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Abstract
Study Objectives: Structural brain maturation and sleep are complex processes that exhibit significant changes over adolescence and 
are linked to many physical and mental health outcomes. We investigated whether sleep–gray matter relationships are developmentally 
invariant (i.e. stable across age) or developmentally specific (i.e. only present during discrete time windows) from late childhood through 
young adulthood.

Methods: We constructed the Neuroimaging and Pediatric Sleep Databank from eight research studies conducted at the University 
of Pittsburgh (2009–2020). Participants completed a T1-weighted structural MRI scan (sMRI) and 5–7 days of wrist actigraphy to assess 
naturalistic sleep. The final analytic sample consisted of 225 participants without current psychiatric diagnoses (9–25 years). We extracted 
cortical thickness and subcortical volumes from sMRI. Sleep patterns (duration, timing, continuity, regularity) were estimated from wrist 
actigraphy. Using regularized regression, we examined cross-sectional associations between sMRI measures and sleep patterns, as well as the 
effects of age, sex, and their interaction with sMRI measures on sleep.

Results: Shorter sleep duration, later sleep timing, and poorer sleep continuity were associated with thinner cortex and altered subcortical 
volumes in diverse brain regions across adolescence. In a discrete subset of regions (e.g. posterior cingulate), thinner cortex was associated 
with these sleep patterns from late childhood through early-to-mid adolescence but not in late adolescence and young adulthood.

Conclusions: In childhood and adolescence, developmentally invariant and developmentally specific associations exist between sleep 
patterns and gray matter structure, across brain regions linked to sensory, cognitive, and emotional processes. Sleep intervention during 
specific developmental periods could potentially promote healthier neurodevelopmental outcomes.

Key words:  sleep; gray matter structure; actigraphy

Statement of Significance

In this manuscript, we created a large harmonized data set of typically developing children, adolescents, and young adults with structural 
neuroimaging and objective sleep measurement (actigraphy). We leveraged this data set and used rigorous, data-driven statistical ap-
proaches to examine relationships between brain structure, naturalistic sleep patterns, and age. We show that certain brain structure–sleep 
behavior relationships are stable and consistent from late childhood through early adulthood (i.e. developmentally invariant) and other 
brain structure–sleep behavior relationships are present only during late childhood and early adolescence (i.e. developmentally specific). 
These results provide a framework for understanding the stability of brain–sleep relationships, pointing to sensitive periods when sleep 
and brain influence one another and suggesting optimal periods for sleep intervention implementation.
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Introduction

Structural brain maturation and sleep are complex processes 
that exhibit significant changes during adolescent develop-
ment. The precise timing and amount of these changes in 
youths likely influences multiple adult outcomes. Optimal sleep 
and brain maturation are each known to influence adolescent 
health and functioning, including academic/vocational achieve-
ment, mental health, and/or risk behaviors [1–10]. However, 
relationships between gray matter structure and sleep pat-
terns over adolescence are not fully understood; furthermore, 
it is unknown whether these relationships vary as a function 
of age. A detailed characterization of brain–sleep relationships 
in adolescence is important for understanding factors contrib-
uting to optimal neurodevelopmental trajectories during this 
sensitive period.

Many brain regions implicated in cognitive and emotional 
outcomes show a protracted developmental course through 
adolescence [11–15], indicating that periods of heightened plas-
ticity also come with greater vulnerability [15, 16]. Cortical thick-
ness usually peaks by age 9–10 and then decreases until early 
adulthood, particularly in frontal, parietal, and temporal re-
gions [4, 12, 17–23]. Most subcortical regions increase in volume 
until ~14–15  years, with growth plateauing afterwards [13, 24, 
25]. Deviations from these normative trajectories may increase 
vulnerability to diverse negative outcomes, including poorer 
academic performance, mental health difficulties, and/or risky 
behaviors.

During adolescence, brain structural maturation is ac-
companied by multiple cognitive, behavioral, and emotional 
changes, including changes in sleep. Adolescence is character-
ized by a circadian phase delay and reduced homeostatic sleep 
drive, contributing to later sleep timing [26, 27]. These biological 
shifts converge with psychosocial and behavioral factors (e.g. 
school start times, peer socializing) to result in insufficient 
sleep and, at times, poorer sleep regularity or continuity [26, 27]. 
Disruptions to the timing, duration, continuity, and regularity 
of sleep predict and track with the severity of adverse cognitive 
and emotional outcomes (e.g. poor school performance, depres-
sion, substance use) [28–32].

Developmental shifts in sleep characteristics may pos-
sess reciprocal relationships with brain structural maturation 
[33–36], ultimately influencing diverse outcomes. While sleep 
serves multiple purposes, one such function is to support syn-
aptic plasticity and reorganization of brain circuitry [24]. Sleep 
disruption was originally considered a consequence of brain 
structural abnormalities; however, recent animal data indi-
cate that sleep disruption during periods of heightened devel-
opmental plasticity also cause deviations in brain maturation 
[37–39]. These translational studies imply stronger brain–sleep 
relationships in certain developmental windows [37, 40]. Yet, in 
humans it is unknown whether brain–sleep relationships are 
stable across adolescent development (i.e. developmentally in-
variant relationships) or only occur during a discrete window 
of development (i.e. developmentally specific relationships). 
Developmentally specific brain–sleep relationships could inform 
the optimal timing of brain and/or sleep-based interventions 
that promote healthier neurodevelopmental outcomes. Several 
initial reports have identified ties between diverse gray matter 
structures and sleep in pediatric populations [41–48]. However, 
developmentally specific relationships have not been examined 

and these studies have been restricted to retrospective self-
report or lab-based sleep measures that do not reflect usual 
sleep. An important next step is to evaluate how brain structure 
relates to objective, ecologically valid sleep patterns (as cap-
tured by wrist actigraphy) through a developmental lens.

To address these open questions, we created the 
Neuroimaging and Pediatric Sleep (NAPS) Databank, a large, 
harmonized cross-sectional databank comprised of healthy 
children, adolescents, and young adults (ages 9–25  years). We 
estimated sleep from wrist actigraphy and sMRI measures from 
T1-weighted MRI. Given that a wide array of sMRI measures 
have been associated with sleep, we conducted an explora-
tory data-driven regularized regression analyses, to test many 
potential predictors while minimizing the issues of predictor 
inter-correlation and multiple comparisons. Because cortical 
thickness and subcortical volumes are the structural MRI meas-
ures known to show the strongest age-related changes across 
development [18, 49], we chose to focus this study on those sMRI 
measures for our primary analyses. We explored developmen-
tally invariant and developmentally specific associations be-
tween sMRI measures (subcortical volume, cortical thickness) 
and core sleep dimensions (sleep duration, timing, continuity, 
regularity). Because there are important sex differences in sleep 
and brain development [17, 50–55], we also explored the inter-
action between self-reported sex and neuroimaging measures 
on sleep outcomes.

Methods

Participants

The initial NAPS databank includes a total of 305 participants 
drawn from eight University of Pittsburgh studies conducted 
between the years of 2009 to 2020. The NAPS databank was ap-
proved as a secondary data analysis protocol by the University 
of Pittsburgh Institutional Review Board. Participant consent or 
assent was collected at enrollment for each individual study 
included in NAPS and permitted sharing of de-identified data. 
Studies were considered for inclusion in NAPS if they included: 
(1) baseline actigraphic sleep monitoring reflecting naturalistic 
sleep; (2) a sMRI scan; and (3) participants aged 8.0–30.9 years-
old (inclusive). Participant-level inclusion criteria were: (1) 
9.0–25.9 years-old; (2) absence of current psychiatric diagnosis 
based on clinical interview (i.e. KSADS, SCID); (3) no current 
psychotropic or hypnotic medication use; (4) ≥5  days of good 
quality actigraphic sleep monitoring composed of both weekday 
and weekend days; (5) good quality MRI scan. Of the total 305 
cases in NAPS, cases were excluded based on: enrollment in 
multiple protocols (n  =  2), presence of a psychiatric diagnosis 
(n = 23); poor quality or insufficient sleep tracking (n = 6); or poor 
quality MRI (n = 34); age > 25 years-old (n = 15). Demographics 
of the final analytic sample of N = 225 are described in Table 1. 
Demographics by protocol are reported in eTables 1–2.

Neuroimaging methods and outcomes

Please see eTable 3 for sMRI protocol parameters. We used the 
FreeSurfer analysis software [56–59] (v6.0) to extract measures 
of cortical thickness (Desikan–Killiany atlas [60], n  = 34 meas-
ures) and subcortical volume (aseg.mgz atlas, n = 8 measures) 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab120#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab120#supplementary-data
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averaged across two hemispheres. We implemented a quality 
assessment pipeline developed by and used for the Enhancing 
Neuroimaging Genetics through Meta-Analysis consortium [61–
71]. An automated MRIQC T1w-classifier determined individual 
scan quality based on a reference template [72]. We adjusted 
neuroimaging data for scanner protocol effects with ComBat 
[73, 74].

Wrist actigraphy

Actigraphy is a well-validated and widely used tool for object-
ively assessing naturalistic sleep in children, adolescents, and 
adults [75–77]. Participants continuously wore wrist actigraphs 
on their non-dominant wrist during a monitoring period of 5 
or more consecutive days[78]. eTable 2 describes the number 
of participants who wore watches from Philips Respironics 
(PR; Actiwach-64, Actiwatch2, Spectrum series) or Ambulatory 
Monitoring, Inc. (AMI; Basic Octagonal Motionlogger). Wrist ac-
tivity was sampled in 1-minute intervals (epochs). Participants 
were asked to indicate via button press the start and end of each 
sleep interval.

We estimated sleep from wrist actigraphy using a combin-
ation of validated brand-specific sleep algorithms (PR Medium 
Threshold; AMI Sadeh) and standardized visual editing pro-
cedures [79–81]. Trained scorers blinded to neuroimaging data 
manually identified rest intervals based on a combination of 

event markers indicated by participants and clear changes in 
activity and (if available) environmental light level recorded by 
the device. Brand-specific sleep scoring algorithms estimated 
sleep within each rest interval [75, 76, 80, 82–84]. We imple-
mented additional semi-automated quality assurance proced-
ures using in-house R scripts, including identification of the 
main rest interval (defined as the longest rest interval each day), 
removal of invalid sleep intervals containing ≥1 hour of off-wrist 
time or recording errors [80, 85], time adjustment for daylight 
savings time, and final visual inspection of sleep intervals on 
raster plots.

Sleep outcomes

Primary actigraphy sleep outcomes were based on the main rest 
interval. We selected four sleep outcomes corresponding to key 
dimensions of sleep health [86]: sleep duration (total sleep time 
in minutes), timing (midpoint between sleep onset and offset 
in minutes from midnight), continuity (minutes awake after 
sleep onset; WASO), and regularity (intra-individual standard 
deviation of midpoint in minutes). The first three outcomes 
were averaged over the 5–7 tracking days most proximal to their 
MRI scan; regularity was calculated from the available days of 
recording. Sleep variables were natural log transformed to nor-
malize distributions.

Statistical analyses

We first conducted general additive models to confirm that the 
four sleep outcomes showed age-associated patterns consistent 
with prior research (eFigure 1). We observed the characteristic 
decline in sleep duration, delay in sleep timing, and increased 
sleep variability over adolescent development. Sleep continuity 
did not vary with age.

Primary analyses

We were interested in developmentally invariant effects 
(i.e. main effects) of neuroimaging measures on the four 
sleep outcomes, as well as developmentally specific effects 
(i.e. interactions between age and neuroimaging measures). 
Due to the large number of and multicollinearity amongst 
neuroimaging measures, we used regularized regression [87] 
to identify non-zero predictors associated with sleep out-
comes. We used the R package, Group-Lasso-INTERaction-
NET (glinternet [88, 89]) to examine main effects of structural 
neuroimaging measures, as well as their interaction with 
age and sex, for each sleep variable. We included mul-
tiple actigraphy covariates (i.e. tracking days, season, ratio 
of weekday to weekend days, actigraph model) as potential 
predictors in the models. eTable 4 contains the full list of 48 
predictors. Group-lasso is a feature-selection method that 
identifies the variables that are most strongly associated with 
an outcome and uses a shrinkage parameter to reduce the 
coefficient of unimportant variables toward zero [88]. If two 
variables are highly correlated, only the strongest predictor 
is retained in the model. Further, only potential interactions 
between non-zero main effects are considered (i.e. strong 
hierarchy [88]). As such, non-zero predictors selected in the 
group-lasso models should be interpreted as the strongest 

Table 1: NAPS sample characteristics

Variable Mean or n (sd or %)

Sample N 225
Age (years) 17.47 (4.73)
Self-reported sex
 Female 122 (0.54)
 Male 103 (0.46)
Ethnicity
 Non-Hispanic 11 (0.05)
 Hispanic 212 (0.94)
 Missing 2 (0.01)
Race
 White 14 (0.06)
 Black 8 (0.04)
 Asian 2 (0.01)
 Multiple 39 (0.17)
 Unknown/missing 162 (0.72)
Wrist actigraph type
 AMI Octagonal MotionLogger 25 (0.11)
 PR/MiniMitter Actiwatch64 65 (0.29)
 PR Actiwatch2 99 (0.44)
 PR Spectrum Series 36 (0.16)
Tracking days 6.56 (0.87)
 Weekdays 4.48 (0.95)
 Weekend days 2.08 (0.53)
Season
 Spring 48 (0.21)
 Summer 39 (0.17)
 Fall 98 (0.44)
 Winter 40 (0.18)
Sleep duration (minutes) 420.59 (63.35)
Wake after sleep onset (minutes) 57.07 (27.08)
Midsleep (minutes from midnight) 265.47 (73.31)
Midsleep variability (minutes) 63.42 (48.19)

PR, Philips-Respironics; AMI, Ambulatory Monitoring Inc.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab120#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab120#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab120#supplementary-data
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Table 2. Main effects and interactions between age, sex, and neuroimaging measures on actigraphic sleep dimensions

(A) Sleep duration (total sleep time)

Type of effect Variable Model weight

Demographic variable main effects Sex  0.0403

Age −0.0732

Subcortical volume main effects Pallidum −0.0122

Hippocampus −0.0529

Amygdala −0.0032

Lateral ventricles  0.0221

Cortical thickness main effects Medial orbitofrontal cortex  0.1090

Parahippocampal cortex  0.0022

Posterior cingulate  0.0576

Isthmus cingulate  0.0196

Superior parietal cortex  0.0067

Cuneus  0.0277

Sex interactions Sex × parahippocampal cortex  0.0054

Sex by posterior cingulate cortex −0.0219

Age interactions Age × lateral ventricles  0.0234

Age × cuneus −0.0332

Age × superior parietal cortex −0.0072

Variance accounted for by demographic measures only: R2 = 0.22  

Variance accounted for by neuroimaging and demographic measures, and their interactions: R2 = 0.25

(B) Sleep timing (midsleep)

Type of effect Variable Model weight

Demographic variable main effects Sex −0.0601

Age  0.1315

Subcortical volume main effects Thalamus −0.0009

Pallidum  0.0120

Lateral ventricles  0.0057

Cortical thickness main effects Medial orbitofrontal cortex −0.0002

Pars orbitalis −0.0136

Rostral middle frontal cortex −0.0200

Posterior cingulate cortex  −0.0089

Superior parietal cortex −0.0051

Lateral occipital cortex −0.1115

Sex interactions Sex × lateral ventricles  0.0342

Sex × thalamus  0.0010

Age interactions Age × pallidum −0.0431

Age × medial orbitofrontal cortex  0.0002

Age × pars orbitalis  0.0187

Age × rostral middle frontal cortex  0.0267

Age × posterior cingulate cortex  0.0189

Variance accounted for by demographic measures only: R2 = 0.10  

Variance account for by neuroimaging and demographic measures, and their interactions: R2 = 0.20

(C) Sleep continuity (WASO)

Type of effect Variable Model weight

Demographic variable main effects Sex −0.0444

Age  0.0244

Subcortical volume main effects Thalamus  0.0065

Pallidum  0.0260

Caudate  0.0083

Cortical thickness main effects Entorhinal cortex  0.0009

Parahippocampal cortex −0.0192

Middle temporal cortex −0.0086

Precentral cortex −0.0283

Superior parietal cortex −0.0243

Lateral occipital cortex −0.0149

Sex interactions Sex × caudate −0.0117

Sex × entorhinal cortex −0.0021

Sex × precentral cortex −0.0151

Age interactions Age × parahippocampal cortex  0.0533

Age × superior parietal cortex  0.0622

Variance accounted for by demographic measures only: R2 = 0.05  

Variance account for by neuroimaging and demographic measures, and their interactions: R2 = 0.16

Model weights are reported as standardized regression coefficients.
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predictors of sleep outcomes. We repeated 10-fold cross valid-
ation 100 times, using the penalty parameter (λ) one standard 
deviation away from the minimal cross-validation error. The 
final model was the model was selected most often during 
this procedure. We include information regarding the stability 
of non-zero predictor selection for each model in eTable 5.  
Regularized regression selects variables based on minim-
izing error in the model as opposed to statistical significance 
as in standard regression. Thus, p-values are not reported for 
non-zero coefficients.

We followed up feature selection performed by the group-
lasso models with multiple regressions; this approach has been 
used previously [90–93]. Multiple regression analyses were used 
to estimate explained variance by lasso-selected features and 
to further characterize the interactions between brain pre-
dictors and age or sex, rather than to provide definitive effect 
sizes. There were no significant issues with multicollinearity in 
these regression models (e.g. VIF < 10), indicating that the group-
lasso appropriately mitigated multicollinearity. R-squared was 
computed to estimate variance explained by the full model, as 
well as groups of predictors (i.e. demographics, neuroimaging 
measures, actigraphy covariates) [91–93]. We assessed non-zero 
interactions between age and neuroimaging predictors with 
the Johnson–Neyman technique, which obtains parameter esti-
mates and points of significance from the interaction between 
two continuous variables [94–96]. Non-zero interactions be-
tween sex and neuroimaging predictors were probed by com-
paring estimated marginal means [97].

Secondary analyses

To allow for comparisons with previous studies that examined 
main relationships between sMRI measures and self-reported 
sleep behaviors [42, 43, 47], we conducted univariate analyses 
examining the main effects of cortical thickness, cortical sur-
face area, and subcortical and cortical volume on the four sleep 
outcomes. We included age, sex, tracking days, season, ratio of 
weekday to weekend days, and actigraph model as covariates 
in the model and corrected for multiple comparisons (N = 110 
for each sleep outcome) using False-Discovery rate [98]. Given 
that estimated total intracranial volume was sometimes (but 
not always) included as a covariate in the previous publica-
tions looking at the relationship between self-reported sleep be-
havior and sMRI measures [42, 43, 47], we provide results when 
including and omitting estimated total intracranial volume as 
a covariate.

Results
All neuroimaging measures, and their interactions with age and 
sex, selected as non-zero predictors of sleep outcomes are re-
ported in Table 2. Non-zero actigraphy covariates (e.g. season, 
actigraph type) are reported in eTable 6.

Sleep duration (total sleep time)

The main effects of neuroimaging measures, age, sex, and their 
respective interactions accounted for 25% of the total vari-
ance in sleep duration (Table 2A). Shorter sleep duration was 

associated with older age and males had shorter sleep duration 
in comparison to females.

We observed several developmentally invariant relationships 
between brain structure and sleep duration (Figure 1A). From 
9.0–25.9 years old, greater volume in the pallidum, hippocampus, 
and amygdala was associated with shorter sleep duration. 
Additionally, thinner medial orbitofrontal and isthmus (pos-
terior) cingulate cortices were associated shorter sleep duration. 
Thinner cortex in the posterior cingulate was associated with 
shorter sleep duration in both sexes, but there was a stronger 
relationship in males. Conversely, thinner parahippocampal 
cortex and shorter sleep duration were associated in females, 
but not males.

We also found developmentally specific relationships be-
tween gray matter structure and sleep duration (Figure 1A, 2A). 
In late childhood through middle adolescence, thinner cortex in 
the cuneus (9.0–17.3  years) and superior parietal regions (9.0–
16.0 years) was associated with shorter sleep duration; however, 
this relationship was not observed at older ages. From 21.9–
25.9 years old, greater lateral ventricle volume was associated 
with longer sleep duration.

Sleep timing (midsleep)

The main effects of neuroimaging measures, age, and their inter-
actions accounted for 20% of the variance in midsleep (Table 2B). 
Midsleep was later in males and among older participants.

Developmentally invariant relationships were identified for 
several brain regions (Figure 1B). Specifically, lower thalamus 
volume was associated with later midsleep; this was relation-
ship driven by males. In females only, greater lateral ventricle 
volume was associated with later midsleep. Thinner superior 
parietal and lateral occipital cortices were associated with later 
sleep timing.

Developmentally specific relationships were also observed 
between neuroimaging measures and sleep timing (Figure 1B, 
2B). From late childhood through middle adolescence, thinner 
cortex in the pars orbitalis (9.0–15.2 years), rostral middle frontal 
(9.0–14.1 years), and posterior cingulate regions (9.0–14.5 years) 
was associated with later midsleep. Thinner medial orbitofrontal 
cortex in late childhood (9.0–10.0 years) was also associated with 
later midsleep. Greater pallidum volume was associated with 
later midsleep only from ages 9.0 to 16.8 years.

Sleep continuity (WASO)

The combined effects of neuroimaging measures, age, sex, and 
their interactions accounted for 16% of the variance in sleep 
continuity (Table 2C). WASO was longer among older partici-
pants and in females.

With regard to developmentally invariant relationships 
(Figure 1C), greater palladium and thalamus volume was asso-
ciated with greater WASO. Thinner cortex in middle temporal, 
precentral, and lateral occipital regions was associated with 
greater WASO. Greater precentral and entorhinal cortical thick-
ness was associated with greater WASO in females.

Thinner parahippocampal (9.0–14.6 years) and superior par-
ietal cortices (9.0–16.0 years) were associated with greater WASO 
from late childhood to mid-adolescence, but not in older adoles-
cents and young adults (Figure 1C, 2C).

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab120#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab120#supplementary-data
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Sleep regularity (midsleep variability)

Regularized regression did not identify any non-zero predictors 
of midsleep regularity.

Secondary univariate analyses

None of the univariate analyses for cortical thickness, volume, 
or surface area survived FDR-correction for multiple compari-
sons (eTables 7–10). There was a trend for a statistically signifi-
cant relationship between increased paracentral surface area 
and increased sleep duration (b = 0.25, p = 0.001, q = 0.06, eTable 
7). The direction of the main effects of the βs from the group-
lasso models for the cortical thickness metrics and subcortical 
volumes were consistent with the direction of the βs from the 
respective univariate analyses.

Discussion
Using a large sample of typical adolescent development (9.0–
25.9 years), we identified developmentally invariant and devel-
opmentally specific relationships between gray matter structure 
and naturalistic sleep patterns. Shorter sleep duration, later 
sleep timing, and poorer sleep continuity—all of which are as-
sociated with adverse health outcomes—were associated with 
a stable pattern of thinner cortex and altered subcortical vol-
umes in diverse brain regions over adolescent development. In 
discrete regions, developmentally specific relationships were 
also observed. In these regions, thinner cortex from late child-
hood through early-to-mid adolescence—a pattern associated 

with accelerated maturation—was associated with less optimal 
sleep, but these relationships were not detected in late adoles-
cence and young adulthood. Our results provide a novel view 
of brain-sleep structure relationships within brain structures 
implicated in a wide array of cognitive, emotional, and psycho-
logical processes over adolescent development [2, 99–104].

Cortical thickness in a diverse set of brain regions 
show developmentally invariant relationships 
with sleep

Across adolescent development, thinner cortex in frontal, 
temporal, parietal, and visual processing areas was asso-
ciated with shorter sleep duration, later sleep timing, and 
longer time awake after sleep onset. These brain regions are 
implicated in salience detection (pars orbitalis), motor func-
tion (precentral), memory (entorhinal, middle temporal), 
and attention and visuospatial perception (superior parietal 
cortex, lateral occipital) [105]. Given that sleep is associated 
with diverse range of mental, cognitive and physical health 
outcomes in adolescence [1–10], it is reasonable that natur-
alistic sleep is related to brain structure in regions that sup-
port multiple functions. This notion is consistent with prior 
work observing correlations between self-reported sleep dur-
ation and timing with gray matter volume in diverse brain 
regions [42, 43]. However, while we focused on associations 
between actigraphic sleep metrics and cortical thickness and 
subcortical volume, our univariate analyses also pointed to a 
trend towards increased surface area and longer sleep dur-
ation (eTable 7), which is consistent with a recent report [42] 

Figure 1. Relationships between sleep and gray matter (cortical thickness, subcortical volume) that are developmentally invariant (i.e. stable across age) or devel-

opmentally specific (i.e. only present during discrete time windows) from late childhood through young adulthood. Actigraphic sleep outcomes included: (A) Sleep 

Duration (total sleep time), (B) Sleep Timing (midsleep) and (C) Sleep Continuity (WASO). There were no non-zero predictors of Sleep Regularity (midsleep variability). 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab120#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab120#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab120#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab120#supplementary-data
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from the ABCD sample in which self-report sleep duration 
displayed the strongest associations with regional cortical 
surface area. However, the ABCD study did not identify rela-
tionships between self-reported sleep behavior and cortical 
thickness. While these contrasting findings may be rooted in 
differing age ranges, sleep measurement approaches, or stat-
istical methodology used, it raises the importance of exam-
ining separate components of volume (i.e. surface area and 
cortical thickness) to better understand the underlying neural 
mechanisms that tie sleep to brain maturation, given the dis-
tinct neurodevelopmental origins of surface area and cortical 
thickness [106, 107]. Finally, some of the developmentally in-
variant relationships between gray matter structure and sleep 
outcomes in our report were modulated by self-reported sex, 
consistent with reported sex differences in sleep patterns 
and brain development [17, 50–55]. Future studies should also 
examine the extent to sex effects may be better explained by 
pubertal maturation.

Increased cortical thickness was associated with 
healthier sleep patterns from late childhood to 
middle adolescence

This is the first study, to our knowledge, to demonstrate that 
brain structure is related to individual differences in naturalistic 

sleep patterns at different ages, from late childhood through 
adulthood. Thicker cortex in multiple brain regions was as-
sociated with “healthier” sleep (as indicated by longer, more 
continuous, and earlier sleep) during late childhood and early 
adolescence. These findings, in conjunction with other work 
[108], present the possibility that biological factors exert differ-
ential influences on behavior at distinct points in development. 
Accelerated cortical thinning/growth patterns in discrete brain 
regions could contribute to disruptions in sleep characteristics 
during late childhood and early adolescence, but not during other 
periods. Alternatively, disruptions in the typical age-related 
changes in sleep could lead to accelerating cortical thinning, 
particularly during this late childhood–early adolescence age 
range, but not during others. Multiple neurobiological mechan-
isms likely underlie individual differences in cortical thickness. 
Cortical thinning is traditionally believed to be caused by syn-
aptic pruning, a re-wiring of synapses [109, 110]. Translational 
models find that, in mice, synaptic pruning is higher during 
sleep than wakefulness in adolescents, but not adults [111]. 
More recent data suggest that age-associated changes in cor-
tical thickness may also be driven by white matter maturational 
processes, i.e. myelination [112]. Sleep disruption is detrimental 
to the formation and maintenance of myelin in murine models 
[113, 114]. Future longitudinal within-person investigations, 
particularly during late childhood and early adolescence, will be 
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interpretation of the plots, we provide one example of the age by cuneus cortical thickness interaction on sleep duration. (a) From 9.0 to 17.3 years old, thicker cuneus 
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necessary to disentangle the directionality and neurobiological 
mechanisms of relationships between sleep, cortical thickness 
measures, and white matter integrity.

Unexpected relationships between poorer sleep and 
larger subcortical volumes

Surprisingly, in many cases, we also discovered that larger sub-
cortical (i.e. hippocampal, amygdala, thalamus, and caudate) 
volumes are associated with more disrupted sleep patterns. One 
possibility is that exposure to sleep disruption at certain devel-
opmental stages may be correlated with or cause accelerated sub-
cortical growth patterns, akin to the acceleration–deceleration 
hypothesis of chronic stress and neurodevelopment [115–117]. 
Importantly, this result stands in contrast with prior research 
showing lower subcortical gray matter volumes in relation to 
poor sleep [42, 46] and mental health conditions [61, 118, 119]. 
Thus, replication of these findings, as well as work examining 
the relationship between structural brain measures and sleep, 
needs to be further explored in informative subgroups such as 
individuals with mental disorders.

We also observed subcortical volume–sleep relationships in the 
expected direction. In females, larger lateral ventricle volume was 
associated with shorter sleep duration and later midsleep. Greater 
ventricle size has been linked to serious mental health conditions, 
including schizophrenia [120]. Furthermore, study of older adults 
also found longitudinal reduction in sleep duration corresponded 
to ventricular expansion over the follow-up period [121].

Implications for optimal timing and targets for sleep 
intervention

If sleep patterns prove to be a causal contributor to individual 
differences in sMRI measures, our findings have the potential 
to inform developmentally sensitive optimization of evidence-
based behavioral sleep interventions [122]. As an example, both 
shorter sleep duration and later sleep timing were associated 
with thinner cortex in default mode network (DMN) regions 
(medial orbitofrontal and posterior cingulate cortices), a neural 
signature tied to outcomes such as depression, insomnia, and 
poor cognitive function [102, 123]. DMN cortical thickness and 
sleep duration relationships were developmentally invariant. 
However, DMN cortical thickness-sleep timing association were 
only present in late childhood/mid-adolescence. Thus, a sleep 
treatment geared toward promoting healthy DMN-relevant 
outcomes should include sleep extension regardless of age 
but also advance sleep timing in late childhood and early/
mid adolescence. Taken as a whole, our findings suggest that 
sleep interventions, particularly in late childhood through mid-
adolescence, may be advantageous for neurodevelopment and 
thus downstream effects on psychological well-being.

Limitations

Our sample, while representative of the Pittsburgh 
Metropolitan area, was limited in its racial and ethnic di-
versity, factors which contribute to individual differences 
in brain structure and sleep [28, 124]. While the group-lasso 
regression approach has several strengths, we note that pre-
dictors selected these models should be interpreted as the 

strongest predictors of sleep outcomes. Although this can be 
mechanistically informative, in that the most robust sMRI–
sleep relationships will be captured, smaller magnitude main 
effects and interaction effects could be removed from the 
model. Future studies would benefit from also examining di-
mension reduction approaches to complement to feature se-
lection methods (i.e. lasso), including principal component 
analysis or k-means clustering, to address the p > n problem. 
Additionally, all models used in this study examined the linear 
effects of age. Given that many developmental processes that 
take place during adolescence are nonlinear (e.g. [17]) and 
these patterns are most accurately captured with longitudinal 
analyses [125], future studies should explore nonlinear brain–
sleep associations in studies that have three or more data 
points. Although we adjusted for salient actigraphy covariates, 
actigraphy brand differences may have contributed noise in 
our data that was not captured by covarying for watch type 
in our models. Furthermore, data on school or work versus 
free days was not systematically collected across studies and 
schedule constraints are known to affect sleep patterns [126]. 
While we approximated these effects by adjusting for season 
and weekday-weekend ratio during actigraphy tracking, fu-
ture studies should collect information on the presence vs ab-
sence of schedule constraints affecting sleep on a daily basis. 
Another limitation is the absence of information about the 
role of pubertal maturation, which is a core aspect of develop-
mental changes in the interval from late childhood into mid-
adolescence. Pubertal maturation appears to influence some 
aspects of circadian and sleep regulation during adolescent 
development [26, 27]. Individual differences as well as sex dif-
ferences in puberty could represent a valuable focus for future 
studies to advance understanding of developmentally specific 
associations between sleep patterns and gray matter struc-
ture (and potentially intervention strategies). Because our 
analyses were cross-sectional across a range of ages, rather 
than longitudinal within participants, it is unclear whether 
sleep patterns are a cause, correlate, or consequence of gray 
matter structure. Future, prospective longitudinal studies are 
necessary to disambiguate causal relationships between sleep 
and sMRI measures, and assess relationships between within-
subject trajectories of sleep and brain development.

Conclusions & Future Directions
We found compelling and novel evidence for developmentally 
invariant and developmentally specific associations between 
sMRI measures and sleep across adolescent development. We 
plan to build on these findings and examine how individual 
differences in neuroimaging and sleep measures may identify 
youth at high-risk for developing adverse cognitive, mental, and 
physical outcomes.

Supplementary Material
Supplementary material is available at SLEEP online.
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