2 Single-nucleus RNA-seq of human subcutaneous fat tissue

To investigate cell-type heterogeneity in subcutaneous adipose tissue, we performed snRNA-seq.

After filtering, we obtained 104,669 nuclei across a total of 111 individuals from the 4 cohorts.

We normalized UMI counts with SCTransform [4] and ran CCA integration in Seurat [10] to re-

move batch effects. Using a coarse resolution setting, we identified 11 clusters (Figure 1A), which

we manually annotated into major cell-types based on up-regulated marker genes. Cell-type as-

signments agreed with expression of known markers (Figure 1B) as well as pathway enrichment

analyses. Perivascular and endothelial cells were assigned based on expression of PDGFRB and

VWF, respectively [11, 12] (Figure 1B). The stromal cluster expressed genes involved in extra-

cellular matrix pathways, such as FBN1. In addition, we identified a cluster, NTM, that expressed

immune-response genes. The Ribo cluster highly expressed genes involved in translation, although

this cluster also expressed immune-related genes. Finally, we observed three distinct myeloid clus-

ters (Figure 1A,B).

Inflammation in adipose tissue occurs in obesity and insulin resistance and is thought to play

a role in adipocyte function [9, 7]. To gain a better understanding of the identity of the immune

clusters in our data set, we integrated the known and possible immune cells from the fat snRNA-seq

data with peripheral blood mononuclear cells (PBMCs) [15]. The T, B, myeloid as well as NTM+

and Ribo cell-types were included. First, we performed CCA label transfer to assign PBMC cell-
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type identities to the fat tissue immune nuclei [10]. Second, we integrated the fat and PBMC data to

visualize co-clustering with UMAP. The T cells from both tissues clustered together with subsets

of the fat nuclei mapping to T subcell-types, such as CD4 and CD8 (Figure 1C,D). The B cells

and nuclei from both tissues also co-clustered (Figure 1C,D). The MYO1F myeloid nuclei mapped

with blood CD14 and CD16 monocytes, neutrophils, and dendritic cells (Figure 1C,D). The NTM

and Ribo clusters were mostly predicted to consist of blood T and NK cells (Figure 1C), although

they clustered separately after integration (Figure 1D), agreeing with the lower prediction scores.

Similarly, the RBPJ and TPRG expressing myeloid nuclei mapped to PBMC cell-types weakly

(Figure 1C) and clustered separately (Figure 1D). In conclusion, immune cells in subcutaneous

adipose tissue showed characteristics of both blood-like and tissue-resident-like cell-types.

5.2.3 Cell-type proportion associations with traits

To identify cell-types relevant to cardiometabolic traits, we performed differential abundance anal-

ysis. We ran negative binomial regression with batch and total number of nuclei as covariates.

We tested 8 traits that reflect obesity, insulin resistance, and serum lipid levels. Of these, 5 cell-

types were significantly associated with at least one trait (FDR-adjusted p<0.05) (Figure 2A). The

most significant correlations were observed with tissue-resident-like RBPJ+ and TPRG1+ myeloid

cell-type abundances and insulin resistance and obesity (Figure 2B). These results validate earlier

findings of macrophage infiltration in obesity [10]. Adipocytes correlated negatively with obesity

(Figure 2A), likely due to volume expansion of these cells in obesity [15]. Interestingly, we also

observed glycated hemoglobin correlations with endothelial and MYO1F expressing myeloid cell-

type abundances (Figure 2A). These results highlight the relevance of adipose tissue myeloid cell

infiltration in metabolic health.

Given the associations between major cell-type proportions and cardiometabolic traits, we hy-

pothesized that subcell-type variation is correlated as well. Differential expression (DE) within a

major cell-type could reflect a difference in subtype composition. To this end, we performed cell-

type-specific differential expression using edgeR [17]. A total of 227 genes passed multiple testing
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(FDR-adjusted p<0.05), with 193 differentially expressed in adipocytes (Figure 2B). Endothelial

cells had the next highest number, with 15 significant DE genes. Overall, adipocyte heterogeneity

showed the strongest associations with obesity and insulin resistance.

To further investigate whether subtypes of these major cell-types are relevant to metabolic

traits, we associated subtype composition with traits. Nuclei were re-clustered within each major

cell-type lineage to obtain subcell-types. Then, subtype proportions were calculated within each

major group separately. Finally, we associated these intra-cluster subtype proportions with traits.

Of the 41 subcell-types, 8 were differentially abundant across 7 cardiometabolic traits (Figure

2C). Adipocyte subtypes showed the most significant correlations (FDR-adjusted p<0.05) for obe-

sity and insulin resistance (Figure 2C). Additionally, two myeloid subcell-types correlated with

waist circumference in opposing directions. Two stromal subcell-types also associated signifi-

cantly with waist circumference. Finally, a perivascular cell-type was significantly associated with

serum triglyceride levels. These results show that subcell-type composition differs in CMD, and

these patterns are distinct from those observed at the major cell-type level.
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Figure 1. Integration of human subcutaneous adipose snRNA-seq identifies 11 major cell-

types. We performed snRNA-seq on 111 individuals across 4 cohorts. A,B, Classification of
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104,669 nuclei into 11 major cell-types identified using CCA integration and clustering with Seu-

rat [10]. A, Uniform Manifold Approximation and Projection (UMAP) visualization of 104,669

nuclei colored by assigned cell-type. B, Expression of key marker genes per cell-type cluster show

support and specificity of classifications. Cell-types and gene markers are indicated on the x-axis

and y-axis, respectively. The color of the points shows the average log2 fold change of nuclei in the

respective cell-type compared to all others. The size of the points expresses the percent of nuclei in

the cell-type with non-zero counts. C,D, Integration of immune and immune-like fat tissue nuclei

with PBMC scRNA-seq data from Wilk et al. [15]. C, Label transfer of query fat tissue nuclei

onto reference PBMC cell-types assigned by Wilk et al. [15]. Larger and darker points indicate a

higher proportion of fat tissue nuclei (x-axis) labeled to the PBMC cell-type (y-axis) with higher

prediction scores. D, CCA integration and UMAP visualization show co-clustering of fat tissue

nuclei (top) and PBMCs (bottom). The UMAPs have the same axes limits to allow visualization

of nuclei adjacent in the reduced space.
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Figure 2. Subcutaneous adipose cell-type and subcell-type proportions associate with metabolic

traits. Associations between adipose cell-type and subcell-type abundance from snRNA-seq and

obesity, insulin resistance, and lipids. A,B, Correlations between proportions of the 11 adipose

major cell-types and metabolic traits highlight myeloid infiltration. A, The heatmap shows the

strength of correlation between traits and cell-type proportion. Colors denote the Pearson correla-

tion coefficient while the asterisks indicate the significant associations determined by a negative bi-

nomial regression after correcting for multiple testing with FDR. B, Scatter plots showing myeloid

RBPJ+ and TPRG1+ cell-type proportions (x-axis) increase with obesity, lipids, and insulin re-
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sistance (y-axis). C, The bar plot gives the number of cell-type-specific differentially expressed

(DE) genes per major cell-type. Cell-type pseudo-bulk gene counts were summed for each person,

and edgeR was used to test for DE in the 8 traits. D, The strongest subcell-type-trait correlations

originate from adipocytes. Subcell-types were identified by clustering within each major cell-type,

and proportions of subcell-type nuclei within the major cell-type were used for differential abun-

dance analysis. Colors denote the Pearson correlation coefficient while the asterisks indicate the

significant associations determined by a negative binomial regression after correcting for multiple

testing with FDR.
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CHAPTER 6

Conclusions, limitations, and future directions

Obesity and related CMDs are complex diseases characterized by networks of interacting cells and

tissues. Consequently, obtaining a comprehensive picture of these disorders requires investigating

functions within and between cells, free from the confounding effects of cell-type composition. In

this thesis, I presented our work on developing and applying tools to study gene expression with

cell-type resolution.

Chapter 2 presents our tool, DIEM [1], for processing droplet-based snRNA-seq or scRNA-seq

data. We show that frozen tissues, common in biobanks, can result in contaminated cell and nucleus

suspensions. This contamination leads to difficulties in removing empty droplets and uncertainty

in downstream results. DIEM can effectively remove problematic droplets that consist of mostly

contaminating RNA.

In Chapter 3, I present our approach, Bisque [2], that estimates cell-type proportions in RNA-

seq data originating from bulk-tissue samples. Given the typically smaller sample sizes of single-

cell data, cell-type proportion estimates in larger bulk-tissue RNA-seq cohorts can allow for higher-

powered association tests. Our results recover expected correlations between cell-type abundance

and traits in two independent settings and propose novel candidate cell-type-trait connections.

I present our HCC cell-type findings in Chapter 4 [3]. We integrated our snRNA-seq data with

two additional studies to create an extensive cell-type reference for decomposition. Then, we used

this reference to estimate cell-type abundance in bulk-tissue gene expression in two HCC cohorts.

Our results revealed that cycling, i.e., proliferating, cells were enriched in tumor tissue, predictive

of poor survival outcomes, and associated with mutations in TP53.
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I describe our results from snRNA-seq analysis of adipose tissue in Chapter 5 (Alvarez et al.

manuscript in preparation). Genetic multiplexing of samples allowed us to produce an in-depth

subcutaneous adipose tissue snRNA-seq data set of over 100 individuals. Our findings included

associations between subcell-type variation and cardiometabolic health, specifically obesity and

insulin resistance.

The approaches developed here carry certain limitations. The main shortcoming of both DIEM

and Bisque is the employment of relatively simple models that may not accurately reflect the un-

derlying complex physical processes. In DIEM, we use a multinomial model for gene expression.

However, others have shown that negative binomial models better account for the high variances

observed in gene count distributions [4]. Similarly, Bisque assumes a linear relationship between

read counts and cell-type abundance. More data and additional analyses are required to determine

if this assumption is valid, or whether a non-linear model is more appropriate.

Other limitations exist in our HCC study. A considerable challenge in the liver cancer field

is inter- and intra-tumoral heterogeneity [5]. In our work, we used a total of 17 HCC samples to

extrapolate cell-type information on roughly 350 and 200 HCC samples in two cohorts. While this

study was sufficiently powered to detect more common aberrations and convergent mechanisms,

given the heterogeneity of HCC tumors, it is reasonable to consider that our reference may have

lacked cell-types and cell states existing in other liver cancer patients. Another limitation was the

inability to investigate the identified proliferating cell-type in more depth. The lower numbers of

proliferating cells in our data made subcell-type discovery more challenging. Nevertheless, our

results provide new insight into factors predicting poor HCC survival that can be further verified

in future experimental and clinical studies.

Limitations also exist in the adipose snRNA-seq experiment. Perhaps the most significant lim-

itation was the lack of diverse populations, as only Finnish individuals were included. Therefore,

we cannot extrapolate and generalize our findings to non-European populations, such as Latinos,

who exhibit a higher risk of developing multiple common CMDs [6]. A second limitation is the

absence of a replication cohort. Reproducing our findings in an independent group would bolster
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the validity of our results.

Several possibilities exist to develop improved methods in the future. In DIEM, modeling

single-cell level gene counts with a negative binomial distribution, as an alternative for a multi-

nomial, could further improve the accuracy of droplet classification. As exact inference is com-

putationally intensive, variational methods could appropriately approximate maximum likelihood

estimation [7]. In Bisque, the assumption of a linear relationship between gene expression and

cell-type abundance may turn out to be invalid when more single cell level reference data will

become available. Thus, the application of non-linear models could help improve the accuracy

of cell-type proportion estimates in bulk. Neural networks provide a promising approach to fit

non-linear models if the expression-abundance relationship is overly complicated [8].

Various follow-up experiments and analyses are possible for our snRNA-seq studies. The HCC

results offer a global picture of tumor compositional changes. However, profiling cell states would

expand our understanding of tumorigenesis even further. Persister cells, i.e., cell subpopulations

that resist treatment, were recently shown to be heterogeneous [9], emphasizing the importance

of studying rare cell-types. Flow sorting of cycling cells, using DNA copy number, followed by

single-cell level RNA-seq could reveal distinct cell lineages with unprecedented resolution. We

could further follow up our adipose snRNA-seq studies to address the limitations described above.

Applying single-cell tools to diverse populations would clarify how ancestry affects cell-type and

cell state composition and elucidate to what extent the single cell level results in Europeans can

be generalized to non-European populations. Specifically, Latinos and African Americans would

benefit most given their higher predisposition to obesity and T2D.

Additionally, complementing our RNA assays with epigenomic and spatial single-cell level

data would help us prioritize cell-types. Single-nucleus ATAC-seq has the ability to reveal chro-

matin accessibility changes in regulatory regions that parallel gene expression differences [10].

Identifying cell-type-specific accessible chromatin regions could help fine-map obesity-associated

GWAS loci by pinpointing variants more likely to bind to nuclear proteins. Single-cell technologies

that powerfully map physical locations can also discover cell-type interactions based on proximity
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[11]. Furthermore, detailed knowledge of the lymphoid and myeloid cells bordering the tumor will

likely help us understand immune evasion in HCC. Similarly, spatial scRNA-seq in the adipose tis-

sue will facilitate the discovery of cell-types neighboring the CMD-associated adipocyte subtypes.

Overall, advances in single-cell genomic technologies are expected to provide high-resolution tools

to study spatial cell composition in future experiments.

Collectively, this thesis presents single-cell RNA-seq methods and applications that expand the

resolution of gene expression to the cell-type level. Our analytical tools permitted us to discover

and quantify cell-types and subcell-types in tissues. Finally, we uncovered novel associations

between cell abundance and CMDs. These results contribute to our understanding of obesity-

related CMDs and HCC by elucidating relevant cell-types, genes, and pathways.
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