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As highly nonlinear continuous functions become the prevalent model of computation,

NP-hard optimization problems over the continuous domain pose significant challenges to

AI/ML algorithms and systems, especially in terms of their robustness and safety. The key to

nonlinear optimization is to efficiently search through input regions with potentially widely

varying numerical properties to achieve low-regret descent and fast progress toward the optima.

Monte Carlo Tree Search (MCTS) methods have recently been introduced to improve global

optimization by computing better partitioning of the search space that balances exploration and

exploitation.
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This dissertation investigates the application of Monte Carlo tree methods for nonlinear

optimization (encompassing black-box and non-convex optimization) to identify the global

optimum, and the crafting of training datasets designed to boost transferability and reduce

dataset size in computational molecular dynamics. To tackle global optimization challenges,

the study integrates sampling strategies with MCTS frameworks, employing diverse local

optimization techniques to highlight promising samples. These techniques span stochastic search,

Gaussian Processes regression, numerical overapproximation of the objective function, and

analysis of first- and second-order information. In the realm of training dataset development,

computational simulations of water serve as a practical case study. An active learning framework

is introduced to efficiently condense the size of the training dataset while preserving its quality

and comprehensiveness. The research further explores model transferability by assessing various

subsets for training set inclusion to the simulation of water molecules, thereby uncovering the

model’s adaptability challenges across different scenarios.

The findings affirm that Monte Carlo tree methods provide cost-effective strategies for

managing the complexities inherent in state space exploration. By applying these methods to a

range of application areas, the dissertation underscores the robustness and utility of sampling

techniques in advancing machine learning research.
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Chapter 1

Introduction

Global optimization is a classical problem that is notoriously difficult in both science

[12, 89, 101, 119, 214, 235] and engineering [14, 39, 131, 162, 193]. As highly nonlinear

continuous functions become the prevalent model of computation, these NP-hard optimization

problems over the continuous domain pose significant challenges to AI/ML algorithms and

systems, especially in terms of their robustness and safety. The key to nonlinear optimization is

to efficiently search through input regions with potentially widely varying numerical properties

to achieve low-regret descent and fast progress toward the optima, and to distinguish the global

optimum from exponentially many potential local optima [89, 234]. Monte Carlo Tree Search

(MCTS) methods have recently been introduced to improve global optimization by computing

better partitioning of the search space that balances exploration and exploitation. To tackle

global optimization challenges, this study integrates sampling strategies with MCTS frameworks,

employing diverse local optimization techniques to highlight promising samples.

In this dissertation, we analyze the non-convex and black-box optimizations. The non-

convex optimization, as one type of white-box optimizations, is characterized by scenarios where

the objective function and constraints are fully accessible. This transparency enables the direct

application of analytical techniques, such as gradient-based methods, to efficiently find local

optimal solutions. In contrast, black-box optimization (BBO) addresses problems where the

internal details of the objective function are unknown or cannot be directly accessed, often
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encountered in computational simulations and laboratory experiments. Due to the absence of an

analytical form, BBO requires the adoption of heuristic or evolutionary algorithms, which rely on

the function’s output to iteratively identify optimal solutions. There are numerous approaches to

tackling optimization problems, including model-based algorithms, search-based algorithms, and

partition-based algorithms. Model-based approaches, such as Bayesian Optimization [93, 164],

involve learning a surrogate function from samples of the unknown function and optimizing the

surrogate rather than the original function. For highly nonlinear functions with high-dimensional

input spaces, such methods are known to be costly because of the need for global modeling of the

objective functions. On the other hand, search-based algorithms like simulated annealing [79]

and Nelder-Mead [60] propose new samples iteratively by updating the sampling distributions

over state space, aiming to converge towards the optima. However, these methods may struggle

when the optimization landscape is highly non-convex [114] because they lack the mechanisms

for understanding the function landscape. Partition-based algorithms, in contrast, divide the

state space into partitions, choosing to sample within a selected partition in subsequent iteration

[138, 223] (in the context of BBO) or employing pruning techniques to systematically narrow the

search towards the global optimum (in non-convex optimization) [71, 142]. Many state-of-the-art

partition-based algorithms [138, 190, 223] integrate MCTS [30] due to its efficiency in balancing

exploitation and exploration within sampling processes.

We propose a new design of MCTS methods for BBO, with more emphasis on sample-

efficient local descent, which can benefit the most from balanced exploitation and exploration.

We use Bayesian optimization and local modeling as auxiliary metrics for guiding the search

tree construction. At each node in our search tree, we iteratively collect samples in the neigh-

borhood of some anchor point and also maintain a local Gaussian Process (GP) model for the

neighborhood. The samples are chosen using sampling-based descent such as Stochastic Three

Points methods (STP) [22], and they are also used to train the local GP models. These local

models provide surrogate objectives to propose future samples without querying the ground truth

function, and they also provide uncertainty metrics for exploration steps. We name our overall
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approach Monte Carlo Tree Descent (MCTD), because of the focus on faster descent led by

samples that are managed by tree search, rather than using MCTS for explicit space partitioning.

For non-convex optimization, we propose an approach that combines the benefits of

sampling-based and tree-based approaches as well as interval bounding and local optimization

techniques, by taking advantage of the recent progress in Monte Carlo Tree Search (MCTS)

methods. We assume that the analytic form of the objective function is known over a compact

domain, so that we can use interval bounding [6] on the function value and its local first-order

and second-order information in different parts of the MCTS design. A key feature of the Monte

Carlo trees is that the growth of the tree is driven by samples rather than partitions, and hence

the name Sample-and-Bound. By associating the analytic and estimated properties of adjustable

neighborhoods around each sample, we design the MCTS algorithm to best balance exploration

and exploitation based on the important numerical properties of the objective function. We

evaluate the proposed algorithms against a wide range of existing algorithms and analyze the

importance of various hyper parameters.

Another part of this dissertation talks about the application of machine learning models

used in molecular dynamic simulations. Recent advancements in computer science have made

computational simulations a crucial tool for gaining insights into the properties and behaviors

of molecular systems [95, 113, 227]. These simulations are carried out by employing poten-

tial energy functions (PEFs), mathematical formulations designed to understand and predict

the energetic interactions within molecular systems. PEFs establish the basis for simulating

molecular behavior at the atomic level [91]. For instance, cutting-edge methodologies apply

deep neural networks (DNNs) to learn the potential in a many-body expansion (MBE) form.

MBE allows for expressing the total potential energy of a system composed of N (atomic or

molecular) monomers (“bodies") as a sum of contributions from each n-body (1 ≤ n ≤ N),

exhibiting unprecedented accuracy and enabling predictive simulations from the gas to the

condensed phases [148, 167]. These DNN-based potentials, leveraging the MBE, have become

increasingly popular for computer simulations across a wide range of molecular systems, ranging
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from water [63, 198, 241, 244] and ionic liquids [115] to metals [120, 143, 229]. Such potentials

are developed to learn the functional landscape in the configuration space efficiently and effec-

tively. In developing DNN potentials, the quality and representativeness of the training data are

crucial to determine the model’s performance [94, 105, 247]. Effective sampling strategies are

essential for capturing the diversity and complexity of the underlying population, ensuring the

training dataset accurately reflects the variations and scenarios the model is likely to encounter.

By carefully designing the sampling process, researchers and practitioners can build training

datasets that are both manageable in size and highly effective in training robust and accurate

models. In our approach, we developed an active learning framework to identify and select

representative samples for the training set while excluding unnecessary ones, thereby reducing

the cost of determining the ground truth value of the samples. Ideally, a model that reflects the

functional landscape beyond its initial training scope is crucial for understanding the fundamental

physics of molecular interactions. For instance, a DNN model trained on liquid water should

accurately representing the system’s behavior across different water phases, such as vapor, liquid,

and various ice polymorphs, where the properties of the system significantly diverge. However,

our work has shown the limitation of current DNN potentials in computing water molecule

properties across various phases. These potentials, developed using DeePMD-kit [220], faces a

“short blanket” dilemma, indicating that the current DNN architecture struggles to capture the

properties of water in various phases simultaneously without losing its superior accuracy in the

liquid phase. This suggested that the fundamental physics is not understood by the DNN model

in the research.

Chapter 2 of this dissertation introduces a novel sampling based search framework, Monte

Carlo tree descent (MCTD), for BBO that integrates MCTS, enhanced Bayesian optimization,

and local search strategies. Unlike traditional tree search algorithms that partition the state

space, the introduced MCTD strategy emphasizes utilizing collected samples as tree nodes.

This innovative framework combines stochastic search techniques and Gaussian Processes as

local descent methods at each tree node, prioritizing rapid local optimization through strategic
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sampling to enchance sample efficiency. Additionally, it employs the power of MCTS to ensure

the balance between exploitation of known data and exploration of new data.

Chapter 3 presents the algorithm “Monte Carlo Tree Search with Interval Bounds and

Regional Estimation" (MCIR), designed to tackle non-convex optimization challenges. MCIR

is distinguished by its use of numerical overapproximations of the objective as a measure of

uncertainty and by learning about specific subregions within the state space through sampled

estimates of first-order and second-order information. This approach avoids the usual fixed

combinatorial patterns in growing the tree, aggressively zooms into the promising regions, and

still balances exploration and exploitation.

Chapter 4 demonstrates an effective active learning strategy for selecting representative

configurations to compile the training dataset necessary for training a DNN potential for water

molecular simulations. The framework employs uncertainty and error estimation through

Gaussian process regression to identify the most relevant configurations needed for an accurate

representation of the energy landscape of the molecular system under exam. Furthermore,

this framework is applied to Cs+–water system for the energy of its N-body system, essential

for developing of Cs+-water many-body potential energy functions. The deployment of the

framework leads to significantly smaller training sets than previously used in the development of

the original PEFs, without loss of accuracy.

Chapter 5 illustrates a study exploring the possibility of creating a DNN potential for

large-scale simulation of water across its phase diagram. The investigation reveals that this

potential falls short in simultaneously providing an accurate description of water in its liquid

phase and capturing vapor-liquid equilibrium properties. This shortcoming is attributed to

the DNN potential’s inability in accurately modeling many-body interactions. An attempt to

explicitly include information about many-body effects results in a revised DNN potential.

While this potential successfully reproduces the vapor-liquid equilibrium properties, it loses the

accuracy in the description of the liquid properties. These findings suggest a limitation of such

DNN potentials in accurately predicting properties for state points that are not explicitly included
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in the training process.
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Chapter 2

Monte Carlo Tree Method for Black-Box
Optimization

The key to Black-Box Optimization is to efficiently search through input regions with

potentially widely-varying numerical properties, to achieve low-regret descent and fast progress

toward the optima. Monte Carlo Tree Search (MCTS) methods have recently been introduced to

improve Bayesian optimization by computing better partitioning of the search space that balances

exploration and exploitation. Extending this promising framework, we study how to further

integrate sample-based descent for faster optimization. We design novel ways of expanding

Monte Carlo search trees, with new descent methods at vertices that incorporate stochastic

search and Gaussian Processes. We propose the corresponding rules for balancing progress and

uncertainty, branch selection, tree expansion, and backpropagation. The designed search process

puts more emphasis on sampling for faster descent and uses localized Gaussian Processes as

auxiliary metrics for both exploitation and exploration. We show empirically that the proposed

algorithms can outperform state-of-the-art methods on many challenging benchmark problems.

2.1 Introduction

Black-Box Optimization (BBO), also referred to as Derivative-free or Zeroth-order

Optimization, considers objective functions that are not known analytically and can only be

evaluated at various inputs, potentially at a high cost. The generality of the formulation makes
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BBO broadly applicable to a wide range of challenging problems in machine learning [36, 98,

250] as well as many scientific and engineering problems [101, 214, 235]. BBO problems over

compact domains are naturally NP-hard: in the worst case, we need to exhaustively search

through the combinatorially-large number of local regions to find high-quality solutions. Thus,

the goal of BBO algorithm design is to accelerate optimization progress with respect to the

number of function evaluations.

Existing work on BBO can be categorized into model-based and model-free approaches.

Most model-based approaches, typically in the framework of Bayesian Optimization [93, 164],

involve learning a surrogate function from samples of the unknown function and optimizing the

surrogate rather than the original function. For highly nonlinear functions with high-dimensional

input spaces, such methods are known to be costly because of the need for global modeling

of the objective functions. Various Bayesian optimization approaches utilize ensembles of

local surrogate models [55] to improve performance. Model-free approaches include simulated

annealing [79], cross-entropy methods [51], search gradient [177], as well as traditional direct

search methods such as Nelder-Mead [60, 104]. The goal is to iteratively propose sampling

distributions that can approach the optima. Such methods typically do not attempt to maintain

global information about the objective and are challenged when the optimization landscape

is highly non-convex [114]. In general, the lack of mechanisms for explicitly managing the

search over the combinatorially-large number of local regions, in both standard model-based and

model-free BBO methods, has been a major bottleneck of the field.

Recent advances in stochastic tree search methods [30, 191] offer new opportunities for

balancing local search and modeling with more systematic global exploration in BBO problems.

In particular, Monte Carlo Tree Search (MCTS) has recently been introduced for computing good

partitioning of the search space for BBO [98, 138, 223]. These approaches adaptively divide

the input space into regions, balancing exploitation and exploration, to only perform Bayesian

optimization at local regions and create better model ensembles. However, because the focus

is still on modeling the objective, the ability of MCTS to quickly expand deep branches into
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promising search regions has not been fully utilized. As a result, the curse of dimensionality

can still quickly stall the search, while model-free descent methods may be able to make more

progress if they are also guided by MCTS.

We propose a new design of MCTS methods for BBO, with more emphasis on sample-

efficient local descent, which can benefit the most from balanced exploitation and exploration.

We use Bayesian optimization and local modeling as auxiliary metrics for guiding the search

tree construction. At each node in our search tree, we iteratively collect samples in the neigh-

borhood of some anchor point and also maintain a local Gaussian Process (GP) model for the

neighborhood. The samples are chosen using sampling-based descent such as Stochastic Three

Points methods (STP) [22], and they are also used to train the local GP models. These local

models provide surrogate objectives to propose future samples without querying the ground truth

function, and they also provide uncertainty metrics for exploration steps. We name our overall

approach Monte Carlo Tree Descent (MCTD), because of the focus on faster descent led by sam-

ples that are managed by tree search, rather than using MCTS for explicit space partitioning. We

evaluate the proposed methods with experiments on challenging benchmarks such as nonlinear

optimization benchmarks [111], policy search for MuJoCo locomotion tasks [210], and neural

architecture search [52]. We compare our algorithm with state-of-the-art model-based [55] and

MCTS-based methods [223], as well as model-free [76] and direct search methods [60]. We ob-

serve clear benefits in the proposed designs for improving efficiency, consistently outperforming

existing methods on the tested benchmarks.

2.2 Related Work

Model-based methods.

Bayesian optimization [93, 188] typically uses Gaussian Processes to construct surrogate

models of the objective functions [164], with samples selected by acquisition functions (e.g.,

confidence bounds, expected improvement, etc.) [57, 201]. Model-based methods are known to

suffer from the curse of dimensionality as the problem dimensionality and sample sizes grow
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quickly [146]. Many approaches have been proposed to improve the scalability of Bayesian

optimization methods in high-dimensional problems [61, 139, 174]. For instance, TuRBO is a

state-of-the-art method that uses Thompson sampling with Expected Hypervolume Improvement

(EHVI) [55]. It samples in local trust regions and adjusts the trust regions after each sampling

iteration, which has shown major benefits in improving the efficiency of model-based approaches

for BBO.

Model-free methods.

Model-free approaches focus on sampling inputs, either point-wise or population-based,

that can incrementally approach optimal regions in the search space without explicitly maintain-

ing models of the objective. Standard approaches include stochastic methods such as simulated

annealing (SA) [79] and cross-entropy (CE) [51] and deterministic schemes such as Nelder-Mead

(NM) [60]. These methods have been successfully applied to a wide range of problems but they

typically do not aim for optimizing efficiency, i.e., reducing the number of evaluations [10]. They

may still offer improvements faster than local methods that rely on gradient information [10, 104].

The Stochastic Three Points method [22] is a simple but effective way of direct search that com-

pares function values at the base point, in one random direction, and in the opposite direction.

Each step evaluates only two more points that lie in the opposite direction of the current point

and moves towards the one with a better value. To improve sample efficiency, we attempt to

combine The Stochastic Three Points method with model-based methods and carefully design

the direction in which the method will try in each iteration.

Tree search methods.

Various tree-search methods have been proposed to improve partitioning of the search

space in BBO, such as Deterministic and Simultaneous Optimistic Optimization (DOO and

SOO) [138], and Hierarchical Optimistic Optimization (HOO) in [31]. Specifically, DOO

divides up the search domain into partitions, each of which is represented by a point within it,

assuming known Lipschitz constants for the objective function. SOO and HOO extend DDO
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to stochastic versions but are mostly applicable to low-dimensional problems because of the

high cost involved in creating good partition cells. Voronoi Optimistic Optimization (VOO) [98]

can be more efficient in high dimensions by combining Voronoi partitioning and tree search.

LA-MCTS [223] introduces MCTS to manage the partitioning of the search space. It learns latent

actions that define boundaries between good and bad regions in the search space and prioritizes

the expansion of the search tree around the boundaries. When continuing with such splitting,

it sets a sampling preferential on every node in the tree. In every iteration, the search tree is

traversed from the root node to a leaf by selecting the highest approximated value based on Upper

Confidence bounds applied to Trees (UCT) algorithm. The optimization is then performed from

the subspace partition on the selected node. These methods successfully change the objective

function modeling for global space to local regions. However, the partitioning of the state space,

particularly when the space is a high dimension, becomes a very challenging problem. The tree

becomes extremely large when the optimization attempts to learn with high accuracy in local

regions.

2.3 Preliminaries

We consider the problem of minimizing an objective function f (x) : Ω→ R where the

domain Ω⊆ Rn is compact. We assume the ability to evaluate f (x) for arbitrary x ∈Ω but do

not have information about the analytic form of the function or its derivatives.

Gaussian Processes (GP) is commonly used in Bayesian optimization and is also used

in our work to construct a surrogate model for the local model-based optimization. For a finite

collection of points x1, ...,xk ∈ Rd , GP constructs the mean vector µ0 from the function f at each

xi, and the covariance matrix Σ0 by a kernel at each pair of (xi,x j), i, j = 1,2, ...k. With µ0 and

Σ0 the prior distribution on f is:

f (x1, . . .xk)∼N (µ0(x1, . . .xk),Σ0(x1 . . .xk;x1, . . .xk)) (2.1)
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For any new point x, we can use Bayes’ rule to compute the conditional distribution of f (x):

f (x|x1, . . .xk)∼N (µ0(x1, . . .xk,x),Σ0(x1, . . .xk,x;x1, . . .xk,x)) (2.2)

The Stochastic Three Points (STP) method is a model-free approach to BBO that uses only

a small number of samples in each iteration to identify descent directions. At each time step t with

a current sample xt , it generates a set Dt = {xt ,xt + st ·αt ,xt− st ·αt} where st is a direction and

αt > 0 is the step size at step t. When αt is small enough, the relationship between f (xt + st ·αt),

f (xt) and f (xt− st ·αt) is monotonically non-increasing or non-decreasing if the gradient of the

function f is not zero in the direction of st . For the next step, xt+1 = argminx∈Dt
f (x).

In our method, the STP-based local descent optimization will identify the best direction

st with an optimized step size αt for improving its performance.

Monte Carlo Tree Search (MCTS) is a leading framework for balancing exploration and

exploitation in sampling-based tree search. It consists of four main steps: Selection, Expansion,

Simulation, and Backpropagation. During Selection, a search tree is traversed from the root node

to a leaf node. This traversal is made by selecting the node with the highest value based on the

UCT algorithm. For a node ni, the UCT ν is computed by:

ν(ni) = Ri/Ni +C ·
√

2 · lnNb/Ni (2.3)

in which Ri is the rewards on ni; Ni and Nb denote the number of visits on ni and its parent

node nb, respectively; C is a constant to balance between exploitation and exploration. At each

branch node nb, the child to select is the one with the highest ν value among all of its immediate

children. At Expansion, a new child node is then added to expand the tree. During Simulation, a

random simulation is run from the new child node until the terminal node is reached, and the

simulation reward is approximated. Finally, the simulation reward is backpropagated through

the selected nodes to update the tree. In our approach, we construct our Monte Carlo tree by
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assigning every leaf node to one optimization process. During each step, we use a modified UCT

algorithm to select the node on which the optimization is launched.

2.4 Monte Carlo Tree Descent

Our MCTD algorithm iteratively constructs a search tree over the domain of the objective

function, and at each node of the tree we maintain a set of samples and a surrogate model learned

from them. The balancing of exploration and exploitation takes into account several factors that

will be explained in the subsequent sections. The overall algorithm is illustrated in Alg.1, and

we refer Fig. 2.1 that provides a visual illustration of the process.

Figure 2.1. Steps in each iteration of the MCTD algorithm. Top: Illustration of the nodes in the
input domain; Bottom: Illustration of the tree expansion. (a) The root n0 begins with a random
sample. (b) Optimization is carried out on the root n0. (c) Leaf exploration on the root N0 creates
two nodes n00 and n01. n00 starts from x∗0, and n01 starts from a point distant from x∗0. (d) Leaf
exploration on the node n01, generating two new node n010 and n011. n010 starts from x∗01 while
n011 starts at a point away from x∗01. (e) Branch exploration at root n0 creates a new child node
n02.
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Algorithm 1. Monte Carlo Tree Descent (MCTD)
1: function MCTD(objective function: f ,

domain: Ω)
2: x← random sample in Ω

3: n0.sample_set← (x,y) ▷ root node
4: for step = 1, ..., t do
5: n← Select(n0)
6: Optimize(n)
7: Backup(n)
8: end for
9: return y∗0

10: end function
11:
12: function EXPAND(node: ni)
13: if ni is leaf then
14: ni0← ni excluding parent/child
15: ni child list← ni0
16: end if
17: lv← level of ni
18: d ∝ exp(−lv)
19: x← random sample in B(x∗i ,d)
20: nim.sample_set←{(x, f (x))};
21: ni.children.append(nim)
22: return nim
23: end function
24:
25: function BACKUP(node: ni)
26: n← ni
27: while n has parent np do
28: Update (x∗p,y

∗
p) with Eq.2.5

29: Update dyp with Eq.2.6
30: n← np
31: end while
32: end function

1: function SELECT(node: ni)
2: nb← ni
3: while nb has children do
4: for child node nbi do
5: Compute ν(nbi) by Eq.2.4
6: end for
7: Compute ν(nbx) by Eq.2.7
8: if maxi(ν(nbi))< ν(nbx) then
9: return Expand(nb)

10: end if
11: b̂← argmaxiν(nbi)
12: nb← nb,b̂
13: end while
14: if EP(nb) in (2.8) is satisfied then
15: nb← Expand(nb)
16: end if
17: return nb
18: end function
19:
20: function OPTIMIZE(node: ni)
21: αD← 1
22: if |ni.sample_set|>= NR then
23: Θ← GP model of ni.sample_set
24: αD← αD· correlation length in Θ

25: else
26: oracle Θ← None
27: end if
28: Descend on ni by Θ, f , αD from (x∗i ,y

∗
i )

29: ni← Bayesian Optimize from {(x,y)}i
30: Update (x∗i ,y

∗
i ) and dyi by Eq.2.5 and 2.6

31: return
32: end function

2.4.1 Overall Tree Search Strategy

We initialize our algorithm at a random sample in the domain of the objective function,

and the sampled points create the root node of the entire search tree. Unlike standard MCTS

that considers finite and discrete actions at each node, for BBO over the continuous domains

we can not expand the infinitely-many possible next samples as child nodes of the root node.
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Consequently, already at the root node, we need to decide between two choices. First, we could

perform local descent on the current sample at this node. Second, we could explore a different

region in the space by taking a sample that is far from the current one, which will act as a new

anchor point that forms a new child node of the tree, which expands the tree. When multiple

child nodes have been expanded at a node, there is the third option of going down the tree along

the most promising branch, and then focusing the next steps of search from there.

Consequently, in each iteration of the algorithm, we perform three operations sequentially.

First, we perform branch selection starting from the root node, and then either land at some

existing node or create a new anchor sample and node, from which we will perform local descent.

2.4.2 Branch Selection

In every step, we pick a leaf for optimization. To balance exploration and exploitation, our

algorithm uses UCT to determine the path between the root and the leaf, as shown in the function

SELECT in Alg.1 line 1. We modified the UCT formula for fitting our MCTD algorithm. For

each child node nbi with the parent node nb , its UCT ν(nbi) is given by:

ν(nbi) =−y∗bi +Cd ·
J

∑
j=1

dy− j
bi +Cp ·

√
logNb/Nbi (2.4)

Here, Cd is a weight factor controlling the importance of recent improvements during

optimization, Cp is a hyper-parameter for the extent of exploration, Nb and Nbi are the number of

visits to the branch node nb and the child node nbi, respectively. y∗bi is the normalized current

best function value in the sample set Sbi = {(x,y)} which stores the samples during optimization

on node nbi:

(x∗bi,y
∗
bi) = argminy(x,y),(x,y) ∈ Sbi (2.5)

and dy− j
bi is the normalized most recent j’s improvement at nbi after calling the objective function.

When computing ν , only the last J improvements are taken into account. For every call to the

objective function during the optimization, we record the improvement in the function value
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from this call. If the value from this call is worse than the optimal value before the call, we set

the improvement to zero; otherwise, we set the improvement as the absolute difference between

the optimal value before and after the call. That is, for y∗bi at the time step t as y∗bi(t),

dy− j
bi (t) = max(y∗bi(t− j)− y∗bi(t− j+1),0) (2.6)

We similarly integrate the tree expansion as the UCT algorithm. At a branch node nb, in

addition to examining the UCT of all its child nodes we add an artificial exploration node nbx

that has the UCT value ν(nbx) as following:

ν(nbx) =−∑
i
(y∗bi)/Db +C′p ·

√
logNb (2.7)

where Db is the number of children of the node nb, C′p is a hyper-parameter for the extent of

exploration but may be different from Cp. This exploration node is to determine whether to

optimize in a new domain because the existing children are not performing well enough. When

the exploration node is selected, a new child node under the branch node is created and returned.

If the path selects a leaf that is not newly created, we need to determine whether it is

worth optimizing on it. On a leaf node n f , we expand the tree if the following condition is met:

EP(n f ) :−y∗f +C
′′
d ·

J
′′

∑
j=1

dy− j
f <C′′p ·

√
logN f (2.8)

Here, C′′d is a weight factor for recent last J′′ improvements and may be different from Cd , C′′p is

also a hyper-parameter for the extent of exploration different from Cp and C′p. In the event the

condition 2.8 is met, we will make a leaf expansion; otherwise, we descend on the selected leaf

node n f .
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2.4.3 Tree Expansion

When we need to take an exploration step at a node, a new child node will be created. The

new child node is created at a random point lying within some distance from the selected node.

The minimum and maximum distances are set to 10% and 50% of the domain’s dimensional

length, with exponential decay according to the node level. After the newly created child node is

placed, it will be immediately selected as the node for optimization at the current step. When the

selected node to explore is a leaf node n f , a new child node n f 1 is created in the same way as

above, making n f a branch node. At this time, a new node n f 0, starting from the current best

point at x∗f , is also created as the child 0 of node n f . This node n f 0 inherits a batch of samples

that are near its starting point x∗f , as well as the latest improvement history on n f . The reduced

number of samples forces the inheriting node n f 0 to focus on optimizing in the neighborhood of

the starting point, while the newly expanded node n f 1 is optimizing in a distant region. Thus, the

tree grows a leaf node n f 1 while maintaining the possibility of further exploiting around the best

point found on n f at node n f 0. These steps are in the function EXPAND in Alg. 1 line 12, and 3

subplots in Fig.2.1 show an example. As in Fig.2.1 (c), the expansion takes place on the root

node n0. The node n01 is a new node for exploration, placed distant from n0. Node n00 starts

from x∗0. Similarly, in 2.1 (d), node n010 starts from x∗01, and node n011 is placed away from n01,

but the distance between node n01 and n010 is much smaller than the distance between node n0

and n01 at node creation. Fig. 2.1 (e) shows how a new leaf node is created.

2.4.4 Local Optimization.

In every iteration, we use the STP method to attempt local descent and also use TuRBO-1

[55] for local Bayesian optimization (BO). We tightly integrate the two methods. Samples

obtained from local descent optimization are used to construct the surrogate GP regression model.

The GP model not only serves as an oracle for the local descent optimization but also provides

the correlation length according to which the local descent optimization scales its step sizes.

17



Local Descent.

We use the STP method with the following changes. In STP, the direction st at step t is

usually selected from a sphere with uniform distribution in direct search. Instead, we use the

surrogate GP regression model to identify the point with the highest expected improvement. The

steps of local descent optimization are as follows:

1. Choose a node ni by SELECT. If the number of samples exceeds some threshold, we train

a Gaussian Process model that will be referred to as the oracle for this node.

2. Compute the step size αt . In our case, we set αt to be inversely proportional to the square

root of the product of node visits Ni and the node level in the tree. We also rescale it

according to the correlation length in the surrogate GP model when possible.

3. If the oracle is not available, get a random direction st , and use st ·αt for checking ground

truth.

4. If the oracle is available, generate multiple samples in the box with edge length equaling

the step size αt , and choose the best point. The direction to the best point is st ·αt .

5. Start one step of STP with the selected direction of st ·αt by calling the objective function.

6. Depending on the optimization progress, we may further optimize the objective function

along the same direction with tuned step sizes in a fine-grain descent approach.

The last step is used when the optimization comes to fine-tuned phase with small varia-

tions in samples, so one can set a function threshold from which the search applies the fine-grain

descent approach.

Local Bayesian Optimization.

The TuRBO-1 [55] creates a hyper-rectangle Trust Region (TR) with volume LN centered

at the best sample. Afterward, it samples new candidates within the TR and queries the objective
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function for ground truth data. The length of Li will either increase after successive "successes"

or decrease after consecutive "failures". We changes TuRBO-1 in three ways to fit it into our

algorithm: 1) TuRBO-1 begins with collected samples of the node. Consequently, TuRBO-1

is compelled to optimize from the vicinity of the collected sample. 2) The trust region length

has been preserved on the same node, so the local BO can continue from the previous epoch.

3) We do not perform restarts for TuRBO-1 in order to avoid TuRBO-1 restarting from random

samples.

2.4.5 Back Up

In the BACKUP function, we backpropagate the updated best score found at a leaf node

and propagate it upwards to its parent nodes. This score update is important for informing future

branch selections. This backup procedure is used in every step even if the best-found sample on

the selected leaf node does not change after one iteration.

2.4.6 Implementation Details of Stochastic Three Point Approach

In Alg.2 , we can see the typical workflow of the stochastic three-point algorithm (STP).

Algorithm 2. Stochastic Three Point
while within Descent budget do

dx← random sampling
X← argmin(f(X), f(X + dx), f(X - dx))

end while

For our implementation, we have redesigned two versions of STP which are compatible

with our search approach. In first place, the descent direction dx is not entirely random, but

is sampled by Latin Hypercube Sampling within the domain of the step size. The length in

each dimension is rescaled by the correlation length L from the local surrogate model, while

maintaining the total length of dx: dx = dx · L · ||dx||/||dx · L||. Further, the choice of dx is

made by maximizing the expected improvement on the local surrogate model G: train G(x),x ∈

19



collected samples at the node, and dx = argmindx G(X +dx), where X is the best point at the

node.

The first implementation is fundamentally similar to the typical STP as in Alg.3, with the

exception that it continues to test along the same dx whenever it find a better value for G(X +dx)

or G(X−dx):

Algorithm 3. STP for local descent optimizer
X ← best point at the node
Train surrogate model G(x),x ∈ collected samples
while within Descent budget do

DX ← Latin Sampling · Correlation Length L · Step Size α

dx← argmindx∈DX G(X +dx)
k← 0
while G(X +(k+1) ·dx)< G(X + k ·dx) do

k← k+1
end while
X← argmin( f (X +dx), f (X) )

end while

Algorithm 4. Fine-grained STP
X ← best point at the node
Train surrogate model G(x),x ∈ collected samples
while within Descent budget do

DX ← Latin Sampling · Correlation Length L · Step Size α

dx← argmindx∈DX G(X +dx)
k0, k−, k+← 0.0, -1.0, +1.0
while within computational budget do

k0← argmink∈(k0,k−,k+)G(X + k ·dx)
update k−, k+

end while
X← argmin( f (X + k0 ·dx), f (X) )

end while

The second one differs from the first implementation by always trying to test two more

points, which have never been tested, on either side of the current point. As an example, if X ,

X +dx, and X−dx are currently being compared, and X +dx is the best point of the three, the

two points that will be tested in the next step are X +2 ·dx and X +0.5 ·dx (since X +dx has
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Figure 2.2. Overall performance of the baselines and MCTD. For Ackley and Michalewicz in
(a), (b), and (c), the goal is to optimize for the lowest function values; in MuJoCo tasks (d), (e),
(f), and (g), we aim to maximize the rewards; and for CIFAR-10 in (h) and CIFAR-100 in (i) we
want to find the architecture with the highest accuracy as quickly as possible

already been tested and we need to select two more points in either side of X +dx for evaluation).

Should X be the best point among X , X + dx, and X − dx, the next round will be to test X ,

X +0.5 ·dx, and X −0.5 ·dx. The second version of the STP model, illustrated in Alg.4, may

yield better results in fine-grain, however it is more computationally expensive. As a result, we

switch to this fine-grained model when the function value drops below a threshold.
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2.5 Experiments and Evaluation

2.5.1 Experiment Setup

Benchmarks

We use several standard benchmark sets for testing BBO algorithms, from three categories:

synthetic functions for nonlinear optimization, reinforcement learning problems in MuJoCo

locomotion environments, and optimization problems in Neural Architecture Search (NAS).

Synthetic functions are widely-used in nonlinear optimization benchmarks [111]. These functions

usually have numerous local minima, valleys, and ridges in their landscapes which is hard for

normal optimization algorithms. MuJoCo locomotion environments [210] are popular for

reinforcement learning tasks. NAS problems have practical significance, since many fields are

using deep learning models, but implementing efficient neural networks requires a substantial

amount of time and effort. We select multiple problems from each set, and their input dimensions

range from 33d to 204d.

Synthetic Functions

We chose Ackley and Michalewicz from the synthetic function set in the nonlinear opti-

mization benchmark [111]. Ackley is a function with multiple local minima, and Michalewicz

has steep valleys and many ridges. We use Ackley-50d, Ackley-100d, and Michalewicz-100d as

our benchmark.

MuJoCo Locomotion

For reinforcement learning problems from MuJoCo locomotion environments [210], we

chose Hopper, Walker, and HalfCheetah for tests. Hopper has 3 dimensions in action space

a and 11 in observation s. We choose a linear policy a = Ws in which W is the weighting

matrix to search for maximizing the reward, therefore, the search space for Hopper-33d is

in the dimension of 3 · 11 = 33. Similarly, we set linear policies in both Walker-102d and

HalfCheetah-102d. In addition to the above linear policy, we double the weighting matrix space
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dimension in Walker from 102 to 204, such that a =W1s+W2s where W1 and W2 are matrices in

the dimension of 102. In this case, the optimization problem is Walker-204d. Since our approach

considers deterministic results, we set the noise scale to zero in all MuJoCo environments to

avoid randomness in rewards.

Neural Architecture Search

For the NAS benchmark, we use two datasets CIFAR-10 and CIFAR-100 from NAS-

Bench-201 [52]. Each network in the datasets consists of three stacks of searching cells, and

each cell has six positions where one can select one type of layer from five different types: (1)

zeroize, (2) skip connection, (3) 1-by-1 convolution, (4) 3-by-3 convolution, and (5) 3-by-3

average pooling layer. Overall, there are 56 = 15625 different types of architectures, and each

architecture is trained and evaluated on both CIFAR-10 and CIFAR-100. The accuracy of training

and evaluation is recorded. To benchmark this set, we created the following functions in the real

domain: we replace each of the five types of layers with an integer, and the real-valued input

is rounded up to the nearest integer. The evaluation accuracy of the architecture is set as the

function value. As an example, we set the input domain to {[0.5,5.5]6}, and f ([1.1]6) = f ([1]6),

where each 1−5 corresponds to one type of the layers. It should be noted that in this method

different inputs may refer to the same network architecture; therefore, the number of unique

architectures examined is less than the number of functions called.

Baselines

We selected TuRBO [55] as one baseline from the BO algorithms. La-MCTS [223] is

chosen as a major comparator since this algorithm also constructs trees in a similar manner.

Moreover, CMA-ES [76] from the Evolutionary Algorithm category, Nelder-Mead [60] from

Direct Search algorithms, as well as the Random Search algorithm are selected for comparison

as baselines.

For CMA optimization, fmin2 from the CMA-ES package [76] is used with its default

parameters. We implement our own version of the Nelder-Mead algorithm as in [60], and set
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its expansion coefficient, contraction inside the simplex, contraction outside the simplex, and

shrink coefficient as 2.0,0.5,0.5,and0.5, respectively. TuRBO [55] is initialized with 20 random

samples selected using Latin Hypercube sampling, and its Automatic Relevance Determination

(ARD) is set to True. For La-MCTS [223], we use different settings and include them in Tab.2.1,

as well as our MCTD approach in 2.2. Benchmarks are made mainly on Google Colab with a

Tesla P100 graphic card. Across all experiments, we set the number of evaluation calls to 3000.

2.5.2 Hyperparameters

In this chapter, we demonstrate the hyperparameters for various test functions in LaMCTS

and MCDesent

LaMCTS

In LaMCTS, Cp is responsible for controlling the amount of exploration. Having a small

Cp will make the search focus exclusively on the current best found value, but may result in

being stuck at a local optimum. By contrast, a large Cp encourages LaMCTS to explore poor

regions more frequently, but this can result in overexploration. The type of kernel and gamma

determine the shape of the boundary drawn by the classifier in LaMCTS. Additionally, the leaf

size determines the splitting threshold and the rate of tree growth. In all tests LaMCTS uses

TuRBO-1 sampling method as default. All hyperparameters for LaMCTS are as listed below:

Table 2.1. Hyperparameters used in LaMCTS for each of the test functions

Functions Cp Leaf size Num. of initial Kernel type Gamma type
Ackley-50d 1. 10 40 rbf auto

Ackley-100d 1. 10 40 rbf auto
Michalewicz-100d 10. 8. 40 rbf auto

Hopper-33d 10 100 150 poly auto
Walker-102d 20 10 40 poly scale
Walker-204d 20 10 40 poly scale

HalfCheetah-102d 20 10 40 poly scale
CIFAR-10 10 8 10 poly auto

CIFAR-100 10 8 10 poly auto
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MCTD

As part of our MCTD approach, we have several hyperparameters that can be tuned

during tests. As a first step, we may allow a specific number of computational calls from both

the local descent optimizer and the local BO optimizer to the objective function. Typically, the

total number of calls allowed in a single iteration is either 30 or 40 in order to ensure that enough

steps are performed by the optimizers in one iteration. One may, however, want to combine the

two algorithms to maximize the benefits. Such a situation could be addressed by splitting the

budget among a local descent optimizer and a local BO optimizer according to different ratios.

Furthermore, in local descent, we can specify the step size α for the optimizer, and when to

change over to fine-grained descent optimization. The step size in our algorithm is relative to

the dimensional length of the test function, and we set to use the fine-grained descent optimizer

when the best found value on the node is below a threshold. As a third point, the UCT of each

node is determined by the equation

ucti =−y∗i +Cd ·
J

∑
j=1

(dyi,− j)+Cp ·
√

lognparent/ni (2.9)

, and one can adjust the weight of recent improvement Cd and the weight for exploration Cp. As

a final step, we must decide when to expand the branch and the leaf node when selecting a path

from the tree. To do this, we compute an additional UCT value that has the following setting:

y∗
′
= ∑(y∗i )/N, C

′
d = 0, and C

′
p ̸=Cp at every branch node, where N is the number of children at

the branch node. This additional UCT value represents if the branch decides to explore in a new

child domain, because the existing children are not performing well enough. And we apply the

following criteria after selecting a leaf node in order to determine whether it is worth exploring

or exploiting:

−y∗+C
′′
d ·

J
′′

∑
j=1

dy− j >C
′′
p ·
√

lognlea f (2.10)

To summarize, we have the budget ratio, step size at local descent, function value at

25



which using fine-grained descent, Cd and Cp at computing node UCT, C
′
p for branch exploration,

and C
′′
d and C

′′
p for leaf exploration. The hyperparamters used for each test is as in Tab.2.2:

Table 2.2. Hyperparameters used in MCTD for each of the test functions

Functions Bud. Rat. α Switch at f (x) Cd Cp C
′
p C

′′
d C

′′
p

Ackley-50d 1:1 0.2 10 10 0.5 0.1 50 0.1
Ackley-100d 1:1 0.2 4 20 0.5 0.1 5 0.1

Michalewicz-100d 1:2 0.02 -30 50 1. 0.2 1 10
Hopper-33d 1:2 0.1 -1000 100 1 10 100 200
Walker-102d 1:2 0.01 -100 100 0.1 50 50 50
Walker-204d 1:2 0.01 -100 100 0.1 50 50 10

HalfCheetah-102d 1:2 0.01 35000 50 1 1000 100 10
CIFAR-10 1:4 0.5 5 50 1 1 100 10

CIFAR-100 1:4 0.5 5 50 1 1 100 10

2.5.3 Overall Performance

Evaluation Metrics

For each benchmark function, we run baselines and our algorithm by at least five different

random seeds. Due to the limit on the computational power available to us, we set the number of

calls to the objective function to 3000. Our study evaluates the best-found value at every step

and computes the mean and standard deviation of all runs. As a result, we can compare the

best-found value at the end of the run as well as the speed at which each algorithm is capable of

reaching the most optimal result. There is a possibility that some algorithms will find the optimal

value before 3000 calls, which will result in an early stop.

Efficiency

Fig. 2.2 illustrates the comparison between our model and baselines on benchmark sets.

It was found that in general, random search, CMA, and NM methods performed poorly in these

cases since they do not cooperate with any approach that may potentially improve the efficiency

of the sample.

According to Fig. 2.2 (a), (b), and (c), MCTD significantly improves the speed of

finding better results for the set of synthetic functions compared to TuRBO and La-MCTS. In
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particular, the Ackley synthetic function exhibits a noticeable improvement when we balance

local optimization exploitation and state space exploration. Michalewicz is improved moderately

through descent optimization, and MCTS helps improve the optimization consistently.

The Mujoco benchmark problems are very difficult for global optimization. Our approach

is competitive with TuRBO and La-MCTS on this set and has moderate improvement over the

average value on functions Hopper-33d, Walker-204d, and Cheetah-102d. In particular, the

combination of local BO and local descent optimization speeds up the optimization during its

early stages. It is, however, difficult to balance local exploitation and space exploration by

picking the correct weights to bring recent improvements, exploration terms, and objective

function values into the same order of magnitude. This is because we use the absolute value of

the objective function that varies significantly at different optimization steps. In light of this, we

see a large variation from different runs in this set, as in Fig.2.2 (d), (e), (f), and (g).

In CIFAR-10/CIFAR-100, MCTD reaches the optimal solution by a small number

of samples, which is critical for NAS searches. The combination of descent and modeling

approaches facilitates the search for the optimal solution more quickly than if only one method

was used.

(a) Optimization by different budget ratio (b) Queried value from local optimizers

Figure 2.3. Study of budget ratio and local optimization approaches in MCTD. (a) illustrates the
optimization curves for Ackley-100d when the computational budget is divided between local
descent and local BO in the ratio of 1:2, 5:1, and 1:10; (b) shows the values of Michalewicz-100d
from local descent and local BO at each query.
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Descent Optimizer and Bayesian Optimizer

We examine the performance of our approach when the computational budget is divided

between a local descent model and a local Bayesian optimizer TuRBO. Fig. 2.3a illustrates the

optimization history of Ackley-100d when budget ratios are 1:2, 5:1, and 1:10. It is demonstrated

that a model with a high budget for local descent suffers from a low optimization rate. In contrast,

the model with a high budget in the local Bayesian optimizer may have difficulty escaping the

local optimal point.

As shown in the case of Fig.2.3a, when we use the budget that emphasizes local descent

(budget 5:1), the performance is less compared with that of emphasizing local BO (budget 1:20)

in term of optimization speed. Based on the budget ratio for every function in Tab.2.2, it is

generally advantageous to use at least the same (or even more) amount of computational budget

on local BO as on local descent. This may be one challenge for the local descent approach, since

this indicates that local descent may require local BO as the oracle when the function landscape

is difficult, such as for the complicated functions in MoJoCo locomotion and non-continuous

functions in NAS sets.

However, the local descent approach still proves beneficial despite these factors. From

Fig.2.3b we can see the optimization improvement of the local BO becomes insignificant when

the process is close to the local optimum. Local descent, on the other hand, can contribute

steadily to the discovery of a superior solution. To conclude, using a balanced approach can

yield better results than using each approach separately.

2.5.4 Best Found Value in Test Functions

On each of the functions tested, we present the best results using different methods

and the fewest steps to achieve that result. Note for function Ackley-50d, Ackley-100d, and

Michalewicz-100d we want to minimize the function value. In contrast, for MuJoCo tasks and

NAS tests we want to find the highest reward or the highest accuracy.

Tab.2.3 illustrates that our MCTD approach obtains the best value with relatively fewer
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Figure 2.4. Ablation studies on MCTD hyper-parameters. Ablation studies on function
Michalewicz-100d with hyper parameters (a) Cp, (c) Cd , (e) C′p, (g) C′′p, (i) C′′d and (k) switching
to fine-grain STP at function value; ablation studies on function Walker-102d with hyper parame-
ters (b) Cp, (d) Cd , (f) C′p, (h) C′′p, (j) C′′d and (l) switching to fine-grain STP at function value.

steps in most of the test cases out of five attempts. In particular, our approach performs reasonably

well for cases where descent optimization can significantly improve the optimization performance.
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Table 2.3. Best Found Value / earliest step toward reaching that value from all tested functions
by MCTD, TuRBO, and LaMCTS. Bolded result is the best one among all tested methods.

Functions MCTD TuRBO LaMCTS
Ackley-50d 0.07/2342 1.33/1889 0.80/2018

Ackley-100d 0.29/2826 2.81/2891 1.89/2971
Michalewicz-100d -51.13/2975 -49.08/1776 -49.87/2945

Hopper-33d 3204/1890 3397/2574 2802/2858
Walker-102d 490/2472 665/1316 379/2056
Walker-204d 993/2884 862/1673 498/1830

HalfCheetah-102d -3268/2446 -4679/2064 -4034/2970
CIFAR-10 91.82/86 91.82/1296 91.48/2724

CIFAR-100 73.52/22 73.52/80 73.49/2433

Table 2.4. Best Found Value / earliest step toward reaching that value from all tested functions
by CMA, Nealder-Mead, and Random Search

Functions CMA Nealder-Mead RandomSearch
Ackley-50d 0.13/3000 13.21/1225 12.32/1311

Ackley-100d 1.77/3401 13.34/1616 12.37/1326
Michalewicz-100d -40.35/9015 -27.69/2017 -21.22/1759

Hopper-33d 3043/4128 67/4603 1220/193
Walker-102d 657/3264 -4/414 91/1957
Walker-204d 551/3386 - -

HalfCheetah-102d -22062/3145 -101228/2271 -50542/1145
CIFAR-10 91.70/198 - 91.56/458

CIFAR-100 73.52/135 - 73.52/338

However, it should be noted that in some instances our approach leads to large variations between

the different attempts. The adjustment of sample methods may provide one method for improving

the descent optimization on those functions. Tab.2.4 shows the results from three other baselines.

2.5.5 Selection of Nodes

It is important to justify the expansion of the tree. Fig. 2.5 illustrates the nodes from

which the query is made for the objective function. In Fig. 2.5a, the root node is optimized for the

first 200 queries; however, no significant improvement is evident for the next 300 queries. At this

point, the tree decides to expand, so it creates a new child node, N01, and starts optimizing from

this child. Nonetheless, the optimization is also stuck after 200 more queries. Therefore, our tree
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abandons to optimize in N01, and adds a new child node named N02. On N02, the optimization

procedure is significant, and a new best value is found. The tree in Fig. 2.5b attempts to optimize

in the N01 and its new exploration child N011, however, the improvements on these nodes are

insignificant. Consequently, the tree decides to optimize from the root inherit node. In light of

the newly gathered samples upon exploring N01 and N011, optimization is able to proceed at

the root inherit node. They demonstrate that the tuned tree model is capable of optimizing by

selecting a correct node.

(a) Node queries on HalfCheetah-102d (b) Node queries on Michalewicz-100d

Figure 2.5. Illustration of nodes at queries to the objective function

2.5.6 Optimization route

Fig. 2.6 illustrates how MCTD, TuRBO, and LaMCTS optimize Ackley-2d and

Michalewicz-2d in the first 30 samples after initialization. In both plots, LaMCTS explores a

wide range of input domains, making it less likely to find a solution by a small number of calls.

TuRBO locates efficiently the area where the optimal point is located in the beginning, however,

its subsequent samples are diverse and fail to identify the global optimal solution. MCTD, on the

other hand, samples much closer to the global optimal point and thus finds the solution more

rapidly.
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(a) Search path on Ackley-2d (b) Search path on Michalewicz-2d

Figure 2.6. Search paths of different algorithms. The black star, the blue cross, and the orange
circle indicate the best values found by MCTD, TuRBO, and LaMCTS, respectively; the red dot
represents the starting point of all three methods.

2.5.7 Ablation Studies

We also perform ablation studies to understand the effect of the hyperparameters used in

the algorithm, in three categories. The first category includes C′p (the weight in uctexp) C′′p, and

C′′d (the weights on leaf exploration in Eq.2.8) that control the expansion of the tree. The second

set of values, Cd and Cp in Eq.2.4, balance local exploitation and space exploration. Lastly, the

threshold value determines when fine-grain descent is required. We use the synthetic function

Michalewicz-100d and the locomotion Walker-102d for the ablation study, and each case runs

with at least 3 different seeds. Please note that hyperparameters in results may be different than

those presented in Section 5.2. We found that a wise choice on Cp, C′p, and C′′p is critical to

improving performance, while Cd and C′′d are less significant. The switching threshold value is

highly dependent upon the objective function’s properties.

State Space Exploration

The parameters Cd and Cp balance exploration and exploitation of the existing tree.

As shown in Fig.2.4a, the moderate choice on Cp improves the overall performance slightly;

however, this is not clearly observed in Fig.2.4b. From Fig.2.4c and 2.4d, we can see a variation
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in Cd may not help significant changes in the overall performance. Even so, we can observe a

contribution from Cd and Cp: from Fig. 2.4b and Fig.2.4d, we can see that path selection with

low values of Cd and Cp leads to little variation between runs since the path selection tends to

select the node where the current best-known value resides, thus limiting the path selection.

Tree Expansion

The hyperparameters C′p, C′′p and C′′d are important for expanding the current tree. As a

result of setting the parameters C′p, C′′p to large values and C′′d to a small value, it is likely that

a new sibling leaf will be created at the selected node to explore the state space. Alternatively,

the path will tend to select the node that has the current optimal value. Since a leaf always has

zero children, even though C′′d and C′′p have the same functionality as C′p, the criteria for tree

exploration are different for branch and leaf nodes. According to Fig.2.4f and Fig.2.4h, it is

evident that a good choice on C′p and C′′p can improve the optimization performance by exploring

new state space distant from the local optimal value. Conversely, when their values are set either

too large (orange lines in Fig.2.4f and Fig.2.4g) or too small (blue line in Fig.2.4h), this would

adversely affect the overall performance of the optimization process. The effect of C′′d is less

noticeable. However, a small C′′d results in a small variation between different runs - a similar

behavior as Cd .

Switching at Function Value

The fine-grain STP can be beneficial in certain cases, as the orange lines show in Fig.2.4k

and Fig.2.4l. In these two lines, switching takes place at a late stage of optimization, which

results in excessive use of normal STP. Generally, fine-grain STP can be used as soon as possible.

However, in some experiments, the fine-grain STP exploits too much in a small neighborhood at

an early stage of optimization and led to low-quality GP models.

33



2.6 Conclusion

In this paper, we proposed novel designs for using the MCTS framework in BBO

problems, with more emphasis on sample-efficient local descent, instead of using MCTS for

explicit space partitioning. We design new descent methods at vertices of the search tree that

incorporate stochastic search and Gaussian Processes. The local models provide surrogate

objectives to propose future samples without querying the ground truth function, and they

also provide uncertainty metrics for exploration steps. We propose the corresponding rules

for balancing progress and uncertainty, branch selection, tree expansion, and backpropagation.

We evaluated the proposed methods on challenging benchmarks and observed clear benefits in

improving the efficiency of BBO methods.
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Chapter 3

Monte Carlo Tree Method for Non-convex
Optimization

Standard approaches for global optimization of non-convex functions, such as branch-

and-bound, maintain partition trees to systematically prune the domain. The tree size grows

exponentially in the number of dimensions. We propose new sampling-based methods for

non-convex optimization that adapts Monte Carlo Tree Search (MCTS) to improve efficiency.

Instead of the standard use of visitation count in Upper Confidence Bounds, we utilize numerical

overapproximations of the objective as an uncertainty metric, and also take into account of

sampled estimates of first-order and second-order information. The Monte Carlo tree in our

approach avoids the usual fixed combinatorial patterns in growing the tree, and aggressively

zooms into the promising regions, while still balancing exploration and exploitation. We evaluate

the proposed algorithms on high-dimensional non-convex optimization benchmarks against

competitive baselines and analyze the effects of the hyper parameters.

3.1 Introduction

Non-convex global optimization problems are pervasive in engineering [39, 131], com-

puter science [89, 119], and economics [12]. The problem is well-known to be NP-hard, and the

practical challenge lies in distinguishing the global optimum from exponentially many potential

local optima [89, 234].
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Existing approaches to non-convex optimization can be largely categorized into sampling-

based methods and tree-search methods. Sampling-based approaches, such as simulated an-

nealing (SA) [79] and cross-entropy (CE) [51], explore the solution space through random

sampling and guided search strategies with the minimal assumptions about the objective function.

Sampling methods can be designed to asymptotically converge towards the global optimum, but

suffer from the curse-of-dimensionality in practice. Tree search and interval-based optimization

methods [71, 142] leverage various branch-and-bound techniques that maintain a partition tree

over the domain to systematically prune the space towards global optima. Such algorithms

typically employ rigorous techniques (e.g., linear relaxation [236] and interval arithmetic [6, 80])

for bounding the functions and systematically explore the solution space. The size of the search

tree can quickly become exponential in the number of dimensions and is the major bottleneck

for scaling up.

We propose an approach that combines the benefits of sampling-based and tree-based

approaches as well as interval bounding and local optimization techniques, by taking advantage

of the recent progress in Monte Carlo Tree Search (MCTS) methods. We assume that the analytic

form of the objective function is known over a compact domain, so that we can use interval

bounding [6] on the function value and its local first-order and second-order information in

different parts of the MCTS design. A key feature of the Monte Carlo trees is that the growth

of the tree is driven by samples rather than partitions, and hence the name Sample-and-Bound.

By associating the analytic and estimated properties of adjustable neighborhoods around each

sample, we design the MCTS algorithm to best balance exploration and exploitation based

on the important numerical properties of the objective function. We evaluate the proposed

algorithms against a wide range of existing algorithms and analyze the importance of various

hyper parameters.
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3.2 Related Work

Some classical approaches to global optimization explore the search space by sampling

without explicitly building models of the objective function. Common techniques in this category

include stochastic methods such as SA [79] and CE [51], as well as deterministic schemes

like Nelder-Mead (NM) [60]. SA [79] uses a probability-driven search process to escape local

minima. CE [51], on the other hand, is a technique that iteratively updates the probability

distribution on the search space to look for optimal regions. NM method [60] is a deterministic

sampling approach, which maintains a simplex within the search space and updates its vertexes

based on evaluations at selected points.

Sampling-based approaches have recently been combined with tree search by building a

search tree for the state space and pick only the most promising subspace to sample. Existing

algorithms include Deterministic Optimistic Optimization (DOO) [138], Latent Action Monte

Carlo Tree Search (LaMCTS) [223], and Monte Carlo Tree Descent (MCTD) [240]. DOO

segments the search domain into sections, each represented by a point; and the new sample is

carefully selected by choosing the most suitable section. LaMCTS method employs MCTS to

manage search space partitioning. It learns latent actions to distinguish good and bad regions

in the search space, and samples in the good partitions during its tree’s expansion. MCTD

assumes the objective function as black-box, utilizes a combination of sampling based approach

and learning based approach for local optimization, and employes MCTS to select the best

local optimization processes. Although these methods have adeptly laid out a comprehensive

framework for navigating the search space, the task of identifying the most promising subspace

from the sample data remains a challenge.

Another category of global optimization methods require the access to the formulation

and rely on precise anticipation of objective function values within predefined regions. They

employ the branch-and-bound algorithms in which they constitutes a robust framework that

systematically partitions the solution space into more accessible sub-regions referred to as
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branches. The evaluation of each branch is made according to its potential to outperform the

current optimal solution based on the bounding of objective function intervals specific to that

branch. As the algorithm advances, it tactically prunes branches that can be definitively identified

as incapable of providing a superior solution. The typical solvers for this category are BARON

[176, 206] and Gurobi [71]. BARON [176, 206] is explicitly tailored to address non-convex

global optimization problems by strategically exploring the solution space. Its purpose is to either

uncover globally optimal solutions or provide verified lower bounds for the optimal objective

value. It achieves this through accurate bounding of non-linear terms with several exceptions

such as trigonometric functions and min/max functions. Gurobi [71] is a widely used commercial

optimization solver famous for its proficiency in handling quadratic programming problems and

various optimization scenarios.

3.3 Preliminary

Problem Formulation.

We consider the problem of minimizing an objective function f (x) : Ω→ R, where the

domain Ω⊆ Rn is compact. In our approach, we assume that we have access to the analytical

form of the function f (x), enabling us to query its first-order derivative vector G(x) = f ′(x), the

second-order partial derivative Hessian matrix H(x) = f ′′(x), and evaluate the function value

interval f (B) over a specified input box B⊆Ω.

Interval Arithmetic.

Interval computation is a mathematical and computational approach that operates on

quantities and variables represented as intervals [3]. In this context, for a function f defined on

an input box domain B, the value of f (B) is expressed as an interval [lb,ub], where for every x

within B, the function value satisfies the inequality lb≤ f (x)≤ ub.

38



Monte Carlo Tree Search.

MCTS effectively balances exploration and exploitation based on the theory of multi-

armed bandits. The MCTS framework consists of four main steps: Selection, Expansion,

Simulation, and Backpropagation. During the Selection step, the search tree is traversed from

the root node to a leaf node. The Upper Confidence Bound for Trees (UCT) value, defined as

Eq. 3.1, is used to select the best child of a parent node:

ν(ni) =
Ri

Ni
+C ·

√
2 · ln(Np)

Ni
(3.1)

Here, Ri represents the rewards obtained on child node ni, Ni is the number of visits to ni, Np

is the number of visits to ni’s parent node np, and C is a constant that balances exploration and

exploitation. From the root node, the algorithm recursively select the child node with the highest

UCT value, until a leaf node is reached. During the Expansion step, a new child node is added

to the selected leaf node. In the Simulation step, a random simulation is performed from the

newly added child node until a terminal node is reached, and the simulation reward is estimated.

Finally, in the Backpropagation step, the simulation reward is propagated backward from the

expanded node to the root node, whose statistics are updated accordingly.

3.4 Monte Carlo Tree Search with Interval Bounds and
Regional Estimation

Overview.

The pseudocode of MCIR is provided in Alg. 5, and a high-level visualization is depicted

in Fig. 3.1. Our MCIR algorithm employs a search tree structure constructed based on collected

samples of the objective function and follows a systematic searching approach in each iteration.

Each node in the tree contains a batch of samples encompassed within a box domain associated

with that node. In every iteration, we select a leaf node np using a modified UCT formula with

function evaluation on the box, and we expand the selected node by adding new child nodes nci
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Figure 3.1. Steps in each iteration of the MCIR algorithm

generated from random sampling (Fig. 3.1 (a)). We also identify another new child node n∗ by

leveraging the regional estimation based on gradient and Hessian within the neighborhood of the

selected node np (Fig. 3.1 (b)). The node n∗ represents a node superior to the selected np, and

we attach it with the root node. This attachment allows us to prioritize the search on this node,

thereby accelerating the search process (Fig. 3.1 (c)). For each newly created node we run local

optimization with limited steps to enhance the quality of the best-found sample on it.

Note that despite the special design of different parts of MCTS for the optimization

context, the proposed algorithm ensures non-zero probability of sampling any neighborhood

with positive measure in the input space. Consequently, MCIR is complete in the sense that it

will eventually find an ε-neighborhood around the optimal value of any continuous function with

arbitrarily small positive ε . As a result, MCIR will ultimately return a value that is within an ε

range of the global optimal value of the objective for arbitrarily small positive ε .

Nomenclature

In this paragraph we summarize the symbols and terms used in MCIR (Alg.5).
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Algorithm 5. Monte Carlo Tree Search with Interval Bounds and Regional Estimation (MCIR)
1: function MCIR(objective: f , domain: Ω)
2: n0← None ▷ root without sample
3: B0←Ω, lb0← f (Ω),V0←V (B0)
4: for step = 1, ..., t do
5: np← Select(n0)
6: EXPAND(np)
7: LEARN(np)
8: BACKUP(np)
9: end for

10: return y∗0
11: end function
12:
13: function SELECT(node: n)
14: np← n
15: while np has children do
16: for nci ∈ np.children do
17: u(nci)← u(y∗ci, lbci,Vci) by Eq. 3.2
18: end for
19: j← argmaxiu(nbi)
20: np← nc j
21: end while
22: return np
23: end function
24:
25: function BACKUP(node: np)
26: if np has children then
27: {nci}← np.children
28: y∗p = mini y∗ci
29: j = argminilbci
30: lbp = lbc j
31: Vp =Vc j
32: end if
33: BACKUP(np.parent)
34: end function

1: function EXPAND(node: np)
2: B = Bp
3: while B ̸= /0 do
4: xci← x ∈ B
5: xci← LocalOpt (xci,Bci)
6: nci← xci ∈ B
7: Bci← b ∈ B,xci ∈ b
8: lbci← f (Bci)
9: Vci←V (Bci)

10: B← B\Bci
11: np.children.append(nci)
12: end while
13: end function
14:
15: function LEARN(node: np)
16: nci← np.children
17: H← Hessian(xci), i = 1, ...
18: j← argmini(ybi)
19: {x′}← x, for |x− xc j|< δ

20: G = grad(x′)
21: for d = 1, ...,dims do
22: if Hdd > 0 then
23: x∗d = xc j,d−Gd/Hdd
24: else
25: x∗d = xc j,d−Gd
26: end if
27: end for
28: n∗← x∗

29: B∗← Bc j, centered at x∗

30: lb∗← f (B∗),V ∗←V (B∗)
31: x∗← LocalOpt (x∗,B∗)
32: n0.children.append(n∗)
33: end function

• Node n: we use character n to represent a node; subscripts are used to distinguish different

node with its id: e.g., np is a parent node, and {nci} are a set of child nodes, for i = 1, ...

• Best found sample (x,y∗): a node n is represented by its best-found sample (x,y∗), which

is the sample with lowest objective function value found on it and its subtree. On node
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np, we label the best found sample input vector as xp, and corresponding function y∗p.

Similarly, for nodes {nci}, i = 1, ..., their best found sample input vectors and function

values are {xci} and {y∗ci}, respectively.

• Box B: for a node n, we assign a box B⊆Ω as the bounds in the input domain. We use Bp

to indicate the box assigned to the node np.

• Function value lower bound lb: The function value interval on an input box B is computed

as f (B) = [lb( f (B)),ub( f (B))]. We use lbp to indicate lb( f (Bp)).

• Vp is used to denote the volume of the box Bp.

• N is the number of visits to the node

• Clb is the weight factor that controls the importance of the function’s lower bound in Equ.

3.2

• Cv is the weight factor associated with the volume of the box where the lower bound is

identified.

• Cx is the hyper-parameter for the extent of visitation-based exploration.
Sub-domain Marking.

Samples are the primary information in each node of the search tree that our algorithm

build. Around each sample, we mark up the subdomain around it that is considered at the node.

The subdomain, typically a hyperbox, will be the focus of local search and optimization at the

node, for determining the value of a node. We use the notation Bi to denote the box subdomain

associated with the node ni. In the first iteration, the root node nroot encompasses the entire search

space, Broot = Ω, with the function’s lower bound on Broot denoted as lbroot = lb( f (Broot)), and

its box volume Vroot represented in logarithmic scale. For subsequent iterations, box Bi is

assigned to a node ni, while lbi and Vi will be updated according to formulas to be described

below. To compute the lower bound of the objective function within a specified input box domain

efficiently using global interval bounding [142].
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Path Selection.

The key to our design is a modified UCT formula that considers both exploration and

exploitation. The pseudocode of this procedure can be found in the SELECT function in Alg. 5.

For each child node nci with i = 1, ..., and its parent node np, the UCT value u(nci) is determined

by the following equation:

u(nci) =−y∗ci−Clb · lbci−Cv ·Vci +Cx ·
√

logNp

Nci
(3.2)

In this formula, Clb, Cv and Cx are weights for the function’s lower bound, the volume of the

box, and visitation-based exploration, respectively. The variables Np and Nci denote the number

of visits to the parent node np and the child node nci. y∗ci indicates the current best function

value discovered on the node nci, and lbci corresponds to the lower bound of the function’s

interval value on the node nci. The term Vci is the volume (in logarithmic scale) of the box

where the lower bound is identified. It is worth noting that after the creation of new child nodes,

the function lower bound lbp and the box volume Vp on the parent node np can be updated, as

detailed in the subsequent section.

This formulation takes into account the following factors to balance exploration and

exploitation: (1) the best function value observed within the box domain, (2) the lower bound of

the function value within the domain from interval computation, which reflects the potential best

function value upon further exploitation, (3) the volume of the box where the lower bound is

determined, related to the reliability of the function lower bound prediction, and (4) the frequency

of node visitation. While we considered other ingredients - such as upper function value bound,

or values from leveraging the function’s analytical form - to put into the formula, the design in

Eq. 3.2 turns out to be the most effective.

Utilizing Eq. 3.2, our algorithm tends to redirect its attention to probe alternative sub-

domains when a local optimum is identified. When a box is tight enough, the variance of

the objective function in the box is low, so the identified local optimum within the box lbci is
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relatively accurate.

If this lbci is close to the minimum of all other lbci′ , it indicates a near-optimal solution

has been identified. Conversely, if an lbci′ exists that is substantially lower than the current lbci,

the search scheme leans towards selecting the node with the lower lbci′ value in the subsequent

iteration due to the path selection criterion Eq. 3.2. In summary, Eq. 3.2 within our algorithm

helps strike a balance between exploiting the neighbor region around the current best-found point

and exploring other domains that might contain lower function values.

Tree Expansion.

In our algorithm, we utilize two steps to expand the tree effectively. The first step involves

sampling within the box of the parent node and generating new child nodes based on these chosen

samples. The second step emphasizes learning a high-quality sample point by leveraging both

global Hessian and local gradients.

After selecting the leaf node, we proceed to exploit the function space by sampling and

creating a cluster of child nodes within the corresponding box (EXPAND in Alg. 5). To ensure

comprehensive coverage, we divide the box Bp into distinct subsets Bci for each child node nci,

satisfying ∪{Bci}= Bp and Bci∩Bc j = /0, i ̸= j. Additionally, local optimization may be applied

to each individual child node nci to improve sample quality. When a child node nci is created, we

ascertain its function lower bound lbci through interval propagation of the corresponding box

Bci: lbci = lb( f (Bci)). Once the cluster of child nodes is created and their boxes fully cover the

parent box Bp, we update the lower bound on the parent node lbp = min(lbci) = lbc j and the

volume of the associated box Vp =Vc j, where i = 1, .., j, .... This update will be propagated to

the root node.

Next, we learn a representative node n∗ using the current set of samples nci from the

selected node np, as outlined in Alg. 5 LEARN. This step is performed by computing the

diagonal of the Hessian matrix, diag(H), for each child node nci, and estimating the expected

value. Furthermore, we collect the gradient information G around the best sample of nci, i = 1, ...
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and perform a step of Newton’s method (or gradient decent when Newton’s method is not

conductive to minimization), starting from the best sample. The average Hessian, derived from

the broad region within the box, represents the overall curvature characteristics of the box. By

integrating locally-averaged gradient information, we can identify a sub-region within the box

that is more likely to encompass a minimum. The learned representative node, denoted as n∗,

is attached to the root node. Note that this attachment means the root node can have children

nodes nci and nc j where Bci∩Bc j ̸= /0. This step grants n∗ higher priority in subsequent iterations.

Such prioritization promises to guide the search toward a favorable region, thereby reducing

unnecessary tree expansion and preserving tree manageability. Considering that this step may

expand the tree’s first level of children in every iteration, an extra step may be taken to evaluate

the quality of the newly learned node and prune unnecessary ones.

Local Optimization.

Upon creating a child node, we have the option to conduct local optimization steps to

improve the quality of the samples on the node. While this step is not obligatory, it offers a

beneficial opportunity to refine the samples on each node. To ensure efficient execution, the

number of optimization steps is typically kept at a low value, preventing over-exploitation

of the immediate local neighborhood. Local optimization can utilize a variety of numerical

optimization algorithms. Since the representative node has already been learned using second-

order information, we make quasi-Newton methods such as L-BFGS-B [38, 246] the default

choice for local optimization. To ensure computational efficiency, we limit the number of

function evaluations during the local optimization. In most cases we cap the number of iterations

at fewer than 50, as we do not want to overemphasize the choice of the local optimizer. It is worth

mentioning that alternative local optimization algorithms can be employed based on specific

requirements and preferences.
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Backward Propagation.

After creating and locally optimizing children nodes nci and n∗, we back propagate

three important values upwards as in Alg. 5 BACKUP, to enhance efficient exploration and

decision-making in the subsequent steps.

Firstly, we update the best function value y∗ci found on the child node nci, to the parent

node np with y∗p. This ensures that the parent node retains the most optimal function value

discovered within its subtree. Secondly, we update the lower bound of the function interval

value lbp on the parent node np with lbp = min(lbci). Given that the newly created child nodes

comprehensively cover the box of the parent node, this update provides more precise information

guiding the search towards the global minimum. Lastly, we propagate the size of the box Vci

from which the lower bound of the function value originates: Vp =Vc j, where j = argminilbci.

This box size represents the uncertainty in the input search space concerning the approximated

function interval value. The same propagation is applied to the node n∗, even though its parent is

the root node.

3.5 Experiments

3.5.1 Benchmarks

To evaluate the performance of our algorithms, our benchmark sets include three distinct

categories: synthetic functions designed for nonlinear optimization, bound-constrained non-

convex global optimization problems derived from real-world scenarios, and neural networks

fitted for single valued functions. It is important to note that our approach relies on having

access to the symbolic expression of the objective function and do not consider other relational

constraints to the variables (e.g., "<="). As a result, benchmark sets that are commonly used for

black-box optimization problems and constraint optimization problems are not applicable in our

case.

Synthetic functions are widely-used in nonlinear optimization benchmarks [111]. These
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functions usually have numerous local minima, valleys, and ridges in their landscapes which is

hard for normal optimization algorithms. In our tests, we choose three functions: Levy, Ackley,

and Michalewicz, and examine our algorithm’s performances on the functions in 50d, 100d, and

200d. For our evaluation of non-convex global optimization problems in various fields, we select

bound-constrained problems from the collection presented in [160, 207] that do not involve

any additional inequality or equality constraints. To strike a balance between computational

resources and the complexity of the function landscapes, we specifically select functions with

input dimensions between 30 and 1000, and ensure that the functions could be evaluated within a

reasonable time, considering the computational cost of computing the gradient and Hessian. The

chosen functions for our evaluation include Biggsbi1 (1000d), Harkerp (100d), and Watson (31d).

It is worth noting that this set of test functions is also utilized in the development of BARON [206]

and continues to be used in the latest version [176]. In addition to the aforementioned problems,

we also explore the application of one-layer neural networks with ReLU activation functions

fitted for specific objective functions. The nonlinearity introduced by activation functions and the

partitioning of the input space pose challenges in finding the global minimum of neural networks.

To assess the performance of our algorithm, we train neural networks with varying numbers

of input dimensions and one layer of 16 hidden unite. We translate the entire network into an

analytic expression form, enabling us to evaluate the algorithm’s effectiveness in optimizing

neural network models. We conduct our experiments on a local machine with Intel(R) Core(TM)

i7-8700 CPU @ 3.20GHz, 16G RAM, and NVIDIA GeForce GTX 1080 graphic card.

Test sets.

The test sets comprise functions from three different categorises: synthetic functions

designed for nonlinear optimization, bounded-constrained non-convex global optimization prob-

lems derived from real-world scenarios, and neural networks fitting for single valued functions.

Synthetic functions [111] are widely-used in nonlinear optimization benchmarks . We

choose three functions: Levy, Ackley, and Michalewicz, and examine our algorithms per-
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Figure 3.2. Landscape of test functions: Ackley, Levy, and Michalewicz

formances on the functions in 50d, 100d, and 200d. The Levy function (Fig.3.2b) is known

for its complex, multi-modal landscape, featuring numerous local optima separated by vast

valleys. The Ackley function (Fig.3.2a) presents a rugged landscape with a prominent, flat region

surrounding the global minimum. The Michalewicz function (Fig.3.2c) is characterized by its

highly oscillatory and irregular landscape, characterized by numerous peaks and valleys.

We use three test functions from bounded-constrained non-convex problem sets for

global optimization [160]: Biggsbi1 (1000d), Harkerp (100d), and Watson (31d). Biggsbil1

is a function modeling the kinetics of a biochemical reaction. It has a global minimum that’s

surrounded by several local minima making it challenging for optimization algorithms. Harkerp is

a mathematical problem in the field of economics, specifically in the area of profit maximization.

This non-convex problem simulates a firm seeking to maximize profit through optimal pricing

and advertising decisions, subject to market demand and cost constraints. Watson is a smooth,

non-convex function known for its narrow, curved valley that leads to the global minimum.

Finally, we ventured into the realm of neural network optimization. Our methodology

enabled us to transform a network with ReLU activations function into an analytic expression.

This, however, introduces challenges due to the nonlinearity arising from ReLU activations and

the partitioning of the input space. The global minimum of neural networks becomes elusive,
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especially due to the unpredictable error. Moreover, the node learning step in our algorithm can

no longer use Hessian information because the Hessian of ReLU-activated neural network is

zero. To balance computational cost and evaluation complexity, we trained the neural network to

fit the Ackley and Michalewicz functions in 50d and 100d spaces with 16 hidden neurons in a

single layer.

Baselines.

We select various sampling-based global optimization algorithms as baselines for our

experiments, including: basinhopping [147], differential evolution [152, 202], dual annealing

[233], direct [58], CMA [77], TuRBO [55], LaMCTS [223], and Gurobi [71]. It should be

pointed out that some algorithms, including TuRBO and LaMCTS, are GPU-ready. However,

due to the limitations of our computational resources, we refrain from using GPUs for the

optimization process, except for tasks related to training and evaluating the neural network

model. To compensate for the reduced performance from utilizing the CPU, we extend the

timeout for TuRBO and LaMCTS to be five times of other baselines.

It is important to mention that we do not incorporate BARON [176] as one of our baseline

methods, despite its renowned ability to efficiently bound boxes. The reason behind this decision

lies in the fact that BARON can manage the functions present in their test sets during pre-

processing, entirely eliminating the need to execute the optimization algorithm. For instances

like Biggsbi1, Harkerp, and Watson, BARON can solve them instantly, requiring zero seconds

and iterations. Moreover, BARON encounters challenges with certain function types, including

but not limited to trigonometric functions and min/max functions [176]. These types of functions

are prevalent in synthetic test function sets as well as function sets based on neural networks.

Another consideration is that Gurobi requires expertise and extra effort to achieve peak

performance. While Gurobi stands out as an exceptionally efficient and versatile optimization

solver, especially in the context of non-convex optimization problems, it comes with certain

prerequisites. Its handling of non-linear terms, for instance, treats them as General Constraints,
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Table 3.1. Hyperparameters used for MCIR

Functions Clb Cv Cx # CN # LO
Ackley-50d 50.0 0.5 0.5 10 50
Ackley-100d 50.0 0.5 0.5 20 50
Ackley-200d 50.0 0.5 0.5 30 50
Levy-50d 50.0 0.5 0.5 10 50
Levy-100d 50.0 0.5 0.5 20 50
Levy-200d 50.0 0.5 0.5 30 50
Micha.-50d 50.0 0.5 0.5 10 20
Micha.-100d 50.0 0.5 0.5 20 50
Micha.-100d 50.0 0.5 0.5 30 50
Biggsbi1-1000d 50.0 0.5 0.5 10 10
Harkerp-100d 50.0 0.5 0.5 10 10
Harkerp-31d 50.0 0.5 0.5 10 10
NN-Ackley-50d 50.0 0.5 0.5 10 20
NN-Ackley-100d 50.0 0.5 0.5 20 50
NN-Micha.-50d 50.0 0.5 0.5 10 20
NN-Micha.-100d 50.0 0.5 0.5 20 50

which necessitates extra manual modification to the objective function expression, as outlined in

[71]. This specific trait might limit our ability to deploy it on entire test sets.

Hyperparameters.

Tab.3.1 presents the hyperparameters utilized for benchmarking MCIR across various

functions. In this context, the notation # CN corresponds to the quantity of appended child nodes

during expansion. Notably, a higher count of child nodes contributes to an increased number of

samples dedicated to exploiting the selected leaf node. Meanwhile, # LO denotes the number of

samples permissible for the local optimizer to undertake in enhancing the sample quality on the

node. We intentionally constrain this number to a low value, thereby preventing an excessive

reliance on the local optimizer.

Hyperparameters for other baseline:

• Basinhopping: niter = 1000, niter_success = 1000

• Differential Evolution: maxiter = 1000000
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• Dual Annealing: no local search=True

• Direct: maxiter = 100000, locally_biased = False

• CMA: use f min2, with σ = 1

• TuRBO: n_init = 20, batch_size = 40, use_ard = True, n_training_steps = 50

• LaMCTS: n_init = 50, Cp = 2.0, lea f _size = 50

Hyperparameters not specifically addressed above were subjected with their default

values within the packages.

Metrics.

For each benchmark function, we conduct experiments using baseline algorithms and our

proposed algorithm with five different random seeds. The time limits for the baselines are set to

2 hour. Due to CPU utilization, the limits for TuRBO and LaMCTS are extended to 10 hours.

Throughout the experiments, we track the best-found function value until each step and compute

the mean and standard deviation across all runs. This allows us to compare the final best-found

values as well as the speed at which each algorithm converges to the optimal result.

3.5.2 Benchmark Results

Overall Performance.

Fig. 3.3 presents performance comparisons between the MCIR algorithm and baseline

algorithms on the synthetic function benchmark set. For the Ackley function (Fig. 3.3 first

row) and Levy function (Fig. 3.3 second row), CMA emerges as the top-performing algorithm,

followed by MCIR and dual annealing. For the Michalewicz function (Fig. 3.3 third row), dual

annealing and MCIR delivers similar best performance in terms of final optimization result,

while CMA fails to optimize efficiently. Notably, Gurobi consistently completes its optimization

with just one function evaluation call. It attains a best function value of 2.02 on Ackley (for three

dimensions), 0.0 for Levy in both 50d and 100d, and −0.00016 for Levy-200d (an anomalous
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Figure 3.3. Overall performance of the baselines and MCIR on tested synthetic functions

value, because Levy function is greater or equal to 0.0). It also attains the lowest value amongst

all algorithms on the Michalewicz function.

Fig. 3.4 offers an in-depth comparison between the MCIR algorithm and the baseline

algorithms across benchmarks such as Biggsbi1, Harkerp, Watson, and Neural Networks. In the

bound-constrained optimization problems (BCP) of Biggsbi1, Harkerp, and Watson (Fig. 3.4

first row), MCIR exhibits exemplary performance. It adeptly strikes a balance between exploring

the search space and executing local optimization, culminating in the precise pinpointing of the

global minimum from many suboptimal local minima derived from local optimization. CMA

shows a performance comparable to MCIR on Harkerp and Watson, and direct algorithm mirrors

MCIR’s efficacy on Biggsbi1. Turning our attention to trained neural networks (Fig. 3.4 second

row), CMA shines on Ackley-50d, yet MCIR continues to deliver impressive results. Notably,

for Michalewicz-50d and Michalewicz-100d, MCIR outperforms all other baseline algorithms.

Upon a closer examination of the result curves, it becomes evident that the MCIR algo-

rithm’s optimization performance is both commendable and in line with our initial expectations.
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Detailed results.

In this section, we use the abbreviations as follows to denote different optimization

algorithms:

• BH: Basinhopping

• DE: Differential Evolution

• DIRECT: DIRECT

• DA: Dual Annealing

• CMA: CMA

• TuRBO: TuRBO

• LaMCTS: LaMCTS

• Gurobi: the Gurobi solver

• MCIR: our algorithm, MCIR
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Tab.3.2, Tab.3.3, Tab.3.4 and Tab.3.5 provide detailed benchmark results. The column

labeled y∗± std represents the best-found objective function value. The column labeled Time∗

denotes the clock time, in seconds, at which the algorithm found the best point for the first time.

The column labeled # of Samples∗ indicates the number of samples which have been evaluated

when the algorithm reached the best-found point for the first time.

In the case of Gurobi, our testing was exclusively conducted on functions that could be

precisely and accurately formulated. Consequently, its presence might be limited. Furthermore,

in the cases where we carefully formulated the problems, Gurobi can solve the problem at

pre-processing stage resulting in a zero seconds computational time and zero times of function

evaluation calls.

For TuRBO and LaMCTS, the number of function evaluations are still quite limited,

even after we have increased the timeout as five times longer than other baselines. Particularly

for LaMCTS, there are only hundreds of function evaluations after 5 hours of computational

time. Therefore, it is hard to determine when they first encountered their best-found sample.

Ablation Study.

We conducted ablation studies to analyze the individual contributions of different com-

ponents in our algorithm. Specifically, we investigated the influence of the number of random

samples placed under each selected node on the Michalewicz-50d function (Fig. 3.5a), assessed

the effectiveness of local optimization on Michalewicz-50d (Fig. 3.5b), and examined the effec-

tiveness of local optimization on the Watson-31d (Fig. 3.5c). Furthermore, we tested the hyper

parameters used in the UCT formula (Eq. 3.2) using the Ackley-50d function as depicted in

Fig. 3.5d, 3.5e, and 3.5f. From Fig. 3.5a, we observed that the number of new nodes placed

after selecting a leaf node should be kept at a moderate level. Overpopulating the same local

region with new nodes does not significantly enhance performance due to the closeness of local

optima. The significance of local optimization can be found in Fig. 3.5b and Fig. 3.5c. It can be

concluded that local optimization can both improve and hinder the performance of the algorithm,
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as shown Fig. 3.5c and Fig. 3.5b, respectively. Therefore, setting a reasonable budget for the

local optimizer is important. A local optimizer with stopping criterion such as improvement

threshold could be more preferable over one with fixed number of iterations. Fig. 3.5d, Fig. 3.5e,

and Fig. 3.5f demonstrate the importance of the lower bound of the function value in determining

the best node for searching the global minimum. Additionally, the balance between exploiting

nodes excessively and leaving nodes unexplored becomes evident. The size of the box where

the lower bound originates is the least sensitive hyper parameter, as a smaller box increases

the certainty of the function’s lower bound but has less impact compared to the value of the

function’s lower bound itself.

We have noticed that sometimes the effectiveness of Cv is limited, but as Cv represents the

confidence of the predicted objective function interval, the choice of Cv highly depends on the

landscape of the objective function. For functions where the bounds are evaluated through rough
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approximation, Cv becomes important. In our benchmark tests, we select our hyper parameters

Clb, Cv, and Cx that perform consistently well over multiple tests without requiring too much

fine-tuning. Most of the parameters are shared across all problems based on the dimension and

the type of problems. In practice, one can start with the setup that provides the best performance

in this paper, and fine tune to specific tasks based on observed function complexity and landscape.

3.6 Conclusion

We introduced a new approach to non-convex optimizations problems by leveraging

analytic and sampling-based information in an MCTS framework, enabling efficient exploration

and exploitation of the state space. Experiments results on standard benchmark problem sets

demonstrated clear benefits of the proposed approach. Future work can focus on reducing the

overhead of various numerical computation involved in the proposed algorithm and further

optimizing the search tree.
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Table 3.2. Benchmark results for Ackley (50d, 100d and 200d) and Levy (50d and 100d)

Function Alg. y∗± std Time∗ # Samples ∗
Ackley-50d BH 20.8358±0.1967 1.47±0.62 12709±5240

DE 20.1856±0.2135 0.45±0.16 1171±170
DIRECT 4.5525±0.0000 0.00 0
DA 0.0011±0.0001 110.75±15.27 123591±1364
CMA 0.0000±0.0000 5.68±0.29 6792±375
TuRBO 2.0531±0.0956 8022±3248
LaMCTS 20.5670±0.3844 170±220
Gurobi 2.0217±0.0000 0.00 0
MCIR 0.6245±0.7649 118.12±15.51 23529±3389

Ackley-100d BH 20.9803±0.1058 1.61±1.04 14342±9265
DE 20.6655±0.0568 0.82±0.19 2328±689
DIRECT 4.5525±0.0000 0.00±0.00 0
DA 0.0021±0.0002 287.41±19.83 265813±4155
CMA 0.0000±0.0000 10.09±0.20 12226±244
TuRBO 5.1832±0.5763 6344±105
LaMCTS 20.8962±0.0350 249±136
Gurobi 2.0217±0.0000 0.00 0
MCIR 0.0000±0.0000 1033.78±55.01 61351±1469

Ackley-200d BH 21.1346±0.0700 2.29±2.24 20183±19168
DE 20.6334±0.1212 1.76±0.25 4790±976
DIRECT 4.5525±0.0000 0.00 0
DA 0.0041±0.0001 766.03±51.73 546779±7893
CMA 0.0000±0.0000 17.91±1.08 23012±1678
TuRBO 14.2829±0.4982 5695±131
LaMCTS 21.0537±0.0283 223±106
Gurobi 2.0217±0.0000 0.00 0
MCIR 0.5135±1.0270 6544.56±1661.44 114651±23828

Levy-50d BH 114.9944±18.8022 44.35±4.47 98070±12008
DE 0.1373±0.1733 288.61±155.92 450636±232094
DIRECT 13.7759±0.0000 0.20±0.05 199
DA 0.0000±0.0000 86.62±30.43 59073±24203
CMA 0.2149±0.1561 10.94±3.96 16597±6516
TuRBO 5.4087±3.0669 8309±3148
LaMCTS 84.7584±7.0483 648±87
MCIR 5.5889±1.9306 168.77±101.57 13469±8078

Levy-100d BH 248.9395±32.5442 101.83±4.58 206809±16550
DE 3.1676±0.6679 791.58±372.37 778528±59597
DIRECT 27.4119±0.0000 0.28±0.06 399
DA 0.0001±0.0002 211.72±27.53 138905±10619
CMA 2.0102±0.8746 18.74±13.50 31149±24441
TuRBO 15.7115±6.1465 5501±177
LaMCTS 326.9397±38.7379 667±43
Gurobi −0.0000±0.0000 0.00 0
MCIR 9.1970±1.4018 1810.49±1180.24 35611±23348
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Table 3.3. Benchmark results for Levy (200d) and Michalewicz (50d, 100d and 200d)

Function Alg. y∗± std Time∗ # Samples ∗
Levy-200d BH 660.9173±51.2398 187.51±19.31 377479±35511

DE 23.5931±4.9629 1714.29±598.96 1909534±265067
DIRECT 54.6839±0.0000 0.52±0.09 799
DA 0.0005±0.0005 639.01±89.80 409497±58671
CMA 7.5793±1.5815 28.14±16.21 47511±37708
TuRBO 169.9204±13.7658 5591±108
LaMCTS 1533.92±111.02 504±93
Gurobi −0.0002±0.0000 0.00 0
MCIR 20.5379±4.1395 5388.18±348.55 45079±1564

Michalewicz-50d BH −8.8432±0.8271 55.45±76.27 209182±185755
DE −20.1906±1.0243 212.15±93.79 751515±644
DIRECT −13.0827±0.0000 1.98±0.07 25609
DA −49.5421±0.0134 88.54±7.28 127056±2375
CMA −22.9280±3.5200 26.95±4.91 42784±9507
TuRBO −35.3835±1.1419 15915±11657
LaMCTS −13.9431±0.6567 463±291
Gurobi −49.8521±0.0000 0.00 0
MCIR −48.0423±0.7511 177.66±1.97 25418±283

Michalewicz-100d BH −14.6945±0.5995 15.15±12.32 89181±75509
DE −30.6034±0.7476 702.97±338.89 1503114±1322
DIRECT −26.1498±0.0000 35.85±3.22 103813
DA −99.4230±0.0207 228.55±28.25 297807±5504
CMA −34.9603±3.7703 64.33±10.81 111835±21423
TuRBO −51.6695±1.9650 27427±9051
LaMCTS −23.8377±1.1338 522±197
Gurobi −100.5415±0.0000 0.0 0
MCIR −91.9268±1.0598 3518.56±69.82 96317±2286

Michalewicz-200d BH −27.3023±1.6926 3394.23±1876.30 1649919±870987
DE −48.4502±2.0750 1807.93±365.10 3008602±4315
DIRECT −51.1477±0.0000 29.64±6.27 205917
DA −199.1417±0.0593 503.03±60.18 766905±11713
CMA −43.1354±10.5304 155.91±78.58 310636±156979
TuRBO −96.4577±2.6720 8502±3394
LaMCTS −39.4668±1.3005 355±171
Gurobi −202.4635±0.0000 0.00 0
MCIR −172.5783±2.8443 7146.98±167.62 51914±856
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Table 3.4. Benchmark results for bounded-constrained functions

Function Alg. y∗± std Time∗ # Samples ∗
Biggsbi1-1000d DE 56.1697±3.8586 3555.39±466.69 232118±28533

DIRECT 1.6592±0.0000 4.60±0.65 4001
DA 7.5562±2.9694 3615.67±14.28 362556±34168
CMA 72.3690±3.7933 166.55±5.90 448919±10571
TuRBO 32.4614±1.5262 6649±22
LaMCTS 110.3565±6.6033 346±129
MCIR 1.0101±0.0001 1986.40±277.34 17584±2360

Harkerp-100d DE −0.7887±0.0738 2214.26±1337.87 1112523±514176
DIRECT 5266895.8±0.0 525.71±955.15 86592
DA −0.6831±0.1248 23.94±30.71 15265±60
CMA −0.3220±0.2179 34.24±27.89 61240±50743
TuRBO 91484.1±18502.6 6251±39
LaMCTS 980949.0±122103.2 520±24
MCIR −0.9256±0.0017 236.05±60.83 13106±3312

Watson-31d DE 0.0010±0.0006 228.30±39.65 492335±2941
DIRECT 264.6848±0.0000 0.90±0.04 1849
DA 0.1415±0.1318 3.58±0.54 7665±102
CMA 0.0000±0.0000 26.68±3.03 42245±6335
TuRBO 4.6289±1.8125 16500±14087
LaMCTS 4109.8±1959.8 97±36
MCIR 0.0023±0.0018 487.88±288.47 43682±25967
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Table 3.5. Benchmark results for NN functions

Function Alg. y∗± std Time∗ # Samples ∗
NN-Ackley-50d BH 21.1501±0.1014 29.95±22.82 17839±14101

DE 21.0200±0.0181 2.09±0.94 1056±466
DIRECT 20.8103±0.0000 56.48±1.82 36401
DA 20.7037±0.0009 195.30±2.30 108967±1559
CMA 20.7056±0.0030 17.88±5.20 26648±9448
TuRBO 20.7524±0.0023 27706±18354
LaMCTS 21.1075±0.0250 150±156
MCIR 20.7481±0.0152 598.52±391.36 19031±14205

NN-Ackley-100d BH 21.2368±0.0307 51.32±26.29 30847±15151
DE 21.1453±0.0080 3.49±1.30 1723±645
DIRECT 21.0549±0.0000 116.69±6.78 72091
DA 20.9845±0.0010 389.19±18.13 218588±3637
CMA 20.9828±0.0020 53.63±15.49 95970±33576
TuRBO 21.0412±0.0030 21576±13880
LaMCTS 21.1735±0.0111 122±128
MCIR 21.0162±0.0139 2461±427 39661±2727

NN-Michalewicz-50d DE −7.8478±0.6904 151.45±108.62 79255±57812
DIRECT −6.6457±0.0000 1.48±0.20 771
DA −7.6015±0.6065 224.88±19.00 129478±12950
CMA −7.2868±0.3838 25.40±8.30 42098±16777
TuRBO −8.2827±0.0133 22526±10821
LaMCTS −6.8803±0.0271 755±120
MCIR −9.6448±0.0384 711.72±463.97 25225±16613

NN-Michalewicz-100d DE −12.8481±1.1304 115.02±171.16 57962±86966
DIRECT −12.4153±0.0000 3.93±0.36 2391
DA −14.6488±2.4041 430.69±29.31 261728±27258
CMA −12.7314±0.0352 63.74±24.53 120090±55975
TuRBO −15.1034±0.2637 26886±18835
LaMCTS −12.2140±0.1088 573±135
MCIR −17.5062±0.0068 6061±4329 101634±72926
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Chapter 4

Active Learning in Developing
Many-Body Potentials

The efficient selection of representative configurations that are used in high-level elec-

tronic structure calculations needed for the development of many-body molecular models poses

a challenge to current data-driven approaches to molecular simulations. Here, we introduce an

active learning (AL) framework for generating training sets corresponding to individual many-

body contributions to the energy of a N-body system, which are required for the development

of MB-nrg potential energy functions (PEFs). Our AL framework is based on uncertainty and

error estimation, and uses Gaussian process regression (GPR) to identify the most relevant

configurations that are needed for an accurate representation of the energy landscape of the

molecular system under exam. Taking the Cs+–water system as a case study, we demonstrate that

the application of our AL framework results in significantly smaller training sets than previously

used in the development of the original MB-nrg PEF, without loss of accuracy. Considering the

computational cost associated with high-level electronic structure calculations, our AL frame-

work is particularly well-suited to the development of many-body PEFs, with chemical and

spectroscopic accuracy, for molecular-level computer simulations from the gas to condensed

phase.
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4.1 Introduction

Computer simulations provide fundamental insights into the properties and behavior of

molecular systems [95, 113, 227]. Since both accuracy and predictive ability of a molecular

model are primarily limited by the computational cost associated with the model itself, developing

cost-effective simulation approaches is key to studying increasingly more complex systems. It

has recently become possible to perform molecular dynamics (MD) simulations of aqueous

systems, from the gas to the condensed phase, retaining high accuracy in the description of the

underlying molecular interactions [45]. This is achieved by employing many-body potential

energy functions (PEFs) derived from high-level electronic structure data that are carried out

on selected molecular configurations representative of the corresponding global many-body

potential energy surfaces (PESs) [7–9, 11, 32, 126, 172, 225, 226]. An optimal approach to the

development of many-body PEFs would require identifying a minimal pool of configurations

that can guarantee an accurate description of the system under exam and, at the same time,

computation time is not lost on calculations on redundant configurations describing similar

regions of the many-body PES.

Efficient sampling of the configuration space is challenging due to the high dimensionality

of the associated molecular configurations. In principle, a regular grid search would provide

a homogeneous representation of all regions of the many-body PES. This approach, however,

becomes unfeasible as the number of degrees of freedom increases. To reduce the size of the

configuration space, it is common practice in the development of many-body PEFs to apply biases

on the relative translations and rotations of the individual molecular species constituting the

system under exam [7, 9, 11, 172]. Although of practical use, this approach can lead to redundant

training sets containing several molecular configurations representing similar regions of the target

many-body PES. While algorithms designed to remove geometrically similar configurations

exist, it is not guaranteed that screening based on structural similarity is sufficient for identifying

only configurations necessary for a faithful description of the target many-body PES.

62



The success of machine learning (ML) in many areas of molecular sciences (e.g., see

Refs. [21, 37, 69, 75, 90, 112, 136, 144, 175, 185, 195, 205, 221, 232, 232, 242]) makes it a

promising tool for efficiently screening large pools of molecular configurations for the develop-

ment of many-body PEFs. Most common ML approaches rely on supervised learning, which,

however, requires large set of known labeled data to train a model capable to accurately predict

the labels of previously unseen data [4, 40, 106]. Active learning (AL) provides a potential

solution to the need for constructing beforehand large training sets by interactively generating

training configurations at runtime. AL schemes are thus particularly appealing when using

large training sets is prohibitively expensive either because of the high cost associated with

determining the data labels or because of the high computational cost of the training stage.

In this study, we investigate the application of AL to generating representative training

sets of molecular configurations necessary for the development of many-body PEFs, with a

specific focus on two-body (2B) and three-body (3B) contributions to the Cs+–water interaction

energies. Our AL framework consists of a finite pool of molecular configurations (i.e., Cs+(H2O)

dimers for the 2B pool and Cs+(H2O)2 trimers for the 3B pool) whose energies are unknown, a

training set with configurations selected from the pool, a predictive model (predictor) thirsting

for the training set, and a learner that actively selects configurations from the pool. We assume

that the size of the pool is beyond awareness of the learner and only a subset of the configurations

(referred to as candidates) in the pool are available to the learner at each iteration. Through the

application of our AL approach, we demonstrate that the size of the original pool of configurations

used to develop the Cs+–water MB-nrg PEF can be greatly reduced without compromising the

accuracy with which the new MB-nrg PEFs describe Cs+–water interactions, from small clusters

to aqueous solutions.
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4.2 Methods

4.2.1 MB-nrg potential energy functions

The total energy of a system containing N (atomic or molecular) monomers (“bodies"),

can be rigorously expressed through the many-body expansion (MBE) of the energy [74],

VN =
N

∑
i

V 1B
i +

N

∑
i< j

V 2B
i j +

N

∑
i< j<k

V 3B
i jk + . . .+V NB (4.1)

where the V 1B
i corresponds to the energy required to distort monomer i from its equilibrium

geometry. Therefore, V 1B(i) = 0 for atomic monomers, and V 1B(i) = E(i)−Eeq(i) for molecular

monomers, where E(i) and Eeq(i) are the energies of monomer i in distorted and equilibrium

geometries, respectively. All higher n-body (nB) interaction terms (V nB) in Eq. 4.2.1 are defined

recursively through

(4.2)

Within the MB-nrg framework, the water–water interactions are described by the MB-pol

PEF [7, 9, 126], which has been shown to correctly reproduce the properties of water[148, 167]

from small clusters in the gas phase [24, 29, 46, 48, 121, 169, 178, 179, 181, 212, 213, 217, 218],

to bulk water [84, 128, 166, 204], the air/water interface [129, 135, 186, 203], and ice [133, 134,

156]. The interactions between Cs+ ions and water molecules are described through the MBE

of Eq. 4.2.1. Specifically, the Cs+–water MB-nrg PEF includes explicit 2B Cs+–H2O and 3B

Cs+–(H2O)2 terms, with all higher-order interactions being implicitly taken into account through

a classical many-body polarization term [172, 248]. The 2B term includes three contributions,

V 2B =V 2B
short +V 2B

T T M +V 2B
disp (4.3)
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where V 2B
disp is the 2B dispersion energy, and V 2B

T T M is the 2B classical polarization contribution

described by a Thole-type model [35] . V 2B
short in Eq. 4.3 describes 2B short-range contributions

represented by a 5th-degree permutationally invariant polynomial (PIP) in variables that are

functions of the distances between the Cs+ ion and each of the six sites of the MB-pol water

molecule [172].

Similarly, the 3B term of the Cs+–water MB-nrg PEF includes two contributions,

V 3B =V 3B
short +V 3B

T T M (4.4)

where V 3B
T T M is the 3B classical polarization contribution described by the same Thole-type

model as in V 2B
T T M, and V 3B

short describes 3B short-range contributions that are represented by

a 4th-degree PIP in variables that are functions of the same distances as in V 2B
short [248]. The

coefficients of both 2B and 3B PIPs were optimized using Tikhonov regression (also known

as ridge regression)[209] to reproduce reference interaction energies obtained from high-level

electronic structure calculations.

4.2.2 Interaction energies, fitting procedure, and MD simulations

The 2B and 3B reference energies were taken from Refs. 172 and 248 where MOLPRO

(version 2015.1) was used to carry out electronic structure calculations at the coupled cluster

level of theory using single, double and perturbative triple excitations, i.e., CCSD(T), the “gold

standard" for chemical accuracy [168]. In Ref. 172, the 2B CCSD(T) energies were calculated in

the complete basis set (CBS) limit that was achieved through a two-point extrapolation[67, 82]

between the values obtained with the correlation-consistent polarized valence triple zeta (aug-

cc-pVTZ for H,O, and cc-pwCVTZ for Cs+) and quadruple zeta (aug-cc-pVQZ for H,O, and

cc-pwCVQZ for Cs+) basis sets [53, 81, 97, 231] . In Ref. 248, the 3B CCSD(T) energies were

calculated using the aug-cc-pVTZ basis set for the O and H atoms, and the cc-pwCVTZ basis set

for Cs+, and were corrected for the basis set superposition error using the counterpoise method
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[27]. In both 2B and 3B energy calculations, the ECP46MDF pseudopotential was used for the

core electrons of Cs+ [117].

The original 2B training set consisted of Cs+(H2O) dimer configurations generated on a

uniform spherical grid, with the Cs+–O distance in the 1.6 - 8 Å range [172]. For the present

study, dimer configurations with interaction energies larger than 100 kcal/mol were removed

since they were found to be not necessary for representing Cs+(H2O) configurations sampled in

MD simulations at ambient conditions. The 2B pool was then further reduced to 13525 dimer

configurations after randomly removing 1547 configurations for the 2B test set.

Due to the larger number of degrees of freedom, the original 3B training set was generated

in Ref. 248 by extracting Cs+(H2O)2 trimer configurations from MD simulations of a single

Cs+ ion in liquid water at 298.15 K. For the present study, the original 3B set of Ref. 248 was

reduced to a 3B pool of 34441 configurations after randomly removing 4480 configurations for

the 3B test set.

The MD simulations presented in Section 4.3.4 were carried out in the isobaric-isothermal

(NPT) ensemble for a box containing a single Cs+ ion and 277 H2O molecules. The equations

of motion were propagated using the velocity-Verlet algorithm with a timestep δ t of 0.2 fs. The

temperature of 298.15 K was controlled by Nosé-Hoover chains of 4 thermostats attached to

each degree of freedom while the pressure of 1.0 atm was controlled following the algorithm

described in Ref. 124. All MD simulations were carried out using an in-house software based on

DL_POLY 2.0 [197].

4.2.3 Active learning

An AL framework based on uncertainty and error estimation was used to generate optimal

2B and 3B training sets with the goal of reducing the number of dimers and trimers necessary to

develop Cs+–water MB-nrg PEF, without compromising accuracy. The major difficulty faced

by the active learner in generating optimal 2B and 3B training sets is represented by the need

to determine the relevance of candidate dimer and trimer configurations before knowing the
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associated 2B and 3B energies [187]. It is apparent that the more accurate the active learner

is, the more precise its assessment of a molecular configuration is. In addition, for efficiency

purposes, the energy estimation made by the learner should be computationally inexpensive

compared to the energy determination performed by the predictor.

In this context, Gaussian process regression (GPR) provides a general approach to

assessing the relevance of a candidate configuration by accurately estimating the associated

energy [165]. GPR implies a correlation between the unknown energies of the candidate

configurations and the energies determined for configurations that are already in the training sets.

The correlation is expressed by the covariance matrix between known and unknown values of the

energies, with the elements of the covariance matrix being calculated by a kernel function. GPR

assumes that both known and unknown energies are distributed according to a multidimensional

Gaussian distribution and then uses the covariance matrix to predict the conditional probability

distribution of the unknown energies given the known energies. The ability of GPR to interpolate

between known energy values makes it a good model for local uncertainty prediction. It should

be noted that a similar approach is exploited by Gaussian Approximation Potential (GAP) models

that have been developed to represent interatomic interactions [15].

Data Pool

Training Set

Predictor

Learner

Candidates

Data

Criteria Update

Figure 4.1. Schematic representation of the AL framework introduced in this study
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Our AL framework, shown in Fig. 4.1, consists of a pool of an unknown number of

molecular configurations, corresponding to Cs+(H2O) dimers for the 2B pool and Cs+(H2O)2

trimers for the 3B pool, a predictor, and a learner that, based on feedback from the predictor,

selects configurations from the pool and adds them to the training set. The complete AL protocol

is summarized below:

• At each iteration t, the pool S sends a subset of configurations with unknown energies

(Ct = {x j}t ⊆ S) to the learner as training set candidates.

• Depending on the iteration index t, a training set Tt is formed:

– At t = 0, all configurations in C0 are added to the training set T0 and their actual

energies are determined.

– For t > 0:

* The training set Tt−1 from the previous iteration is divided into clusters {τt−1,k}

containing a fixed number of molecular configurations, independent of the

training set size.

* A cluster label k j is predicted for each candidate configuration x j in Ct (i.e., each

candidate configuration x j is assigned to one of the clusters {τt−1,k}).

* The uncertainty ∆E j on the energy of the candidate configuration x j is estimated

as the GPR variance calculated for the entire cluster τk, k = k j.

* The error Err j on the energy of the candidate configuration x j is defined as the

average error associated with the energies predicted by the model for all the

configurations in the cluster τk, k = k j.

* A selection probability Pt(x j), proportional to the weighted sum of the energy

uncertainty and the energy error, is assigned to each candidate configuration x j

in Ct ,

Pt(x j) ∝ [w∆E ∗∆E j +wErr ∗Err j] (4.5)
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* A subset of configurations {x̂i}t ⊆ Ct is selected and, after determining the

associated actual energies εi, added to the training set, Tt = {(x̂i,εi)}t ∪Tt−1.

• The model M is trained on the training set Tt .

• The errors associated with the energies predicted by the model for all configurations in the

training set Tt are updated

• The cycle is stopped when the gradient of the test error becomes lower than a predefined

value.

The division into clusters {τt−1,k} of equal size reduces the computational cost associated

with GPR, which typically scales as O(n3) [165] . Since a radial basis function (RBF) kernel,

which is based on the L2 distance, is used to determine the similarity between two configurations,

it follows that configurations close to the candidate configuration play a central role in the

GPR process. The use of the RBF kernel function allows interpolation with GPR only between

configurations that are in the same cluster as the candidate, which, in turn, helps reduce the

computational cost without losing predictive accuracy. As shown in Eq. 4.5, the learner selects

configurations based on the weighted sum of uncertainty and model error. This procedure ensures

a balanced exploration of the configuration space, exploiting the decision-making process.

Different reduction methods that exploit either molecular features [86] or model diversity

[196] have recently been proposed. While some are based on correlation estimation as in our

AL framework, approaches solely based on molecular features lack the adaptability that arises

from the constant feedback of the fitting model. In contrast, our AL framework improves its

ability to select new structures as the process advances: a small subset (5%) of candidates is

selected and added to the training set to improve the reliability of the learner, at each iteration.

As our AL framework, approaches based on model diversity, such as the query by committee

(QBC) methods of Ref. 196, share similar advantages over feature-based approaches. However,

our AL framework differs from the QBC method of Ref. 196 in three main aspects. 1) Our AL
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framework does not assume any knowledge about the initial pool. In contrast, since the inclusion

criterion used in Ref. 196 is chosen empirically, the resulting AL approach is system dependent.

2) Since the candidates in Ref. 196 are selected based on a preset value of the inclusion criterion,

a balanced exploration of the configuration space is not guaranteed. Our AL framework instead

assigns a probability to each configuration in the pool. This implies that there always exists

the possibility to select low-probability candidates, which, consequently, guarantee a balanced

exploration of the configuration space. 3) While the AL approach used in Ref. 196 only relies

on the standard deviation calculated using the predictor model, our AL framework exploits

both the training error calculated using the predictor model (i.e., the MB-nrg PEF) and the

uncertainty calculated using the Gaussian process regression, which results in a performance

improvement of the overall AL framework. In this context, it should be noted that, although

our AL framework improves upon reduction methods that exploit either molecular features[86]

or model diversity[196], a perfect training set reduction may still not be achieved due to the

practical impossibility of achieving a perfect balance between exploration of completely new

configurations and exploitation of configurations already in the training sets.

In this study, we used the KMeans module available in the Scikit-learn Python package,

version 0.21.3, to cluster both the Cs+(H2O) dimers and the Cs+(H2O)2 trimers in the corre-

sponding 2B and 3B training sets and the cluster size was fixed at 50 configurations. For GPR

we used the class GaussianProcessRegressor and the RBF kernel available in the same Python

package.

Both GPR and KMeans require a vector representation of the 2B and 3B structures in

the high-dimensional configuration space. For this purpose, we used the many-body tensor

representation (MBTR) of atomic environments [85]. MBTR defines a structural descriptor that

is easily computable and well suited to calculate the kernels for both GPR and KMeans. The

MBTR descriptor is constructed by storing the terms of the Coulomb matrix[175] associated

with each pair of the Ne chemical elements constituting the molecular system of interest into

an Ne×Ne×d tensor, where d is the largest number of unique pairs of the same two chemical
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elements. The MBTR descriptor thus takes the form

fk(x,z) =
Na

∑
i

wk(i)D(x,gk(i))
k

∏
j=1

Cz j,Zi j
, (4.6)

where z ∈ Nk are atomic numbers, i = (i1, . . . , ik) ∈ {1, . . . ,Na} are index tuples, k runs

over the number of atoms, D is a broadening function, C is the element correlation matrix, and

gk is a function that assigns a scalar to the k atoms based on a k-body physical feature. The

MBTR descriptor is then discretized and rearranged in the form of a vector.

We used the Python package qmmlpack for the vector representation of the 2B and 3B

configurations in their respective training sets. The broadening function D was chosen to be the

normal distribution with k = 2,3. The inverse of the distance, r−1, and the angle, θ , were used

as gk for k = 2,3, respectively. The number of bins and the width of the normal distribution were

tuned to guarantee the efficiency of the MBTR calculations, without compromising accuracy.

4.3 Results

The results of our AL framework are presented in the following three subsections. First,

we discuss the learning curves for the 2B and 3B energies, and comparisons are made between

our AL framework and a generic approach based on a random selection (RS) of molecular

configurations. Second, we introduce sketch-maps[41] of different 2B and 3B training sets

generated through our AL framework and discuss the corresponding distributions of 2B and 3B

energies. Third, we analyze the interaction and many-body energies of small water clusters as

well as the Cs+-oxygen radial distribution functions (RDFs) of liquid water calculated using

different 2B and 3B training sets generated through our AL framework.

4.3.1 Learning curves of 2B and 3B energies

Figs. 4.2 and 4.3 show the learning curves for the 2B Cs+–H2O and 3B Cs+–(H2O)2

energies, respectively, calculated for the training (left panels) and test (right panels) sets as a
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Figure 4.2. RMSEs (in kcal/mol) associated with the 2B training (left) and test (right) sets
displayed as a function of the training set size. Blue and magenta curves correspond to AL
and RS learning curves, respectively. The dashed line indicates the optimal training set size as
determined in this study.

function of the training set size. Learning curves obtained using both our AL framework (blue)

and RS approach (magenta) are shown.
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Figure 4.3. RMSEs (in kcal/mol) associated with the 3B training (left) and test (right) sets
displayed as a function of the training set size. Blue and magenta curves correspond to AL
and RS learning curves, respectively. The dashed line indicates the optimal training set size as
determined in this study.

The training root-mean-square errors (RMSEs) associated with the RS approach increase

monotonically as a function of the training set size for both 2B and 3B energies while the
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corresponding AL curves display steeper increases for smaller training sets, reach a maximum,

and then decrease. The test RMSEs show different trends, with the curves obtained with our AL

framework displaying a significantly faster decrease as a function of the training set size. Since

our AL framework specifically targets configurations with higher uncertainties and neighborhood

training errors, these configurations are selected more frequently by the learner and added to

the training set. It follows that the configurations that are left in the pool after each iteration

are associated with progressively smaller uncertainties and training errors. This implies that,

when added to the training sets in subsequent iterations, these configurations necessarily lead to

a decrease of the training RMSEs and only negligible variations in the test RMSEs as shown in

in Figs. 4.2 and 4.3.

As a general rule, the simultaneous stabilization or decrease of the training error and

the stabilization of the test error are good indicators of the convergence of the learning process

[23, 66]. Therefore, based on the analysis of both training and test RMSEs obtained with our

AL framework, cutoff values for the training set size could be chosen. The optimal numbers of

configurations in the 2B and 3B training sets for the Cs+–water MB-nrg PEFs were determined

to be 5000 Cs+(H2O) dimers and 10000 Cs+(H2O)2 trimers, respectively.

4.3.2 Sketch-maps

Sketch-maps have been shown to be useful tools for representing high-dimensional

configuration spaces with lower-dimensional projections that are easily interpretable in terms of

well-defined structural features [41, 42, 141].

To provide structural insights into the composition of the 2B and 3B training sets, with

varying sizes, obtained with our AL framework, MBTR was used to generate the sketch-maps

shown in Figs. 4.4 and 4.5, respectively. Panel a) of Fig. 4.4 is a representation of the entire 2B

pool projected onto a 2-dimensional space. Each point on the map corresponds to a Cs+(H2O)

dimer configuration and the associated color indicates the corresponding CCSD(T) reference 2B

energy. Since the 2B pool was generated on a grid by varying the Cs+-O distance and distorting
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the water molecule, these features are reflected in the resulting sketch-map where points cluster

together, in an orderly fashion.

Panel b) of Fig. 4.4 shows a sketch-map of the energy differences between the reference

2B energies and the corresponding values predicted by the MB-nrg PEF trained on the full

2B pool (13525 configurations). This comparison shows that the the MB-nrg PEF provides an

accurate description of the overall 2B energy landscape, with deviations larger than 0.5 kcal/mol

only found for Cs+(H2O) dimers with associated binding energies larger than 40 kcal/mol, and

deviations on the order of 0.04 kcal/mol for Cs+(H2O) dimer configurations with lower binding

energies (less than 40 kcal/mol). It should be noted that dimer configurations with larger binding

energies are unlikely to be visited in MD simulations at ambient conditions and are included in

the 2B training sets to guarantee that the PIPs representing short-range interactions within the the

Figure 4.4. Sketch-maps of the 2B configurations. The map in in a) represents the reference
CCSD(T) energies while the map in b) represents the difference, ∆E, between the reference
CCSD(T) energies and the energies predicted by the MB-nrf PEF trained on the full pool of
2B configurations. The maps in c) to f) represent the difference, ∆E, between the energies
predicted by the MB-nrg PEF trained on of the full training set and the corresponding values
predicted by MB-nrg PEFs trained on the reduced-size training sets of 10000, 8000, 6000, and
4000 configurations generated using the AL framework, respectively.
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Figure 4.5. Sketch-maps of the 3B configurations. The map in in a) represents the reference
CCSD(T) energies while the map in b) represents the difference, ∆E, between the reference
CCSD(T) energies and the energies predicted by the MB-nrf PEF trained on the full pool of 2B
configurations. The maps in c) to f) represent the difference, ∆E, between the energies predicted
by the MB-nrg PEF trained on of the full training set and the corresponding values predicted
by MB-nrg PEFs trained on the reduced-size training sets of 20000, 15000, 10000, and 5000
configurations generated using the AL framework, respectively.

MB-nrg PEF are well-behaved at short Cs+–water distances. Panels c-f) show sketch-maps of

the differences between 2B energies predicted by the MB-nrg PEF trained on the full 2B pool and

the corresponding values predicted by MB-nrg PEFs trained on progressively smaller training

sets containing 10000, 8000, 6000, 4000 configurations generated using our AL framework. As

expected, systematically reducing the training set size introduces progressively larger errors,

with training sets with fewer than 4000 dimer configurations leading to overfitting. This analysis

shows that our AL framework allows for significantly reducing the original 2B Cs+–H2O training

set without compromising the overall accuracy of the resulting MB-nrg PEF. In this context, it

should be noted that the areas of the sketch-maps in panels c-f) that display larger deviations

from the original MB-nrg PEF of Ref. 172, as the training set size decreases, correspond to

dimer configurations for which the original MB-nrg PEF also shows larger deviations from the

CCSD(T) reference data (panel b).

75



Similar conclusions can be drawn from the analysis of the sketch-maps of the 3B training

sets shown in Fig. 4.5. Since the original 3B pool was generated by extracting Cs+(H2O)2 trimers

from MD simulations of a single Cs+ ion in liquid water, the resulting sketch-map (panel a)

displays a more uniform distribution in the 2-dimensional space compared to the corresponding

sketch-map obtained for the 2B pool. Depending on the associated CCSD(T) reference 3B

energies, trimer configurations broadly cluster in two areas, with the “dividing surface" being

between -5.0 and -3.0 kcal/mol; this is highlighted by the sudden change in color in panel

a). Also in this case, the original MB-nrg PEF closely reproduces the CCSD(T) reference 3B

energies over the entire configuration space of the 3B pool, as shown in panel b). As for the

2B energies, progressively smaller training sets of 20000, 15000, 10000, 5000 configurations,

generated using our AL framework and analyzed through the sketch-maps shown in panels c-f),

lead to progressively larger deviations from the original MB-nrg PEF. It should be noted that,

on average, the deviations remain smaller than 0.06 kcal/mol even for the smallest training set

(5000 trimer configurations).

4.3.3 Clusters analysis

To assess the relative accuracy of the various training sets generated using our AL

framework and determine how the associated differences in the representation of 2B and 3B

energies affect the ability of the resulting MB-nrg PEFs to reproduce the properties of water

from the gas to the condensed phase, deviations from the reference 2B and 3B energies of low-

lying isomers of the Cs+(H2O)n=1−3 clusters are analyzed in Fig. 4.6. This analysis is carried

out for several MB-nrg PEFs generated using the minimal 2B and 3B training sets shown in

Figs. 4.4 and 4.5 of 4000 dimer configurations and 5000 trimer configurations, respectively. Also

shown for comparison are the deviations obtained with the same training sets generated from

random selection. In all cases, the differences between the 2B and 3B energies predicted by the

different MB-nrg PEFs are comparable for all clusters, and often smaller than the corresponding

differences between the original MB-nrg PEF fitted to the full 2B and 3B training sets and
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Figure 4.6. Schematic representation of the errors associated with the 2B and 3B energies of
low-lying isomers of Cs+(H2O)n=1−3 clusters. The dashed black circles represent the difference
between the reference CCSD(T) energies and the corresponding values obtained with the MB-
nrg PEF trained on the full 2B and 3B pools. The other solid circles represent the differences
between the energies predicted by the MB-nrg PEF trained on the full 2B and 3B pools and
the corresponding values predicted by MB-nrg PEFs trained on 4000 2B configurations and
5000 3B configurations, with blue and magenta corresponding to the AL and RS training sets,
respectively.

the CCSD(T) reference data. This analysis thus indicates that the reduction of the training set

sizes does not affect the ability of the resulting MB-nrg PEFs to correctly represent 2B and 3B

energies in small water clusters. It should be noted that this is true for both families of MB-nrg

PEFs derived from training sets generated through AL and RS. This similarity can be attributed

to the intrinsic low dimensionality of the Cs+(H2O) dimers and Cs+(H2O)2 trimers that make

up the corresponding 2B and 3B training sets, which allowed for extensive sampling of the
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relevant configurations for the development of the original training sets in Refs. 172 and 248 .

However, while no appreciable differences exist in the performance of the two sets of MB-nrg

PEFs, AL clearly provides a more efficient approach to the selection of the training set sizes as

demonstrated by the significantly higher variability associated with the learning curves obtained

with the RS approach. The efficiency of the AL framework thus becomes particular important

when, differently from the present case of the Cs+–water MB-nrg PEF, no prior information on

training sets is provided. This aspect of our AL framework will be the subject of a forthcoming

study.

4.3.4 Radial distribution functions

To investigate the effects of training set reduction on modeling the properties of bulk

solutions, the Cs+–O RDFs calculated using different MB-nrg PEFs obtained from fits to different

combinations of 2B and 3B training sets generated using AL (left panels) and RS (right panels)

are analyzed in Figs. 4.7 and 4.8. The effects of the 2B training set is first assessed in Fig. 4.7 by

analyzing the performance of five MB-nrg PEFs generated by fitting the 2B term to 2B training

sets of various sizes (full, 10000, 8000, 6000, and 4000 dimer configurations) while fitting the

3B term to the full 3B training set for training the 3B term (34441 trimer configurations). The

resulting RDFs calculated from MD simulations with the resulting MB-nrg PEFs generated from

both AL and RS training sets are shown in the top left and right panels of Fig.4.7, respectively.

As discussed in more detail in Ref. 248, the Cs+–O RDF displays a narrow peak, corresponding

to the first hydration shell, at 3.16 Å, and a broader peak, corresponding to the second hydration

shell, at ∼6 Å. No appreciable differences are found between the RDFs obtained using MB-nrg

PEFs with progressively smaller 2B training sets. This is further evidenced by the curves shown

in the bottom panels of Fig. 4.7 representing the differences between the RDFs calculated with

each of the MB-nrg PEFs trained on reduced 2B training sets and the RDF calculated with the

MB-nrg PEF trained on the full 2B training set.

Similarly, the effects of the 3B training set size reduction are investigated in Fig. 4.8
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Figure 4.7. RDFs comparison between training by 2B sets from AL and RS. Top panels: Cs+-O
RDFs calculated from MD simulations with MB-nrg PEFs trained on progressively smaller 2B
training sets (in the range of 10000-4000 dimer configurations) generated through AL (left) and
RS (right), and the full 3B pool. Bottom panels: Differences between the RDF calculated with
the MB-nrg PEF trained on the full 2B and 3B pool and the corresponding RDFs calculated with
MB-nrg PEFs trained on the reduced-size AL (left) and RS (right) 2B training sets, and the full
3B pool.

through the analysis of five MB-nrg PEFs generated by fitting the 3B term to 3B training sets of

various sizes (full, 20000, 15000, 10000, and 5000 trimer configurations) while fitting to the 2B

term to the full 2B training set. In this case, reducing the 3B training set size to less than 10000

trimer configurations results in small differences in the Cs+–water RDF for distances larger than

5.0 Å, which lead to a shift of the second hydration shell to slightly larger distances. However,

as shown in the bottom panels of Fig. 4.8, these differences are barely noticeable and do not lead
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Figure 4.8. RDFs comparison between training by 3B sets from AL and RS. Top panels: Cs+-O
RDFs calculated from MD simulations with MB-nrg PEFs trained on progressively smaller 3B
training sets (in the range of 20000-5000 trimer configurations) generated through AL (left) and
RS (right), and the full 2B training set. Bottom panels: Differences between the RDF calculated
with the MB-nrg PEF trained on the full 2B and 3B pool and the corresponding RDFs calculated
with MB-nrg PEFs trained on the reduced-size AL (left) and RS (right) 3B training sets, and the
full 2B pool.

to any qualitative change in the hydration structure of Cs+ in liquid water.

Overall, the analysis of both cluster and bulk properties demonstrates that the application

of our AL framework to the original pools of 2B and 3B configurations of Refs. 166 and 248,

respectively, leads to significantly smaller training sets, without loss of accuracy, which, in turn,

largely reduces the cost associated with the development of CCSD(T)-level MB-nrg PEFs.
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4.4 Conclusions

In this study, we introduced an AL framework for generating representative training

sets needed for the development of MB-nrg PEFs [11, 172] . Our AL framework is based on

uncertainty and error estimation, and consists of a pool of an unknown number of molecular

configurations, a predictor, and a learner that, based on feedback from the predictor, selects

configurations from the pool and adds them to the training set. The selection process relies on

Gaussian process regression and clustering of the configurations in the training set, which allows

for efficiently identifying the most relevant configurations needed to accurately represent the

target many-body PES.

The application of our AL framework to the development of a Cs+–water MB-nrg PEF

chosen as a case study led to significantly smaller training sets than those found necessary for the

development of the original MB-nrg PEF. Analyses of the interaction and many-body energies

calculated for small Cs+(H2O)n cluster as well as the Cs+-oxygen RDF calculated from MD

simulations of a single Cs+ ion in water demonstrate that the new MB-nrg PEFs derived from

the reduced-size training sets generated through AL display the same accuracy of the original

MB-nrg PEF derived from the full 2B and 3B pools [172, 248].

Given the computational cost associated with reference CCSD(T) calculations of indi-

vidual many-body energies, our AL framework is particularly well-suited to the development

of many-body PEFs, with chemical and spectroscopic accuracy, which can then be used in MD

simulations of the target molecular system, from the gas to the condensed phase.
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Chapter 5

A “Short Blanket” Dilemma for the Deep
Neural Network-Based Many-Body Poten-
tials

Deep neural network (DNN) potentials have recently gained popularity in computer

simulations of a wide range of molecular systems, from liquids to materials. In this study, we

explore the possibility of combining the computational efficiency of the DeePMD framework

and the demonstrated accuracy of the MB-pol data-driven many-body potential to train a DNN

potential for large-scale simulations of water across its phase diagram. We find that the DNN

potential is able to reliably reproduce the MB-pol results for liquid water but provides a less

accurate description of the vapor-liquid equilibrium properties. This shortcoming is traced back

to the inability of the DNN potential to correctly represent many-body interactions. An attempt

to explicitly include information about many-body effects results in a new DNN potential that

exhibits the opposite performance, being able to correctly reproduce the MB-pol vapor-liquid

equilibrium properties but losing accuracy in the description of the liquid properties. These results

suggest that DeePMD-based DNN potentials are not able to correctly “learn” and, consequently,

represent many-body interactions, which implies that DNN potentials may have limited ability

to predict properties for state points that are not explicitly included in the training process.

The computational efficiency of the DeePMD framework can still be exploited to train DNN

potentials on data-driven many-body potentials, which can thus enable large-scale, “chemically
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accurate” simulations of various molecular systems, with the caveat that the target state points

must have been adequately sampled by the reference data-driven many-body potential in order to

guarantee a faithful representation of the associated properties.

5.1 Introduction

Molecular mechanics (MM) force fields (FFs) [116, 228] have been the workhorse in

computational chemistry since the early days of Monte Carlo (MC)[130] and molecular dynamics

(MD) simulations [2]. Continued progress in hardware technologies [68], accompanied by the

development of more realistic representations of electrostatic interactions, has enabled not

only molecular simulations of progressively larger systems but also the use of more rigorous

polarizable FFs[45, 87, 92, 159, 216] that go beyond the pairwise additive approximation adopted

by conventional fixed-charge FFs [125, 163, 215, 222].

At the same time, the development of efficient algorithms for correlated electronic

structure methods, such as coupled cluster theory [1, 82, 102], has enabled routine calcu-

lations of interaction energies for molecular clusters with chemical accuracy [67, 78, 122].

This has led to the emergence of a new class of analytical potentials that quantitatively repro-

duce each individual term of the many-body expansion (MBE) of the energy[140] calculated

using correlated electronic structure methods. When applied to aqueous systems[7–9, 11, 32–

34, 47, 83, 126, 172, 224–226] and molecular fluids [170, 173, 238], these many-body (MB)

potentials exhibit unprecedented accuracy, enabling predictive simulations from the gas to

the condensed phases [148]. Concurrently, machine learning (ML) approaches have gained

popularity in computational molecular sciences mainly due to the rapid evolution of GPU

and TPU architectures [145]. In particular, potentials represented by deep neural networks

(DNNs) derived from electronic structure data are routinely used to model various molecular

systems, from clusters to liquids and materials [16–21, 43, 44, 64, 65, 72, 75, 88, 103, 123, 182–

184, 194, 195, 211, 230, 239, 242, 251].
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State-of-the-art MB and DNN approaches use regression algorithms to construct data-

driven representations of the multidimensional energy landscape of the system of interest.

This process involves generating representative training sets of reference data calculated at an

appropriate level of theory. While MB potentials require tailored parametric functions for each

term of the MBE, DNN potentials are usually trained on the total energy and forces of the entire

system. By applying embedding schemes to construct low-dimensional descriptors of molecular

environments, DNN potentials can compute the gradients required for the propagation of the

equations of motion in MD simulations more efficiently than MB potentials [73]. On the other

hand, since MB potentials only use information about small clusters, the corresponding training

data can be calculated at a higher level of theory than DNN potentials. As a matter of fact,

MB potentials are usually trained on reference energies calculated at the coupled cluster level

of theory, including single, double, and perturbative triple excitations, i.e., CCSD(T), which

is currently referred to as the “gold standard” for chemical accuracy [168]. Furthermore, by

construction, the functional form of MB potentials allows for accurately representing all physical

contributions to the interaction energies, including both short- and long-range many-body effects

[25, 54, 149].

To account for long-range interactions, DNN potentials are often trained on condensed-

phase configurations, which allows for modeling long-range effects either implicitly, by effec-

tively encoding long-range contributions into short-range representations, or explicitly, by adding

effective electrostatic terms [16, 73, 103, 237, 242, 243]. This implies that, due to the large

number of molecules required to model condensed-phase systems, a lower level of theory than

CCSD(T), usually density functional theory (DFT) [153], has to be used to retrieve the reference

energies. In this context, it has recently been shown that the interplay between functional-driven

and density-driven errors may impact the overall accuracy of DFT models and their transferabil-

ity from gas-phase to condensed-phase systems [49, 50, 151, 192, 199, 219]. By construction,

these limitations also affect the ability of DNN potentials derived from DFT reference data to

“extrapolate” to thermodynamic state points different from those used in the training process
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[109].

In this work, we investigate the possibility of integrating the best features of MB potentials

(i.e., accuracy and transferability) and DNN potentials (i.e., speed and ease to use) into a

computational framework that can enable large-scale MD simulations with chemical accuracy.

To this end, we focus on the molecular modeling of water as a prototypical system that has

posed several challenges since the early days of MC and MD simulations[13, 161] due to its

rich phase behavior characterized by several anomalies [59]. As a representative state-of-the-

art MB potential, we selected MB-pol[7, 9, 126] due to its demonstrated ability to correctly

predict the properties of water across the entire phase diagram [167], including gas-phase

clusters [29, 46, 169], liquid water [166], the vapor-liquid interface [129, 135, 137], and ice

[132–134, 156]. MB-pol has also recently been used to predict structural and thermodynamic

properties of supercooled water down to 200 K at 1 atm, which were found to be in excellent

agreement with experimental data that are available above 225 K [62]. However, due to the

associated computational cost, the MD simulations with MB-pol reported in Ref. 62 were

limited in terms of both system’s size (up to 512 water molecules) and sampling time (up to

∼130 ns). The prospect of developing a fast DNN potential trained on MB-pol simulation data,

which retains the same accuracy of MB-pol across the entire phase diagram, is thus particularly

appealing. This will enable large-scale simulations of water as a function of temperature and

pressure, which will provide further insights into water’s anomalous behavior and allow for

full exploration of the so-called water’s “no man’s land” that has been proven difficult to probe

experimentally [5, 99, 100, 107, 155, 200]. To this end, we selected DeePMD[73, 242, 243] as a

representative, state-of-the-art framework for developing a DNN potential of water trained on

the MB-pol simulations of Ref. 62. DeePMD-based DNN potentials have already been used in

MD simulations of various molecular systems, including water [63, 198, 241, 244], ionic liquids

[115], and metals [120, 143, 229], and enabled MD simulations with up to 10 billion atoms [70].

The article is organized as follows: In Section 5.2, we summarize the main features of the

MB-pol potential (Section 5.2.1) and the DeePMD framework (Section 5.2.2). In Section 5.3.1,
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we first assess the ability of the DeePMD-based DNN potential to reproduce thermodynamic

and structural properties of liquid water calculated with MB-pol from the boiling point down

to deeply supercooled temperatures. We then use the DNN potential to characterize several

vapor-liquid equilibrium properties as well as many-body dependent properties of gas-phase

clusters. In Section 5.3.2, we introduce two other DeePMD-based potentials, DNN(VLE10) and

DNN(VLE20), that are trained on an expanded training set that adds vapor-liquid configurations

to the training set used to develop the DNN potential. The performance of both DNN(VLE10)

and DNN(VLE20) potentials is assessed on the same structural and many-body-dependent

properties used to assess the performance of the DNN potential. In Section 5.3.3, we introduce

three DeePMD-based potentials, DNN(MB4), DNN(MB10), and DNN(MB20), that are trained

to incorporate low-order many-body interactions, and assess their performance on the same

structural and many-body dependent properties used in the assessment of the DNN potential.

Lastly, in Section 5.4, we summarize our work and discuss possible future synergies between

MB and DNN potentials.

5.2 Methods

5.2.1 MB-pol

Since the MB-pol potential of water has already been described in detail in the literature,

we only overview here its salient features [7, 9, 126]. MB-pol was derived from the MBE that

expresses the energy, EN , of a system containing N (atomic or molecular) monomers as the sum

of individual n-body energy contributions,

EN(1, . . . ,N) =
N

∑
i=1

ε
1B(i)+

N

∑
i=1

N

∑
j>i

ε
2B(i, j)+

N

∑
i=1

N

∑
j>i

N

∑
k> j>i

ε
3B(i, j,k)+ · · ·+ ε

NB(1, . . . ,N)

(5.1)

Here, ε1B represents the distortion energy of an isolated monomer, such that ε1B(i) = E(i)−

Eeq(i) where Eeq(i) is the energy of the i-th monomer in its equilibrium geometry. The n-body
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energies, εnB, are defined recursively for 1 < n≤ N by the expression

ε
nB = En(1, . . . ,n)−

N

∑
i=1

ε
1B(i)−

N

∑
i=1

N

∑
i< j

ε
2B(i, j)−

N

∑
i=1

N

∑
i< j

∑
i< j<k

ε
3B(i, j,k)−·· ·

· · ·−
N

∑
i< j<k<...

ε
(n−1)B(i, j,k, . . . ,n−1)

(5.2)

MB-pol approximates Eq. 5.2 as:

EN(r1, ..,rN) =
N

∑
i=1

ε
1B(i)+

N

∑
i> j

ε
2B(i, j)+

N

∑
i> j>k

ε
3B(i, j,k)+EPOL (5.3)

The one-body term (ε1B) is represented by the potential developed by Partridge and Schwenke

[154]. The two-body term (ε2B) describes four distinct contributions: permanent electrostatics,

dispersion, 2B polarization, and 2B short-range interactions. The three-body term (ε3B) describes

two distinct contributions: 3B polarization and 3B short-range interactions. 2B and 3B short-

range interactions are represented by 2B and 3B permutationally invariant polynomial (PIPs)[28]

that were fitted in order for ε2B and ε3B to reproduce 2B and 3B energies calculated at the

CCSD(T) level of theory in the complete basis set (CBS) limit [7, 9]. 2B and 3B polarization

contributions are implicitly included in EPOL in Eq. 5.3 which represents classical many-body

interactions at all orders through a polarization term. Further details of the MB-pol potential can

be found in the original references [7, 9, 126].

5.2.2 DeePMD

The DeePMD framework reads atomic positions and associated atom types as input

features [73]. Neighbor information for each atom i is extracted from the input feature using

a predefined cutoff radius (rc) and stored as the coordinate difference of each i j atom pair into

Ri ∈ RNi×3, where Ni is the number of neighboring atoms. Each local feature is then mapped

onto generalized coordinates R̃i as outlined in Ref. 243. A local embedding matrix, G i, is

applied to each local feature Ri in order to ensure rotation and permutation symmetry while
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preserving translation symmetry. The resulting encoded feature matrix D i ∈ RM1×M2 takes the

form

D i = (G i1)T R̃i(R̃i)T G i2 (5.4)

and is passed to a fully-connected feed-forward DNN that maps it onto an “atomic energy” Ei

[243]. The total energy E is then calculated as the sum of all Ei, while the atomic forces F and

virials Ξ are calculated from the derivative of the DNN with respect to the corresponding atomic

positions. The DNN parameters are optimized by minimizing the loss function:

L(pe, p f , pξ ) =
pe

N
∆E2 +

p f

3N
∆F2 +

pξ

9N
∆Ξ

2. (5.5)

where pe, p f , pξ are weighting factors, and ∆E, ∆F , and ∆Ξ are the prediction errors for the

reference energy, force, and virial values, respectively. The weighting factors pe, p f , pξ are

adjusted as the training progresses in order to improve the quality of the fit.

The DeePMD-based DNN potentials presented in this study were developed with the

Deep Potential Smooth Edition (DeepPot-SE) [243], following the procedure reported in Ref. 220,

using 25, 50, and 100 neurons for the hidden embedding layers in the DeepPot-SE, while the

submatrix of the embedding matrix uses 16 neurons. The distance cutoff was set to 6 Å, with a

smoothing region of 0.5 Å. Each DNN potential is represented by a fully connected deep neural

network with three layers of 240 neurons each.

Following Ref. 245, the training set for the DNN potential was constructed in an iterative

fashion. Briefly, the training set comprises energies and forces of molecular configurations

extracted from the MB-pol simulations of liquid water between 198 K and 368 K reported in

Ref. 62 as well as additional configurations extracted from simulations carried out with three

successive iterations of the DNN potential. The final training set includes 94770 configurations,

each containing 256 molecules. All MB-pol reference data were computed using the MBX

software package [150]. Additional details about the training set are discussed in the Supplemen-
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tary Material. To account for variations in training, validation, and testing errors, four distinct

potentials (hereafter referred to as seed 1, seed 2, seed 3, and seed 4, respectively) were trained

using different random seeds. Only one of the four DNN potentials (seed 2) was then used

in the MD simulations of liquid water and the vapor-liquid interface. Similarly, four distinct

DeePMD-based potentials were trained on the expanded training sets containing vapor-liquid

and cluster configurations as described in Sections 5.3.2 and 5.3.3, respectively. Fig. 5.1 shows

the root-mean-square error (RMSE) curves of training and validation sets for the energies and

forces per atom during the fitting process of the (seed 2) DNN potential. Overall, well-behaved

learning curves are obtained for both quantities, with final errors of 0.01 kcal/mol and 1 kcal/mol

Å on the energy and force validation errors, respectively. Similar errors have been reported for

other state-of-the-art machine-learned potentials [158].
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Figure 5.1. Variation of the DNN training and validation RMSEs per atom relative to the MB-pol
values of the energy and force as a function of the number of training steps. For visual clarity,
we show values averaged over 200 training steps.

5.2.3 Computational details

We performed two sets of MD simulations to determine the ability of the DNN potential

to reproduce both bulk and interfacial properties of liquid water calculated with MB-pol. The first
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set of simulations was carried out for a box containing 256 water molecules in the isothermal-

isobaric (NPT ) ensemble at 1 atm and in the temperature range between 198 K to 368 K. The

temperature was maintained using a global Nosé–Hoover thermostat chain of length 3 with a

relaxation time of 0.05 ps, and the pressure was controlled by global Nosé–Hoover barostat

with a relaxation time of 0.5 ps which was thermostatted by a Nosé–Hoover thermostat chain

of length 3. At each temperature, the last frame of the MB-pol trajectories reported in Ref. 62

was used as the initial configuration for the NPT simulations with the DNN potential. The

second set of simulations was carried out in the canonical (NV T ) ensemble between 400 K and

575 K for a liquid slab of 512 water molecules in a box of dimensions 20 Å×20 Å×100 Å.

The temperature was maintained using the same global Nosé–Hoover thermostat chain used in

the NV T simulations. In both NPT and NV T simulations, the velocity-Verlet algorithm was

used to propagate the equations of motion with a time step of 0.5 fs according to Ref. 189.

All simulations were carried out using the DeePMD-kit[220] plugin for LAMMPS [208]. A

complete set of input files is available on GitHub (see Data Availability).

Besides comparing the DNN and MB-pol radial distribution functions (RDFs), we also

analyzed the ability of the DNN potential to describe the three-dimensional hydrogen-bond

network by calculating the tetrahedral order parameter, qtet [56],

qtet = 1− 3
8
·

3

∑
j=1

4

∑
k= j+1

(
cos(ψ jk)+

1
3

)
(5.6)

Here, ψ jk is the angle between the oxygen of the central water molecule and the oxygen atoms

of two neighboring water molecules within a cutoff of 3.5 Å. When qtet = 1, the water molecules

are in a perfect tetrahedral arrangement, while qtet = 0 represents the ideal gas limit.

In addition to the MD simulations for liquid water and the vapor-liquid interface, we

also performed many-body decomposition analyses for two different sets of cluster structures.

The first set consists of the first eight low-lying energy isomers of the water hexamer (Fig. 5.2),

with geometries taken from Ref. 167. The hexamer occupies a special place in the description of
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1. Prism 2. Cage 3. Book 1 4. Book 2

6. Cyclic chair 7. Cyclic boat 1 8. Cyclic boat 25. Bag

Figure 5.2. Structures of the first eight low-lying energy isomers of the water hexamer used in
the analysis of interaction and many-body energies. The Cartesian coordinates of each isomer
were taken from Ref. 167.

many-body interactions in water because it is the smallest cluster with low-lying isomers that

display three-dimensional hydrogen-bonded arrangements similar to those found in liquid water

and ice. The second set of clusters contains dimers and trimers extracted from the training sets

used to fit the MB-pol 2B and 3B energy terms, respectively [7, 9].

5.3 Results

5.3.1 DNN potential

As a first step in assessing the ability of the DNN potential to reproduce MB-pol, we

analyze various properties of liquid water. In Fig. 5.3a, we show the temperature dependence of

the liquid density from 198 K to 368 K. In general, the DNN potential reproduces the MB-pol re-

sults over the entire temperature range, predicting similar temperatures for the density maximum

and minimum. A more quantitative analysis indicates that the DNN potential underestimates

the MB-pol density by ∼ 1% in the 220−290 K range while it predicts a slightly denser liquid

as the temperature approaches the boiling point. The DNN curve also displays a less negative
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Figure 5.3. Temperature dependence of the density (a) and isothermal compressibility (b)
calculated from the present NPT simulations carried out with the DNN potential at 1 atm (green)
compared with the reference MB-pol values from Ref. 62 (blue). The associated shaded areas
indicate 95% confidence intervals of the averages. Fig. S1 displays the time dependence of
the densities calculated along the NPT trajectories carried out with the DNN potential at each
temperature.

slope for temperatures above ∼320 K, which suggests that it is relatively more difficult for the

DNN potential to reproduce MB-pol as the liquid properties become more gas-like. To put the

present comparison between the MB-pol and DNN potentials in context, we note that the density

of liquid water at 298 K predicted by an analogous DeePMD-based DNN potential trained on

the SCAN functional was found to be ∼5% lower than the corresponding value calculated from

the reference ab initio molecular dynamics (AIMD) simulations [157].

The comparison between the DNN and MB-pol values for the isothermal compressibility

as a function of temperature is shown in Fig. 5.3b. Similar to the density, the DNN values are

in agreement with the MB-pol reference data, reproducing the steep increase of the isothermal

compressibility below 250 K and predicting a maximum at ∼230 K, which is ∼7 K higher than

the temperature predicted by MB-pol [62]. As in the case of the liquid density, Fig. 5.3b also

indicates that the ability of the DNN potential to reproduce MB-pol somewhat deteriorates as

the temperature approaches the boiling point. In particular, the DNN potential predicts a nearly

constant value of the isothermal compressibility above 300 K, with no indication of a distinct
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Figure 5.4. Oxygen-oxygen radial distribution functions and (b) tetrahedral order parameter
distributions calculated from the present NPT simulations carried out with the DNN potential at
1 atm (green) compared with the reference MB-pol values from Ref. 62 (blue).

minimum that is instead found in both experiment[96, 100] and MB-pol simulations [62, 167].

A comparison between the structural properties of liquid water predicted by the DNN and

MB-pol potentials between 198 K and 368 K at 1 atm is shown in Fig. 5.4. The oxygen-oxygen

radial distribution functions (RDFs) calculated from the NPT simulations carried out with the

two potentials (Fig. 5.4a) are nearly indistinguishable in the 238-368 K range. Small deviations
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are found at deeply supercooled temperatures, which become more apparent when analyzing

the corresponding distributions of the tetrahedral order parameter in Fig. 5.4b. These deviations

appear to be consistent with the shift of the isothermal compressibility maximum to a slightly

higher temperature predicted by the DNN potential (Fig. 5.3b).

Previous studies demonstrated that MB-pol correctly predicts structural, thermodynamic,

and spectroscopic properties of the vapor-liquid interface, including the surface tension, vapor

pressure, vapor and liquid densities [137, 167], as well as sum-frequency generation spectra

[129, 135]. To assess the ability of the DNN potential to reproduce properties that are not

directly related to the MB-pol liquid configurations used during the training process, in Fig. 5.5,

we analyze the surface tension and liquid-vapor equilibrium densities as a function of the

temperature. These comparisons show that both surface tension and equilibrium densities

predicted by the DNN potential deviate significantly from the corresponding MB-pol reference

values as the temperature increases. Interestingly, while the liquid density predicted by the DNN

potential decreases upon increasing temperature, in qualitative agreement with the expected

physical behavior, the vapor density remains effectively constant over the entire temperature
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Figure 5.5. Surface tension (a) and vapor-liquid equilibrium densities (b) calculated from the
present NV T simulations of a water slab carried out with the DNN potential (green) compared
with the reference MB-pol values from Ref. 137 (blue).

95



range. Following Ref. 137, we estimated the critical temperature (Tc) and density (ρc) associated

with DNN potential by fitting the vapor (ρv) and liquid (ρl) densities (Fig. 5.5) according to:

ρl +ρv

2
= ρc +A(Tc−T ) (5.7)

ρl−ρv

2
= ∆ρ0 (1−T/Tc)

β (5.8)

Here, A and ∆ρ0 are system-specific parameters to be adjusted in the fitting and β = 0.326 is

the critical exponent of the three-dimensional Ising model [249] . The DNN potential predicts

Tc = 857±17 K and ρc = 0.302±0.002 g cm−3, which are significantly different from the MB-

pol values of Tc = 639±14 K and ρc = 0.34±0.03 g cm−3. As a reference, the corresponding

experimental values are Tc = 647 K and ρc = 0.32 g cm−3 [118].

In an attempt to rationalize the different performance of the DNN potential in reproducing

bulk and interfacial properties calculated with MB-pol, we investigated the ability of the DNN

potential to correctly describe many-body interactions. By construction, MB-pol quantitatively

reproduces each term of the MBE (Eq. 5.1) calculated at the CCSD(T)/CBS level [7, 9]. In this

context, we have shown that a correct representation of each individual n-body contribution to

the interaction energies is required in order for a water model to be both accurate and transferable

across different thermodynamic state points [45, 49, 109, 110, 127, 171].

Following previous studies [127, 167], in Fig. 5.6 we present a many-body decomposition

analysis of the interaction energies of the first eight low-lying energy isomers of the hexamer

cluster (Fig. 5.2). As mentioned in the Introduction, among water clusters, the hexamer occupies

a special place because it is the smallest cluster with low-lying isomers that exhibit three-

dimensional structures reminiscent of hydrogen-bonding arrangements found in liquid water and

ice. In addition, the large number of isomers with similar interaction energies makes the hexamer

the ideal benchmarking system for determining the accuracy of water models [45]. To provide

a general perspective on DeePMD-based DNN potentials for water, in Fig. 5.6 we analyze
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Figure 5.6. Many-body decomposition analysis for the eight low-lying energy isomers of the
water hexamer (Fig. 5.2) calculated with four distinct DNN potentials trained on the same
MB-pol training data using four different seeds to initialize the fitting process. Panels a) to e)
show the errors associated with n-body energies (n = 2−6) calculated with the DNN potentials
relative to the corresponding MB-pol values. Panel f) shows the errors associated with the
interaction energies calculated with the DNN potentials relative to the corresponding MB-pol
values. The DNN potential with seed 2 is used in the comparisons shown in Figs. 5.3-5.5.

the performance of four distinct DNN potentials trained on the same training set described in

Section 5.2.2 but initialized using different random seeds, with seed 2 corresponding to the DNN

potential used in Figs. 5.3-5.5.

All four DNN potentials provide statistically equivalent training, validation, and testing

errors (see Tables S2 and S3 of the Supplementary Material). Fig. 5.6 shows that none of the

four DNN potentials is capable of correctly reproducing individual n-body energies (n = 2−6)

calculated with MB-pol, with significantly large errors, on the order of 10−20 kcal/mol, for 2-
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and 3-body contributions. Interestingly, these large errors compensate among different n-body

contributions in such a way that, when the n-body energies are added together, they result in

interaction energies that are in relatively better agreement with the MB-pol values than the

individual n-body contributions. By definition, the interaction energies are calculated as the

difference between the energy of the cluster and the sum of the 1-body energies of all six water

molecules in the same distorted configurations as in the cluster. In this context, it should be

noted that, besides MB-pol that reproduces the CCSD(T)/CBS reference energies of the hexamer

isomers with chemical accuracy [167], several modern polarizable force fields predict n-body

and interaction energies of water clusters with significantly higher accuracy than the four DNN

potentials examined here [110]. Direct comparisons between n-body and interaction energies

calculated with the four distinct DNN potentials and the corresponding MB-pol reference values

are shown in Fig. S3. Importantly, Fig. S3 shows that, besides displaying large errors, some of the

DNN potentials (i.e., seed 1 and seed 4) also predict physically incorrect many-body contributions

(e.g., positive 3-body contributions), which indicates that, in their conventional implementation,

DeePMD-based DNN potentials are not able to correctly disentangle individual many-body

contributions to the interaction energy of a given water system. Importantly, the inclusion of long-

range effects through a classical electrostatic term does not improve the description of many-body

energies as shown in Figs. S4 and S5 of the Supplementary Material. It should be noted that this

behavior is not specific to DeePMD-based DNN potentials but appears to be common to other

neural network potentials. For example, Figs. S6 and S7 of the Supplementary Material show that

similar behavior is exhibited by Nequip-based potentials[16] trained on MB-pol. Interestingly,

the Nequip-based potentials demonstrate superior accuracy in predicting the interaction energies

of the water clusters, but also exhibit larger error compensation among different n-body energies,

with errors on 2- and 3-body energies being as large as 20−30 kcal/mol.
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Figure 5.7. Surface tension (a) and vapor-liquid equilibrium densities (b) calculated from
the present NV T simulations of a water slab carried out with the DNN(VLE10) (purple) and
DNN(VLE20) (pink) compared with the reference MB-pol values from Ref. 137 (blue).

5.3.2 DNN(VLE) potential

In an attempt to improve the performance of the DNN potential on vapor-liquid equi-

librium properties, we used active learning to incorporate vapor-liquid configurations extracted

from simulations carried out with the DNN potential in the temperature range between 268 K

and 575 K. At the end of the active learning process, 2412 were added to the training set. The

expanded training set was then used to train two potentials, DNN(VLE10) and DNN(VLE20),

with a 10% and 20% probability of selecting vapor-liquid configurations during training, respec-

tively. Fig. 5.7 shows that adding vapor-liquid configurations leads to more accurate predictions

of both surface tension and vapor-liquid equilibrium densities. In particular, compared to the

results obtained with the DNN potential, the surface tension predicted by both DNN(VLE10)

and DNN(VLE20) shows the same temperature dependence as determined by MB-pol, although

a systematic deviation from the reference values is still observed at all temperatures. Similarly,

adding vapor-liquid configurations to the training set improves the ability of the DNN(VLE10)

and DNN(VLE20) potentials to describe the equilibrium densities of both vapor and liquid

phases. While both DNN(VLE10) and DNN(VLE20) potentials quantitatively reproduce the
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Figure 5.8. Temperature dependence of the density (a) and isothermal compressibility (b)
calculated from NPT simulations carried out with the DNN(VLE10) (purple) and DNN(VLE20)
(pink) potentials at 1 atm. Also shown for reference are the corresponding MB-pol values from
Ref. 62 (blue). The associated shaded areas indicate 95% confidence intervals of the averages.

MB-pol vapor densities over the entire temperature range, the predicted liquid densities, however,

increasingly deviate from the MB-pol reference values as the temperature increases. As a conse-

quence, the critical point is still overestimated by both potentials, with DNN(VLE10) predicting

Tc = 718±4 K and ρc = 0.359±0.003 g cm−3 and DNN(VLE20) predicting Tc = 674±6 K

and ρc = 0.347± 0.005 g cm−3. Adding vapor-liquid configurations to the training set was

reported to enable simulations of “water along its liquid/vapor coexistence line with unprece-

dented precision” [230]. Inspection of Fig. 3 of Ref. 230, however, indicates that relatively

large deviations (similar to those found for DNN(VLE10) and DNN(VLE20) in Fig. 5.7) exist

between the vapor and liquid densities predicted by the neural network potential used in the

simulations and the corresponding reference RPBE-D3 values which, when extrapolated, lead to

very different estimates for the critical point [180].

To assess the ability of DNN(VLE10) and DNN(VLE20) to reproduce properties that

do not directly depend on the coexistence between vapor and liquid phases, we examined the

performance of both potentials on the same bulk and cluster properties used in Section 5.3.1

to determine the accuracy of the DNN potential. Fig. 5.8 shows the temperature dependence
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of the density and isothermal compressibility of liquid water predicted by DNN(VLE10) and

DNN(VLE20). While both potentials are able to qualitatively reproduce the MB-pol trends, a

comparison with the DNN results reported in Fig. 5.3 indicates that the inclusion of vapor-liquid

configurations to the training set deteriorates the ability of the DeePMD-based potentials to

reproduce the bulk properties. This is further confirmed by the analyses of the liquid density,

RDFs, and qtet distributions shown for the DNN(VLE20) potential in Figs. S17 and S18 of the

Supplementary Material.

Finally, Fig. 5.9 reports the many-body decomposition analysis of the interaction energies

of the hexamer isomers (Fig. 5.2) carried out with the DNN(VLE20) potential. The correspond-

ing analysis carried out with DNN(VLE10) is reported in the Supplementary Material in Fig. S8.

As for the DNN potential, we used four different seeds to develop four distinct DNN(VLE20)

potentials that were trained on the expanded MB-pol training set containing vapor-liquid con-

figurations. Seed 4 corresponds to the DNN(VLE20) potential used in the comparisons shown

in Figs. 5.7 and 5.8. As in the case of DNN in Fig. 5.6, none of DNN(VLE20) potentials is

able to correctly reproduce the reference MB-pol many-body energies, with errors that are on

the order of ∼10 kcal/mol for 2-, 3-, and 4-body energies. Similar poor performance on the

many-body decomposition analysis is exhibited by the DNN(VLE10) potential in Fig. S8 of the

Supplementary Material. Analyses analogous to those shown in Fig. S3 for the DNN potential

are reported in Figs. S9 and S10 for the DNN(VLE10) and DNN(VLE20) potentials, which lead

to similar conclusions, i.e., both DNN(VLE10) and DNN(VLE20) predict physically incorrect

many-body energies.

The analyses presented in this section demonstrate that, while the description of vapor-

liquid equilibrium properties can be improved by adding vapor-liquid configurations to the

original DNN training set, this improvement is achieved at the cost of a less accurate representa-

tion of the bulk properties. Importantly, as in the case of the DNN potentials, the DNN(VLE10)

and DNN(VLE20) potentials are unable to correctly capture the physics of many-body interac-

tions in water.
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Figure 5.9. Many-body decomposition analysis for the eight low-lying energy isomers of the
water hexamer (Fig. 5.2) calculated with four distinct DNN(VLE20) potentials that were trained
on the expanded MB-pol training set containing vapor-liquid configurations using four different
seeds to initialize the fitting process. Panels a) to e) show the errors associated with n-body
energies (n = 2−6) calculated with the DNN(VLE20) potentials relative to the corresponding
MB-pol values. Panel f) shows the errors associated with the interaction energies calculated with
the DNN(VLE20) potentials relative to the corresponding MB-pol values. The DNN(VLE20)
potential with seed 4 is used in the comparisons shown in Figs. 5.7 and 5.8.

5.3.3 DNN(MB) potential

Since the inability of a water model to correctly represent many-body contributions to

the underlying molecular interactions appears to be correlated with the lack of transferability

of the model across different thermodynamic state points [45], we investigated the possibility

of “encoding” many-body effects in the DNN potentials within the DeePMD framework. To

this end, we supplemented the original training set used for developing the DNN potentials
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discussed in Section 5.3.1 with a set of gas-phase clusters, including monomers, dimers, trimers,

and tetramers which provides direct information about the low-order and most important terms

(i.e., 1-body to 4-body terms) of the MBE in Eq. 5.1. We then used the expanded training set to

train three different DeePMD-based potentials, referred to as DNN(MB4), DNN(MB10), and

DNN(MB20), with 4%, 10%, and 20% probability of selecting gas-phase cluster configurations

during the training process, respectively. Specific details about the composition of the extended

training set are provided in Section S1 of the Supplementary Material.

Fig. 5.10 reports the same analysis reported in Fig. 5.6 for the DNN potential and shows

the errors relative to the MB-pol reference values for n-body and interaction energies of the

first eight isomers of the water hexamer (Fig. 5.2) calculated with four distinct versions of

the DNN(MB20) potential which were trained on the same expanded training set but initial-

ized with four distinct seeds. Seed 4 corresponds to the DNN(MB20) potential used in the

comparisons shown in Figs. 11 and 12. Analogous analyses carried out with the DNN(MB4),

and DNN(MB10) potentials are reported in Figs. S11 and S12 of the Supplementary Material,

respectively. The addition of monomer, dimer, trimer, and tetramer configurations clearly allows

the DNN(MB) potentials to become “aware” of the existence of distinct many-body contributions

to the interactions energies, as demonstrated by the relatively smaller errors displayed by the

DNN(MB20) 2-body, and 3-body energies compared to the corresponding errors associated with

the DNN potentials in Fig. 5.6. Similar trends are observed in Figs. S13, S14, and S15 that show

direct comparisons of individual many-body energies and interaction energies calculated with

the DNN(MB4), DNN(MB10), and DNN(MB20) potentials, respectively. Additional analyses

of the error distributions associated with 2-body and 3-body energies calculated for dimer and

trimer configurations of the cluster training set are reported in Fig. S16 and demonstrate that

the DNN(MB4), DNN(MB10), and DNN(MB20) potentials significantly improve on the DNN

potential in the ability to represent many-body interactions in water. It should, however, be

noted that the DNN(MB) potentials still rely on significant error compensation among individual

n-body energy contributions to minimize the error on the interaction energies of the hexamer
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Figure 5.10. Many-body decomposition analysis for the eight low-lying energy isomers of the
water hexamer (Fig. 5.2) calculated with four distinct DNN(MB20) potentials that were trained
on the expanded MB-pol training set containing cluster configurations using four different seeds
to initialize the fitting process. Panels a) to e) show the errors associated with n-body energies
(n = 2−6) calculated with the DNN(MB20) potentials relative to the corresponding MB-pol
values. Panel f) shows the errors associated with the interaction energies calculated with the
DNN(MB20) potentials relative to the corresponding MB-pol values. The DNN(MB20) potential
with seed 4 is used in the comparisons shown in Figs. 5.11 and 5.13.

isomers. The observed error compensation indicates that, as the DNN, DNN(VLE10), and

DNN(VLE20) potentials, the DNN(MB) potentials are unable to “learn” that the interaction

energy of a N-body system containing N water molecules is given by the sum of distinct n-body

energy contributions (with n = 2−N). To put things in perspective, the errors associated with

the DNN(MB) predictions for each n-body energy contribution to the interaction energies of the

hexamer isomers, in particular at the 2-body and 3-body levels, are still appreciably larger than
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those displayed by state-of-the-art polarizable force fields for water [110].

Having demonstrated that extending the training set by adding monomer, dimer, trimer,

and tetramer configurations allows the DNN(MB) potentials to recover a more balanced repre-

sentation of many-body interactions, we next assess the ability of the DNN(MB4), DNN(MB10),

and DNN(MB20) potentials to reproduce vapor-liquid equilibrium properties that were poorly

predicted by the DNN potentials (Fig. 5.5). Fig. 5.11 shows that all three DNN(MB) potentials

more closely reproduce the MB-pol trends for the surface tension and the equilibrium densities

of both vapor and liquid phases over the entire temperature range examined in this study than

the DNN potential. The critical parameters predicted by the DNN(MB4), DNN(MB10), and

DNN(MB20) potential are Tc = 655± 2 K and ρc = 0.325± 0.002 g cm−3, Tc = 605± 10 K

and ρc = 0.32± 0.01 g cm−3, and Tc = 660± 6 K and ρc = 0.338± 0.005 g cm−3, respec-

tively, which are in better agreement with the MB-pol values (Tc = 639± 14 K and ρc =

0.34± 0.03 g cm−3) than the results obtained not only with the DNN potential but also with

the DNN(VLE10) and DNN(VLE20) potentials. The structural differences at the vapor-liquid

equilibrium between DNN and DNN(MB20) are further highlighted in Fig. S17 which shows

the density profiles predicted by the two potentials at different temperatures. In particular, the

interface structure predicted by DNN(MB20) is significantly different from that predicted by

DNN and in close agreement with the MB-pol results reported in Ref. 137.

Despite being able to provide more accurate estimates of the actual MB-pol critical

point, Fig. 5.12 shows that the DNN(MB4), DNN(MB10), and DNN(MB20) potentials display a

higher degree of variability in their predictions of the liquid density at high temperatures than

the DNN(VLE10) and DNN(VLE20) potentials. This high variability at high temperatures,

which is also displayed by the DNN potentials, can be traced back to the lack of explicit vapor-

liquid configurations in the corresponding training sets, which, in turn, highlights the difficulty

for DeePMD-based potentials to be transferable across different phases over a wide range of

thermodynamic conditions.

The last question that remains to be addressed is whether the improved ability to rep-
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Figure 5.11. Surface tension (a) and vapor-liquid equilibrium densities (b) calculated from NV T
simulations of a water slab carried out with the DNN(MB) potentials (cyan, light blue, red)
compared with the reference MB-pol values from Ref. 137 (blue).
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Figure 5.12. Vapor-liquid equilibrium densities calculated using the same four variants of each
of the DNN, DNN(VLE), and DNN(MB) potentials used in the analyses of Fig. 5.6, 5.9, S8,
5.10, S11, and S12. The densities are compared with the reference MB-pol values from Ref. 137
(blue dashed line) at 400 K (panel a), 500 K (panel b), and 575 K (panel c).

resent many-body interactions and predict vapor-liquid equilibrium properties still allows the

DNN(MB4), DNN(MB10), and DNN(MB20) potentials to accurately reproduce the liquid proper-

ties calculated with MB-pol. To this end, Fig. 5.13 shows comparisons between the temperature

dependence of the density and isothermal compressibility calculated with the DNN(MB4),

DNN(MB10), and DNN(MB20) potentials and the corresponding MB-pol reference values. The

DNN(MB4), DNN(MB10), and DNN(MB20) potentials effectively predict indistinguishable

(within statistical error) trends for both density and isothermal compressibility, which are in
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Figure 5.13. Temperature dependence of the density (a) and isothermal compressibility (b)
calculated from NPT simulations carried out with the DNN(MB) potentials at 1 atm (cyan, light
blue, red) compared with the reference MB-pol values from Ref. 62 (blue). The associated shaded
areas indicate 95% confidence intervals of the averages. Fig. S2 show the density fluctuations
along the NPT trajectories carried out with the DNN(MB20) potentials at each temperature.

qualitative agreement with the MB-pol reference values. Specifically, they correctly predict

a minimum at ∼300 K in the isothermal compressibility which is instead absent in the DNN,

DNN(VLE10), and DNN(VLE20) potentials. This suggests that, by being able to more ac-

curately represent many-body interactions, the DNN(MB4), DNN(MB10), and DNN(MB20)

potentials display a higher degree of transferability to the gas phase at ambient conditions. As in

the case of the DNN(VLE10) and DNN(VLE20) potentials, the comparison between the results

of Fig. 5.13 and Fig. 5.3, however, indicates that the addition of configurations different from

bulk configurations (in this case, monomer, dimer, trimer, and tetramer configurations) to the

training set overall deteriorates the ability of the DNN(MB4), DNN(MB10), and DNN(MB20)

potentials to reproduce bulk properties calculated with MB-pol. Despite these differences, the

liquid structure predicted by the DNN(MB4), DNN(MB10), and DNN(MB20) potentials is in

close agreement with that of MB-pol as demonstrated by the comparisons of the RDFs and qtet

distributions calculated with DNN(MB20) that are shown in Fig. S18 of the Supplementary

Material.
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5.4 Conclusion

In this study, we analyzed the performance and degree of transferability of a DeePMD-

based DNN potential for water trained on MB-pol reference configurations extracted from

MD simulations of liquid water carried out from 198 K to 368 K at 1 atm. We found that the

DNN potential is able to reliably reproduce structural and thermodynamic properties of liquid

water as predicted by MB-pol from the boiling point down to deeply supercooled temperatures.

However, while MB-pol exhibits remarkable accuracy from the gas to the condensed phase, the

DNN potential does not share the same high level of transferability across phases. In particular,

we found that the DNN potential is not able to accurately describe vapor-liquid equilibrium

properties. More importantly, a many-body decomposition analysis of the interaction energies of

the hexamer isomers indicates that the DNN potential is not able to correctly “learn” many-body

interactions and effectively relies on error compensation among individual many-body energy

contributions to reproduce the interaction energy of a given N-body system containing N water

molecules.

To improve the performance of the DNN potential on vapor-liquid equilibrium properties,

we expanded the initial DNN training set of bulk configurations by adding configurations

extracted from vapor-liquid equilibrium simulations carried out with MB-pol. While the new

DNN(VLE10) and DNN(VLE20) potentials improve the description of the surface tension and

equilibrium densities of both vapor and liquid phases, they predict less accurate bulk properties

and are unable to correctly reproduce individual many-body contributions to the interaction

energies.

In an attempt to explicitly encode many-body interactions onto the DNN potential, we

also expanded the initial DNN training set by adding water monomer, dimer, trimer, and tetramer

configurations, which provide direct information on the most important many-body contributions

(i.e., 1-body to 4-body contributions) to the interaction energies in water systems. By improving

the description of individual many-body contributions, the new DNN(MB4), DNN(MB10),
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and DNN(MB20) potentials are also able to reliably reproduce the vapor-liquid equilibrium

properties predicted by MB-pol. We found, however, that all three potentials exhibit a high

degree of variability in predicting the liquid density at high temperatures due to the lack of

representative vapor-liquid configurations in their training sets, which limits their transferability

over a wide range of thermodynamic conditions. Moreover, the improvement in the description of

many-body interactions comes at the expense of a poorer representation of the liquid properties.

Although DeePMD-based potentials are intrinsically many-body in their functional form,

our analyses show that they do not necessarily correctly represent the underlying many-body

physics of the reference potentials. This suggests that some caution should be exercised when

using DeePMD-based DNN potentials to predict thermodynamic properties for state points that

are not explicitly and thoroughly included in the training sets. Although our study focuses

on water, similar behavior is likely to be found in DeePMD-based DNN potentials for other

molecular systems, including aqueous solutions as well as molecular fluids and solids. In this

context, we hope that our results can stimulate further developments of new training procedures

and neural network architectures capable of correctly capturing the physics of many-body

interactions in molecular systems.

With this caveat in mind, the computational efficiency provided by the DeePMD frame-

work suggests that large-scale CCSD(T)-level MD simulations are possible by training DeePMD-

based DNN potentials on data-driven many-body potentials derived from the MBE calculated

at the CCSD(T) level of theory, such as MB-pol. However, for this to hold, the thermody-

namic state points of interest in the DNN simulations must be adequately represented in the

training sets generated using the reference data-driven many-body potentials. This suggests

that a DNN potential trained on an extensive training set, including molecular configurations

extracted from MB-pol simulations carried out over a wide range of thermodynamic conditions,

is well suited for exploring the rich phase diagram of water [26], particularly in the so-called “no

man’s land” region at low temperature, which has been proven difficult to probe experimentally

[99, 100, 107].
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Chapter 6

Conclusions

In this dissertation, we explore the application of Monte Carlo tree methods for non-

linear optimizations, including black-box optimization and non-convex optimization, and the

development of many-body potentials.

As shown from the above studies, Monte Carlo tree methods have been demonstrated

to offer cost-effective solutions for navigating the complexities of state space. The introduced

MCTD and MCIR frameworks utilize these sampling approaches combined with MCTS to

address global optimization challenges. The MCTD framework emphasizes sample-efficiency

at local descent, incorporating stochastic search and Gaussian Processes to generate surrogate

objectives, and to provide uncertainty metrics for exploration. Conversely, MCIR applies

numerical overapproximation of the objective function as heuristics and leverages first- and

second-order information estimates to identify promising samples. These methodologies facilitate

a deeper understanding of the state space via collected samples to guide the selection of new

samples by balancing space exploitation and exploration.

In another work, an active learning framework is examined for its efficacy in creating

training sets for PEFs for water molecule simulations. A case study on the development of a

Cs+-water PEF demonstrates the framework’s ability to significantly reduce training set sizes

without compromising the quality of the original PEF, highlighting the potential for efficient state

space exploration with minimal information. We also analyzed the performance and degree of

111



transferability of a DeePMD-based DNN potential for water trained on configurations extracted

from MD simulations of liquid water. We found that the DNN potential is able to reliably

reproduce structural and thermodynamic properties of liquid water from the boiling point down

to deeply supercooled temperatures. However, the DNN potential does not share the same high

level of transferability across phases compared to the reference.

Despite the advantages of Monte Carlo tree methods, challenges persist. A key concern

lies in the tree management, particularly the need for effective and efficient pruning of branches

to keep the tree at an optimal size. The challenge arises as the tree grows larger and the overhead

associated with managing it becomes significant, requiring a pruning technique that can precisely

identify the essential nodes.

Moreover, while samples can illustrate aspects of the state space, achieving a compre-

hensive evaluation of this space is particularly challenging in high-dimensional scenarios. This

challenge is compounded by the risk of information loss with limited exploration, as the represen-

tativeness of a tree node can diminish in spaces that expand exponentially with dimensionality.

The information on the node, which ideally reflects the landscape of the objective function,

may not be as robust or informative in vast and complex spaces, highlighting a critical area for

improvement in sampling methodologies.

Thirdly, the efficiency of optimization is closely tied to the choice of hyperparameters

within the selected models and algorithms. Inappropriate hyperparameter settingscan negatively

impact the quality of the optimization. Yet, determining the optimal set of hyperparameters

is itself an optimization problem demanding thorough investigation. Consequently, methods

that can analyze the characteristics of the function’s landscape and adaptively choose suitable

parameters in real time can significantly enhance the performance.

Finally, identifying the embedding features that govern molecular interactions continues

to be a complex task in machine learning models. These features should encapsulate the

fundamental physics governing the interaction between components, rather than merely fitting

the data within a limited subset of the interaction space. The identification of such features
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requires in-depth studies in both the domains of physics and machine learning modeling.
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Appendix A

A “Short Blanket” Dilemma for the Deep
Neural Network-Based Many-Body Poten-
tials

A.1 Details about the DNN potentials and training proce-
dure

The initial training set consisted of potential energies and forces of configurations ex-

tracted from the MB-pol simulations reported in Ref. 62. The DNN potentials were then used in

molecular dynamics (MD) simulations carried out in the isothermal-isobaric (NPT ) ensemble

at a pressure of 1 atm and temperatures between 198 and 368 K for a cubic box containing

256 molecules in periodic boundary conditions. Three successive iterations were performed

to refine each DNN potential. At each iteration, new configurations were extracted from the

MD simulations and added to the training set in an iterative process in order to enhance the

stability of the DNN potential and overcome similar instabilities to those observed in Ref. 245.

As in Ref. 245, the new configurations were filtered in order to retain only poorly predicted

configurations with ∆F >= 5 eV/A and |F |< 200 eV/A. Since well predicted configurations

(∆F < 5 eV/A) and highly distorted configurations (|F | >= 200 eV/A or |E| >= 50000 eV)

were found not to improve the quality of the resulting DNN potentials, they were disregarded.

After three iterations, the final training set resulted in a total of 94,770 configurations, each
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containing 256 molecules.

As part of our effort to provide insights into how the model works with additional informa-

tion from VLE simulations, we performed successive iterations to add additional configurations.

Poorly predicted configurations from the VLE simulations were filtered analogously to DNN and

added to the original dataset. Finally, 2412 VLE configurations were added to the original DNN

training set and two new potentials were generated by sampling vapor-liquid configurations with

probabilities of 10% and 20% during the training process. These two potentials are referred to as

DNN(VLE10) and DNN(VLE20), respectively.

The DNN(MB) potentials use the same training set as the DNN potentials with the

difference that additional monomer, dimer, trimer, and tetramer configurations were added in

order to provide more direct information about the low-order terms of the many-body expansion

of the energy. Specifically, the monomer configurations were taken from Ref. 108, while the

dimers and trimer configurations were taken from the training sets that were used to fit the

MB-pol 2-body [7] and 3-body [9] energy terms, respectively. The tetramer configurations were

extracted from the NPT simulations carried out with MB-pol at 1 atm and 298 K in Ref. 62.

All tetramer configurations with binding energies higher than 15 kcal/mol were filtered out.

To ensure the correct weighting of gas-phase cluster configurations, we trained three distinct

DNN(MB) potentials by sampling cluster configurations with overall probabilities of 4%, 10%,

and 20%, respectively, during the training process (i.e., the monomer, dimer, trimer, and tetramer

training sets were each sampled with a probability of 1%, 2.5%, and 5% during the training of the

three DNN(MB) potentials, respectively). These three potentials are referred to as DNN(MB4),

DNN(MB10), and DNN(MB20), respectively.

The composition of the sets is reported in Table A.1. The dataset was split into training,

validation, and test sets with a ratio of 8:1:1. Each DNN potential was trained for 4 million

epochs, with a learning rate starting at 0.0005 and decreasing linearly every 5000 epochs to

1.8×10−8. The initial weighting factor pe for the energy (Eq. 5 of the main text) was set to 0.2

and increased linearly to 1.0 during the training process. Similarly, the initial weighting factor
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Table A.1. Training set composition.

Number of configurations

MB-pol DNN
VLE Monomers Dimers Trimers Tetramers

simulations 3 iterations

35411 59359 2412 4955 20540 8478 40000

p f for the forces (Eq. 5 of the main text) was set to 1000 and decreased to 1.0 at the end of the

training process. Since we found that the inclusion of the virial in the training process did not

lead to an improvement in the accuracy of the DNN potential, the associated weighting factor pξ

(Eq. 5 of the main text) was set to zero.

All DNN potentials developed in this study have been trained starting from four different

random seeds for which Table A.2 shows the corresponding errors on both training and validation

sets, and Table A.3 shows the corresponding errors on the test sets.
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Table A.2. Training and validation root-mean-square errors (RMSEs) for the different DNN,
DNN(VLE), and DNN(MB) potentials developed in this study. All values are calculated on the
last 200 epochs. The potentials used in the simulations are marked with an asterisk (*).

Potential
Energy (kcal mol−1) Force (kcal mol−1Å−1)
Training Validation Training Validation

DNN, seed 1 0.009 0.012 0.962 0.932
DNN, seed 2* 0.010 0.012 0.957 0.931
DNN, seed 3 0.010 0.012 0.932 0.911
DNN, seed 4 0.009 0.012 0.973 0.942
DNN(VLE10), seed 1 0.006 0.009 0.900 0.875
DNN(VLE10), seed 2 0.007 0.009 0.916 0.866
DNN(VLE10), seed 3 0.008 0.009 0.879 0.875
DNN(VLE10), seed 4* 0.007 0.009 0.889 0.874
DNN(VLE20), seed 1 0.007 0.008 0.928 0.912
DNN(VLE20), seed 2 0.010 0.009 0.883 0.910
DNN(VLE20), seed 3 0.006 0.008 0.907 0.906
DNN(VLE20), seed 4* 0.007 0.008 0.936 0.915
DNN(MB4), seed 1 0.007 0.008 0.907 0.925
DNN(MB4), seed 2 0.007 0.007 0.914 0.935
DNN(MB4), seed 3 0.008 0.007 0.901 0.935
DNN(MB4), seed 4* 0.007 0.007 0.924 0.944
DNN(MB10), seed 1 0.010 0.008 0.890 0.945
DNN(MB10), seed 2 0.008 0.008 0.881 0.930
DNN(MB10), seed 3 0.010 0.008 0.890 0.947
DNN(MB10), seed 4* 0.009 0.008 0.884 0.958
DNN(MB20), seed 1 0.010 0.009 0.778 0.840
DNN(MB20), seed 2 0.010 0.010 0.829 0.889
DNN(MB20), seed 3* 0.011 0.010 0.844 0.912
DNN(MB20), seed 4 0.012 0.010 0.760 0.867
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Table A.3. Root-mean-square errors (RMSEs) of the energy per atom for the different potentials.
All values are calculated averaging over all test sets. The potentials used in the simulations are
marked with an asterisk (*).

Potential
Energy (kcal mol−1)

MB-pol + DNN iter. Mon. + Dim. + Trim. + Tetra. VLE
DNN, seed 1 0.012 - -
DNN, seed 2* 0.013 - -
DNN, seed 3 0.013 - -
DNN, seed 4 0.014 - -
DNN(VLE10), seed 1 0.014 - 0.009
DNN(VLE10), seed 2 0.014 - 0.009
DNN(VLE10), seed 3 0.013 - 0.010
DNN(VLE10), seed 4* 0.015 - 0.009
DNN(VLE20), seed 1 0.015 - 0.009
DNN(VLE20), seed 2 0.012 - 0.009
DNN(VLE20), seed 3 0.013 - 0.009
DNN(VLE20), seed 4* 0.015 - 0.009
DNN(MB4), seed 1 0.012 0.014 -
DNN(MB4), seed 2 0.012 0.012 -
DNN(MB4), seed 3 0.012 0.010 -
DNN(MB4), seed 4* 0.012 0.010 -
DNN(MB10), seed 1 0.012 0.011 -
DNN(MB10), seed 2 0.012 0.010 -
DNN(MB10), seed 3 0.012 0.011 -
DNN(MB10), seed 4* 0.013 0.012 -
DNN(MB20), seed 1 0.016 0.010 -
DNN(MB20), seed 2 0.016 0.009 -
DNN(MB20), seed 3* 0.013 0.008 -
DNN(MB20), seed 4 0.015 0.008 -
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A.2 Density fluctuations
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Figure A.1. Density of liquid water calculated from NPT simulations carried out with the
DNN potential (seed 2) at 1 atm and different temperatures. The red interval corresponds to the
equilibration time, the blue interval was used to calculate the average thermodynamic properties,
and the black line corresponds to the cumulative average.
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Figure A.2. Density of liquid water calculated from NPT simulations carried out with the
DNN(MB20) potential (seed 3) at 1 atm and different temperatures. The red interval corresponds
to the equilibration time, the blue interval was used to calculate the average thermodynamic
properties, and the black line corresponds to the cumulative average.
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A.3 Supplemental many-body analyses
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Figure A.3. Many-body energy decomposition for the first eight low-lying energy isomers of
the water hexamer using DNN potentials. Individual n-body energies (nB, with n = 2−6) and
interaction energies calculated with the four distinct DNN potentials are compared with the
corresponding MB-pol reference values.
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Figure A.4. Many-body decomposition analysis for the eight low-lying energy isomers of the
water hexamer (Fig. 5) calculated with long-range corrected LR-DNN potentials trained on the
same extended MB-pol training data. Panels a) to e) show the errors associated with n-body
energies (n = 2−6) calculated with the LR-DNN potentials relative to the corresponding MB-pol
values. Panel f) shows the errors associated with the interaction energies calculated with the
LR-DNN potentials relative to the corresponding MB-pol values.
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Figure A.5. Many-body energy decomposition for the first eight low-lying energy isomers of the
water hexamer using LR-DNN potentials. Individual n-body energies (nB, with n = 2−6) and
interaction energies calculated with the long-range corrected LR-DNN potentials are compared
with the corresponding MB-pol reference values.
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Figure A.6. Many-body decomposition analysis for the eight low-lying energy isomers of the
water hexamer (Fig. 5) calculated with Nequip-based potentials trained on the same extended
MB-pol training data. Panels a) to e) show the errors associated with n-body energies (n = 2−6)
calculated with the Nequip-based potentials relative to the corresponding MB-pol values. Panel
f) shows the errors associated with the interaction energies calculated with the Nequip-based
potentials relative to the corresponding MB-pol values.
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Figure A.7. Many-body energy decomposition for the first eight low-lying energy isomers of
the water hexamer using Nequip potentials. Individual n-body energies (nB, with n = 2− 6)
and interaction energies calculated with the Nequip-based potentials are compared with the
corresponding MB-pol reference values.
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Figure A.8. Many-body decomposition analysis for the eight low-lying energy isomers of the
water hexamer (Fig. 2 of the main text) calculated with four distinct DNN(VLE10) potentials that
were trained on the expanded MB-pol training set containing vapor-liquid configurations using
four different seeds to initialize the fitting process. Panels a) to e) show the errors associated
with n-body energies (n = 2− 6) calculated with the DNN(VLE10) potentials relative to the
corresponding MB-pol values. Panel f) shows the errors associated with the interaction energies
calculated with the DNN(VLE10) potentials relative to the corresponding MB-pol values. The
DNN(VLE10) potential with seed 4 is used in the comparisons shown in Figs. 7 and 8 of the
main text.
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Figure A.9. Many-body energy decomposition for the first eight low-lying energy isomers of the
water hexamer using DNN(VLE10) potentials. Individual n-body energies (nB, with n = 2−6)
and interaction energies calculated with the four distinct DNN(VLE10) potentials are compared
with the corresponding MB-pol reference values.
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Figure A.10. Many-body energy decomposition for the first eight low-lying energy isomers
of the water hexamer using DNN(VLE20) potentials. Individual n-body energies (nB, with
n = 2−6) and interaction energies calculated with the four distinct DNN(VLE20) potentials are
compared with the corresponding MB-pol reference values.
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Figure A.11. Many-body decomposition analysis for the eight low-lying energy isomers of the
water hexamer (Fig. 2 of the main text) calculated with four distinct DNN(MB4) potentials that
were trained on the expanded MB-pol training set containing vapor-liquid configurations using
four different seeds to initialize the fitting process. Panels a) to e) show the errors associated
with n-body energies (n = 2− 6) calculated with the DNN(MB4) potentials relative to the
corresponding MB-pol values. Panel f) shows the errors associated with the interaction energies
calculated with the DNN(MB4) potentials relative to the corresponding MB-pol values. The
DNN(MB4) potential with seed 4 is used in the comparisons shown in Figs. 11 and 13 of the
main text.

129



1 2 3 4 5 6 7 8

0

1

2

3

4

2B
 e

ne
rg

y 
er

ro
r (

kc
al

/m
ol

)

(a)  2-body

1 2 3 4 5 6 7 8

2

0

2

4

3B
 e

ne
rg

y 
er

ro
r (

kc
al

/m
ol

)

(b) 3-body

1 2 3 4 5 6 7 8

1

0

1

2

4B
 e

ne
rg

y 
er

ro
r (

kc
al

/m
ol

)

(c) 4-body
1.

 P
ris

m
2.

 C
ag

e
3.

 B
oo

k 
1

4.
 B

oo
k 

2
5.

 B
ag

6.
 C

yc
lic

 ch
ai

r
7.

 C
yc

lic
 b

oa
t 1

8.
 C

yc
lic

 b
oa

t 2

0.4

0.2

0.0

0.2

0.4

5B
 e

ne
rg

y 
er

ro
r (

kc
al

/m
ol

)

(d) 5-body
1.

 P
ris

m
2.

 C
ag

e
3.

 B
oo

k 
1

4.
 B

oo
k 

2
5.

 B
ag

6.
 C

yc
lic

 ch
ai

r
7.

 C
yc

lic
 b

oa
t 1

8.
 C

yc
lic

 b
oa

t 2

0.02

0.01

0.00

0.01

0.02

6B
 e

ne
rg

y 
er

ro
r (

kc
al

/m
ol

)

(e) 6-body

1.
 P

ris
m

2.
 C

ag
e

3.
 B

oo
k 

1
4.

 B
oo

k 
2

5.
 B

ag
6.

 C
yc

lic
 ch

ai
r

7.
 C

yc
lic

 b
oa

t 1
8.

 C
yc

lic
 b

oa
t 2

2.5

0.0

2.5

5.0

Re
la

tiv
e 

en
er

gy
 (k

ca
l/m

ol
)

(f) Interaction Energy

MB-pol DNN(MB10), seed 1
DNN(MB10), seed 2

DNN(MB10), seed 3
DNN(MB10), seed 4

Figure A.12. Many-body decomposition analysis for the eight low-lying energy isomers of the
water hexamer (Fig. 2 of the main text) calculated with four distinct DNN(MB10) potentials that
were trained on the expanded MB-pol training set containing vapor-liquid configurations using
four different seeds to initialize the fitting process. Panels a) to e) show the errors associated
with n-body energies (n = 2− 6) calculated with the DNN(MB10) potentials relative to the
corresponding MB-pol values. Panel f) shows the errors associated with the interaction energies
calculated with the DNN(MB10) potentials relative to the corresponding MB-pol values. The
DNN(MB10) potential with seed 4 is used in the comparisons shown in Figs. 11 and 13 of the
main text.
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Figure A.13. Many-body energy decomposition for the first eight low-lying energy isomers of
the water hexamer using DNN(MB4) potentials. Individual n-body energies (nB, with n = 2−6)
and interaction energies calculated with the four distinct DNN(MB4) potentials are compared
with the corresponding MB-pol reference values.
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Figure A.14. Many-body energy decomposition for the first eight low-lying energy isomers
of the water hexamer using DNN(MB10) potentials. Individual n-body energies (nB, with
n = 2−6) and interaction energies calculated with the four distinct DNN(MB10) potentials are
compared with the corresponding MB-pol reference values.
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Figure A.15. Many-body energy decomposition for the first eight low-lying energy isomers
of the water hexamer using DNN(MB20) potentials. Individual n-body energies (nB, with
n = 2−6) and interaction energies calculated with the four distinct DNN(MB20) potentials are
compared with the corresponding MB-pol reference values.

133



0.0

0.3

0.6

0.9

1.2

Er
ro

r d
ist

rib
ut

io
n

(a) Dimer, 2B energy (b) Dimer, total energy

-4 -2 0 2 4
Energy error (kcal/mol)

0.0

0.3

0.6

0.9

1.2

Er
ro

r d
ist

rib
ut

io
n

(c) Trimer, 3B energy

-5 0 5 10
Energy error (kcal/mol)

(d) Trimer, total energy
DNN
DNN(MB4)

DNN(MB10)
DNN(MB20)

Figure A.16. Error distributions for 2-body (a) and 3-body (c) energies along with the total
dimer (b) and trimer (d) energies calculated with the DNN, DNN(MB4), DNN(MB10), and
DNN(MB20) potentials. Dimer and trimer configurations were taken from the MB-pol training
sets introduced in Refs. 7 and 9, respectively.
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A.4 Supplemental analysis of the vapor/liquid interface
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Figure A.17. Average density profiles obtained from the direct coexistence MD simulations
carried out with the (a) DNN potential (seed 2), (b) DNN(VLE20) potential (seed 4), and (c)
DNN(MB20) potential (seed 3). The thickness of the water slab is defined by the z-axis. Colors
denote different temperatures as indicated.

A.5 Supplemental analysis of structural properties
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Figure A.18. (a) Oxygen-oxygen radial distribution function and (b) tetrahedral order parameter
calculated from NPT simulations carried out at 1 atm and 298 K with the DNN potential (seed 2),
DNN(VLE20) potential (seed 4), and DNN(MB20) potential (seed 3). Also shown as a reference
is the corresponding MB-pol results reported in Ref. 62.
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