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Abstract
Glucagon plays a central role in amino acid (AA) homeostasis. The dog is an established model of glucagon biology, 
and recently, metabolomic changes in people associated with glucagon infusions have been reported. Glucagon also 
has effects on the kidney; however, changes in urinary AA concentrations associated with glucagon remain under 
investigation. Therefore, we aimed to fill these gaps in the canine model by determining the effects of glucagon on 
the canine plasma metabolome and measuring urine AA concentrations. Employing two constant rate glucagon 
infusions (CRI) – low-dose (CRI-LO: 3 ng/kg/min) and high-dose (CRI-HI: 50 ng/kg/min) on five research beagles, 
we monitored interstitial glucose and conducted untargeted liquid chromatography–tandem mass spectrometry 
(LC-MS/MS) on plasma samples and urine AA concentrations collected pre- and post-infusion. The CRI-HI induced a 
transient glucose peak (90–120 min), returning near baseline by infusion end, while only the CRI-LO resulted in 372 
significantly altered plasma metabolites, primarily reductions (333). Similarly, CRI-HI affected 414 metabolites, with 
369 reductions, evidenced by distinct clustering post-infusion via data reduction (PCA and sPLS-DA). CRI-HI notably 
decreased circulating AA levels, impacting various AA-related and energy-generating metabolic pathways. Urine 
analysis revealed increased 3-methyl-l-histidine and glutamine, and decreased alanine concentrations post-infusion. 
These findings demonstrate glucagon’s glucose-independent modulation of the canine plasma metabolome and 
highlight the dog’s relevance as a translational model for glucagon biology. Understanding these effects contributes 
to managing dysregulated glucagon conditions and informs treatments impacting glucagon homeostasis.
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Introduction

Glucagon is a pancreatic endocrine hormone involved 
in regulating circulating glucose and amino acid (AA) 
levels and is an important therapeutic target for various 
metabolic and gastrointestinal conditions (Unger & 
Cherrington 2012, Sandoval & D’Alessio 2015). Increasing 
blood glucose concentrations is perhaps the best-known 
function of glucagon, but its relationship with AAs is 
increasingly recognized (Liljenquist et al. 1981, Boden 
et al. 1984, 1990, Allenspach et al. 2000, Larger et al. 2016, 
Wewer Albrechtsen et al. 2016, Dean et al. 2017, Holst 
et al. 2017, Kim et al. 2017, Kraft et al. 2017, Galsgaard 
et al. 2018, Hayashi & Seino 2018, Elmelund et al. 2022, 
Richter et al. 2022). Most AAs directly stimulate glucagon 
secretion from the α-cell to various degrees (Assan et al. 
1977, Bertrand et al. 1993, Oya et al. 2013, Maruszczak 
et al. 2022) and, in the dog, asparagine appears to be 
the most potent AA glucagon secretagogue (Rocha 
et al. 1972). It has recently been shown that AAs also  
indirectly stimulate insulin secretion by a paracrine 
mechanism involving glucagon action on the β-cell  
(Capozzi et al. 2019). Interestingly, multiple groups have 
shown that AAs form a feedback loop with glucagon, 
where increased glucagon decreases plasma AAs 
through a cognate G protein-coupled glucagon receptor 
in the liver, resulting the oxidation of AAs into glucose 
and urea (Dean et al. 2017, Holst et al. 2017, Galsgaard 
et al. 2018, Richter et al. 2022). Expression of the  
glucagon receptor in the small intestine, brain, 
pancreatic β-cells, and kidney reflects the importance 
of glucagon for regulating metabolic pathways of 
diverse cell types. Proximal renal tubular cells express 
the glucagon receptor, and glucagon stimulates tubular 
glucose reabsorption (Marks et al. 2003), and reduced 
renal glucagon receptor expression alters systemic 
metabolic homeostasis, including increased plasma AA 
(Wang et al. 2024). This suggests that glucagon could  
have other effects on proximal renal tubular cells, 
including modulating transport and tubular reabsorption 
of AAs. Increased urinary AA clearance in a patient 
with a glucagonoma supports this assertion (Almdal 
et al. 1990). Evaluating renal AA loss in a high glucagon 
state would provide valuable mechanistic insight  
into glucagon biology and help influence future 
nutritional strategies.

Directly, glucagon is most commonly used as an 
antidote for hypoglycemia caused by exogenous insulin 
administration (Datte et al. 2016, Harris et al. 2020). 
Elevated glucagon levels are seen in virtually all forms 
of diabetes mellitus (DM), α-cell hyperplasia, and, most 
dramatically, glucagonoma syndrome (Chastain 2001, 
Hædersdal et al. 2023). Superficial necrolytic dermatitis 
is a disfiguring skin condition that is characteristic of 
the glucagonoma syndrome in humans, and a related 
condition is also present in dogs. Aminoaciduric 
canine hypoaminoacidemic hepatopathy syndrome 

(also known as hepatocutaneous syndrome) is the  
most common cause of superficial necrolytic dermatitis 
in dogs (Loftus et al. 2022), and glucagon has been 
speculated to play a role in this condition, although we 
recently reported lower plasma glucagon concentrations 
in dogs with this syndrome (Holm et al. 2023). Glucagon 
has also been evaluated for diagnostic purposes 
(Fall et al. 2008, Greenbaum et al. 2008) and as a  
metric for carbohydrate metabolism in nutritionally 
supplemented exercising dogs (Frye et al. 2017).

As AAs play critical roles in protein synthesis and 
metabolic pathways, an enhanced understanding of AA 
metabolism has broad implications. Most experiments 
investigating the fate of AAs due to glucagon constant 
rate infusions (CRIs) found that glucagon reduces 
plasma AAs by increasing gluconeogenesis from AAs 
and accelerating AA uptake by the liver (Boden et al. 
1984, 1990). Investigating the urinary fate of AAs after 
a glucagon infusion improves our understanding of 
AA metabolism in hyperglucagonemic states, such as 
many forms of diabetes. An improved understanding of 
metabolic changes downstream of glucagon excess could 
inform the use of drugs that modify glucagon in canine 
DM and other conditions.

The biological effects of supraphysiologic glucagon 
concentrations remain underexplored, and the dog 
provides an excellent translational model for glucagon 
biology. Previous studies employed pancreatic clamp 
techniques, where combinations of insulin, glucose, 
or somatostatin are administered to control for 
hyperglycemia or isolate the role of glucagon in hepatic 
glucose production (Shulman et al. 1978). A study 
isolating the effects of severe hyperglucagonemia on 
glucose and AA metabolism is lacking.

We aimed to address two critical gaps in glucagon 
biology with broad applications for canine health and 
foundations for translational research. First was the  
lack of metabolomic data in dogs as a translational 
model of glucagon biology. Secondly, glucagon 
effects on the kidney warrant further explanation, 
and changes in urine amino acid concentrations 
in response to exogenous glucagon are lacking. 
Therefore, we performed a study investigating the 
effects of two unclamped (i.e. glucose concentrations 
uncontrolled by insulin or other hormones) glucagon 
CRIs: a ‘physiological’ dose that achieves circulating 
concentrations sufficient to engage the hepatic glucagon 
receptor signaling, and a ‘hyperphysiological’ dose 
that simulates pathologic concentrations, such as those 
encountered in the glucagonoma syndrome (Wermers 
et al. 1996). We hypothesized that exogenous glucagon 
infusion would reduce AAs and related metabolites  
in the plasma and increase AAs in the urine of 
dogs. We tested this hypothesis by investigating  
(i) plasma metabolomic alterations and (ii) urine AA  
concentrations in response to exogenous glucagon 
infusion in healthy dogs.
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Materials and methods

Animals
Five male healthy, purpose-bred research beagles were 
obtained for this study. Each dog had a complete blood 
count, chemistry profile, and physical examination 
to ensure they were apparently healthy before study 
inclusion. The Cornell University Institutional Animal 
Care and Use Committee approved this protocol (2020-
0083). Continuous interstitial glucose monitoring devices 
(FreeStyle Libre Pro, Abbott), previously validated in 
dogs with 99% accuracy for normal and high blood 
glucose concentrations, were placed as previously 
described (Corradini et al. 2016, Malerba et al. 2020). 
Briefly, a small area (approximately 5 cm × 5 cm) was 
clipped and aseptically prepared along each dog’s neck. 
A single sensor was affixed using the pre-packaged 
adhesive and a small amount of tissue adhesive (3M 
VetBond Tissue Adhesive). Three dogs dislodged or 
removed the sensor during the study period and required 
sensor replacement on the contralateral side. Dogs were 
normally fed once daily in the morning. They were fasted 
on the morning of, and throughout, the experiments. A 
venous sampling catheter (20 g × 20 cm, Drum Long Line 
Catheter, MILA International, Inc., Florence, KY, USA) 
was placed in a lateral saphenous vein of each dog. Each 
dog had an indwelling urinary catheter (6F Foley, MILA 
International) placed.

Glucagon infusions
Two separate glucagon (Glucagon Emergency 
Kit, Glucagon for Injection, 1 mg/mL, Amphastar 
Pharmaceuticals, Inc., Rancho Cucamonga, CA, USA) 
infusions were performed to compare responses to 
different glucagon loads. Doses for the CRIs were adapted 
from previous publications (Liljenquist et al. 1981, Boden 
et al. 1984, Datte et al. 2016, Pedersen et al. 2020). We 
first conducted the low-dose CRI (CRI-LO, 3 ng/kg/min),  
which was designed to activate the hepatic GCGR 
(Pedersen et al. 2020). One week later, with no 
interventions to dogs in between, the high-dose CRI 
(CRI-HI, 50 ng/kg/min) was conducted, which was 
intended to simulate a pathologic hyperglucagonemic 
state (Liljenquist et al. 1981). One dog received the 
entire 6-h dose as a bolus over approximately 15 min 
due to a pump error and was included in glucose and 
metabolomic analyses as a serendipitous opportunity 
to evaluate persistent metabolic changes from a single, 
high dose of glucagon. However, based on plasma 
metabolome results, that dog’s results were excluded 
from urine AA analysis. Both CRIs were delivered over 
6 h. During the CRI, the dogs were assessed hourly, 
including measuring heart and respiratory rates and 
monitoring for any gastrointestinal signs (e.g. vomiting, 
nausea, diarrhea). Heparinized whole blood samples  
(4 mL, BD Vacutainer) were collected pre-infusion,  

hourly during the infusion, and at 6 h (post-
infusion). Whole blood samples were centrifuged at 
676 × g for 10 min at room temperature, yielding platelet- 
enriched plasma, which was stored at −80°C. Urine 
samples were also obtained for the same time points and 
stored at −80°C (Fig. 1). Plasma metabolomic and urine 
AA analyses were conducted on pre-infusion and 6-h 
timepoint samples.

Serum glucagon and insulin measurements
Serum glucagon and insulin were measured on samples 
collected at hourly intervals as described above by 
the Endocrinology Laboratory at the Animal Health 
Diagnostic Center (Cornell University, Ithaca, NY, USA). 
Insulin was measured by radioimmunoassay for non-
equine species, routinely offered for diagnostic testing 
by the lab. Serum glucagon was measured using a 
commercially available glucagon ELISA (10-1281-01, 
Mercodia, Uppsala, Sweden), according to manufacturer 
instructions, as previously described (Holm et al. 2023).

Amino acid profiles
Urine samples were submitted to the UC Davis Amino  
Acid Laboratory for AA profiling. This included 
catheterized urine samples from each dog at the 
pre-infusion and post-infusion time points for the 
high-dose infusion. The Amino Acid Laboratory 
adds 6% sulfosalicylic acid (1:1) to each sample for 
deproteinization before processing. Urine creatinine 
was measured enzymatically by the New York State 
Veterinary Diagnostic Laboratory with a commercial 
chemistry analyzer (Roche Cobas c501).

Liquid chromatography–tandem mass 
spectrometry (LC-MS/MS) analysis and 
metabolomics profile
Metabolon (Metabolon, Inc, Morrisville, NC, USA) 
conducted metabolomic profiling on plasma samples 
as previously described (Evans et al. 2009, DeHaven 
et al. 2010, Miller et al. 2015, Gillenwater et al. 2020). 
Samples were prepared using the automated MicroLab 
STAR system from Hamilton Company. Proteins were 
precipitated with methanol under vigorous shaking 
for 2 min (Glen Mills GenoGrinder 2000), followed 
by centrifugation to remove proteins, dissociate 
small molecules bound to proteins or trapped in the 
precipitated protein matrix, and recover chemically 
diverse metabolites. The resulting extract was 
divided into five fractions: two for analysis by two 
separate reverse phases (RP)/ultra-performance liquid 
chromatography (UPLC)-MS/MS methods with positive 
ion mode electrospray ionization (ESI), one for analysis 
by RP/UPLC-MS/MS with negative ion mode ESI, one 
for analysis by HILIC/UPLC-MS/MS with negative ion 
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mode ESI, and one sample was reserved for backup. 
Samples were placed briefly on a TurboVap (Zymark) to 
remove the organic solvent. The sample extracts were 
stored overnight under nitrogen before preparation for 
analysis.

All methods utilized a Waters ACQUITY UPLC and a 
Thermo Scientific Q-Exactive high-resolution/accurate 
mass spectrometer interfaced with a heated electrospray 
ionization source and Orbitrap mass analyzer operated 
at 35,000 mass resolution.

The informatics system consisted of four major 
components, the Laboratory Information Management 
System, the data extraction and peak-identification 
software, data processing tools for QC and compound 
identification, and a collection of information 
interpretation and visualization tools for use by data 
analysts. These informatics components’ hardware 
and software foundations were the LAN backbone and 
a database server running Oracle 10.2.0.1 Enterprise 
Edition.

Metabolon maintains a library based on authenticated 
standards that contain the retention time/index (RI), the 
mass-to-charge ratio (m/z), and chromatographic data 
(including MS/MS spectral data) on all molecules present 
in the library. Furthermore, biochemical identifications 
are based on three criteria: retention index within 
a narrow RI window of the proposed identification, 

accurate mass match to the library ±10 ppm, and 
the MS/MS forward and reverse scores between the 
experimental data and authentic standards. The MS/MS  
scores are based on comparing the ions present in the 
observed spectrum to those in the library spectrum. 
While there may be similarities between these molecules 
based on one of these factors, all three data points can  
be used to distinguish and differentiate biochemicals.

The Human Metabolome Database (https://hmdb.ca/) 
was searched for reference information on selected 
metabolites.

Statistical analysis
Descriptive statistics are reported as medians and ranges. 
Due to the sample size, we did not conduct normality 
testing and applied non-parametric statistics. Differences 
in interstitial glucose measurements were assessed by the 
Kruskall–Wallis test with Dunn’s multiple comparisons 
(time points compared to baseline, with adjusted P 
values). We compared urine amino concentrations by 
two-way ANOVA and Sidak’s multiple comparisons test 
(adjusted P values). Commercial software (Prism 9.0 
or later, GraphPad, RRID:SCR_002798) computed the 
statistical analyses and generated corresponding graphs. 
Metabolon’s initial standard statistical analyses were 
performed in ArrayStudio/Jupyter Notebook on log-
transformed data. For those analyses not standard in 

Figure 1

An overview of the experimental design. Five healthy purpose-bred research beagles received low-dose (3 ng/kg/min) and high-dose (50 ng/kg/min) 
glucagon CRIs over a 6-h period. Blood and urine samples were collected pre-infusion, hourly during the infusion, and post-infusion. Plasma and urine 
from pre- and post-infusion were then submitted for metabolomic profiling and amino acid analysis. Created with Biorender.com.
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ArrayStudio/Jupyter Notebook, the programs R (https://
cran.r-project.org/) or JMP were used. The matched-pairs 
t-test compared pre- to post-infusion results for each 
infusion.

Statistical analyses and data visualization of the LC-MS/
MS data were performed with MetaboAnalyst 5.0 
(RRID:SCR_015539, https://genap.metaboanalyst.ca/),  
similar to those previously described (Loftus et al. 
2023). Normalized data from named metabolites 
(Supplementary File 1, see section on supplementary 
materials given at the end of this article) were log-
transformed (base-10), and Pareto data scaling was 
applied. Raw P values were reported unless otherwise 
specified. Analysis parameters were set at the software 
default unless otherwise specified. One dog that received 
its glucagon dose as a bolus was excluded from some 
analyses, as declared in the results.

Principal component analysis (PCA) and the sparse 
partial least squares-discriminant analysis (sPLS-DA) 
method (one-factor statistical analysis) were chosen 
for data reduction analysis (Lê Cao et al. 2011). Settings 
were as follows: number of components = 5, variables 
per component = keep the same number (10). Validation 
method = five-fold CV (two-component sPLS-DA error 
rate was 15%). Random forest analysis: number of 
trees = 500, number of predictors = 7, randomness = on. 
Heat map analysis was conducted using default settings.

Fold-change and t-tests (one-factor statistical analysis) 
were conducted to identify metabolites significantly 
increased >two-fold and depicted by volcano plots. The 
P-value threshold was set at a 0.05 false discovery rate. 
Random forest analysis (RFA) was conducted using 
default settings.

We conducted enrichment analysis using the over-
representation analysis (globaltest method) (Goeman 
et al. 2004) using the Small Molecule Pathway Database. 
The significant metabolites identified by the fold- 
change and T-tests were used. All compounds in the 
library were selected for the reference metabolome.

A P value of <0.05 established significance.

Results

Serum glucagon and insulin concentration 
increases were dose-dependent
We assessed serum glucagon levels to verify the 
concentrations achieved with both low- and high-
dose infusions. The low-dose infusion resulted in a 
mild increase, whereas the high-dose infusion led 
to a substantial elevation in circulating glucagon 
concentrations. Throughout the observation period, 
serum glucagon levels were significantly elevated 
compared to baseline in both experiments, except 
at the 6-h mark with the low-dose infusion (Fig. 2A). 
Notably, in dogs receiving the high-dose infusion 
over 6 h, glucagon concentrations remained elevated  
consistently. Conversely, when administered as a 
bolus in one dog over approximately 20 min, glucagon 
concentrations were comparable to baseline levels at 
1–6 h (Fig. 2A).

Furthermore, we examined serum insulin concentrations 
to provide insights into glucose levels. Serum insulin 
peaked around 2 h (120 min), with notable increases 
observed solely in the high-dose glucagon group  
(Fig. 2B).

Figure 2

Serum glucagon and insulin measurements of dogs (n = 5) administered glucagon constant rate infusions. Serum glucagon (A) and insulin (B) 
concentrations were measured immediately before and hourly during the infusion. The dotted line in (A) indicates the upper range of the assay 
sensitivity, thus, values were estimated from the standard curve. Values are medians with error bars depicting the interquartile range. Statistical 
notations (‘a’ and ‘b’) above data points indicate significantly higher concentrations than the corresponding time-0 for the corresponding CRI group, i.e. 
high-dose (‘a’ = 50 ng/kg/min, CRI-HI) and low-dose (‘b’ = 3 ng/kg/min, CRI-LO) infusions.

https://genap.metaboanalyst.ca/
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A high dose of exogenous glucagon is 
required to affect glucose concentrations
To assess the glycemic effects of a glucagon infusion, 
interstitial glucose concentrations were obtained for 
four dogs during each infusion. Glucose concentrations 
were unaffected during the low-dose glucagon infusion 
(Fig. 3). In contrast, a transient increase (peak 90–120 
min) in glucose occurred during the high-dose infusion, 
corresponding to insulin increases. Glucose levels 
returned to near baseline by the end of the 6-h infusion.

Both doses of exogenous glucagon affect 
the canine plasma metabolome
We employed an untargeted metabolomics approach to 
comprehensively assess metabolic changes driven by 
exogenous glucagon administration in dogs. The low-
dose glucagon infusion resulted in significant changes 

in 372 plasma metabolites, with 333 metabolites reduced 
compared to baseline (Supplementary Table 1). After the 
high-dose infusion, 414 metabolite levels significantly 
changed compared to baseline, with 369 metabolites 
reduced (Supplementary Table 1). We observed distinct 
clustering of groups of metabolites by both data-reduction 
approaches of PCA (Fig. 4A) and sPLS-DA (Fig. 4B), as well 
as cluster analysis (Fig. 4C), except for the one dog in the 
CRI-HI group that received the dose as a bolus. This dog 
clustered with the CRI-LO group and was excluded from 
subsequent analyses. Generally, metabolite changes  
were in the same direction for the CRI-LO (Fig. 4D) and 
CRI-HI (Fig. 4E). Metabolite changes were also more  
robust in the CRI-HI group than in the CRI-LO group 
(Fig. 4F). Exogenous glucagon broadly reduced 
circulating levels of most AA levels (Table 1). Several 
monoacylglycerols and diacylglycerols were also 
decreased significantly after glucagon infusions (Table 2),  
with the monoacylglycerols 1-myristoylglycerol, 
1-palmitoleoylglycerol, and 1-oleoylglycerol reduced to 
less than 20% of pre-infusion concentrations after the 
CRI-HI. RFA out-of-bag error rates determined by RFA 
were 0.0 and for CRI-LO, CRI-HI, and comparing CRI-HI 
to CRI-LO. Random forest analysis identified maltol 
sulfate as the metabolite that best distinguished the 
hyperglucagonemic state (Fig. 4G) induced by CRI-LO, 
and indoxyl glucuronide was the best-distinguishing 
metabolite in the CRI-HI experiment (Fig. 4H). Maltol 
sulfate is classified as a xenobiotic, and indoxyl 
glucuronide is a product of hepatic glucuronidation. 
Evaluating post-infusion data, lower 3-hydroxydecanoate, 
a beta-oxidation intermediate, in the CRI-HI group was 
the best model predictor for discrimination from the 
CRI-LO. Cluster analysis comparing post-infusion CRI-HI 
to CRI-LO metabolomes (Fig. 4J) illustrated excellent 
discrimination between the two doses, with substantial 
reductions in the top 50 metabolites defining the 
CRI-HI metabolome compared to the CRI-LO. Pathway 
enrichment analysis corroborated a predominant 
impact of glucagon on metabolic pathways related to 
AA biosynthesis, degradation, or pathways with AAs 
as critical intermediates such as the urea cycle (Fig. 4K 
and L). In most cases, metabolites were significantly 
decreased in affected pathways, for example, all 
significant changes in urea cycle metabolites were 
reductions compared to baseline. Generally, the CRI-LO 
had a lesser impact on metabolic pathways (Fig. 4K 
and Supplementary Fig. 1) than the CRI-HI (Fig. 4L and 
Supplementary Fig. 2); however, the CRI-LO had a greater 
impact on the homocysteine degradation pathway 
than the CRI-HI. Other notable pathways included 
bile acid biosynthesis (Table 3), the glucose-alanine 
cycle, the malate-aspartate shuttle, purine metabolism 
(Table 4), the citric acid cycle, and carnitine synthesis. 
Additionally, when comparing CRI-HI to CRI-LO, all  
but two significant pathways were shared with the 
enriched pathways identified when CRI groups were 
compared to their respective baseline (Fig. 4K and L). 
The two unique pathways identified by comparing POST 

Figure 3

Interstitial glucose (IG) readings via flash glucose monitoring system 
during glucagon constant-rate infusions. Glucose measurements from 
the (A) low-dose (3 ng/kg/min) and the (B) high-dose (50 ng/kg/min) 
glucagon infusions. Each line indicates an individual dog, corresponding 
to dog numbers in the legend. The shaded area indicates time points 
where IG was significantly greater than time-0. *P < 0.05, *P < 0.01.



Journal of Endocrinology (2024) 262 e240051
https://doi.org/10.1530/JOE-24-0051

M Merkhassine et al.

Figure 4

Metabolomic analyses of dogs administered exogenous glucagon infusions. Global multivariate metabolomic analyses of dogs (n = 5) administered 
exogenous glucagon (A–C). Principal component (A) and sparse partial least squares discriminant (B) analyses of plasma metabolites before (PRE) and 
after (POST) glucagon infusions. (C) Heat map of the top (lowest P value) 50 metabolites PRE and after POST LO and 50 ng/kg/min (HI) glucagon 
infusions. The arrows (A) and asterisk (B) indicate one dog (#2) that received the 50 ng/kg glucagon infusion as an i.v. bolus over 10 min due to a pump 
error. Metabolomic analyses of dogs (n = 5 CRI-LO, n = 4 CRI-HI) administered glucagon as a constant rate infusion (CRI) excluding dog number 2 (D–L). 
Volcano plots (D–F) indicating significant metabolite changes POST glucagon CRI-LO (D) or CRI-HI (E) and POST CRI-HI compared to CRI-LO (F). 
Metabolites significantly (P < 0.05) increased (red) or decreased (blue) greater than two-fold, depicted by single dots. Random forest analysis (RFA) plots 
(G–I) identified metabolites that best fit a model for distinguishing groups. The RFA models establish metabolites for distinguishing POST glucagon 
CRI-LO (G) or CRI-HI (H) and POST CRI-LO to CRI-HI (I). Heat map (J) of the top (lowest P value) 50 metabolites comparing POST CRI-LO to POST CRI-HI. 
Pathway enrichment (over-representation) analysis (K,L). The top 25 small molecule pathway database pathways with over-represented significant 
plasma metabolites in CRI-LO (K) and CRI-HI (L) glucagon infusions are displayed and ranked by P value. Pathways boxed in blue indicate pathways also 
enriched when POST CRI-HI was compared to POST CRI-LO. Created with BioRender.com. CRI-LO/LO = 3 ng/kg/min glucagon infusion. CRI-HI/HI = 50  
ng/kg/min glucagon infusion.
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CRI-HI to CRI-LO were the nicotinate and nicotinamide 
metabolism and porphyrin metabolism pathways.

Urine amino acid concentrations remain 
stable despite reduced 
plasma concentrations
We aimed to gain insight into the alterations in urine AA 
concentrations associated with glucagon excess. Given 
the results of our metabolomic analysis, we excluded the 
AA results from the dog that received its glucagon dose 
as a bolus. Despite semi-quantitatively lower plasma 
levels (Table 1), urine concentrations of glutamine and 
3-methylhistidine were significantly increased, while 
alanine concentrations were reduced (Fig. 5). Although 
not significantly increased, lysine, phenylalanine, 
methionine, valine, glycine, and glutamic acid all showed 
positive median changes post-infusion.

Discussion

Our study aimed to investigate changes in the 
metabolome of dogs administered exogenous glucagon 

at supraphysiologic concentrations. Secondarily, we 
assessed renal AA handling by quantitative measurement 
in the urine. Glucagon broadly impacted the canine 
plasma metabolome, with profound reductions in 
circulating AA and acylglycerol levels. In contrast, urine 
AAs were not broadly reduced and, in some cases, were 
significantly increased, suggesting glucagon directly or 
indirectly affects renal AA handling.

Concomitant with increasing glucagon levels, serum 
insulin concentrations peaked approximately 2 h post-
infusion in the CRI-HI group, an appropriate response to 
hyperglycemia that explains the normalization of glucose 
concentrations. A recent study investigated glucose 
concentrations in response to hyperglucagonemia 
and also noted transient hyperglycemia in an insulin-
clamped canine model (Coate et al. 2024). Comparisons 
between CRI-HI and CRI-LO groups suggest glucagon’s 
predominant influence on AA regulation over glucose 
homeostasis, evidenced by minimal to no impact on 
insulin and glucose concentrations in the CRI-LO group. 
A serendipitous observation from a dog receiving a high-
dose bolus of glucagon revealed substantial alterations 
in the serum metabolome even six hours post-
administration, highlighting glucagon’s primary role in 

Table 1 Fold changes in plasma amino acids measured by liquid chromatography tandem mass spectrometry analyzed by the 
matched pairs t-test.

Amino acid

Low-dose glucagon infusion High-dose glucagon infusion

Fold change P-value q-value Fold change P-value q-value

Arginine 0.71a 0.0052 0.0119 0.45a 0.005 0.0155
Proline 0.58a 0.0044 0.0111 0.29a 0.001 0.0096
Carnosine 0.74a 0.0228 0.0248 0.53a 0.0121 0.0234
3-methyl-L-histidine 0.91 0.2648 0.1232 0.74a 0.0244 0.0349
Tryptophan 0.91 0.1118 0.0684 1.03 0.9273 0.4488
Histidine 0.95 0.396 0.1662 0.61a 0.0055 0.0163
1-Methylhistidine 1.04 0.3436 0.1497 0.81a 0.0783 0.0772
Lysine 0.81a 0.0107 0.017 0.48a 0.0099 0.0217
Ornithine 0.60a 0.0052 0.0118 0.29a 0.0018 0.0104
Phenylalanine 1.07 0.4332 0.176 1 0.9431 0.4507
Tyrosine 0.86 0.2432 0.1168 0.64 0.1115 0.099
Leucine 1.18a 0.0866 0.0575 0.99 0.8222 0.4162
Isoleucine 1.28a 0.0087 0.0156 1.2 0.1799 0.1421
Methionine 0.79a 0.0191 0.0225 0.69 0.0066 0.0171
Cysteine 0.9 0.6157 0.2192 0.54a 0.0207 0.0317
Valine 1.20a 0.0698 0.0507 0.87 0.3189 0.2206
Citrulline 0.82a 0.0088 0.0156 0.54a 0.006 0.0166
Alanine 0.51a 0.0182 0.0221 0.30a 0.0019 0.0104
Glycine 0.70a 0.0215 0.024 0.43a 0.004 0.0145
Glutamine 0.98 0.6834 0.2359 0.57a 0.0115 0.0231
Glutamic Acid 0.69* 0.0172 0.0213 0.50a 0.0083 0.0191
Asparagine 0.8 0.0681 0.0503 0.42a 0.0012 0.0101
Serine 0.72a 0.01 0.0164 0.46a 0.0015 0.0102
Threonine 0.65a 0.0033 0.0095 0.32a 0.0024 0.0115
Aspartic acid 0.40a 0.0007 0.0074 0.40a 0.0123 0.0235
Taurine 0.55a 0.001 0.0074 0.48a 0.0015 0.0102

aP < 0.05.
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modulating AA metabolism. Employing a continuous 
glucose monitor was a novel approach, given its limited 
use in dogs beyond diabetic management studies  
(Re et al. 2023). However, its use in canine studies  
beyond device validation or use in diabetic dogs has been 
limited to one study evaluating the effect of a ghrelin 
receptor agonist on glycemic control (Pascutti et al.  
2022). While blood glucagon concentrations can 
vary, those achieved in our study align with a 
hyperglucagonemic state. Although interstitial glucose 
monitoring was occasionally interrupted, consistent 
trends in glucose excursions across dogs and parallels 
with human studies reinforce conclusions regarding 
supraphysiological glucagon’s glycemic effects.

The essential role of glucagon in systemic AA 
homeostasis is increasingly recognized (Cahill & Aoki 
1977). Experiments demonstrating glucagon’s effect on 
circulating AA concentrations have been conducted in 
humans and animal models (Bromer & Chance 1969, 
Landau & Lugibihl 1969, Boden et al. 1984, 1990, Couet 
et al. 1990, Flakoll et al. 1994). More recently, the plasma 
metabolome of non-diabetic, overweight, and obese 

people in response to glucagon infusion was described 
(Vega et al. 2021). Similar to the findings in our study,  
Vega et al. found that infusions of glucagon most 
prominently affected AA and lipid pathways. Although 
the study used similar infusions of glucagon, the human 
subjects were infused for a much longer period (72 h) 
and included a placebo cohort. In contrast, we compared 
6-h samples to pre-infusion samples. Nevertheless, 
the similarities in results are compelling and further 
support the dog as an appropriate comparative model 
for glucagon physiology. Characterizing the effects of 
glucagon excess on the canine plasma metabolome is 
pivotal, ensuring that the canine model continues to be a 
relevant contributor to advancing our understanding of 
glucagon biology.

Reduced plasma AA concentrations in response 
to glucagon have primarily been attributed to the 
uptake and oxidation of AAs in the liver, providing an 
important substrate for hepatic glucose production via 
gluconeogenesis. This phenomenon was described in 
the dog, where the net hepatic uptake of many AAs was 
increased in response to glucagon infusion, resulting in 

Table 2 Fold changes in plasma monoacylglycerol and diacylglycerols measured by liquid chromatography–tandem mass 
spectrometry analyzed by the matched pairs t-test.

Lipid

Low-dose glucagon infusion High-dose glucagon infusion

Fold change P-value q-value Fold change P-value q-value

1-Myristoylglycerol (14:0) 0.14a 0.0067 0.0133 0.10a 0.0008 0.0093
1-Palmitoleoylglycerol (16:1)b 0.25 0.1147 0.0693 0.09a 0.0009 0.0096
1-Oleoylglycerol (18:1) 0.32a 0.0321 0.0312 0.14a 0.0009 0.0096
1-Linoleoylglycerol (18:2) 0.35 0.0956 0.0614 0.20a 0.0023 0.0115
1-Arachidonylglycerol (20:4) 1.55 0.0685 0.0503 1.18 0.976 0.4584
1-Docosahexaenoylglycerol (22:6) 1.78 0.0758 0.0527 1.54 0.4649 0.2925
2-Oleoylglycerol (18:1) 0.39 0.0917 0.0596 0.32a 0.0008 0.0096
2-Arachidonoylglycerol (20:4) 1.48 0.1485 0.0827 1.54 0.0686 0.0699
Palmitoyl-linoleoyl-glycerol (16:0/18:2) [1]b 0.73 0.2539 0.1205 0.29a 0.0014 0.0102
Palmitoyl-linoleoyl-glycerol (16:0/18:2) [2]b 0.57a 0.0072 0.0139 0.31a 0.0048 0.0155
Palmitoyl-arachidonoyl-glycerol (16:0/20:4) [1]b 0.53 0.0971 0.0621 0.58 0.0567 0.0623
Palmitoyl-arachidonoyl-glycerol (16:0/20:4) [2]b 0.63a 0.0365 0.0334 0.52a 0.0042 0.0149
Palmitoleoyl-arachidonoyl-glycerol (16:1/20:4) [2]b 0.40a 0.0112 0.0173 0.35a 0.0201 0.0315
Oleoyl-linoleoyl-glycerol (18:1/18:2) [1] 0.50a 0.002 0.0083 0.34a 0.0116 0.0231
Oleoyl-linoleoyl-glycerol (18:1/18:2) [2] 0.49a 0.0009 0.0074 0.32a 0.0162 0.0278
Linoleoyl-linoleoyl-glycerol (18:2/18:2) [1]b 0.51a 0.0188 0.0224 0.30a 0.0232 0.034
Linoleoyl-linoleoyl-glycerol (18:2/18:2) [2]b 0.54a 0.0062 0.0131 0.34a 0.0135 0.025
Linoleoyl-linolenoyl-glycerol (18:2/18:3) [2]b 0.53a 0.0045 0.0111 0.29a 0.004 0.0145
Stearoyl-arachidonoyl-glycerol (18:0/20:4) [1]b 1.14 0.216 0.1085 1.19 0.3159 0.2192
Stearoyl-arachidonoyl-glycerol (18:0/20:4) [2]b 1.21a 0.0402 0.0361 1.33 0.1205 0.1052
Oleoyl-arachidonoyl-glycerol (18:1/20:4) [1]b 0.63 0.0807 0.0544 0.6 0.0929 0.0877
Oleoyl-arachidonoyl-glycerol (18:1/20:4) [2]b 0.7 0.1241 0.0736 0.50a 0.0124 0.0236
Linoleoyl-arachidonoyl-glycerol (18:2/20:4) [1]b 0.52 0.1188 0.0711 0.48 0.1957 0.1517
Linoleoyl-arachidonoyl-glycerol (18:2/20:4) [2]b 0.74 0.204 0.1044 0.43a 0.0128 0.0241
Linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) [1]b 1.47 0.2702 0.1246 1.03 0.8762 0.4341
Linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) [2]b 1.46 0.052 0.0419 0.83 0.3881 0.2551

Brackets with numbers indicate the presence of isomers of other compounds in the spectral library.
aP < 0.05.
bIndicates a compound that has not been confirmed based on a standard, but metabolon is confident in its identity.
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a 17% decrease in circulating AA levels and coinciding 
with a 30% increase in hepatic glucose production 
(Flakoll et al. 1994). Nitrogen liberated by AA catabolism 
is primarily eliminated by the urea (ornithine) cycle, 
reflected by increased excretion of total urinary nitrogen 
(Almdal et al. 1990). Similar to the results in humans who 
received high-dose glucagon infusion (Vega et al. 2021), 

our study found significantly reduced concentrations of 
ornithine citrulline and urea in the plasma. Although 
we did not measure total nitrogen in our urine samples, 
we speculate that these changes represented enhanced 
nitrogen turnover and elimination induced by the 
combined actions of glucagon in the liver and kidney. 
Another notable finding was that branched-chain  

Table 3 Fold changes in plasma bile acids measured by liquid chromatography–tandem mass spectrometry analyzed by the 
matched pairs t-test.

Bile acid

Low-dose glucagon infusion High-dose glucagon infusion

Fold change P-value q-value Fold change P-value q-value

Cholate 0.13 0.0623 0.0475 0.24a 0.0488 0.0566
Taurocholate 0.37 0.1416 0.0807 0.24a 0.0027 0.0122
Taurochenodeoxycholate 0.48 0.131 0.0766 0.15a 0.0019 0.0104
β-Muricholate 0.11a 0.0066 0.0133 0.22a 0.0013 0.0101
α-Muricholate 0.14a 0.0046 0.0111 0.22a 0.0005 0.0091
Tauro-β-muricholate 0.26 0.074 0.0521 0.16a 0.0044 0.0154
Deoxycholate 0.23 0.0702 0.0509 0.38 0.0844 0.0815
Taurodeoxycholate 0.39 0.1357 0.0786 0.10a 0.0009 0.0096
Lithocholate 1 – – 1 – –
Taurolithocholate 0.25 0.0509 0.0415 0.07a 0.0004 0.0086
Ursodeoxycholate 0.14a 0.0063 0.0131 0.18a 0.0021 0.0109
Tauroursodeoxycholate 0.32 0.0707 0.051 0.19a 0.0074 0.0182
Taurohyodeoxycholic acid 0.29a 0.0013 0.0074 0.27a 0.0099 0.0217
12-Dehydrocholate 0.13a 0.0386 0.0352 0.25a 0.0099 0.0217
7-Ketodeoxycholate 0.11a 0.0188 0.0224 0.24a 0.0059 0.0166
Ursocholate 0.26 0.0664 0.0499 0.49a 0.0204 0.0316

aP < 0.05.

Table 4 Fold changes in plasma purines measured by liquid chromatography–tandem mass spectrometry analyzed by the 
matched pairs t-test.

Purine metabolite

Low-dose glucagon infusion High-dose glucagon infusion

Fold change P-value q-value Fold change P-value q-value

Inosine 0.87 0.7714 0.253 1.94a 0.0024 0.0115
Hypoxanthine 0.91 0.9261 0.2864 1.71 0.1581 0.1287
Xanthine 0.65 0.4488 0.1799 0.99 0.9881 0.4608
Xanthosine 0.54a 0.0111 0.0173 0.61 0.0873 0.0835
N1-methylinosine 0.99 0.994 0.3003 0.81 0.4837 0.3006
Urate 0.67a 0.0046 0.0111 0.95 0.5877 0.3398
Allantoin 0.79a 0.0023 0.0083 0.68a 0.0146 0.0261
Allantoic acid 0.82a 0.0066 0.0133 0.73 0.0599 0.064
1-Methylhypoxanthine 0.74 0.2394 0.1157 0.66 0.0536 0.0603
Adenosine 5′-monophosphate 1.22 0.5287 0.1993 1.63 0.1194 0.1044
Adenosine 1.07 0.6616 0.23 1.9 0.0573 0.0626
Adenine 0.95 0.7647 0.252 0.8 0.1549 0.1264
N1-methyladenosine 0.92a 0.0382 0.0349 0.96 0.6518 0.3604
N6-carbamoylthreonyladenosine 0.85 0.0631 0.0481 0.72a 0.0302 0.0409
N6-succinyladenosine 0.99 0.6466 0.226 0.92 0.4729 0.2968
Guanosine 0.66 0.7964 0.2592 2.93a 0.0078 0.0184
Guanine 1.05 0.5186 0.1974 2.82a 0.0039 0.0145
7-Methylguanine 0.73a 0.0055 0.0123 0.67a 0.004 0.0145
N2,N2-dimethylguanosine 0.82 0.0734 0.0519 0.80a 0.0205 0.0316

aP < 0.05.
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amino acids were mildly increased in the CRI-LO group 
but reduced in response to the CRI-HI conditions. 
Interestingly, increased branched-chain amino acids 
can promote insulin resistance (Newgard 2012) and thus 
may be related to insulin resistance associated with mild 
increases in glucagon.

Glucagon-induced changes in the canine plasma 
lipidome were also similar to those seen in humans (Vega 
et al. 2021), with diacylglycerols significantly decreased. 
We also noted substantial monoacylglycerol reductions, 
which were not documented in the human study. These 
findings align with increased β-oxidation reported 
in rodents and humans in hyperglucagonemic states 
(Guettet et al. 1988, Xiao et al. 2011). Other pathways 
affected in our study included purine metabolism and 
bile acid synthesis. The impact of glucagon on plasma 
purines (Table 4) in our study may be attributable 
to increased hepatic de novo purine synthesis, as  
previously reported in a rat model (Itakura et al. 
1987). Primary and secondary bile acids were globally 
decreased (Table 3). These reductions may be related to 
glucagon’s choleretic effect or changes in enterohepatic 
recirculation (Guettet et al. 1988, Kaminski et al. 1988).

Little has been reported on glucagon’s effects on urine 
AA concentrations and renal AA handling. Most of 
the known renal effects of glucagon are related to 
electrolyte handling, with a prominent role speculated 
for potassium homeostasis (Bankir et al. 2016). However, 
several reports support a role for glucagon in renal 
solute absorption, which may include AAs. One study 
found that proximal renal tubular cells expressed the 
glucagon receptor and that glucagon stimulated tubular 
glucose reabsorption (Marks et al. 2003). Another study 
measured urine AAs by total nitrogen and found there 
was no difference in urine disposition in response to 
a glucagon infusion (Boden et al. 1990). These data are 
similar to our study, where overall urinary excretion 
of AAs remained relatively stable despite lower plasma 
AA concentrations. In contrast, another study found 
increased urinary nitrogen excretion, which was 
attributed to increased ureagenesis (Fitzpatrick et al. 
1977). Additionally, a case report documented increased 
urinary AA clearance in a patient with glucagonoma 
(Almdal et al. 1990), which may suggest that longer 
periods of glucagon exposure are required to result in 
demonstrative aminoaciduria.

The discrepancy between reduced plasma concentrations 
of AA and the apparent physiological adaptation for 
renal AA loss poses a challenge to interpretation. 
However, this paradoxical scenario might stem 
from the maladaptive consequences of exposure to 
supraphysiological levels of glucagon. Notably, glucagon 
has been shown to enhance AA transporter activity in the 
liver in a sodium-dependent manner (Lim et al. 1999). 
The observed greater proportional loss of AAs in urine 
suggests a reduction in tubular reabsorption, indicating 
that glucagon may exert tissue-specific effects on AA 
metabolism. Additionally, our in vivo approach opens 

Figure 5

Changes in creatinine-normalized urine amino acid concentrations after 
a 6-h glucagon infusion. Violin plots indicating the effects on urine amino 
acid concentrations following the high-dose (50 ng/kg/min) glucagon 
infusion. Measured absolute amino acid concentrations (A) and 
concentration changes (B) in dogs before (T0, green) and after (T6, pink) 
the infusion. Dots indicate individual dog data points. Dashed lines 
indicate medians and dotted black lines indicate quartiles. Values for 
1-methylhisitidine were removed from (A) for clarity. ***P < 0.001,  
****P < 0.0001.
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the possibility of observing glucagon’s indirect effects 
on AA homeostasis. Thus, putative effects on renal AA 
transport could be mediated through other hormones 
modulated by glucagon.

An unexpected finding in our study was increased 
urinary 3-methylhistidine in response to the high-dose 
glucagon CRI relative to baseline levels. Increased urine 
concentrations of this AA are generally considered 
a marker of muscle catabolism; however, skeletal 
muscle does not express the glucagon receptor 
(Papatheodorou et al. 2020). Therefore, if increased 
urinary 3-methylhistidine in our study is reflective of 
muscle catabolism, the mechanism is likely indirect. 
Alternatively, the gut is a site of a considerable amount 
of 3-methylhistidine (Millward & Bates 1983) and 
could be the source contributing to increased urinary 
excretion in our study. Several previous studies have 
not found evidence of enhanced muscle catabolism 
or increased urinary 3-methylhistidine in response 
to glucagon infusion. However, these studies used 
lower doses (3–10 ng/kg/min) and either somatostatin 
(to inhibit insulin release) or exogenous glucose (to 
stimulate insulin release) (Fitzpatrick et al. 1977,  
James et al. 2022).

Although our cohort was relatively small, it fell within 
the reported range for preclinical studies involving 
dogs (Smith et al. 2002). Nonetheless, it is important to 
note that our cohort comprised a homogeneous group 
of dogs, which could limit the direct applicability of our 
findings to more diverse populations. To address this 
limitation, further investigations across different breeds 
are warranted to validate our results. For logistical 
expediency, we opted to use pre-infusion data as control 
data for each dog instead of employing a sham infusion. 
While this approach may raise concerns, it is worth 
noting that the negligible impact of a placebo saline 
infusion in humans, coupled with similar metabolic 
responses to exogenous glucagon, suggests that the 
utility of such a control may be limited. Moreover, our  
decision was supported by prior canine and cross- 
species data aligning with our observations.

As numerous studies have been conducted measuring 
AA concentrations in plasma in response to exogenous 
glucagon (Bromer & Chance 1969, Landau & Lugibihl 
1969, Liljenquist et al. 1981, Boden et al. 1984, 1990, 
Couet et al. 1990, Flakoll et al. 1994), we did not 
quantitatively measure them in this study. Thus, our 
plasma AA measurements were semi-quantitative, while 
urine AA measurements were quantitative, prohibiting 
direct comparisons between the two compartments. 
Future investigations employing aligned quantitative 
methodologies designed to compare fluxes in plasma 
vs urine AA concentrations may yield deeper insights 
than our current study. Lastly, it is crucial to note that 
our study assessed the effects of a relatively brief 
period of elevated glucagon levels, which might not 
fully capture the alterations associated with prolonged 
hyperglucagonemia seen in chronic disease states.

Exogenous glucagon significantly alters the canine plasma 
metabolome independently of glucose levels. These 
data aid in our understanding of glucagon physiology 
in the dog which will inform our understanding of the 
pathophysiology of canine disorders involving glucagon, 
and where therapeutic targets, such as glucagon-like 
peptide agonists, will alter glucagon levels. Additionally, 
these data are an essential contribution to maintaining 
the dog as a translational model for studying glucagon 
biology. A novel finding was stable or increased urinary 
AA concentrations in the face of plasma AA reductions 
that suggest glucagon may affect renal tubular AA 
excretion and warrants further investigation.
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