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DO PHASE TRANSITIONS SURVIVE BINOMIAL 
REDUCIBILITY AND THERMAL SCALING? 

L.G. MORETTO, L. PHAIR, G.J. WOZNIAK 
Nuclear Science Division, 

Lawrence Berkeley National Laboratory 
Berkeley, CA 94720, USA 

First order phase transitions are described in terms of the microcanonical and 
canonical ensemble, with special attention to finite size effects. Difficulties in in­
terpreting a "caloric curve" are discussed. A robust parameter indicating phase 
coexistence ( univariance) or single phase (bivariance) is extracted for charge dis­
tributions. 

1 Phase transitions, phase coexistence, and charge distributions 

Since the early studies of complex fragment emission at intermediate ener­
gies, a "liquid vapor phase transition" had been claimed as an explanation for 
the observed power law dependence of the fragment charge distribution. The 
basis for such claims was the Fisher droplet theory 1 which was advanced to 
explain/predict the clusterization of monomers in vapor. According to this 
theory, the probability of a cluster of size m is given by: 

-(p l -Py)m -c, m 2/3 

P(m) ex e kT m-r e kr (1) 

where JLL, JLv are the liquid and vapor chemical potentials, r is the Fisher 
critical exponent, c. the surface energy coefficient for the liquid. For JLv > JLL 
the liquid phase is stable and large clusters are found. For p,v < JLL the vapor 
is stable and small clusters are present. At the critical temperature the liquid­
vapor distinction ends, JLL = p,v and the surface energy coefficient vanishes. 
The cluster size distribution assumes a characteristic power law dependence. 

A recent analysis of very detailed experiments has claimed not only the 
demonstration of a near critical regime, but also the determination of other 
critical coefficients 2 besides r. 

Another recent announcement claiming the discovery of a first order phase 
transition associated with multifragmentation 3 has created a vast resonance. 
Because of the greater simplicity inherent to this subject and because of its 
relevance to some of our studies, we discuss it here in some detail. 

This study claims to have determined the "caloric curve" (sic) of a nucleus, 
namely the dependence of nuclear temperature on excitation energy. The tem­
perature is determined from isotopic ratios (e.g. 3 He4He, 6Li7Li), while the 
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excitation energy is determined through energy balance. The highlight of this 
measurement is the discovery of a plateau, or region of constant temperature, 
which is considered indicative of a first order phase transition from liquid to 
vapor phase. 

Apparently, the "paradigm" the authors have in mind is a standard picture 
of the diagram temperature T vs enthalpy H for a one component system at 
constant pressure P. 

It is not clear whether this experimental curve can be interpreted in terms 
of equilibrium thermodynamics. If this is the case, several problems arise. 
For instance, the claimed distinction between the initial rise (interpreted as 
the fusion-evaporation regime) and the plateau (hinted at as the liquid-vapor 
phase transition) is not tenable, since evaporation !§. the liquid-vapor phase 
transition, and no thermodynamic difference exists between evaporation and 
boiling. 

Furthermore, the "caloric curve" requires for its interpretation an addi­
tional relationship between the variables T, P, and V. More to the point, 
the plateau is a very specific feature of the constant pressure condition rather 
than being a general indicator of a phase transition. For instance, a constant­
volume liquid-vapor phase transition is not characterized by a plateau but by 
a monotonic rise in temperature. This can be easily proven by means of the 
Clapeyron equation, together with the ideal-gas equation for the vapor. 

For the nearly ideal-vapor phase (P = nT), we write dP = Tdn + ndT 
where n is the vapor molar density. In order to stay on the univariance line, 
we need the Clapeyron equation: dP/dT = !:l.H/(T!:l.V) where !:l.H is the 
molar enthalpy of vaporization and .6. V is the molar change in volume from 
liquid to gas. From this we obtain: n (!:l.H- T) dT = T 2dn. At constant 
pressure dn=O, so dT=O. For dn > 0, we see immediately that dT > 0. Using 
dE~ dn!:l.E, where !:l.E is the molar heat of vaporization at constant volume, 
we finally obtain: 

8Ti T
2 

1 
8E v ~ nf:l.E2 = nf:l.S2. 

(2) 

The positive value of this derivative shows that the phase transition at constant 
volume is characterized by a monotonic increase in temperature. 

As an example, Fig. 1 shows a standard temperature T vs entropy S 
diagram for water vapor. The region under the bell is the phase coexistence 
region. For the constant pressure curves (!:l.S = !:l.H /T), the initial rise along 
the "liquid" curve is associated with pure liquid, the plateau with the liquid­
vapor phases, and the final rise with overheated vapor. The constant volume 
curves, however, (!:l.S = !:l.E/T) cut across the coexistence region at an angle, 
without evidence for a plateau. 
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Figure 1: Temperature-entropy diagram for steam. Curves are shown for constant pressure 
(P4 > P3 > P2 > P1 ), constant volume (Vt < V2) and constant percentage in the gas phase 

(dashed lines). 

Thus the reminiscence of the observed "caloric curve" with "the paradigm 
of a phase transition" may be more pictorial than substantive, and indicators 
other than the plateau may be needed to substantiate a possible transition from 
one to two phases. More specifically, an additional relationship between the 
three variables P, T, V (like P=const, or V =const, etc.) is needed to interpret 
a T -E diagram unequivocally. 

2 Triviality of first order phase transitions 

The great attention to the alleged discovery of first order phase transition in 
nuclei would suggest that such a phenomenon may be of great significance to 
our understanding of nuclear systems. In fact, it is easy to show that first 
order phase transitions are completely trivial. Here are the reasons: 

1 )If there are two or more phases known or even hypothetically describable, 
then there will be first order phase transitions. 

2) The thermodynamics of these transitions is completely determined by 
the thermodynamical properties of each individual isolated phase. These 
phases do not affect each other, and do not need to be in contact. 

3 
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Figure 2: The free energy as a function of molar volume for a liquid and gas. The dashed 

lines refer to a drop rather than to bulk liquid. 

As an example, let us consider Fig. 2, where the molar free energy F 
at constant T is plotted vs the molar volume for a liquid and the gas phase. 
Stability of each phase requires each of these curves to be concave. In the 
region between the points of contact of the common tangent, the free energy 
is minimized by apportioning the system between the liquid and gas phase. 
Each phase is defined at the point of tangency, and the segment of the tangent 
between the two points is the actual free energy of the mixed phase. The slope 
of the common tangent is the negative of the constant pressure at which the 
transition takes place. The coexistence region is completely defined by the 
properties of the liquid at vLM and and of the gas at vgt. Consequently, it is 
irrelevant whether the liquid is in contact with the vapor or not! 

This discussion applies to infinite phases. However, it is simple to introduce 
finite size effects, e.g. surface effects. 

The pressure of a drop is always greater than that of the infinite liquid. In 
Fig.2 the common tangent (dashed) becomes steeper, in accordance with the 
increased free energy of the liquid. 

3 Microcanonical or Canonical Ensemble? 

Any good textbook of statistical mechanics contains the demonstration that, 
in the thermodynamic limit, all ensembles are equivalent, i.e. they give the 
same thermodynamic functions. 

In dealing with phase transitions in finite systems one may question whether 
this equivalence is retained. Let us review the connection between, for instance, 
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the Microcanonical and the Canonical Ensemble. 
Let p(E) be the microcanonicallevel density. The corresponding canonical 

partition function is the Laplace transform 
I 

Z(/3) = L e-f3E; ~ j p(E)e-f3E dE (3) 

The partition function is usually easier to calculate than the level density. How­
ever, the latter can be obtained from the former through the inverse Laplace 
Transform. 

p(E) = 2~i jz({3)ef3E d/3 

We can write Eq. (4) as 

1 ( tPinzj ) 
SMicro = lnp(E) = lnZo + f3oE- 2ln 211' -w f3o 

(4) 

(5) 

where f3o corresponds to the stationary point of the integrand. Furthermore, 

( 
fPlnZo I ) 

SMicro = Scan -In 211' o/32 f3o (6) 

The first term to the right is of order N while the second is of order ln N. 
When N goes to infinity (thermodynamic limit) one can disregard the 

term of order InN. For finite N one can easily evaluate the correction term 
which turns out to be very accurate even for small N. For instance, consider 
a percolation system with N bonds of which n are broken. As an example of 
a finite system, let us take N =6 and n=3. The exact expression yield p=20. 
The saddle point approximation yields p=20 .6! One can see that with little 
additional effort one can retain the use of the partition function with little loss 
of accuracy even for the smallest systems! 

Still, in the mind of physicists there is the bias that a microcanonical ap­
proach, or its equivalent through the inverse Laplace Transform of the Parti­
tion Function, is more correct than the canonical approach because the former 
conserves energy, while the latter does not. ' 

In fact the microcanonical distribution is given by 

P(E) = 6 (E(p, q)- Eo). 

The canonical distrihution instead is given by 

P(E) = K e-f3E(p,q). 

5 
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In this case, there are energy fluctuations. 
So, which is ultimately the "right" ensemble? If it does not matter, as 

in the the thermodynamic limit, the point is moot. But for finite systems it 
matters. H9wever, consider the case of a small system which is a part of a 
larger system. Let us call the total energy E and that of the small system f. 

Then 

S(E, f) 

Thus 

as I S(E, 0) + ~ f + ... 
vf ,=0 
f 

S(E,O)- T + ... 

p(E, f)~ p(E, O)e-'IT. 

(9) 

(10) 

The energy of the small system is canonically distributed, in a real, physical 
sense. The canonical, or grand canonical distribution very frequently has a 
direct physical reality and is not an approximation to a "more correct" micro­
canonical distribution. For instance, N a clusters in thermal equilibrium with. 
a carrier gas are canonically distributed in energy. 

What is the relevance of the above to phase transitions? There are claims 
that a microcanonical approach yields "sharper" phase transitions than a 
canonical approach, because of its lack of energy fluctuations. However, any 
thermodynamic property, including phase transitions, is defined in statisti­
cal mechanics as an ensemble average. Thus the resulting properties are not 
properties of the system alone, but they are properties of the ensemble. So with 
reference to phase transitions in particular, arguments like "the microcanonical 
ensemble yield sharper phase transitions compared to the canonical ensemble, 
and because of that it is better" are meaningless. If the physical ensemble is 
canonical, the canonical description is the correct one, irrespective of whether 
it is sharper or fuzzier than the microcanonical description. 

4 Sharpness of phases and phase transitions 

Let us consider the free energy of the liquid phase in Fig. 2. We can expand 
about the minimum as follows: 

1 ()2Fl 
F=Fo+2 8V2 v(~V?. 

The probability of volume fluctuations are then 

P(V) ex exp [- (~:i
2

] 
6 
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where 1/u~ = 82 Ff8V2 Iv· Since F ex N, u~ ex 1/N. Therefore important 
volume (density) fluctuations are to be expected at small N. A cluster, or 
a nucleus, which are not kept artificially at constant density, are going to 
fluctuate substantially in density. 

At coexistence, the correlated fluctuations between the two phases make 
the sharpness of the phases and of the phase transition even more washed out. 

5 A robust indicator of phase coexistence 

As we have seen, a "generic" caloric curve of the kind obtained in ref. 3 is of 
problematic interpretation because of the difficulty in establishing the addi­
tional relation F(V, T, P) associated with the evolution of the system. 

On the other hand, theoretical predictions of multifragmentation phase 
transitions on the basis of calculated discontinuities in the specific heat are 
suspicious because these calculations are performed at constant volume! 

Furthermore, the only meaningful experimental question about phase tran­
sitions is whether the system is present in a single phase or there is phase coex­
istence. In thermodynamical language, we want to know whether the system 
is monovariant (two phases) or bivariant (one phase). 

We have found a robust indicator for just these features in the charge 
distributions observed in multifragmentation. 

The charge distributions depend both on the number n of fragments in the 
events, and on the excitation energy, measured through the transverse energy 
E 4,5 t . 

It is possible empirically to "reduce" the charge distributions for n frag­
ments to that of just one, and to "scale" the transverse energy effect by means 
of the following empirical equation 

-jE; (ln Pn(Z) + ncZ) = -F(Z) (13) 

where F(Z) is a universal function of Z, and c is a constant. This empirical 
equation suggests that the charge distributions can be expressed as: 

(14) 

The first term in the exponent was interpreted 4•5 as an energy or enthalpy 
term, associated with the energy (enthalpy) needed to form a fragment. The 
second term was claimed to point to an asymptotic entropy associated with the 
combinatorial structure of multifragmentation. It was observed that a term 
of this form arises naturally in the charge distribution obtained by the least 
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biased breaking of an integer Zo into n fragments 4 . Such a Z distribution is 
given approximately by: 

(15) 

While this form obviously implies charge conservation, it is not necessary that 
charge conservation be implemented as suggested by Eq. (15). In fact it is easy 
to envisage a regime where the quantity c should be zero. Sequential thermal 
emission is a case in point. Since any fragment does not know how many other 
fragments will follow its emission, its charge distribution can not reflect the 
requirement of an unbiased partition of the total charge among n fragments. 

On the other hand, in a simultaneous emission controlled by a n-fragment 
transition state 6 , fragments would be strongly aware of each other, and would 
reflect such an awareness through the charge distribution. 

The question then arises whether c = 0 or c > 0, or even better, whether 
one can identify a transition from a regime for which c = 0 to a new regime for 
which c > 0. To answer this question, we have studied the charge distributions 
as a function of fragment multiplicity n and transverse energy Et for a number 
of systems and excitation energies. Specifically, we present data for the reac­
tion 36 Ar+197 Au at E / A=80 and 110 MeV and the reaction 129Xe+197 Au at 
E/A=50 and 60 MeV in Fig. 3. 

It is interesting to notice that for all reactions and bombarding energies 
the quantity c starts at or near zero, it increases with increasing Et for small 
Et values, and seems to saturate to a constant value at large Et. 

This behavior can be compared to that of a fluid crossing from the region 
of liquid-vapor coexistence ( univariant system) to the region of overheated and 
unsaturated vapor (bivariant system). In the coexistence region, the properties 
of the saturated vapor cannot depend on the total mass of fluid. The presence 
of the liquid phase guarantees mass conservation at all average densities for any 
given temperature. Hence the vapor properties, and, in particular, the cluster 
size distributions cannot reflect the total mass or even the mean density of the 
system. In our notation, c = 0. 

On the other hand, in the region of unsaturated vapor, there is no liquid 
to insure mass conservation. Thus the vapor itself must take care of this 
conservation, at least grand canonically. In our notation, c > 0. In other 
words we can associate c = 0 with thermodynamic univariance, and c > 0 with 
bivariance. 

To test these ideas in finite systems, we have considered a finite percolating 
system and a system evaporating according·to a thermal binomial scheme 7•8 . 

Percolation calculations 9 were performed for systems of Zo =97, 160 and 400 as 
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Ar +Au 
o E/A • SO MeV 
e E/A • 110 MeV 

500 ?50 1000 

El (MeV} 

Figure 3: Plots of the coefficient c versus Et for the reactions 129Xe+197 Au at E /A= 50 and 
60 MeV (top panel) and 36 Ar+197 Au at E/A=80 and 110 MeV (bottom panel). The error 

bars are statistical. 

a function of the percentage of bonds broken (Pb)· Values of c were extracted 
as a function of Pb. 

The results are shown in Fig. 4. For values of Pb smaller than the critical 
(percolating) value (prit ~ 0.75 for an infinite system), we find c = 0. This is 
the region in which a large (percolating) cluster is present. As Pb goes above 
its critical value, the value of c increases, and eventually saturates in a way 
very similar to that observed experimentally. 

Notice that although the phase transition in the infinite system is second 
order at p = Pc, here the region for which c = 0 mimics a first order phase 
transition. 

An evaporation calculation was also carried out for the nuclei 64Cu and 
129Xe according to the thermal binomial scheme 7•8 . The only constraint intro­
duced was to prevent at every step the emission of fragments larger than the 
available source. The resulting charge distributions are very well reproduced 
by Eq:(14). The extracted quantity cZo is plotted in the bottom panel of Fig. 
4 as a function of excitation energy per nucleon. In both cases cZ0 goes from 
0 to a positive finite value (equal for both nuclei) as the energy increases. The 
region where c = 0 is readily identified with the region where a large residue 
survives. On the other hand when c > 0 there is no surviving residue. 

These results are in striking agreement with those obtained for percolation. 
For both kinds of finite systems, the univariant regime (c = 0) is associated 
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Figure 4: top: A plot of cZo versus the percentage of broken bonds Pb from a percolation 
calculation 9 for three systems Zo=97 (circles), Zo=l60 (squares) and Zo=400 (diamonds). 
bottom: A plot of cZo versus excitation energy per nucleon from a binomial evaporation 
calculation 8 for 64 Cu and 129 X e. The statistical error bars are shown for errors larger than 

the symbol size. 

with the presence of a residue while the bivariant regime (c > 0) with the 
absence of a residue. 

This work was supported by the Director, Office of Energy Research, Of­
fice of High Energy and Nuclear Physics, Nuclear Physics Division of the US 
Department of Energy, under contract DE-AC03-76SF00098. 
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