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Abstract

Understanding the Role of Optimization and Loss Function in Double Descent

by

Chris Yuhao Liu

Double descent has emerged as a fascinating phenomenon that has been observed across

a range of tasks, model architectures, and training paradigms. When double descent

occurs, instead of decreasing monotonically, the generalization error initially decreases,

then increases as it enters a critical parameterized regime, and finally decreases again.

Despite its ubiquity, simple explicit regularization techniques like weight decay and early

stopping have been successful in reducing double descent in both theoretical and practical

contexts. However, we observe that, in realistic settings, double descent is reduced

or does not occur even without any form of explicit regularization. This observation

raises a key question: If overfit models do not exhibit the double descent phenomenon in

practice, why not?

We identify two key reasons: 1) the use of poor optimizers that struggle to land at a

low-loss local minimum even though they obtain zero training error, and 2) the presence

of an exponential tail in the shape of the loss function. We further show that, given a

sufficient number of iterations, poor optimizers can start to recover the peak. However,

exponential-tail loss functions tend to be much more resistant to the peaking behavior

even in the long term (when models are extremely overfit). Additionally, we show that

xiii



loss functions suffering from the double descent phenomenon (e.g., MSE loss) can be

made to exhibit monotonicity, that is no peaking behavior, when they are modified to

have an exponential tail.

To validate our findings, we conduct experiments on a wide range of regression and

classification loss functions using random feature models and two-layer neural networks

trained on realistic datasets. Our results confirm the influence of the two factors identified

above on the peaking behavior. These findings offer new insights into the phenomenon

of double descent, which is crucial for understanding generalization in machine learning.
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Chapter 1

Introduction

The phenomenon of double descent (Belkin et al., 2018), where the generalization

error first decreases, increases, and then decreases again as the model size P surpasses

the dataset size N , has attracted a lot of attention from the machine learning community

due to its contradiction with our traditional understanding. In traditional thinking, as

we increase the complexity of a model beyond the size of the dataset it is trained on,

overfitting leads to a decline in generalization performance. However, the double descent

phenomenon challenges this established belief by demonstrating that after an initial

decrease, the generalization error actually increases and then decreases again as the

model size surpasses the dataset size. This unexpected behavior calls into question our

existing understanding and demands a reevaluation of the true nature of generalization

in both under- and over-parameterized regimes. Over the past few years, the double

1



descent phenomenon has been observed in various models (Nakkiran et al., 2020a;

Chang et al., 2020; Sahraee-Ardakan et al., 2021; Fonseca and Guidetti, 2022) and

learning paradigms (Nakkiran et al., 2020a; Rice et al., 2020; Hassani and Javanmard,

2022; Dar and Baraniuk, 2020; Cotter et al., 2021). Previous research has contributed

to our understanding of the double descent phenomenon in various contexts and from

different perspectives, including bias-variance trade-off tools (Yang et al., 2020; d’Ascoli

et al., 2020a), VC theory (Lee and Cherkassky, 2022), condition numbers (Kuzborskij

et al., 2021; Schaeffer et al., 2023), and aspects of optimization (Kini and Thrampoulidis,

2020; Gamba et al., 2022, 2023). Meanwhile, techniques to mitigate this phenomenon

have also been proposed to escape the curse of the critically parameterized models and

recover monotonicity in the generalization error. In fact, ℓ2 regularization , a classic

regularization method that penalizes squared magnitudes of the model coefficients, has

been shown to be a handy and effective approach for this goal (Mei and Montanari,

2019; Nakkiran et al., 2020a; d’Ascoli et al., 2020a; Lin and Dobriban, 2020; Kan et al.,

2020; Qu’etu and Tartaglione, 2023a,b). However, it is worth noting that double descent

does not always occur even without any form of explicit regularization, even if models

around the interpolation threshold overfit the training data, as is often indicated by near

0 training error. For example, in figures 4, 5, and 19 of Nakkiran et al. (2020a), with a

converged model, the double descent peak is almost invisible, and only under a sufficient

level of label noise can we see the first ascent of the test error. Similarly, this has also

2



been observed and discussed in many other works (Yang et al., 2020; d’Ascoli et al.,

2020a; Holzmüller, 2020; Maddox et al., 2020; Sa-Couto et al., 2022; Kuzborskij et al.,

2021; Zavatone-Veth et al., 2022; Ju et al., 2023).

0 1 2 3 4 5
P/N

0.0

0.2

0.4

0.6

0.8
Er

ro
r R

at
e

Double descent
Monotonic
Interpolation threshold

Figure 1.1: An illustration of double descent occurring and not occurring. The x-axis
shows the overparameterization ratio, which is the ratio between the model size P and
the training dataset size N . The y-axis shows the training and testing error. In both cases,
the model converges to 0 training error around the interpolation threshold (P = N ), but
one peaks when N equals P , and the other exhibits the monotonic decreasing error.

In this thesis, the research question is: Given that previous work have attributed

double descent to overfitting (Maddox et al., 2020; d’Ascoli et al., 2020b, 2021), if

overfit models do not exhibit the double descent phenomenon in practice, why not? We

answer the question by conducting a systematic study of what causes or reduces the peak

in double descent.1 We find that all results can be unified and explained by two key
1When we say double descent, we always refer to the peak of a double descent curve around the

interpolation threshold. We use “double descent” and “peaking phenomenon” interchangeably in this
thesis.
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elements: optimization and the exponential tail of the loss function.

Firstly, we observe that the double descent does not occur when using optimizers

that struggle to find a low-loss minimum, even though they may obtain zero training

error in Section 5.2. In practice, a poor performance of the optimizer might be due to

ill-conditioned features, insufficient iterations, or a small learning rate, all of which can

lead to slow convergence of the optimizer and a poor final loss value. Additionally, at the

peak of the double descent curve, a peak simultaneously appears in the condition number,

which contributes to slow convergence and poor final training loss value when using

gradient-based optimizers. We show that by running the optimizer longer, or by choosing

conditions and hyperparameters that lead to faster convergence, we can recover double

descent. During this process, we strictly control the confounding variables with potential

effects on the peak in all experiments, such as label noise, which could exacerbate the

curve, and all forms of weight decay and early stopping, which are known to flatten the

peak. This ensures the robustness of our results.

Secondly, inspired by the implicit bias of the cross-entropy loss with gradient descent

(Soudry et al., 2018), we identify that it is ultimately the exponential tail in the shape

of the loss function that hinders the peak. We experimentally find that models cannot

be made to exhibit double descent if and only if they are trained with a loss that has

an exponential tail in Section 5.3. These are exactly the models that converge to a

maximum-margin solution (see Section 5.4). Building on the lessons learned from poor

4



optimizers, we use a fast convergence setting to exclude factors that hinder the emergence

of the peak or slow down overfitting. With cross-entropy loss, we almost always see a

monotonicly decreasing error curve, even after increasing the number of iterations by a

factor of 10. To verify the effect of the exponential tail property, we modify the MSE loss

to have an exponential tail, and the resulting error curve is indeed monotonic. On the

other hand, by removing the exponential tail property on the cross-entropy loss, either by

label smoothing or by modifying the loss, we can bring back the peaking phenomenon

(see Section 5.2). Lastly, we further validate the power of exponential-tail loss functions

using a toy support-vector dataset introduced in Soudry et al. (2018). We demonstrate

that, by fitting a simple linear/logistic regression problem, models with exponential-tail

losses all converge to the max-margin solution, whereas those without perfectly separates

all data points but overfit.

Based on our results, we believe that classifiers in practice are unlikely to exhibit

the peaking phenomenon. This is because 1) inductive biases and hyperparameters are

usually chosen carefully using a validation set to prevent overfitting, and 2) in practical

classification tasks, MSE loss is rarely used, and the cross-entropy loss already possesses

the advantageous property for monotonicity. Both act as “natural” mitigators of double

descent. While no existing theoretical framework explains all our results, we believe our

results are particularly useful for suggesting avenues for further theoretical study.
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Chapter 2

Existing Theoretical Results

In this chapter, we related our findings to existing theoretical results. We first visit

the literature of the implicit bias of logistic loss, which is shown to yield a max-margin

separation in the separable case and. We then discuss the connection of the double

descent in generalization error and condition number.

2.1 The Implicit Bias of Logistic Loss

While we have not provided rigorous explanation on our findings, we point out

that our observations on exponential-tail loss functions consistently align with previous

theoretical results addressing double descent for logistic regression. For cross-entropy

loss and other exponential tail loss functions, our generalization curves have the same

monotonic behavior as the asymptotic generalization performance of the binary hard-

6



margin SVM for separable data (Deng et al., 2019). The authors derive the asymptotics

of a SVM classifier and use it to predict the generalization curve given simulation data,

which shows that the test error decreases monotonically. Our results consistently align

with Kini and Thrampoulidis (2020) in that the peaking phenomenon is almost always

invisible under cross-entropy loss. Empirical observations in both Gerace et al. (2020)

with hidden manifold model and d’Ascoli et al. (2021) with logistic regression on real

data agree with this finding.

Our findings on loss functions are closely related to the implicit bias of cross-entropy

and gradient descent (Soudry et al., 2018). The authors prove that GD converges to

max-margin classifier when the loss is smooth, monotonically decreasing, and with an

exponential tail. We find that exactly the loss functions which satisfy the above properties

are the ones that do not exhibit the peaking phenomena. The result from Soudry et al.

(2018) shows that GD with these losses converges to a max-margin classifier. This result,

when combined with the result from Deng et al. (2019) showing that the test error for

the max-margin classifier for seperable data decreases monotonically, hints at why the

peaking phenomenon does not occur for these losses. In Section 5.4, we perform a

case study similar to the convergence experiment in Soudry et al. (2018) and show that

exponential-tailed loss functions all converge to the max-margin separating hyperplane.

Nacson et al. (2019) proves the same implicit bias on logistic regression but with SGD

using a constant learning rate. Several other work also proved this implicit bias holds for

7



two-layer neural networks with various smooth and non-smooth ReLU activations (Lyu

et al., 2021; Xu et al., 2018; Chatterji et al., 2020, 2021).

Our results also agree with predictions from the theoretical model of Chatterji and

Long (2020). The authors used a data model x = Uq + ỹµ, where U is a unitary matrix

with the center of feature cluster being µ ∈ Rp. They assume, for a large constant C,

1. the failure probability is 0 ≤ δ ≤ 1/C;

2. we have n ≥ C log(1/δ) samples;

3. each with p ≥ Cmax {∥µ∥2n, n2 log(n/δ)} dimension;

4. ∥µ∥2 ≥ C log(n/δ).

The authors prove that, with sub-Gaussian data and the above assumptions and c > 0,

the misclassification error for a max-margin classifier W for feature x and target y in the

separable case has the form

P(x,y)∼P[sign(W · x) ̸= y] ≤ η + exp

(
−c

∥µ∥4

P

)

with probability 1− δ. In other words, for the misclassification error to be lower, the ∥µ∥4
P

term has to grow with P , and needs to satisfy ∥µ∥4 = ω(P ) for the error to decrease. In

the case of random features, the feature dimension P increases, so knowing how faster

the class separation ∥µ∥4 grows will tell us how the bound changes. We calculate the

quantity ∥µ∥4/P for the ReLU random features on MNIST. We find that ∥µ∥4 grows

8



faster than P when the features are normalized, or with a large scale γ for X or a large

initialization scale k with the first-layer weight of a random feature model. In these

settings, double descent are prone to occur.

While our focus is not explaining why double descent occurs to regression loss (e.g.,

MSE), our observations do align with the data-dependent bound for least squares with

gradient descent derived in Kuzborskij et al. (2021). Specifically, the error bound heavily

depends on the minimum eigenvalue of the features, and the error rate increases as

the minimum eigenvalules become smaller. Additionally, they also observed that the

condition number is driven by the minimum eigenvalue of the features. However, one

distinction is that, we observe that ill-conditioned features (with high condition numbers)

are not good indicators of double descent, the optimization setting has to be taken into

account. We discuss this in detail in the next section.

2.2 Double Descent in Condition Number

The peaking phenomenon not only exists in the generalization error but also in the

condition number of the features. Poggio et al. (2019) were the first to establish such

a connection by proving that in a system of n equations and d variables, Ax = b, the

condition number is at its maximum when n = d, resulting in a unique inverse of A.

Later, Rangamani et al. (2020) demonstrated that the condition number also regulates the

stability of the least squares solution, which is why the error peaks at P = N . Our results

9



also agree with Kuzborskij et al. (2021), which examined the gradient descent solution

of least squares and found a negative correlation between the minimum eigenvalue of the

data and the condition number. They concluded that the minimum eigenvalues contribute

to the generalization error on top of the error arising from optimization.

In Figure 5.1, we find that the condition number is largest at P = N (the peak),

which agrees with theoretical results. This makes optimization harder at P = N , so

optimizers are less likely to converge, which causes the peak of double descent to be

reduced or disappear. So there a two antagonistic forces at play when we observe the

peak: the condition number grows, which make optimization harder (reducing the peak),

but if we optimize better by improving the conditioning, using a better optimizer, or

running for more steps, we recover the peak (as shown in Figure 5.3). This finding

extends the previous ones because we show the interplay of the condition numbers in

features and other elements in optimization.
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Chapter 3

Related Work

In this chapter, we discuss work related to ours. We first introduce double descent

and argue that double descent is indeed a universal phenomenon and exists in various

models and learning paradigms. We then discuss existing popular techniques to mitigate

double descent and how our findings on optimization can be used as a potential method

to achieve the same goal. Lastly, we discuss possible explanations of the double descent

phenomenon.

3.1 The Ubiquity of Double Descent

The double descent phenomenon has been observed and theoretically verified in

a wide range of settings, from simple linear models (Belkin et al., 2019; Hastie et al.,

2019; Mei and Montanari, 2019) to complex deep neural networks (Belkin et al., 2018;

11



Nakkiran et al., 2020a) on a wide variety of synthetic datasets and real-world tasks across

domains. When double descent occurs, the generalization error initially increases as the

model size grows and peaks when the model size P equals the dataset size N . In the

overparameterization regime where P > N , the generalization error decreases.

The initial study of double descent demonstrated that the non-monotonicity is a

universal phenomenon in linear models, ensemble methods, and neural networks, trained

with regression loss on both synthetic and real-world datasets (Belkin et al., 2018). While

Belkin et al. (2018) first coined the term, some prior work had already observed it in

minimum norm linear regression ((Moore-Penrose inverse) (Vallet et al., 1989; Opper

et al., 1990) and pseudo-Fisher linear discriminant (on real data) (Duin, 2000), as pointed

out by Loog et al. (2020).

Subsequent work also reported double descent in KNN Xing et al. (2019) , generalized

linear models (Emami et al., 2020), principal component regressors (Xu and Hsu, 2019;

Wu and Xu, 2020), margin-based classifiers (Huang and Yang, 2020), random forest

(Ribeiro et al., 2020), Gaussian processes (Hodgkinson et al., 2022), envelope models

(Kwon and Zou, 2023), random feature model with leave-one-out loss (Bachmann et al.,

2022), and recursive feature machines (Gupta et al., 2023).

The same peaking phenomenon has occurred in deeper neural networks. Nakkiran

et al. (2020a) conducted a comprehensive study for double descent in convolutional

neural networks and Transformers. The same phenomenon also holds for convolutional

12



neural network trained as a ridge regressor (Sahraee-Ardakan et al., 2021), siamese

neural networks Fonseca and Guidetti (2022), sparse neural networks (Chang et al.,

2020).

Double descent also exists across different learning paradigms. This includes

adversarial training (Rice et al., 2020; Singla et al., 2021; Hassani and Javanmard,

2022; Ribeiro and Schon, 2022), transfer learning (Dar and Baraniuk, 2020), knowledge

distillation Saglietti and Zdeborov’a (2020); Cotter et al. (2021); Qu’etu and Tartaglione

(2023b), and meta-learning Ju et al. (2023).

3.2 Double Descent Mitigation

Our work investigates conditions under which the peak of double descent does or

does not occur. Related, various techniques have been demonstrated to successfully

reduce the peak, including ℓ2 regularization (Mei and Montanari, 2019; Nakkiran et al.,

2020a,b; d’Ascoli et al., 2020b; Lin and Dobriban, 2020; Kan et al., 2020; Qu’etu and

Tartaglione, 2023a,b), ensemble methods (Wilson and Izmailov, 2020; d’Ascoli et al.,

2020b; Loureiro et al., 2022; Patil et al., 2022a), cross-validation (Patil et al., 2022b),

dimensionality reduction (Huang et al., 2020b), input concatenation (Chen et al., 2021),

and softplus random features (Dhifallah and Lu, 2020). We highlight that our focus in

this thesis is not to propose a technique to mitigate double descent. Instead, we find

that the strength of optimizer greatly affects the occurrence of the peaking phenomenon

13



in practice, and models with poor optimizers do not exhibit the peak. However, this

observation might be useful as a simple technique to mitigate double descent in practice,

which we leave to future research.

Albeit the universality of the double descent phenomenon, several work claim that

double descent is not observed, even without explicit mitigation techniques mentioned

above. These settings include self-adaptive training (Huang et al., 2020a, 2021), level

of supervision (Dar et al., 2020; Luzi et al., 2021), random forest models (Buschjäger

and Morik, 2021), two-layer neural network with certain initialization of the first layer

weight (Ba et al., 2020), and special activation functions (Wang and Bento, 2022; Singla

et al., 2021). Our results indicate that these negative results could occur because of poor

optimization, conditions that lead to poor optimization, or loss functions which don’t

strongly exhibit the peaking phenomena.

While we do not know if our results contradict any of the results in the above

settings, we emphasize the importance of carefully examining the effect of optimization

in producing double descent. This is because optimization poses a generic influence

on the peaking phenomenon, in almost all settings mentioned above. Therefore, it is

crucial to identify whether the absence of double descent is due to a poor optimization

procedure or other factors. For example, in Appendix B, we provide additional empirical

evidence showing that softplus activation, which is shown to mitigate double descent in

Dhifallah and Lu (2020), exhibits double descent as long as a better optimizer is used.
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3.3 Unified Explanation Of Double Descent

Although there exist theoretical results explaining double descent curves in certain

settings with particular assumptions (Deng et al., 2019; Kini and Thrampoulidis, 2020;

Yang et al., 2020; Kuzborskij et al., 2021; Liu et al., 2021; Lee and Cherkassky, 2022;

Singh et al., 2022; Ba et al., 2020; Gamba et al., 2022, 2023), we are not aware of any

prior work that theoretically or experimentally presents a unified view of when double

descent occurs or does not occur across various settings, especially realistic ones. The

closest would be Deng et al. (2019) and Kini and Thrampoulidis (2020), which proved

and empirically demonstrated that a max-margin classifier obtained from training logistic

regression via GD exhibits monotonicity. Kuzborskij et al. (2021) is also relevant in that

their derived upper bound on the generalization error captures the peaking behavior. Our

work is a first step towards filling this gap by presenting a unified finding of when double

descent occurs or doesn’t occur across a wide range of settings.
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Chapter 4

Experimental Setup

In this chapter, we briefly introduce the notations and the problem setup for a

supervised classification setting. We leave a detailed formulation of the model, data, and

learning algorithm in Appendix A. We consider a model f(·;W) and N i.i.d. training

samples D = {xi, yi}Ni=1 ∼ p(X, Y ), where the feature xi ∈ Rd, and the learning

procedure L is fixed. Depending on the setup, we apply normalization X−µ
s

· γ to the

feature matrix X, where µ, s are the mean and standard deivation, and γ is a scaling

factor. We consider both random feature models (Rahimi and Recht, 2007) and two-layer

neural network, and initialize the first and second layer weights as W0 ∼ N
(
0, k/

√
D
)

and W1 ∼ N
(
0, 1/

√
P
)

, respectively. k is used to control the standard deviation of

the first-layer random matrix.

We primarily focus on the MSE loss and the cross-entropy loss, because they have
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Figure 4.1: An illustration of the shape of cross-entropy (with varying label smoothing),
MSE, smooth L1, squentropy for a binary classification problem, assuming the target
class label is 1 and and the prediction is the x-axis. For the squentropy loss, it is infeasible
to plot the MSE part as it only considers the incorrect labels, so we plot it by assuming
the target class label is 0 for the incorrect class. For the same reason, only positive
thresholded MSE and smooth L1 are shown.

been heavily studied in the literature (Belkin et al., 2018; Hastie et al., 2019; Mei and

Montanari, 2019; Deng et al., 2019; Kini and Thrampoulidis, 2020; Emami et al., 2020;

Dhifallah and Lu, 2020). We also examine some variants to ensure the robustness of

our findings, including the ℓ1 variants (i.e., smooth L1 loss), cross-entropy with label

smoothing (Szegedy et al., 2016), and the newly proposed squentropy loss (Hui et al.,

2023). For MSE loss, we follow the previous implementation and do not include the

softmax at the network output Belkin et al. (2018); Hui and Belkin (2020). We modify

the squentropy loss to include a weighting mechanism on the cross-entropy and MSE

term, represented as w · LMSE + (1 − w) · LCE. Note that the MSE part is calculated

over the incorrect classes only. We also employ a similar version that uses the original

MSE objective (for all classes).
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Thresholded MSE Loss. We introduce a thresholded version of the standard MSE

loss, whose justification is given below in the next paragraph, with the form

LMSE-T(ŷ, y) =
N∑

n=1

C−1∑
c=0

1[C] · (ŷi,c − yi,c)
2.

Given the correct class c∗ and incorrect class(es) c̄, the 1[C] term is defined as an indicator

function with conditions shown as follows:

C =



ŷi,c∗ > 1 positive threshold (MSE-PT)

ŷi,c̄ < 1 negative threshold (MSE-NT)

ŷi,c∗ > 1 ∨ ŷi,c̄ < 1 positive and negative threshold (MSE-PNT)

When the predicted value ŷi,c falls within the range of [0, 1], the original MSE objective

is retrieved. The abbreviations PT, NT, and PNT are used throughout the rest of the

thesis to refer to the three variants. Note that removing the 1[C] recovers the original

MSE loss. We show the shape of each loss function and their variants in Figure 4.1.

Obtaining or removing an exponential tail. We now provide justifications for our

choice of loss functions. To make parabola-shaped loss functions almost-everywhere

smooth, monotonically decreasing, and an exponential tail as in Soudry et al. (2018), we

use a thresholding technique that sets loss value from certain classes to zero based on

the predicted values to obtain an exponential tail. Specifically, with MSE-PT, setting the

loss of the correct class prediction to 0 when the prediction is > 1 removes the right side
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of the parabola, as shown in Figure 4.1. Note that MSE-PNT has a stronger exponential-

property than MSE-PT and MSE-NT. This is because we are enforcing this property for

all positive and negative classes. If only positive (or negative) thresholding is applied,

only the loss calculated on the positive (or negative) classes will be exponential-tailed.

It is worth noting that this thresholding technique is applicable to any regression loss

function (including the ℓ1 counterpart and the MSE term in the squentropy loss), as the

modification relies solely on the predicted values and targets. Therefore, we adopt the

smooth L1 loss and squentropy loss to test the effectiveness of the exponential tail. If

enforcing the exponential tail eliminates double descent, does removing it bring back

the peaking phenomenon? To test this hypotheis, we remove the exponential tail on

cross-entropy by utilizing an existing technique – label smoothing (Szegedy et al., 2016).

This modification reduces the model’s confidence in its predictions, thus forming an

ascent the right of the loss shape, as shown in the first subfigure of Figure 4.1.
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Chapter 5

Experiments

Now we present empirical evidence from three aspects. First, we show that poor

optimizers due to ill-conditioned feature matrices do not exhibit the peaking phenomenon.

Second, we demonstrate that the same finding also holds for optimizers with slow

convergence. Lastly, we examine the impact of the exponential tail in loss functions on

the double descent peak. We present evidence on random feature models trained on

MNIST (LeCun et al., 2010) in the main text of the thesis and include additional results

for random feature models and two-layer neural networks trained on Fashion-MNIST

(Xiao et al., 2017) and CIFAR-10 (Krizhevsky, 2009) in Appendix B.

Throughout this chapter, we make the following observations:

• Observation 1: The height of the double descent peak negatively correlates with

the condition number of the feature matrix (i.e., the worse (higher) the condition

20



number, the higher the double descent peak), and the peak in the condition number

always appears, regardless of whether double descet occurs.

• Observation 2: A poor optimization that results in slow convergence reduces

or removes the peaking phenomenon; a better optimization restores the double

descent peak.

• Observation 3: Loss functions with exponential tail almost never exhibit the

peaking phenomenon, and giving a parabola-shape loss function the exponential

tail property also eliminates the peak. We also study the convergence of exponential

tail loss functions and see that the exponential-tail is what helps them converge to

a max-margin solution.

5.1 Poor Optimizer with Ill-Conditioned Features

It is well-known from optimization theory that better conditioning leads to faster

convergence for gradient-based optimizers. We now show that 1) the height of the double

descent peak negatively correlates with the condition number of the feature matrix and 2)

the presence of the peak in condition number does not necessarily predict double descent

in generalization error, but it is the height of the peak that makes the difference. As

shown in Figure 5.1, the condition number curves of the random features exhibit peaks

at P = N , confirming the findings of previous studies (Poggio et al., 2019; Rangamani
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Figure 5.1: Condition number (σmax/σmin), test error, and training loss with and without
normalization and varying the scale of features and the scale of initialization of the
first-layer of a RFM with ReLU features and MSE loss. We find that double descent
occurs when the initial setup has a lower condition number which allows for better
optimization of the train loss. Top: The red and blue lines corresponds to the condition
numbers of the original normalized and unnormalized features. Normalizing the data,
increasing the scale of the features and random weights yield better condition numbers
at P = N . Middle: Double descent does not occur in unnormalized, small scale of
input, and small scale of initialization of weights. Bottom: A higher double descent
peak corresponds to a lower training loss at P = N .
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et al., 2020; Huang and Yang, 2020; Kuzborskij et al., 2021; Chen and Schaeffer, 2021).

The dashed and dotted lines represent the condition numbers of the unprojected original

features X′ and X, respectively. Notably, the condition number always peaks at P = N ,

as predicted by theoretical results. However, applying normalization and scaling makes

them differ greatly at P = N .

We also see that the peak disappears when the feature matrix is unnormalized or

when a small γ or k is used to scale X′ and W0. Note that these three factors have

similar effect because, for random feature models, they all change the input features

to the linear classifier (the last layer). Furthermore, we visualize the training loss and

observe that the setting where double descent occurs has a training loss much smaller

than one in which double descent does not occur. The ill-conditioned features makes

optimization harder at P = N , which makes optimizers less likely to converge and

causes the peak of double descent to be reduced or disappear. We can further infer that

1) a single condition number curve might not be sufficient to predict double descent, and

2) the curve-difference consistently indicates that double descent tends to occur in better

conditioned matrices, with better optimization confirmed by the lower training loss.

While the peaking phenomenon does occur in condition numbers, there a two

antagonistic forces at play when we observe the peak: the condition number grows,

which make optimization harder and reduce the peak, but if we optimize better by

improving the optimization setup by using a better optimizer or running for more steps,
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Figure 5.2: Test error and training loss curves by varying learning rate, batch size, and
optimization algorithm. Models in the first four columns use MSE loss, and the last
column use the logistic loss. Poor optimizers are in darker colors. Double descent occurs
when a sufficiently large learning rate with infrequent decay, a small enough batch size,
or a better optimizer are used. Similar to previous observations, a higher double descent
peak typically corresponds to lower training loss.

we recover the peak (as shown in Figure 5.3).

5.2 Poor Optimizers with Slow Convergence

Our results suggest that poor optimization resulting in slow convergence often

reduces or removes the peaking phenomenon, and better optimizers restore the peaking

phenomenon. We initially observed this pattern in learning rate, batch size, and the

optimization algorithm. However, all three factors can be considered as affecting the

convergence rate of the optimizer on the provided loss function, where a slow convergence

in loss corresponds to a less prominent peak.
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Figure 5.3: Classification error for a linear classifier trained with MSE loss. We report
test error and training loss curves of poor optimizers, poor optimizers with 10x more
iterations (labeled with “10x”), and better optimizers (in orange). The generalization
error curves of poor optimizers approach that of the better optimzier case when the
number of iterations is scaled by a factor of 10.

Optimization algorithm. We demonstrate that a better optimization algorithm that is

able to find a lower low-loss minimum at P = N induces a higher peak in generalization

error. We select numerical solvers, Cholesky and QR (Paige and Saunders, 1982), for

ridge regression, and Newton-Cholesky for logistic regression, because they obtain

solutions with much lower loss than SGD. We also chose SAGA (Defazio et al., 2014)

as an alternative gradient-based algorithm that (empirically) converges slower than

SGD with momentum for comparison. A small regularization constant 1e-8 is used for

numerical stability. In the last two columns of Figure 5.2, the height of the peak negatively

correlates with the training loss at P = N . For curves with Cholesky decomposition, the

error rate approaches random-guessing in both ridge regression and logistic regression.
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Similar observation can be made on SAGA and SGD, where the double descent peak

occurs mildly with a slight increase in test error.

Learning rate. We see that a higher peaks occurs when a large and constant learning

rate is used. In the first column of Figure 5.2, when the overparameterization ratio

P/N > 3, using a smaller learning rate has almost no impact on the test error, but it

completely eliminates the peak without any form of explicit regularization. The same

result holds for learning rate decay. In our experiments, we adopt an inverse square

root schedule that is similar to the one used in Nakkiran et al. (2020a), but we multiply

the initial learning rate by the factor 1√
⌊t/l⌋+1

, where t is the current iteration and l is

an interval parameter. By controlling the interval l, we modify the frequency of decay

during the training trajectory. We observe that more frequent decay has a similar effect

to a small constant learning rate, and decaying every iteration removes the peak entirely.

Both imply that the emergence of double descent requires maintaining a stable and large

enough learning rate during training, which corresponds to a better optimizer that lands

at a lower loss minimum.

Batch size. We observe that double descent occurs when the batch size is small,

or, equivalently, when the number of gradient updates increases. In Figure 5.2, for

batch sizes of 500 (full-batch) and 256, the peaking phenomenon disappears on the

generalization curve. It is worth noting that modifying the batch size changes the gradient
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Figure 5.4: Left: Test error and training loss curves for RFMs trained with MSE loss
and four different activation functions. Models with activation functions that converge
a higher training loss tend to avoid double descent. The sigmoid activation does not
exhibit double descent in both RFM and two-layer neural network given a fixed optimizer.
Right: Test error and training loss curves for RFMs trained with MSE loss and sigmoid
activation. By scaling the number of iterations by a factor of 10, double descent is
recovered. This matches our findings on the impact of poor optimizers on double descent.

estimation, as a smaller batch size introduces more noise in the gradient, but with more

gradient updates performed by the optimizer.

Activation functions. Previous work shows that activation functions reduce the peaking

phenomenon (Dhifallah and Lu, 2020), but we show that, by simply increasing the

number of iterations, we can recover the peak. We observe the same phenomenon on

a wide variety of activation functions. However, for many of them, training becomes

extremely unstable for larger P , so we show four representative ones below. In the

left figure of Figure 5.4, we employ ReLU, mish (Misra, 2020), softsign, and sigmoid

nonlinearities. Mish and softsign are used as variants of ReLU and sigmoid, respectively.

For ReLU and sigmoid, they show consistent behavior for both RFM and two-layer neural
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networks, even though activation functions operate differently on these two models (i.e.,

one with the input and the other with the embeddings). However, for mish and softsign,

double descent is only observed in RFMs. In the right figure of Figure 5.4, we show that

the absence of double descent on sigmoid follows the same pattern as our poor optimizer

experiments. The sigmoid activation hinders the optimization and results in an illusion

of monotonicity. We can recover the peaking phenomenon by scaling the number of

iterations by a factor of 10.

Double descent occurs for better minimum. Lastly, we show that optimizers that

converge to a lower training loss recover the peaking phenomenon. We increase the

number of iterations by a factor of 10 so that the training loss of a poor optimizer setting

is aligned with or approaches the default (a much lower one). For batch size, we make

sure that the number of gradient updates matches that in a mini-batch case. Given a

full-batch setting, we calculate the extended number of iterations by Tnew = ⌈N/b⌉ · T ,

which is equal to the number of gradient updates in a mini-batch setting with batch size

b and T iterations. In Figure 5.3, we show that the double descent peak is recovered

for all factors, with some of them exactly overlapped with curves produced by a better

optimization setup (i.e., learning rate and batch size). This suggests that the strength of

the optimization is a simple but strong indicator of why double descent is not observed

in some realistic setting. In practical settings, even for critically parameterized models,

people use regularization techniques or early stopping to obtain the best generalization
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performance on the validation data. This process often prevents models reaching 0

training error. Even though no explicit regularization is applied, we usually do not

continue training for a large number of epochs when the model has already overfit the

training set. In our experiments, to achieve a better optimizer in Figure 5.3, models

are usually trained 200-400 times longer after converging to 0 training error, which

is not realistic for deep and large models used in practice. This also implies that, the

rate of emergence of the double descent phenomenon largely depends on the specific

optimization setup, where poor optimizers that converge slow do not exhibit the peaking

behavior.

5.3 Loss Function With an Exponential-Tail Mitigates

Double Descent

We now present evidence showing that 1) loss functions with exponential tail almost

never exhibit double descent (even with a good optimizer) and 2) modifying parabola-

shape losses (e.g., MSE and L1) to satisfy this property also entirely eliminates the

peak. To avoid the illusion of poor optimization, we ensure for all loss functions, a good

optimizer with large enough learning rate and small enough batch size is used. In column

1 Figure 5.5, we see that double descent does not occur when the regular cross-entropy

loss is used. This observation is consistent with the results of Nakkiran et al. (2020a)
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Figure 5.5: Test error curves for different types of loss functions. Double descent does
not occur in loss functions with an exponential tail (CE, MSE-PNT, SmoothL1-PNT),
and starts to emerge when the exponential tail is removed (CE with label smoothing and
squentropy). Unlike poor optimizers, for those with an exponential tail, they robustly
show a monotonic decreasing test error.

and Yang et al. (2020), where the double descent peak becomes much less pronounced

or disappears when no or less label noise is introduced for cross-entropy loss. However,

by incorporating label smoothing, the peak starts to emerge. For regression losses like

MSE and L1 in their original form, a prominent peak is shown. To give MSE and L1 the

exponential-tail property, we adapt the thresholding technique introduced in Chapter 4

by masking losses larger than 1 for the correct class and losses smaller than 0 for the

incorrect classes. Even after increasing the number of iterations by a factor of 10, the

monotonicity for cross-entropy, MSE, and L1 losses all hold.

Interestingly, we can increase the height of the peak by removing the exponential

tail. In column 4, by reweighting the CE and MSE terms in squentropy, as we gradually

increase the weight for the MSE loss and decreasing the weight for cross-entropy. Note

that by multiply the MSE loss by a constant essentially changes the shape of the parabola,

and a larger constant makes the parabola shape steeper, which is similar to removing
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the exponential-tail property. Therefore, a larger weight on MSE corresponds to a more

pronounced peak. Similarly, by increasing the smooth constant for cross-entropy, we

relax the exponential-tail property by penalizing confidence predictions, which makes

the curve go up on the right and creates a parabola-like shape shown in Figure 4.1.

5.4 Exponential-Tail Loss Functions Converge to Max-

Margin Solutions

In this section, we experimentally verify that loss functions with an exponential tail

tend to converge to max-margin solution in our setup. This is theoretically predicted

in Soudry et al. (2018). Thus we experimentally verify that the exponential-tail loss

functions that do not exhibit double descent also converge to a max-margin hyperplane.

These loss functions are not limited to the logistic loss (as proved in Soudry et al.

(2018)) and also include variants of the thresholded MSE loss introduced in Chapter 4.

We employ the synthetic dataset in (Soudry et al., 2018), which is used to show a

logistic regression model trained via SGD converges to a max-margin solution during

training. Following their setting, we use four support vectors x1 = (0.5, 1.5),x2 =

(1.5, 0.5),x3 = −x1,x4 = −x2 and assign positive label to x1,x2 and negative label

to x3,x4. We randomly generated 8 other data points for each class and train the a

linear or logistic regression with SGD using learning rate η = 1/σ2
max(X) and without
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Figure 5.6: A synthetic dataset with four support vectors and 16 other randomly points
generated based on the correponding (correct) class region. The known max-margin
separating hyperplane is the red dashed line. CE, MSE-PNT, SQE-NT, and SQE-PNT
all have exponential tails for all classes, and are exactly the loss functions that we
find do not exhibit double descent (see Figure 5.5 and Appendix B.2). MSE-PT and
MSE-NT only has an exponential tail for the positive and negative classes, respectively.
Solutions at the 1st, 10th, 100th, 1000th, and the 10000th iteration are shown for each loss
function. The double-descent-resistant (exponential-tailed) loss functions all converge
to the max-margin solution, whereas others diverge.

In Figure 5.6, for each loss function, we show five solutions during training, and

the last solution is marked by the darkest color. For CE and MSE-PNT, both of them

converge to the max-margin hyperplane at the last iteration. SQE-NT and SQE-PNT

are variants of the squentropy loss (Hui et al., 2023). SQE-NT uses the original

implementation by including only the incorrect classes in its MSE term, but also

thresholds its negative predictions smaller than 0. SQE-PNT uses MSE-PNT as its MSE

term. Both SQE variants also converge to the optimal hyperplane. For these losses,

whether its convergence is a max-margin separating hyperplane seems to be consistent
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with if double descent occurs (see Appendix B.2). Notably, by examing the convergence

of MSE-PT, MSE-NT, and MSE-PNT, we see that MSE-PT suffers from overfitting in

the same way as the regular MSE, whereas it is less severe for MSE-NT. Interestingly, it

also aligns with the peaking behavior, where MSE-PT still suffer from the peak, and

MSE-NT only shows a tiny peak after a large number of iterations (see Figures B.8

and B.10). This also suggests that the degree of thresholding is related to the strength of

the exponential tail, which matters in terms of double descent and generalization.

5.5 Growth of Feature Separation With Respect to Fea-

ture Dimension

We experimentally verify the result discussed in Section 2.1 that the separation of the

feature mean ∥µ∥4 grows faster than the feature dimension P under some normalization

and scaling conditions. As we observe in Section 5.1, it is exactly these conditions that

result in ill-conditioned features and are prone to double descent under non-exponential-

tail losses. In Theorem 4. of Chatterji and Long (2020), the authors used a data model

x = Uq + ỹµ, where U is a unitary matrix with the center of feature cluster being

µ ∈ Rp. They assume, for a large constant C, 1) the failure probability is 0 ≤ δ ≤ 1/C,

2) we have n ≥ C log(1/δ) samples, 3) each with p ≥ Cmax {∥µ∥2n, n2 log(n/δ)}

dimension, and 4) ∥µ∥2 ≥ C log(n/δ). The authors prove that, with sub-Gaussian data
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and the above assumptions and c > 0, the misclassification error for a max-margin

classifier W for feature x and target y in the separable case trained with logistic loss has

the following form

P(x,y)∼P[sign(W · x) ̸= y] ≤ η + exp

(
−c

∥µ∥4

P

)
,

with probability 1− δ. In other words, for the misclassification error to be lower, the ∥µ∥4
P

term has to grow with P , and needs to satisfy ∥µ∥4 = ω(P ) for the error to decrease. In

the case of random features, the feature dimension P increases, so knowing how faster

the class separation ∥µ∥4 grows will tell us how the bound changes. We empirically

measure the quantity ∥µ∥4
P

for both normalized and unnormalized features, and the largest

and the smallest γ and k, similar to Figure 5.1, on MNIST dataset between digit 0 and all

other classes. In Figure 5.7, we observe that ∥µ∥4 grows faster than P when the features

are normalized, or use a large scale γ or a large initialization scale k. While this result

is empirically verified, further research on why it applies to these conditions is needed.

Interestingly, as we discuss in Section 2.1 and observe in Section 5.1, it is exactly these

conditions that lead to ill-conditioned features and are prone to double descent under

non-exponential-tail losses.
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Figure 5.7: The feature seperation distance on MNIST dataset for class 0 and all other
classes with 1) unnormalized and normalized features, 2) a small and a large scale of
features, and 3) a small and a large scale of initialization for the random matrix in RFM.
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Chapter 6

Conclusion

In this thesis, we investigate why the double descent peaking phenomenon sometimes

does not occur for overfit models in practice. Our findings highlights two key factors: the

use of poor optimizers and the presence of an exponential tail in the loss function shape.

We see poor optimizers that struggles to find low-loss local minima despite zero training

error, can be double-descent-free. By employing inductive bias and hyperparameters

with faster convergence or a longer training time, we successfully recover the peaking

behavior. We also observe that loss functions with an exponential tail are found to resist

the double descent, even in extreme overfitting scenarios. Modifying loss functions to

incorporate an exponential tail restored monotonicity in the error curve, while removing

it reinstated double descent. Based on the results, we believe that classifiers in practice is

unlikely to suffer severely from the peaking phenomenon. On one hand, inductive biases
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are usually chosen meticulously using a validation set to prevent overfitting. Explicit

regularization techniques also serve as another means of addressing this issue. On the

other hand, in practical classification tasks, MSE loss is rarely used, and the widely

adopted cross-entropy loss already possesses the advantageous property for monotonicity.

The careful selection of inductive biases and hyperparameters, along with the prevalent

usage of exponential-tail loss functions, contributes to a “natural” mitigation of double

descent. Based on our results, we believe that classifiers in practice is unlikely to suffer

severely from the peaking phenomenon. Additionally, taken together, our results point

towards areas of further theoretical study.

Future work While we have included convincing results on how poor optimization

and exponential-tail loss functions reduce the double descent peak, providing rigorous

theoretical justifications would be a next step to consolidating our findings. Specifically,

one direction is to derive bounds similar to Kuzborskij et al. (2021) that capture the

peaking phenomenon and, at the same time, account for different elements that affect

the strength of the optimization, with minimal assumptions. Another direction is to

study the exponential-tail loss functions and why they reduce the peak in the critically-

parameterized regime. To our knowledge, proofs in existing work focusing on the

max-margin convergence of logistic-loss-like functions (Soudry et al., 2018; Ji and

Telgarsky, 2019; Nacson et al., 2019) are model-size agnostic. This potentially suggests

why the error rate can decrease for all model sizes around the interpolation threshold,
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which visually reduces the whole peak, but a formal proof based on the parameterization

ratio would be ideal. Other interesting direction include studying the rate of emergence of

the double descent peak. As we observe in Figure 5.3, a poor optimization setting requires

approximately 10 times more iterations to exhibit double descent. A characterization of

how fast the peaking phenomenon occurs would also be useful to identify the double

descent behavior and avoid it in practice.
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Appendix A

Experimental Setup and

Hyperparameters

In this chapter, we described the detailed setup of dataset, models, and training.

A.1 Datasets

We perform all experiments on MNIST (LeCun et al., 2010), Fashion-MNIST (Xiao

et al., 2017), and CIFAR-10 (Krizhevsky, 2009). We select small subsets of size N from

the full training set as our training data and evaluate the generalization error using the

complete test set. We trained models for RFMs with a random feature size of up to

P/N = 5, while for two-layer NNs, we utilize models up to P/N = 5 · C parameters,

where C is fixed at 10 in our setting. For two-layer NNs, the interpolation threshold for
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the MSE loss is positioned at N · C instead of N , as depicted in Belkin et al. (2018).

By default, we normalize the image pixel features to follow a normal distribution by

applying the transformation X−µ
s

· γ, where µ, s, γ are the mean, standard deviation, and

the scaling factor, respectively.

A.2 Models

Random feature models. Here we give the experimental details of the random feature

models. For random feature models, we use a static first-layer weights W0 ∈ Rd×P and

trainable second-layer weights W1 ∈ RP×C , where P and C represent the projected

feature dimension and the number of classes, respectively. We initialize both weight

matrices from W0 ∼ N
(
0, k0√

D

)
and W1 ∼ N

(
0, k1√

P

)
, where k0 is a scaling factor

for the standard deviation of the weight matrix and D represents the input feature

dimension. k1 is always 1 in all experiments. Bias terms are always set to 0, and the

ReLU nonlinearity is used by default.

Two-layer neural networks Our setup for two-layer neural networks resembles that

for a random feature model. The only difference is that the first layer weights are trained.
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A.3 Training

We now describe the training setup and how to produce double descent. Consistent

with Belkin et al. (2018) and Nakkiran et al. (2020a), we employ the same set of

hyperparameters for all model sizes and trained them using SGD with a fixed number

of epochs and constant step size. The default hyperparameters are selected based on

two training error constraints: 1) the largest model has to attain 0 training error within

the first 1/10 iterations, and 2) (at least) all models with P ≥ N has to converge to

0 training error before the final iteration. These constraints, derived from empirical

observations, are found to be fast in convergence and effective in generating the double

descent phenomenon for both RFM and two-layer NN trained with SGD on MNIST and

Fashion-MNIST. After some exploration, we use SGD with Nesterov momentum 0.95, a

mini-batch size of 32, and a constant step size of 1e-2 for 1000 epochs. For two-layer

NNs, we increase the step size to 5e-2 and the number of epochs to 1500. By default,

we utilize the standard MSE loss. When a specific hyperparameter or loss function is

studied, all other parameters follow the default ones. All experiments are repeated at

least five times.
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Appendix B

Additional Experiments

Here we present the same figures as in the main text of the thesis, but on additional

datasets (Fashion-MNIST and CIFAR-10) and two-layer neural networks. We show that

our findings in the main text of the thesis generalize to these datasets and models.
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B.1 Poor Optimization
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Figure B.1: Additional results to support Figure 5.1. Condition number (σmax/σmin),
test error, and training loss of RFMs 1) with and without normalization, varying 2) the
scale of features and 3) the scale of initialization of the first layer random feature model
on Fashion-MNIST and CIFAR-10. The peaking phenomenon becomes less prominent
as the features becomes worse-conditioned, with which the training loss is higher.
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Figure B.2: Additional results to support Figure 5.1. Condition number (σmax/σmin), test
error, and training loss of two-layer neural networks 1) with and without normalization,
varying 2) the scale of features and 3) the scale of initialization of the first layer random
feature model on Fashion-MNIST and CIFAR-10. The peaking phenomenon becomes
less prominent as the features becomes worse-conditioned, with which the training loss
is higher.
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(a) Two-layer neural network on MNIST
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(b) Two-layer neural network on Fashion-MNIST

Figure B.3: Additional results to support Figures 5.1 and 5.2. Test error and training loss
curves by (using) normalization, varying scale of features or initialization, learning rate,
batch size, and optimization algorithm of a two-layer neural network on Fashion-MNIST
and CIFAR-10. The peaking phenomenon becomes less prominent as the features
becomes worse-conditioned or directly using a poor optimizer.
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(a) RFM on Fashion-MNIST
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(b) RFM on CIFAR-10

Figure B.4: Additional results to support Figure 5.2. Test error and training loss curves
by varying learning rate, batch size, and optimization algorithm of a random feature
model on Fashion-MNIST and CIFAR-10. The peaks are reduced on poor optimizers
with too small learning rate, too frequent learning rate decay, too large batch size, and
poor optimization algorithms.
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(b) RFM on CIFAR-10

Figure B.5: Additional results to support Figure 5.3. Test error and training loss curves
of poor optimizers with 10x iterations of RFMs on Fashion-MNIST and CIFAR-10.
We are able to recover the peaking phenomenon in all cases by scaling the number of
iterations by a factor of 10.
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(a) Two-layer neural network on MNIST
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(b) Two-layer neural network on Fashion-MNIST

Figure B.6: Additional results to support Figure 5.3. Test error and training loss curves
of poor optimizers with 10x iterations of two-layer neural networks on Fashion-MNIST
and CIFAR-10. We are able to recover the peaking phenomenon in all cases by scaling
the number of iterations by a factor of 10.
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B.2 Loss Functions
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Figure B.7: Additional results to support Figure 5.5. Test error curves for RFMs trained
with loss functions with exponential-tail for extended iterations on Fashion-MNIST and
CIFAR-10. Loss functions with exponential tail do not exhibit the peak or only show a
slight peak.
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Figure B.8: Additional results to support Figure 5.5. Test error curves for RFMs trained
with loss functions and different thresholding directions on MNIST, Fashion-MNIST,
and CIFAR-10. Double descent is mitigated in losses with negative threshold or positive
and negative threshold (i.e., MSE, smooth L1, huber. For squentropy, monotnicity is
restored when the MSE term has an exponential tail.
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Figure B.9: Additional results to support Figure 5.5. Test error curves for RFMs
trained with loss functions with exponential-tail for extended iterations on MNIST,
Fashion-MNIST, and CIFAR-10. The monotonicity is robust under the exponential-tail
property, even with a better optimzier with 10x iterations.
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Figure B.10: Additional results to support Figure 5.5. Test error curves for two-layer
neural networks trained with loss functions and different thresholding directions on
MNIST, Fashion-MNIST, and CIFAR-10. Thresholds in the negative or the positive and
negative directions are required to mitigate the peak.
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Figure B.11: Additional results to support Figure 5.5. Test error curves for two-layer
neural networks trained with loss functions with exponential-tail for extended iterations
on MNIST, Fashion-MNIST, and CIFAR-10. Loss functions with exponential tail do not
exhibit the peak, even with a better optimzier with 10x iterations.
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alisation error in learning with random features and the hidden manifold model. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 3452–3462. PMLR.

Gupta, A., Mishra, R., Luu, W., and Bouassami, M. (2023). On feature scaling of
recursive feature machines. ArXiv preprint, abs/2303.15745.

Hassani, H. and Javanmard, A. (2022). The curse of overparametrization in adversarial
training: Precise analysis of robust generalization for random features regression.
ArXiv preprint, abs/2201.05149.

Hastie, T. J., Montanari, A., Rosset, S., and Tibshirani, R. J. (2019). Surprises in high-
dimensional ridgeless least squares interpolation. Annals of statistics, 50 2:949–986.

Hodgkinson, L., van der Heide, C., Roosta, F., and Mahoney, M. W. (2022). Monotonicity
and double descent in uncertainty estimation with gaussian processes. ArXiv preprint,
abs/2210.07612.

Holzmüller, D. (2020). On the universality of the double descent peak in ridgeless
regression.

Huang, H. and Yang, Q. (2020). Large scale analysis of generalization error in learning
using margin based classification methods. Journal of Statistical Mechanics: Theory
and Experiment, 2020.

56



Huang, L., Zhang, C., and Zhang, H. (2020a). Self-adaptive training: beyond empirical
risk minimization. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.,
editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Huang, L., Zhang, C., and Zhang, H. (2021). Self-adaptive training: Bridging the
supervised and self-supervised learning. IEEE transactions on pattern analysis and
machine intelligence, PP.

Huang, N. T., Hogg, D. W., and Villar, S. (2020b). Dimensionality reduction, regulariza-
tion, and generalization in overparameterized regressions. SIAM J. Math. Data Sci.,
4:126–152.

Hui, L. and Belkin, M. (2020). Evaluation of neural architectures trained with square
loss vs cross-entropy in classification tasks. ArXiv preprint, abs/2006.07322.

Hui, L., Belkin, M., and Wright, S. (2023). Cut your losses with squentropy. ArXiv
preprint, abs/2302.03952.

Ji, Z. and Telgarsky, M. (2019). The implicit bias of gradient descent on nonseparable
data. In Beygelzimer, A. and Hsu, D., editors, Conference on Learning Theory, COLT
2019, 25-28 June 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Machine
Learning Research, pages 1772–1798. PMLR.

Ju, P., Liang, Y., and Shroff, N. B. (2023). Theoretical characterization of the generaliza-
tion performance of overfitted meta-learning. ArXiv preprint, abs/2304.04312.

Kan, K. K., Nagy, J. G., and Ruthotto, L. (2020). Avoiding the double descent
phenomenon of random feature models using hybrid regularization. ArXiv preprint,
abs/2012.06667.

Kini, G. R. and Thrampoulidis, C. (2020). Analytic study of double descent in binary
classification: The impact of loss. 2020 IEEE International Symposium on Information
Theory (ISIT), pages 2527–2532.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical
report.

Kuzborskij, I., Szepesvari, C., Rivasplata, O., Rannen-Triki, A., and Pascanu, R. (2021).
On the role of optimization in double descent: A least squares study. In Neural
Information Processing Systems.

57



Kwon, O.-R. and Zou, H. (2023). Multivariate regression via enhanced response
envelope: Envelope regularization and double descent.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database. ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2.

Lee, E. H. and Cherkassky, V. (2022). Vc theoretical explanation of double descent.
ArXiv preprint, abs/2205.15549.

Lin, L. and Dobriban, E. (2020). What causes the test error? going beyond bias-variance
via anova. J. Mach. Learn. Res., 22:155:1–155:82.

Liu, F., Suykens, J. A. K., and Cevher, V. (2021). On the double descent of random
features models trained with sgd. ArXiv preprint, abs/2110.06910.

Loog, M., Viering, T. J., Mey, A., Krijthe, J. H., and Tax, D. M. J. (2020). A brief
prehistory of double descent. Proceedings of the National Academy of Sciences,
117:10625–10626.

Loureiro, B., Gerbelot, C., Refinetti, M., Sicuro, G., and Krzakala, F. (2022). Fluctuations,
bias, variance & ensemble of learners: Exact asymptotics for convex losses in high-
dimension. ArXiv preprint, abs/2201.13383.

Luzi, L., Dar, Y., and Baraniuk, R. (2021). Double descent and other interpolation
phenomena in gans. ArXiv preprint, abs/2106.04003.

Lyu, K., Li, Z., Wang, R., and Arora, S. (2021). Gradient descent on two-layer nets:
Margin maximization and simplicity bias. In Neural Information Processing Systems.

Maddox, W. J., Benton, G. W., and Wilson, A. G. (2020). Rethinking parameter counting
in deep models: Effective dimensionality revisited. ArXiv preprint, abs/2003.02139.

Mei, S. and Montanari, A. (2019). The generalization error of random features regression:
Precise asymptotics and the double descent curve. Communications on Pure and
Applied Mathematics, 75.

Misra, D. (2020). Mish: A self regularized non-monotonic activation function. In British
Machine Vision Conference.

Nacson, M. S., Srebro, N., and Soudry, D. (2019). Stochastic gradient descent on
separable data: Exact convergence with a fixed learning rate. In Chaudhuri, K. and
Sugiyama, M., editors, The 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89
of Proceedings of Machine Learning Research, pages 3051–3059. PMLR.

58



Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. (2020a).
Deep double descent: Where bigger models and more data hurt. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Nakkiran, P., Venkat, P., Kakade, S. M., and Ma, T. (2020b). Optimal regularization can
mitigate double descent. ArXiv preprint, abs/2003.01897.

Opper, M., Kinzel, W., Kleinz, J., and Nehl, R. (1990). On the ability of the optimal
perceptron to generalise. Journal of Physics A, 23.

Paige, C. C. and Saunders, M. A. (1982). Lsqr: An algorithm for sparse linear equations
and sparse least squares. ACM Trans. Math. Softw., 8:43–71.

Patil, P. V., Du, J.-H., and Kuchibhotla, A. K. (2022a). Bagging in overparameterized
learning: Risk characterization and risk monotonization.

Patil, P. V., Kuchibhotla, A. K., Wei, Y., and Rinaldo, A. (2022b). Mitigating multiple
descents: A model-agnostic framework for risk monotonization. ArXiv preprint,
abs/2205.12937.

Poggio, T. A., Kur, G., and Banburski, A. (2019). Double descent in the condition
number. ArXiv preprint, abs/1912.06190.

Qu’etu, V. and Tartaglione, E. (2023a). Can we avoid double descent in deep neural
networks?

Qu’etu, V. and Tartaglione, E. (2023b). Dodging the sparse double descent. ArXiv
preprint, abs/2303.01213.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines.
In Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T., editors, Advances in
Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual
Conference on Neural Information Processing Systems, Vancouver, British Columbia,
Canada, December 3-6, 2007, pages 1177–1184. Curran Associates, Inc.

Rangamani, A., Rosasco, L., and Poggio, T. A. (2020). For interpolating kernel
machines, minimizing the norm of the erm solution maximizes stability. Analysis and
Applications.

Ribeiro, A. H., Hendriks, J. N., Wills, A. G., and Schön, T. B. (2020). Beyond occam’s
razor in system identification: Double-descent when modeling dynamics. ArXiv
preprint, abs/2012.06341.

59



Ribeiro, A. H. and Schon, T. (2022). Overparameterized linear regression under
adversarial attacks. IEEE Transactions on Signal Processing, 71:601–614.

Rice, L., Wong, E., and Kolter, J. Z. (2020). Overfitting in adversarially robust deep
learning. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 8093–8104. PMLR.

Sa-Couto, L., Ramos, J. M., Almeida, M., and Wichert, A. M. (2022). Understanding
the double descent curve in machine learning. ArXiv preprint, abs/2211.10322.

Saglietti, L. and Zdeborov’a, L. (2020). Solvable model for inheriting the regularization
through knowledge distillation. ArXiv preprint, abs/2012.00194.

Sahraee-Ardakan, M., Mai, T., Rao, A. B., Rossi, R. A., Rangan, S., and Fletcher, A. K.
(2021). Asymptotics of ridge regression in convolutional models. In International
Conference on Machine Learning.

Schaeffer, R., Khona, M., Robertson, Z., Boopathy, A., Pistunova, K., Rocks, J. W., Fiete,
I. R., and Koyejo, O. (2023). Double descent demystified: Identifying, interpreting &
ablating the sources of a deep learning puzzle. ArXiv preprint, abs/2303.14151.

Singh, S. P., Lucchi, A., Hofmann, T., and Scholkopf, B. (2022). Phenomenology of
double descent in finite-width neural networks. ArXiv preprint, abs/2203.07337.

Singla, V., Singla, S., Jacobs, D., and Feizi, S. (2021). Low curvature activations
reduce overfitting in adversarial training. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 16403–16413.

Soudry, D., Hoffer, E., Nacson, M. S., and Srebro, N. (2018). The implicit bias of
gradient descent on separable data. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the
inception architecture for computer vision. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 2818–2826. IEEE Computer Society.
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