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Abstract: Purpose: Since the prompt recognition of acute pulmonary embolism (PE) and the im-
mediate initiation of treatment can significantly reduce the risk of death, we developed a deep
learning (DL)-based application aimed to automatically detect PEs on chest computed tomogra-
phy angiograms (CTAs) and alert radiologists for an urgent interpretation. Convolutional neural
networks (CNNs) were used to design the application. The associated algorithm used a hybrid
3D/2D UNet topology. The training phase was performed on datasets adequately distributed in
terms of vendors, patient age, slice thickness, and kVp. The objective of this study was to validate
the performance of the algorithm in detecting suspected PEs on CTAs. Methods: The validation
dataset included 387 anonymized real-world chest CTAs from multiple clinical sites (228 U.S. cities).
The data were acquired on 41 different scanner models from five different scanner makers. The
ground truth (presence or absence of PE on CTA images) was established by three independent U.S.
board-certified radiologists. Results: The algorithm correctly identified 170 of 186 exams positive for
PE (sensitivity 91.4% [95% CI: 86.4–95.0%]) and 184 of 201 exams negative for PE (specificity 91.5%
[95% CI: 86.8–95.0%]), leading to an accuracy of 91.5%. False negative cases were either chronic PEs
or PEs at the limit of subsegmental arteries and close to partial volume effect artifacts. Most of the
false positive findings were due to contrast agent-related fluid artifacts, pulmonary veins, and lymph
nodes. Conclusions: The DL-based algorithm has a high degree of diagnostic accuracy with balanced
sensitivity and specificity for the detection of PE on CTAs.

Keywords: pulmonary embolism; computed tomography angiography; artificial intelligence; deep
learning tool; chest CT

1. Introduction

Estimated at around 180,000 deaths per year, pulmonary embolism (PE) remains a
leading cause of death in the United States [1]. It is the third most common cause of
cardiovascular disease events, with only myocardial infarction and stoke having a higher
prevalence [2]. Prompt recognition of acute PE and immediate initiation of anticoagulation
and mechanical thrombectomy can greatly reduce the risk of death [3]. The most common
cause of death from PE is a failure of diagnosis [4]. The clinical presentation of PE is often
nonspecific and can be mimicked by a range of other conditions. The diagnostic approach
to PE usually involves a series of investigations including echocardiography and D-dimer,
establishing the necessity for further confirmatory examinations like chest CT angiography
(CTA) and ventilation/perfusion scans [5]. CTA has become the gold standard diagnostic
modality for PE and has almost eliminated the use of ventilation/perfusion scans [6].
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CTA is a non-invasive, widely available, and rapidly performed modality. However,
the diagnosis of PE in CTA is time-consuming and requires the expertise of radiologists.
As a result, the interpretation process is susceptible to errors and delayed diagnosis [7].
The usage of CTA in emerging departments has increased over 27-fold in the last two
decades [8,9]. Variations in concordance between general and subspecialist radiologists
have been reported as well as between residents, fellows, and attending radiologists [10].
The workload increases in emergency settings, and fatigue from long work hours and
overnight shifts may contribute to an increase in diagnostic errors [11–13]. Studies have
shown that there is up to a 13% discrepancy rate between overnight radiologists and
the day faculty [14–16]. The radiologist’s sensitivity for detecting PE has been measured
in the range of 67 to 87% with a specificity of 89 to 99% [17–19]. Studies have reported
promising results in applying deep learning (DL) models to automate PE diagnosis on
CTA [20–25]. In a systematic review with the meta-analysis of DL-based AI algorithms
developed to detect PE on CTA, published in 2021, five studies provided enough data to
calculate the test accuracies [26]. A pooled sensitivity of 88% per scan and a specificity
of 86% per scan were shown. Furthermore, the authors noticed a patient selection bias
in more than half of the studies with a failure of the study population description. The
question on the potential generalizability of such algorithms remains on hold. Actually,
generalization across institutions, particularly in the setting of varying CT scanner models
and reconstruction methods, present another difficulty in the generalization of automated
diagnosis.

The objective of our study was to validate a commercially available AI-powered appli-
cation, named CINA-PE v1.0.3, for suspected PE triage and prioritization. The algorithm
was trained and tested on data from multiple clinical sites and vendors. The validation of
the application presented in this study was performed on CTA exams acquired on various
CT scanners from multiple clinical sites through the U.S. The diagnostic performance of the
device to detect PE was measured by a comparison with the ground truth established by
several expert U.S. board-certified radiologists. Furthermore, an evaluation of the triage
effectiveness was performed by measuring the standalone per-case processing time (time-
to-notifications) of the chest CTA images. Our results demonstrated good performance of
this AI-based algorithm, opening the way for its use to help radiologists by highlighting
the exams that are positive for PE in the worklist, thereby accelerating the diagnosis and
communication workflow.

2. Material and Methods
2.1. AI Algorithm: General Architecture, Training, and Testing

Convolutional neural networks (CNNs) were used to design the application. The
algorithm used a hybrid 3D/2D UNet [21,22] topology comprising four stages. The first
stage extracted the lung and main pulmonary artery pixels from the pixel volume. Then, the
region proposal network generated a first segmentation of PEs, which were then sharpened
by the false positive network using a CNN region proposal network. The post-processing
stage eliminated false-positives outside the lung and the main pulmonary artery, and finally,
a logic function between all voxel-wise masks was used to establish the final decision.

For the training phase, a K-fold cross validation schema was implemented, allowing us
to pre-compute masks for each fold without introducing bias. A dataset of 150 CTAs with a
balanced proportion of healthy lungs and lung diseases (pneumonia, ground-glass opacity,
pleural effusion, etc.) was used to train the lung and main pulmonary artery segmentation
algorithm. Then, a dataset of 4795 CTAs was used to train the region proposal network
and false positive reduction networks. A masked softmax cross entropy was used as the
loss function. The datasets were provided from several U.S. clinical centers and were
adequately distributed in terms of vendors (Canon Medical Systems Corporation, GE
Healthcare, Philips Healthcare, Siemens Healthineers), patient age, slice thickness, and kVp.
The training datasets were provided by an American Teleradiology Company on behalf of
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a data sharing partnership. The ground truth of the training phase was established by an
expert on a per-slice segmentation level.

The testing phase was performed using 109 (62 positive) CTAs adequately distributed
in terms of vendors, patient age, slice thickness, etc. A total of 2 FP and 2 FN were observed,
leading to an overall sensitivity of 96.8% [88.8–99.6%], specificity of 95.7% [85.5–99.5%],
and accuracy of 96.3%.

2.2. Data Selection for Validation

This is a retrospective multicenter and blinded standalone performance study. All
validation anonymized data were received from the same data sharing partnership with
the American Teleradiology Company from 228 U.S. clinical sites. The validation dataset
was different from the one used for the algorithm’s training and testing, and have never
been used in any way in the development of a software device. A waiver of consent was
obtained from the Western Institutional Review Board for all cases. Informed consent for
participation was not required for this study in accordance with the national legislation
and institutional requirements.

The PASS sample size (Kaysville, UT, USA) software was used to calculate the mini-
mum number of cases needed to achieve a 95% CI lower bound of at least 80%, assuming a
point estimate of 90% (for sensitivity and specificity, separately). Using the binomial dichoto-
mous endpoint for one sample study, at least 137 positive and 137 negative anonymized
cases were required.

The Teleradiology company used a specific tool (Natural Language Processing of
radiology reports) to find relevant examinations (i.e., suspected positive PE and potentially
negative ones) to send approximately the same portions of positive and negative cases.
Among the received data, we consecutively preselected the cases that were compatible
with the recommended requirements summarized in the list of inclusion criteria for the PE
study (Table 1). A total of 387 anonymized CTA cases were considered for the standalone
performance validation of the automated device.

Table 1. The inclusion criteria were chest CTAs acquired on adults (≥18 years old) that met the
following acquisition requirements.

Acquisition Parameters

Matrix size ≥ 512 × 512 (rectangular matrix accepted)

Axial acquisition only

Slice thickness ≤ 2.5 mm with no gap between successive slices

Radiation dose parameters: 60 kVp to 160 kVp

Reconstruction diameter above 200 mm

Contrast intensity: Minimum opacification the in the main pulmonary artery (mPA) = 180 HU
(Hounsfield units)

Contrast timing: Minimum opacification ratio between the mPA and the ascending aorta = 0.95

Soft tissue reconstruction kernel

2.3. The Ground Truth

Two U.S. board certified expert radiologists (DC and BW), blinded to each other,
proceeded with the visual analysis of the selected chest CTA datasets to determine whether
there was (or not) a suspected PE on the CTAs. Positive cases were considered when
any acute or chronic occlusion (marginal or endoluminal filling defect) was seen within
the main, lobar, interlobar, and/or segmental arteries only, since the occlusions of the
subsegmental arteries were not targeted by the software. Consequently, if the operators
noticed only the presence of occlusions of the subsegmental arteries, they were asked to
label the case as being negative. In the case of discrepancy between both radiologists, a
third U.S. board-certified radiologist (PC) reviewed the axial CTA series. The final ground
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truth (presence or absence of PE) was established by majority consensus. Additionally,
the operators were asked to report any confounding condition (i.e., streak artifact, motion
artifacts, presence of tumor, pleural effusion, catheter etc.) if observed.

2.4. Post-Processing

The next step consisted of processing the same selected anonymized dataset by a U.S.
Food and Drug Administration (FDA) cleared and CE-marked AI-powered application for
suspected PE triage and prioritization, named CINA-PE (v1.0.3, Avicenna.AI, La Ciotat,
France), which is the subject of the current standalone performance validation study. All
received data were automatically processed by the application, and notifications of the
suspected findings (if any) were automatically displayed along with the image series
information. No visualization of the data, or any interpretation of the displayed images
was required for this step analysis. The results were automatically computed and collected
for analysis. The evaluations were performed blind, without access to the results of the
U.S. board-certified radiologists’. For all CTA cases, the notification time, time between
the end of the DICOM reception (made available for PE image processing), and the end of
processing (positive or negative identification) were measured.

2.5. Statistical Analysis

The comparison between the results provided by the U.S. board-certified radiologists
and those automatically computed by CINA-PE was performed according to the numbers of
the true positive (TP), true negative (TN), false positive (FP) and false negative (FN) values.
Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve
(ROC AUC) were computed for the entire cohort. The 95% confidence intervals (95% CI)
were calculated for sensitivity and specificity using the exact binomial distribution (Clopper–
Pearson). The lower bound of the two-sided 95% CI were compared to a performance goal
of 80% for sensitivity and specificity. Furthermore, the Matthews correlation coefficient
(MCC) was calculated to measure the quality of binary classifications, which generates a
high score only if the binary predictor is able to correctly predict the majority of positive
and negative data instances, and returns a value between −1 and +1, where a coefficient of
+1 represents a perfect prediction.

Positive and negative predictive values were also computed using sensitivity and
specificity with varying prevalence values (from 10% to 50%, increment of 5%).

A stratified statistical analysis on the imaging acquisition parameters (scanner makers,
number of detector rows and slice thickness) and the patient groups (age, sex, and U.S
regions) was also calculated (Supplementary Materials—Table S1).

Additionally, PE prioritization and triage effectiveness (mean ± SD, lower and upper
95% CI limits, median, minimum, and maximum values) were evaluated by the standalone
per-case processing time of the device.

3. Results
3.1. Data Distribution

The mean ± SD age of the 387 patients included in the performance study was
62.5 ± 16.3 y/o (min = 19 y/o and max = 90 y/o). Male and female populations were
almost equally distributed (53% and 47%, respectively). The clinical data were acquired in
228 cities, located in 43 different states. For stratified analysis, the 387 cases were grouped
by U.S. regions (Pacific, Continental, Northeast, and Southeast). The CTA examinations
were performed on 41 different scanners including 17, five, 14, four, and one different
models from GE Healthcare, Philips Healthcare, Siemens Healthinners, Canon Medical
Systems Corporation (formerly Toshiba), and Philips-Neusoft Medical Systems (PNMS),
respectively. The number of detector rows varied from 8 to 320. For 25 (6.5%) cases, the
number of detector rows was not available. All data (100%) had slice thickness values
lower or equal to 2.5 mm, as recommended for an optimal use of the PE triage application.
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3.2. Ground Truth Results

Among the 387 included CTA cases, one U.S. board-certified radiologist (BW) assessed
192 cases as being positive and 195 as being negative, whereas the second U.S. board-
certified radiologist (DC) annotated 188 cases as being positive and 199 as being negative
for the same cohort. Disagreements were observed between both operators for 30 (7.8%)
cases (very good inter-rater agreement was computed according to Cohen’s Kappa = 0.84
[95% CI: 0.79–0.89]). After a review of the discrepant cases by the third radiologist (PC),
the ground truth established by majority consensus was 186 (48.1%) positive and 201
(51.9%) negative cases. The distribution of the PE cases in terms of positives and negatives
for different categories (i.e., scanner makers, patient age and sex, U.S. regions, etc.) are
presented in Supplementary Materials—Table S1.

3.3. Sensitivity, Specificity, AUC, Accuracy, and MCC

The AI-powered algorithm achieved its primary endpoint of lower 95% CI bounds
≥80% for sensitivity and specificity. As presented in Table 2, the sensitivity was 91.4% [95%
CI: 86.4–95.0%], the specificity was 91.5% [95% CI: 86.8–95.0%], and the area under the
receiver operating characteristic curve (AUC) was 0.92 [95% CI: 0.88–0.94] (p < 0.0001). The
ROC curve is illustrated in Figure 1. Among the 387 tested data, 354 cases provided no
difference between the operators’ visual assessments (ground truth) and the automatically
computed results provided by the application (Figure 2), leading to an accuracy of 91.5%
[95% CI: 88.2–94.1%] (Table 2). The MCC was 0.83, which is a factor of a very good
prediction.

Table 2. Statistical findings for CINA-PE.

Statistical Findings

TP 170 Sensitivity
[95% CI]

91.4%
[86.4–95.0%]

FN 16 Specificity
[95% CI]

91.5%
[86.8–95.0%]

TN 184 Accuracy
[95% CI]

91.5%
[88.2–94.1%]

FP 17 AUC
[95% CI]

0.92 *
[0.88–0.94]

* Significance level p (area = 0.5) < 0.0001.
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(filling defect within the arterial lumen), correctly detected by the CINA-PE software considered as a
true positive case. Top (a): The red arrow shows the clot within the arterial lumen. Bottom (b): Axial
image targeted on the right lower lobe.

There were 16 FNs with a miss rate for PE of 8.6% (16/186 positive cases). Among
them, six corresponded to small chronic PEs. The location and cause of the other FN cases
are reported in Supplementary Materials—Table S2. Among these 16 FN cases, three were
a cause of disagreement between the radiologists in charge to provide the ground truth,
with huge difficulty to visualize the clots on the images. Several missed PEs were at the
limit of subsegmental arteries and close to the partial volume effect artifacts (Figure 3).
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Figure 3. Case of the false negative response of the algorithm in the left upper lobe. Top (a): Axial
image showing excellent opacification of pulmonary arteries. The red arrow shows the small filling
defect within the termination of the segmental artery just close to the origin of subsegmental arteries.
Note the presence of bilateral pleural effusion. Bottom (b): Axial image targeted on the left lung
illustrating the presence of PE.

A total of 17/201 (8.5%) cases were false positives. Among them, six cases were
complicated cases and were the subject of disagreements between the experts. Six PEs
were correctly detected within subsegmental arteries, but these were the cases considered
as “negative” by the readers, since the application was not designed/trained to flag sub-
segmental arteries. The other false positives were due to the presence of important noise,
streak and/or motion artifacts (Figure 4), or the partial volume effect artifact. The location
and cause of the false positives are reported in Supplementary Materials—Table S3.
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3.4. Positive and Negative Predictive Values

Positive and negative predictive values with varying prevalence values (from 10 to
50%, increment of 5%) are provided in Table 3. The negative predictive values exceeded
91% and varied from 91.4% for a PE prevalence of 50% to 99.0% for a prevalence of 10%.
The positive predictive values ranged between 54.6% for a prevalence of 10% and 91.5% for
a prevalence of 50%, and exceeded 82% for a prevalence higher than 30%.

3.5. Stratified Analysis

The stratifications are provided for the subgroups of imaging acquisitions and scan
parameters (scanner makers, number of detector rows and slice thickness), and the patient
groups (U.S. regions, patient age and sex). The algorithm performance across all subgroups
is presented in Table S1 (Supplementary Materials). The stratified statistical analysis
showed sensitivities between 86.7% and 100%, and specificities between 82.4% and 95.5%.
Therefore, for all categories, and for each group, the sensitivities and specificities were
higher than 82%.
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Table 3. Summary of positive and negative predictive values for CINA–PE application, completed by
varying prevalence values (from 10% to 50%, increments of 5%).

Prevalence (%) CINA—PE Positive
Predictive Value (%)

CINA—PE Negative
Predictive Value (%)

10 54.6 99.0

15 65.6 98.4

20 73.0 97.7

25 78.3 97.0

30 82.2 96.1

35 85.3 95.2

40 87.8 94.1

45 89.8 92.9

50 91.5 91.4

3.6. Time-to-Notification

The application was run with the following hardware specifications: CPU: 8 threads
at 3.0+ GHz and RAM: 16 GB. Time-to-notification (TTN) was calculated for all 387 cases.
The mean TTN ± SD was 43.6 ± 9.9 s with 42.6 and 44.6 s for the lower and upper 95% CI
limits, respectively. The median value was 41.7 s. The minimum and maximum TTN were
26.2 and 82.0 s, respectively.

4. Discussion

We conducted a retrospective, multicenter, and blinded study to validate the stan-
dalone performance of a new AI-powered application for suspected PE triage and prioriti-
zation on chest CTA images and to test its generalizability. The data came from multiple
U.S. clinical sites acquired on five different scanner makers and 41 different scanner models.
They included 186 (48.1%) positive PE cases. This validation study focused on assessing
the standalone diagnostic performance of the algorithm when compared to the ground
truth established by three U.S. board certified expert radiologists. The results showed an
accuracy of 91.5% when compared to the visual assessment of the operators. The sensitivity
and specificity exceeded 91% with a ROC-AUC of 0.92. In addition, the TTN ranging
between 26 and 82 s was well-adapted for practical use in emergency radiology.

According to the literature, other DL solutions achieved performances inferior or simi-
lar to those of CINA-PE, but with important limitations. Indeed, Ajmera et al. developed a
2D segmentation model consisting of U-Net architecture to detect PEs on CTAs. They tested
the model performance on a single external dataset consisting of CTAs from 251 patients
of whom 55 presented PE. Sensitivity and specificity were 80% and 74% respectively with
an accuracy of 0.76 [25]. Huang et al. developed and evaluated an end-to-end DL model
capable of detecting PE using the entire volumetric CTA imaging examination. This model
achieved an AUC of 0.84 for automatic PE detection on the hold out test set and 0.85 AUC
on the external datasets [20]. Liu et al. trained a DL model on the CTAs of 590 patients (460
with PE and 130 without PE) for the segmentation of the clots. Validation was performed
on an in-house dataset made of 288 patients (186 with PE and 102 without PE). The AUC
was 0.92, the sensitivity was 94.6%, but the specificity was only 76.5% [22]. Huhtanen et al.
also developed a DL model trained and validated on 600 CTAs, and tested their model
on 200 CTAs. The model achieved good performances (AUC 0.94, sensitivity 93.5% and
specificity 86.6%). However, they only used data from a unique institution and the majority
of the data was acquired with CT scanners from one vendor [24]. Finally, Weiker et al.
trained and validated a DL solution comprising a Resnet architecture (Briefcase, Aidoc
Medical) on 28,000 CTAs acquired at various institutions for automatic PE prioritization
and triage. The diagnostic accuracy, measured on a test dataset including 232 positive
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and 1233 negative examinations was high with a sensitivity of 92.7% and a specificity of
95.5% [23]. However, the dataset selection for the test was made from a single institution,
missing the evaluation of potential generalizability. On the other hand, in a more recent
publication, investigators used the Briefcase software to retrospectively assess the presence
or absence of PE on CTA examinations performed in various emergency departments and
sent to interpretation centers of three French cities (Bordeaux, Lyon, and Marseille), thus
reinforcing the validation of the algorithm [27].

The objective of CINA-PE is to detect acute PE on CTAs. However, even if chronic PE
is not generally an urgent finding that warrants immediate triage or an immediate need to
treat the patient, particular attention must be paid for “chronic PEs”, which may be missed
by the application as in six cases of our series, especially in the presence of acquisition
artifacts. The other FNs observed in our study were difficult cases with PE locations close
to the partial volume effect artifacts, at the limit of subsegmental arteries, with bad quality
of the image acquisitions, or in the case of complete occlusion of the artery.

As the CINA-PE application was not trained to flag subsegmental arteries, the cases
of subsegmental PEs detected by the algorithm and confirmed by the radiologists were
considered as false positives. Indeed, as reported by Carrier et al., the subsegmental pul-
monary embolism diagnoses identified by CTA are unlikely to be clinically relevant and
may not be worth diagnosing, provided that there is no evidence of deep vein thrombo-
sis [28]. The other FP cases also reported in the literature [23,24] were due to the partial
volume effect with hilar lymph nodes, pulmonary veins, or streaks of beam-hardening
artifacts. Consequently, any positive result detected by the algorithm leads to an automatic
notification for the radiologist who has to determine the quality of images and to decide if
the case is positive, negative, or indeterminate with an option of additional investigations.

In clinical practice, the majority of CTAs performed for suspicion of PE are
negative [29–31]. According to the literature, the yield of positive cases varies from less
than 10 to 20–30% [29,31–33]. As prevalence has a strong influence on positive and negative
predictive values, this might translate into an application site-dependent performance.
When the prevalence values varied from 10% to 30% in our study data, the extrapolated
positive predictive value varied from 54.6% to 82.2% while the negative predictive value
moved from 99% to 96.1%. In all cases of positive results detected by the algorithm, the
radiologist was informed by an automatic notification, then had to review the images
flagged by the software and decide between TP and FP. For the cases not flagged by the
algorithm, they were ultimately reviewed through the standard of care workflow without
interruption.

The main clinical usefulness of the proposed DL-based solution is currently the priori-
tization of CTAs detected as positive for PE for an urgent and prompt interpretation by the
radiologist. This is particularly beneficial when the workload increases in emerging settings.
Beyond this primary objective, such automated triage and prioritization application could
potentially improve the radiologist’ performance and ultimately result in better patient
clinical outcomes. However, the potential benefit of using this application to improve the
performance of radiologists in diagnosing PE on CTAs remains to be assessed. Hence, our
next objective step will be to compare the diagnostic performances of the AI-based device
alone and radiologists alone with those of radiologists with full access to the AI output
during their practice.

Our study presented some limitations. First of all, a direct comparison between the DL
algorithm and the performance of the radiologists was not carried out. Second, we did not
use a multitask DL approach like that of other investigators who developed a two-phase
multitask learning method that could recognize the presence of PE and its properties as
the position, whether acute or chronic, and the corresponding right-to-left ventricle ratio,
thereby reducing FN diagnoses [34]. Furthermore, we did not integrate both clinical and
imaging data as Huang et al. did, who developed different multimodal fusion model
architectures that were capable of utilizing both pixel data from CTAs and clinical patient
data from the electronic health record to automatically classify PE cases [35].
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Key Points:

1. To help radiologists to prioritize exams with a high suspicion of pulmonary embolism
(PE), a deep learning (DL) algorithm was trained on 4795 CT angiograms from multi-
ple U.S. clinical centers and adequately distributed in terms of vendors, patient age,
slice thickness, and kVp.

2. In a retrospective, multicenter, and blinded standalone validation study, the DL
algorithm achieved an area under the receiver operating characteristic curve (AUC)
of 0.92 [95% CI: 0.88–0.94] (p < 0.0001).

3. Both the training and validation of the algorithm on data from multiple clinical sites
through the U.S. and acquired on multiple scanner models promotes the generaliz-
ability of its use.

5. Conclusions

The CINA-PE AI-powered application developed to prioritize suspected PE on CTAs
for immediate reading by radiologists was trained and validated on multicentric real-
world data adequately distributed in terms of vendors, CT scanner models, patient age
and sex, slice thickness, and KVP. The validation phase of CINA-PE achieved a high
accuracy (0.92 AUC) to detect suspected acute PEs on CTAs. The great heterogeneity of
datasets used for both training and validation of the DL-based software should guarantee
enough robustness for generalization of its use. The potential clinical benefit of using such
an automatic PE detection system to improve the performance of the radiologists, and
ultimately result in better patient clinical outcomes, remains to be assessed.
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