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A Bayesian nonparametric analysis for zero-inflated multivariate 
count data with application to microbiome study

Kurtis Shuler1, Samuel Verbanic2, Irene A. Chen2, Juhee Lee3

1Sandia National Laboratories in Albuquerque, Albuquerque, NM, USA

2Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 
Los Angeles, CA, USA

3Department of Statistics, University of California Santa Cruz, Santa Cruz, CA, USA

Abstract

High-throughput sequencing technology has enabled researchers to profile microbial communities 

from a variety of environments, but analysis of multivariate taxon count data remains challenging. 

We develop a Bayesian nonparametric (BNP) regression model with zero inflation to analyse 

multivariate count data from microbiome studies. A BNP approach flexibly models microbial 

associations with covariates, such as environmental factors and clinical characteristics. The model 

produces estimates for probability distributions which relate microbial diversity and differential 

abundance to covariates, and facilitates community comparisons beyond those provided by simple 

statistical tests. We compare the model to simpler models and popular alternatives in simulation 

studies, showing, in addition to these additional community-level insights, it yields superior 

parameter estimates and model fit in various settings. The model’s utility is demonstrated by 

applying it to a chronic wound microbiome data set and a Human Microbiome Project data set, 

where it is used to compare microbial communities present in different environments.

Keywords

Bayesian nonparametrics; dependent Dirichlet process; high-throughput sequencing; microbiome; 
multivariate count; normalization; operational taxonomic unit; zero inflation

1 | INTRODUCTION

The statistical community has increasingly focused on developing techniques to model 

high-throughput sequencing (HTS) data produced by microbiome studies. Although HTS 

data has been successfully used to profile complex microbial communities, analysis of such 

data remains challenging. In this work, we focus on the analysis of multivariate count 

data with excess zeros, in particular, read count data of taxa produced by 16S ribosomal 

RNA (rRNA) sequencing. As a motivating application, we consider the chronic wound 
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microbiome data in Verbanic et al. (2019), which consists of microbiome samples taken 

from human subjects’ chronic wounds, both pre- and post-debridement, as well as from their 

healthy skin. Verbanic et al. (2019) studied changes to the chronic wound microbiome by 

debridement, which is known to be an effective treatment for chronic wounds. We present 

a Bayesian nonparametric regression model that includes a submodel for zero inflation and 

flexibly accommodates covariates such as environmental factors and clinical characteristics 

for differential abundance analysis. The model provides an inferential framework to gain 

further insights into complex microbial communities.

In microbiome studies, samples are taken from some environment of interest, and the 

16S rRNA gene in DNA extracts of the samples is amplified and sequenced using HTS. 

Counts of the resulting sequence reads are produced by comparing the reads to a database 

and grouping them into operational taxonomic units (OTUs) that exhibit some degree of 

similarity. The data from each sample are summarized in a multivariate vector of OTU 

counts. These counts commonly exhibit zero inflation and overdispersion, making their 

analysis more complicated. Standard errors will be underestimated if the model does 

not properly accommodate overdispersion. Failing to account for zero inflation can bias 

estimation of the relationships between covariates and OTU abundance, and lead to incorrect 

predictions. Total counts in the samples vary due to experimental artefacts such as the 

sequencing depth, and the raw counts do not reflect the absolute microbial abundance in the 

samples. Consequently, the OTU counts need to be normalized for meaningful comparison 

across samples, and determining whether a zero count is due to an OTU truly being absent 

from the environment versus a detection failure is not straightforward.

Various statistical models haven been proposed for microbiome data analysis that take 

these features into account. Zero-inflated count models, including zero-inflated Poisson 

(ZIP) and zero-inflated negative binomial (ZINB), are common choices to address the 

problem of excessive zeros. To detect associations or differential abundance, these models 

generally relate OTU abundance to a set of covariates by modelling the mean counts 

or some transformation of the counts via a link function. Some of these models, such 

as Chen and Li (2016) analyse each OTU individually, while many more recent models 

analyse OTUs jointly through some hierarchical structure. Hierarchical models allow for 

borrowing strength across taxa for enhanced estimation of covariate effects or increased 

power to detect differential abundance. In this vein, Jonsson et al. (2018) model the counts 

directly using a ZIP model with OTU and sample specific random effects to account for 

overdispersion. Lee et al. (2018) use a ZIP model with spike-and-slab priors for variable 

selection on regression parameters related to taxa abundances and zero inflation. This model 

also includes a multivariate random effect to account for interdependence among OTU 

counts in a sample. Paulson et al. (2013) developed a zero-inflated Gaussian mixture model, 

called metagenomeSeq, on log-transformed counts after adding the value of 1 to avoid 

numerical problems. Sohn et al. (2015) proposed a similar approach, called RAIDA, which 

first selects an OTU that has non-zero counts in all samples as a common divisor and uses 

a zero-inflated log-normal model on the ratios of OTU counts to the count of the chosen 

divisor. See Sankaran and Holmes (2018), Tang and Chen (2018) and Kaul et al. (2017) 

among many others for more examples of using zero inflated models. We also note that there 

are statistical models that account for relationships across taxa using a latent factor model or 
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a graph in modelling taxa abundances. For example, see Grantham et al. (2020), Mao et al. 

(2020) and Ren et al. (2020). But those models do not address a potential problem of zero 

inflation.

We develop a Bayesian nonparametric multivariate regression model with zero inflation that 

enables assessment of taxa richness and diversity that potentially varies with covariates. We 

use a ZINB distribution for OTU counts and assume an OTU count is either equal to zero 

or follows a NB distribution. The ZINB model properly accounts for the overdispersion 

and excess zeros that are common in microbiome data. We build nonparametric regression 

prior models on the probability of an OTU count being zero and the mean count of an 

OTU to study the effects of covariates x on microbial communities. The probit of the 

probability of an OTU count being zero, ξ, and the logarithm of the OTU’s differential 

abundance compared to the baseline counts, θ, are assumed to follow unknown distribution 

functions indexed by x, Fx
ξ and Fx

ξ, respectively. We use a dependent Dirichlet process (DDP) 

(MacEachern, 1999, 2000), a flexible nonparametric Bayesian model to model Fx
ξ and Fx

θ. 

The DDP is a popular choice to model a set of random functions related through x. Our 

model is highly flexible with regard to the nature of the relationship of the covariates and 

an OTU’s abundance and presence. In addition to inference on the association of individual 

taxa with covariates through ξ and θ, Fx
ξ and Fx

θ provide community-level insights related to 

alpha-diversity and species evenness, which distinguishes our method from other commonly 

used models for differential abundance analysis. To improve the inference on Fx
ξ and Fx

θ, 

we construct an elaborate model for the baseline abundance of OTUs in samples. The 

baseline count of an OTU in a sample is modelled as a function of a sample-specific size 

factor and an OTU-specific baseline abundance factor to account for count variation related 

to sequencing depth and different baseline abundances of OTUs. The baseline abundance 

factor of an OTU is shared by samples from a group, such as the subject or location 

where each sample was collected, to reflect the dependent taxa abundance levels shared 

across these samples. These two factors constitute a basis for the estimation and meaningful 

interpretation of ξ and θ.

In the remainder of the paper, we describe the model and its applications. Section 2 

describes the proposed Bayesian nonparametric multivariate NB regression model with 

zero-inflation (called ‘BNP-ZIMNR’) and Section 3 has results from the model applied to 

some simulation studies. Section 4 has results from the model applied to a chronic wound 

microbiome data set and an additional human microbiome data set collected from NIH 

Human Microbiome Project, and Section 5 concludes with some discussion of the results 

and areas of future research.

2 | PROBABILITY MODEL

2.1. | Sampling model

Assume that non-negative integer counts Y ij are observed for OTU j in sample i, j = 1, …, J
and i = 1, …, n and are organized in a n × J table, Y = Y ij . Let a sample have a categorical 

covariate xi ∈ X = 1, …, K  and a grouping factor ui ∈ U = 1, …, M . In our motivating 

data set, skin type provides three levels of a covariate, that is, X = 1, 2, 3 . The samples 
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were taken from 18 subjects, which we use as a grouping factor, U = 1, …, 18  with M = 

18. Although we use a setting with one categorical covariate to present the model, it can 

be easily extended to accommodate more factors and continuous covariates. We use a ZINB 

regression model. For OTU count Y ij with covariate level xi and grouping factor ui,

Y ij ∣ ϵj, xi, μij, sj ∼indep ϵj, xiδ 0 Y ij + 1 − ϵj, xi NB μij xi, ui , sj , (1)

where δA( ⋅ ) is the Dirac measure at A and NB(μ, s) the negative binomial (NB) distribution 

with mean μ and dispersion parameter s (so the variance is μ + sμ2). The zero-inflated model 

in Equation (1) assumes that abundance is conditional on the presence of an OTU. 1 − ϵj, xi

is the probability of presence for OTU j in sample i, and is a function of covariate xi. 

With probability 1 − ϵj, xi  the NB generates counts, some of which can be zero. The model 

specification implies that a zero count can be produced in two ways. An OTU may truly be 

absent in a sample with xi. Conversely, zero counts may be produced for rare OTUs even 

when those OTUs are truly present if the sequencing effort is not sufficient to surface their 

presence. HTS data is commonly modelled using NB models, as in Equation (1), which 

are more flexible in accommodating overdispersion than their single-parameter Poisson 

counterparts, distributions for which the mean must be equal to the variance. Overdispersion 

parameter sj controls the amount of overdispersion, with larger sj indicating a greater amount 

of overdispersion, and the equivalent Poisson model with mean μij is recovered as sj 0. We 

let the overdispersion parameters sj ∼iid Log − Normal as, bs
2  with as and bs

2 fixed. The mixture 

model in Equation (1) can be represented with latent indicator variables δij ∈ 0, 1  for 

presence and absence of OTU j in sample i. We assume δij ∼indep Ber 1 − ϵj, xi , and let Y ij = 0

for δij = 0 and Y ij ∼indep NB μij xi, ui , sj  for δij = 1.

We decompose the mean abundance μij for OTU j present in sample i as follows: For sample 

with xi = k and ui = m,

log μij(k, m) = αjm + ri + θjk . (2)

A baseline abundance factor of OTU j for samples from group m, αjm accounts for different 

baseline abundances of OTUs. It is shared by the samples from group ui = m and induces 

dependence among Y ij with ui = m. ri is a sample specific normalization factor to account 

for different library sizes across samples. Parameters αjm and ri together form the baseline 

count of OTU j in sample i. It is common that ri is set to the logarithm of the total 

counts Y i• = ∑j = 1
J Y ij as an offset variable (e.g. see Lee et al. (2018) and Zhang et al. 

(2017)). We instead let ri be random, which enables full model-based inference with 

appropriate uncertainty quantification. θjk in Equation (2) represents a multiplicative change 

in abundance of OTU j for covariate level k compared to its baseline abundance. A value of 

θjk close to zero implies that the abundance of an OTU is close to the baseline abundance, 

that is, non-differentially abundant, and positive or negative values of θjk imply low or high 

abundance of OTU j in a sample with xi = k, respectively. Comparison of θjk across k can be 

used to infer differential abundance of OTU j. Similarly, comparison of θjk across j provides 
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insights on relative abundances of OTUs in a sample with level k, such as species diversity 

compared to the baseline.

Using regression models for εjk and θjk is common to quantify covariate effects on the 

occurrence of excess zeros and differential abundances. Using our motivating data set as 

a specific example, one may choose one k′ of the levels as a reference and let θjk′ = 0. 

θjk, k ≠ k′ is then interpreted as an effect size relative to the abundance of OTU j under the 

reference. A potential drawback of this approach is that θjk, k ≠ k′ cannot be meaningfully 

estimated if the OTU is absent under the reference level. A common workaround to address 

this issue is to replace zeros with a small value, known as pseudo count, if an OTU has zeros 

in all samples of the reference level. However, this arbitrary modification of the data may 

result in biased inference. On the other hand, the decomposition of μ in Equation (2) can 

avoid potential biases because θjk represents differential abundance compared to the baseline 

abundance ri + αjm. The baseline count of an OTU can be estimated if an OTU exists for 

at least one k. We let θjk = 0 if an OTU is present only for one level of k so that θjk can 

be fully interpreted. For εjk, we use a probit link function, Φ−1 εjk = ξjk, where Φ−1( ⋅ ) is a 

inverse cumulative distribution function of the standard normal distribution. In the presence 

of a high proportion of zeros, differentiating the event δij = 0 from the event δij = 1 for the 

cases of Y ij = 0 is challenging. Specifically, more than 65% of the OTU counts are equal 

to zero in two conditions for our application in Section 4. As discussed in Agarwal et al. 

(2002), in such cases including random group effects for ε may result in unstable model 

fitting and computational intractability. For this reason, we let εjk be a function of xi only. 

The dependence of εjk on xi only is in contrast with μij, which depends on both ui and xi. 

If non-zero counts are observed for most of Y ij or enough samples are obtained from each 

group, group-specific random effects could be included in the model for ε similar to the 

approach in Jonsson et al. (2018) to account for potential heterogeneity between groups. 

Simulation studies in Section 3 show that the proposed model without group random effects 

for ε performs reasonably well even when there is mild between-group heterogeneity in 

ε or the zero inflation levels are not very high. In the following, we consider a flexible 

BNP approach to model ξjk and θjk to improve inference on presence/absence and differential 

abundance.

2.2 | Prior

We assume ξjk ∼iid Fk
ξ and θjk ∼iid Fk

θ, and use a BNP approach to build a model for Fk
ξ and Fk

θ. 

In addition to inference on individual OTUs through ξjk and θjk, their distributions Fk
ξ and 

Fk
θ capture useful information relating microbial communities with different levels of the 

covariate, and provide biological insights into community changes in k. In particular, Fk
ξ

describes the distribution of the probabilities of OTUs in a community under condition x, 

and is closely related to species richness (number of different species in a community). For 

Fk
ξ that assigns more probability mass to small values, OTUs in a sample with xi = k are 

more likely to be present and have non-zero counts, potentially implying higher microbial 

species richness for the sample. Similarly, Fk
θ captures the distribution of differential 

abundance of OTUs present in a sample with xi = k. If Fk
θ is greatly concentrated around 
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zero, many OTUs in a sample with xi = k are not differentially abundant compared to 

their baseline counts. Comparison of Fk
ξ and Fk

θ across k tells how community composition 

changes by covariates. To build flexible prior models for Fk
ξ and Fk

θ that are possibly related 

across different k, we consider a dependent Dirichlet process (DDP) model in a Dirichlet 

process (DP) mixture model. For OTU j in a sample with xi = k, we assume

ξjk ∼iid Fk
ξ = ∑

ℓ = 1

∞
ψℓ

ξN ξkℓ
⋆ , σξk

2 and θjk ∼iid Fk
θ = ∑

ℓ = 1

∞
ψℓ

θN θkℓ
⋆ , σθk

2 . (3)

The mixture locations ξkℓ
⋆  and θkℓ

⋆  depend on k and we let ξkℓ
⋆ ∼iid N ξ⋆, τξ

2  and θkℓ
⋆ ∼iid N θ⋆, τθ

2 . 

The covariate-independent weights ψℓ
χ, χ ∈ θ, ξ  take the form ψℓ

x = vℓ
xΠℓ′ = 1

ℓ − 1 1 − vℓ′
χ  with 

vℓ
χ ∼iid Be 1, ρχ . That is, the ‘single-p ‘ DDPs that assume predictor-independent weights are 

used in Equation (3) as priors over the distributions of the mixture locations. MacEachern 

(1999, 2000) proposed the DDP to model related random probability distributions. When 

flexible point mass processes are considered for θℓ
⋆ = θxℓ

⋆ , x ∈ X  and ξℓ
⋆ = ξxℓ, x ∈ X , the 

‘single-p’ DDP has full weak support, implying that the prior model is flexible enough 

to generate sample paths sufficiently close to any probability distribution. DDP and its 

variations have been successfully used to model related probability distributions in many 

applications including ANOVA (De Iorio et al., 2004), survival (De Iorio et al., 2009; 

Jara et al., 2010), time series analysis (Griffin & Steel, 2011; Nieto-Barajas et al., 2012) 

and spatial modelling (Gelfand et al., 2005) among many others. The DDP mixture 

formulation in Equation (3) allows us to flexibly specify and, after fitting the model, 

analyse and compare, Fx
θ and Fx

ξ without restrictive parametric assumptions about their 

functional forms. We assume σχk
2 ∼iid IG aσ

χ, bσ
χ , χ ∈ ξ, θ . The model can be further extended 

to accommodate additional categorical/continuous covariates; for example, if the effects of 

additional covariates can be reasonably assumed to be simple, the additional covariates can 

be included by adding a conventional regression function in Equation (2), similar to the 

constructions in edgeR (Robinson et al., 2010) and DESeq2 (Love et al., 2014). A similar 

extension can be used to accommodate additional covariates in modelling ξ. When a fully 

nonparametric approach is more desirable, a stochastic process such as Gaussian process 

prior can be placed on on θℓ
⋆(x) and ξℓ

⋆(x) in Equation (3) as a function of x. Thus, the 

dependence of Fx
χ, χ ∈ θ, ξ , is induced over a continuum of covariates and the model can 

capture more general relationships between Fx
χ and x. We refer the reader to MacEachern 

(1999, 2000) for details.

Parameters ri and αjm form the baseline count of OTU j in a sample with ui = m, and serve as 

an ‘overall mean’. Observe that the parameters in Equation (2) are not identifiable due to the 

multiplicative structure, E Y ij ∣ δij = 0 = eri + αjm + θjk. We place constraints on the distributions 

of both ri and αjm to circumvent the identifiability issue in estimating the baseline counts, 

exp ri + αjm . More importantly, the constraints allow parameters of primary interest θjk and 

Fk
θ to be identified. Specifically, we use mean-constrained priors with a mixture-of-mixtures 

structure (Li et al., 2017) for ri and αjm,
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ri
iid ∑

ℓ = 1

Lr

ψℓ
r wℓ

rN ηℓ
r, ur

2 + 1 − wℓ
r N vr − wℓ

rηℓ
r

1 − wℓ
r , ur

2 ,

αjm ∼iid ∑
ℓ = 1

Lα

ψℓ
α wℓ

αN ηℓ
α, uα

2 + 1 − wℓ
α N vα − wℓ

αηℓ
α

1 − wℓ
α , uα

2 ,
(4)

where vχ, χ ∈ r, α  are the distribution’s fixed, prespecified mean constraints, and ψℓ
χ and 

wℓ
χ are mixture weights with ∑ℓ = 1

Lχ
ψℓ

χ = 1 and 0 < ψℓ
x, wℓ

χ < 1. Although mean-constrained, 

the mixture-of-mixture formulation provides significant flexibility, as it can accurately 

characterize a wide range of distributions, including multi-modal and skewed distributions. 

Lee and Sison-Mangus (2018) and Shuler et al. (2019) used the distributions in Equation 

(4) for model based normalization in similar settings, and their results indicate the baseline 

abundance and covariate effects can be estimated without issues related to identifiability. 

In contrast to using plug-in empirical estimates for normalizing factors, the flexible 

model-based approach can further improve estimation of ξjk and θjk, and thus enhance 

estimation of Fk
ξ and Fk

θ. We follow Li et al. (2017) and set υr = 0, which can be 

interpreted as on average no scaling adjustment; although other approaches are available, 

such as using an empirical estimate like in Shuler et al. (2019) or setting the constraint 

using prior information if it is available. We use an empirical approach to set υα. We 

compute ri = log Y i • /Y • • − 1
N ∑i′ log Y i′ • /Y • •  with Y • • = ∑i, jY ij as mean zero empirical 

estimates of ri and set vα = ∑i, j ∣ Y ij > 0 log Y ij − ri / ∑i, j1(Y ij > 0) . Inference on θ and 

ε is not sensitive to specification of υr and υα (Lee & Sison-Mangus, 2018; Shuler et 

al., 2019). Our simulation studies and real data analyses also show robustness of inference 

to different specifications of υr and υα. We place a Dirichlet prior on the outer mixture 

weights and a beta prior on the inner mixture weights, letting ψℓ
χ = ψ1

χ, …, ψLχ
χ ∼ Dir aψ

χ  and 

wℓ
χ ∼iid Be aw

χ, bw
χ , χ ∈ r, α , where aψ

χ = aψ1
χ , …, aψ, Lx

χ , aw
χ and bw

χ are fixed hyperparameters. We 

let ηℓ
χ ∼iid N vχ, bηχ

2  with bηχ2  fixed.

2.3. | Posterior computation

Let θ = sj, δij, ri, αjm, ξjk, θjk, χkℓ
⋆ , vℓ

χ, σχk
2 , χ ∈ θ, ξ , ψℓ

χ, wℓ
χ, ηℓ

χ, χ ∈ r, α  denote the vector of 

all unknown parameters. The joint posterior distribution is P(θ ∣ Y , x, u) ∝ P(Y ∣ θ, x, u)P(θ). 
We use standard Markov chain Monte Carlo (MCMC) methods consisting of Gibbs and 

Metropolis steps to draw samples from the posterior distribution. As is standard in mixture 

modelling we introduce auxiliary variables to indicate the mixture components from which 

the parameters of interest belong. We add auxiliary variables of this type to aid in the 

posterior computation for ri, αjm, θjk, and ξjk. For computational convenience, when fitting 

the model we approximate the DDP in Equation (3) by truncating the number of mixture 

components of Fk
χ to Lχ, χ ∈ ξ, θ . The final weight ψLx

χ = 1 − ∑ℓ = 1
Lχ − 1ψℓ

χ is set to ensure Fk
ξ

is proper. With large enough Lχ the truncated process produces inference almost identical 

to that with the infinite process (Ishwaran & James, 2001; Rodriguez & Dunson, 2011). 

As discussed in Rodriguez and Dunson (2011) if there is discrepancy between the posterior 
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distributions under the truncated and infinite processes, the model is typically sensitive to the 

choice of Lχ. We examined the posterior distribution of ψLχ
χ  and the sensitivity of the model 

to a choice of Lχ. We found that the truncated process is robust to a choice of Lχ if Lχ is 

sufficiently large. We diagnose convergence and mixing of the described posterior MCMC 

simulation using trace plots and autocorrelation plots of imputed parameters. For both the 

upcoming simulation examples and the data analysis, we found no evidence of practical 

convergence problems. An R package for the model, bnpzimnr, is available at https://

github.com/kurtis-s/bnpzimnr. Details of posterior computation are given in Supplementary 

Section 1.

3 | SIMULATION STUDIES

To assess the performance of the proposed model, BNP-ZIMNR, we performed simulation 

studies and compared its performance to alternative models. We included a factor 

with three levels and simulated data for 100 OTUs from 20 subjects, that is, J = 

100, M = 20 and K = 3, resulting in n = 60 samples, a covariate xi ∈ 1, 2, 3 , 

i = 1, …, N and a grouping factor ui ∈ 1, …, 20 . We used Gaussian mixtures to set the 

simulation truth for Fk
ξ, TR and Fk

θ, TR, k = 1, 2, 3; let F1
ξ, TR = 0.6N( − 2, 0.25) + 0.4N( − 1, 0.5), 

F2
ξ, TR = 0.2N( − 0.5, 0.25) + 0.8N(0.5, 0.5) and F3

ξ, TR = 0.5N(0, 0.25) + 0.5N(1, 0.5). 
Similarly, we set to F1

θ, TR = 0.3N(3, 0.25) + 0.6N(2, 0.25) + 0.1N( − 1.5, 0.5), 
F2

θ, TR = 0.3N(2, 0.5) + 0.6N( − 1, 0.25) + 0.1N( − 2, 0.25) and 

F3
θ, TR = 0.3N(2, 0.5) + 0.35N( − 1, 0.25) + 0.35N( − 2, 0.25). Fk

ξ, TR and Fk
θ, TR are illustrated with the 

solid black lines in Figure 3. F1
ξ generally favours smaller values of ξjk, indicating greater 

species richness in level 1 than in the other levels. When an OTU is present in a sample 

with k = 1, it tends to have a value of θjk greater than zero, that is, a higher abundance. 

On the other hand, for levels k = 2, 3, OTUs are likely to be absent, and when they are 

present, their abundances are low with large probability. In a simulated data set, the three 

levels of xi approximately have 9%, 59% and 69% of Y ij being equal to 0, respectively. 

We drew ξjk
TR independently from Fk

ξ, TR and generated δij
TR ∼indep Ber 1 − ϵjk

TR  for a sample with 

xi = k, where ϵjk
TR = Φ ξjk

TR . If an OTU is present for two or more levels of the factor, that 

is, differential abundance can be meaningfully defined, then we drew θjk
TR from Fk

θ, TR. If an 

OTU is present for only one level θjk
TK = 0. Otherwise, θjk

TR is not defined. We simulated 

group factors αj, ui
TR ∼iid N(10, 1), normalization factors exp r1

TR , …, exp rN
TR ∼ Dir(5, …, 5) and 

dispersion parameters sj
TR ∼iid Log‐Normal −2, (1/10)2 . For (i, j) with δij

TR = 1, we simulated 

OTU counts Y ij using the NB distribution with mean μij
TR = exp αj, ui

TR + ri
TR + θj, xi

TR  and dispersion 

sj
TR. When δij

TR = 0, we set μij
TR = 0 and Y ij = 0.

Posterior Inference.

When fitting the model, we set the hyperparameters as follows: For the mean-constrained 

distribution of normalization factors ri, let vr = 0, Lr = 20, aψ
r = 1, aw

r = 5, bw
r = 5, ur

2 = 0.05
and bηr2 = 0.25. Similarly, for the group-specific baseline abundance of OUT j αjm, let υα be 

specified using the empirical approach described in Section 2.2, Lα = 150, aψ
α = 1, aw

α = 1, 
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bw
α = 1, uα

2 = 2 and bηα
2 = 1. For the DDP priors, we let ρθ = 1, θ⋆ = 0 and τθ

2 = 10. For the 

DDP prior of ξjk, we used ρξ = 1, ξ⋆ = 2 and τξ
2 = 1, which encourages a preference for a 

higher probability for zero inflation, but is still flexible enough to accommodate OTUs with 

little sparsity. For the mixtures’ kernel dispersions, we let aσ
χ = bσ

χ = 1, χ ∈ ξ, θ . We set 

the DDP truncation levels to Lθ = Lξ = 50. Finally, we used as = 0.3, bs
2 = 0.1 for the prior 

of OTU-specific dispersion parameters sj. To run the MCMC simulation, we used data to 

initialize the parameters. For example, we initialized ri with the empirical sample size factors 

ri used to set υr. Empirical proportions of zero counts, pjk = 1
M ∑i = 1 ∣ xi = k

n 1 yij = 0  were 

used to set initial values of εjk and ξkℓ
⋆ . We ran the MCMC for 70,000 iterations, discarding 

the first 20,000 iterations, and thinned to use every fifth sample, resulting in 10,000 samples 

from the posterior distribution. On a 3.2 GHz Intel i5–6500 CPU running Ubuntu Linux the 

MCMC took approximately 12 mins for every 5000 iterations of the MCMC.

We first examine the inference on species richness in samples with k. Recall that δij = 1
implies the presence of OTU j in sample i. We used posterior means of δij as their 

point estimates δ ij = P δij = 1 ∣ y . The model recovers the indicators for zero inflation 

well, as shown by the histograms of δ ij when δij
TR = 0 and 1 in Figure 1a and b, 

respectively. The model yields good estimates of ϵjk
TR, as seen in Figure 1c, which shows 

posterior estimates of εjk plotted against the simulation truth. Figure 2 shows the resulting 

posterior inference on θjk for individual OTUs. To account for zero inflation, we define 

κjk = 1 ∑i = 1; xi = k
N 1 δij = 1 > 0 , a binary indicator taking 0 if OTU j is absent in all 

samples from level k, or 1 otherwise. Note that θjk is defined only when κjk = 1. We 

incorporate κjk and compute point posterior estimates of θjk; θ jk = ∑b = 1
B κjk

(b) × θjk
(b)/∑b = 1

B κjk
(b), 

where b = 1, …, B indexes the posterior samples and κjk
(b) = 1 ∑i = 1 ∣ xi = k

N 1 δjk
(b) = 0 > 0 ⋅ θ jk

along with 95% credible intervals (CIs) are shown. The plots show that the model provides 

good estimates for differential abundance in different levels of the factor. The differences 

between the estimates and truth and CI lengths are greater for levels k = 2 and 3 because 

fewer non-zero counts are observed due to the high prevalence of absence. Panel (d) 

shows posterior estimates of κjk = 1
B ∑b = 1

B κjk
(b) when κjk

TR = 0 in the simulation truth. The plot 

illustrates the model does a good job of identifying the absence in factor levels and further 

enhances the estimation of θjk. Figure 3 shows posterior inference for communities through 

f k
ξ
 and f k

θ
. In each panel, the posterior estimates are shown by dashed coloured lines with 

shaded 95% pointwise CIs, and the simulation truth is shown in solid black. From the plot, 

the BNP regression approach flexibly captures non-Gaussian patterns such as bimodality 

and skewness in the distributions. Even for levels k = 2, 3, where many OTUs are not 

present, the model produces good estimates of fk
θ, potentially because it borrows information 

across different levels through the DDP as well as across different OTUs. We also examined 

estimates of baseline counts of OTU j in sample i, ri + αjm. These estimates are shown in 

Supplementary Figure 1. The posterior estimates recover the true baseline counts well. There 

is no indication that the model suffers identifiability problems.
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The model is complex and we performed prior robustness diagnostics. From the 

diagnostics, specification of the prior for ξk
⋆ may need careful attention. For a particular 

condition, the observed proportion of zero counts is commonly either 0 or 1. That is, 

pjk = 1
M ∑i = 1 ∣ xi = k

n 1 Y ij = 0 = 0 or pjk = 1, meaning for every subject in that condition an 

OTU count of 0 was observed, or alternatively, for every subject an OTU count > 0 was 

observed. For such cases, a wide range of small/large values of ξjk can almost equally 

well explain the observed pjk, and a large value of τξ
2 may result in undesirable inference 

on fk
ξ. We also re-fit the model with different values of the fixed parameters including 

Lr, Lα, Lθ and Lξ, and examined the robustness of the model. Changes in the posterior 

inference by specification of other parameters such as Lr, Lα, Lθ and Lξ are minimal. We 

did not observe evidence of convergence or mixing problems. In addition, the model shows 

robustness to the estimation of the baseline counts ri + αjm with different specifications of the 

fixed hyperparameter values. A discussion including more details of sensitivity analyses, the 

chain’s convergence and run-time is in Supplementary Section 2.

Comparison.

We used 100 simulated data sets to compare results of BNP-ZIMNR to those of alternative 

models: A Bayesian nonparametric multivariate regression model with NB (BNP-MNR), 

a Bayesian nonparametric multivariate regression model with fixed normalization factors 

(BNP-ZIMNR-FN), a Bayesian multivariate regression model (B-ZIMNR), the zero inflated 

overdispersed Poisson (ZoP) model (Jonsson et al., 2018), edgeR (Robinson et al., 2010), 

and DESeq2 (Love et al., 2014). BNP-MNR is similar to BNP-ZIMNR, but does not include 

the submodel for zero inflation in Equation (1). BNP-ZIMNR-FN likewise is similar to 

BNP-ZIMNR, but does not use the mean constrained priors for ri as in Equation (4). Rather, 

BNP-ZIMNR-FN uses fixed, plug-in estimates for ri, set to the logarithm of the total OTU 

counts for each sample. Unlike BNP-ZIMNR, B-ZIMNR does not utilize a Dirchlet Process 

Mixture (DPM) to model Fk
ξ and Fk

θ. Instead, B-ZIMNR assumes Fk
ξ and Fk

θ are single 

Gaussian distributions. ZoP is a Bayesian generalized linear model that uses a zero-inflated 

Poisson distribution for OTU counts, and beta and normal priors for the probability of being 

zero and the regression coefficients, respectively. Under ZoP, each Y ij has a random effect, 

that is, sample and OTU-specific random effects to handle overdispersion. EdgeR, one of 

popular likelihood based methods, uses a NB generalized linear regression approach. It uses 

OTU-specific plugin estimates for the normalization factors produced by an empirical Bayes 

strategy and analyses individual OTUs separately. DESeq2 is another popular likelihood 

based method which models counts using a NB log-linear model. EdgeR and DESeq2 do not 

include random effects for the group factor and do not account for the dependence among 

samples taken from the same subject. A primary difference between edgeR and DESeq2 is 

in the estimation of OTU-specific dispersion parameters sj. For more details, we refer to 

the papers. Although edgeR and DESeq2 were originally designed for gene count data, they 

have been successfully adapted for amplicon data and are frequently used for microbiome 

analyses (McMurdie & Holmes, 2014). For this reason, we include them in our comparison. 

ZoP, edgeR and DESeq2 set one level of a factor as a reference level to formulate the 

regression, and their regression coefficients represent differential abundance compared to the 
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abundance in the reference level. ZoP uses the pseudo count approach when all samples 

of the reference level have zeros. Both methods include library sizes Y i •  as plugin offsets 

for normalization. EdgeR has an option to use empirically pre-estimated sample size factors 

instead of Y i • , but we used their default option using Y i • .

For comparison, we fit each of the models and compared parameter estimates to their truth 

using root mean square error (RMSE). The different formulation for the regression model 

under ZoP, edgeR and DESeq2 precludes a direct comparison of their differential abundance 

estimates to θjk
TR. As an alternative, we arbitrarily set the reference to the first level k = 1 

and compare the model performances on the estimation of differences θjk − θj1, k = 2, 3. By 

default, DESeq2 produces regression coefficient estimates for log base 2 changes in the taxa 

abundance; for purposes of comparison to the other models, we adjust these estimates to be 

on the scale of the natural logarithm. The RMSE computed for δjk, θjk − θj1 and μjk is shown in 

Table 1a. For BNP-MNR, we used the posterior mean estimates of μij. as a point estimate μij. 

For the zero-inflated models, similar to θ  we computed μij = ∑b = 1
B δij

(b) × μij
(b)/B. BNP-ZIMNR 

outperforms the other methods in comparison for estimating δij and θjk − θj1 . BNP-ZIMNR 

is the best performer in terms of estimating μij, closely followed by B-ZIMNR and ZoP. 

Due to OTU and sample specific random effects under ZoP, it obtains good estimates of μij, 

but may tend to overfit the data, leading to worse estimates for θjk − θj1 , as is indicated by 

model comparison described later. The detrimental impact of excluding zero inflation can be 

seen by the much larger RMSE of μjk for BNP-MNR. The comparison of BNP-ZIMNR to 

BNP-ZIMNR-FN and B-ZIMNR indicates the model-based normalization and the use of a 

nonparametric approach to modelling of Fξ and Fθ improve inference under this simulation 

setting. Since selecting a level for the reference is arbitrary, we re-fit the data using a 

different level of the factor as the reference for ZoP, edgeR and DESeq2, and computed the 

RMSE of the differences in θjk. Table 1b illustrates the RMSE of θjk − θj3  with k = 3 instead 

of k = 1 as the reference level. Recall that level k = 3 has a higher degree of zero inflation 

than level k = 1 in the truth. The performances of ZoP, edgeR and DESeq2 degrade when 

using this sparser factor level as the reference, indicating bias in the estimation of θ due to 

using arbitrary pseudo counts. In contrast, the inference on θjk under BNP-ZIMNR and its 

variants do not depend on the choice of reference level.

For further comparison of model fit among the Bayesian models, the log pseudo marginal 

likelihood (LPML) and the deviance information criterion (DIC) were calculated for the 

Bayesian models. These metrics are summarized in Table 2a. Similar to other information 

criterion, DIC assesses model performance based on the model’s predictive accuracy with 

a penalty for model complexity (Spiegelhalter et al., 2002). Lower values of DIC are 

preferred. LPML is the sum of the logarithms of conditional predictive ordinates (Gelfand 

& Dey, 1994; Gelfand et al., 1992). It gives a measure of the leave-one-out cross validated 

posterior predictive probability, with higher values preferred. For more reliable comparison, 

we evaluated DIC and LPML based on the partially marginalized likelihood that integrates 

out random effects at the observation level for the ZoP (Millar, 2009). The table shows 

BNP-ZIMNR has improved model fit compared to the Bayesian competitors. DIC and 

LPML based on the partially marginalized likelihood indicate that BNP-ZIMNR fits the 
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data better, potentially implying overfit under ZoP. Different from ZoP, edgeR and DESeq2, 

BNP-ZIMNR and its variants also provide community-level inferences. To assess the impact 

of omitting zero inflation in the estimation of Fk
θ, we considered the total variation distance 

between Fk
θ, TR and F k

θ
 estimated from BNP-ZIMNR and its variants. Letting B denote the 

class of all Borel sets in ℝ, the total variation distance measures the closeness between 

two densities as sup
B ∈ B

| ∫
B

fk
θ, TRdθ − ∫

B
f k

θdθ| = 1
2∫ |fk

θ, TR − f k
θ|dθ, where fk

θ, IR and f k
θ
 denote the 

densities of Fk
θ, TK and F k

θ
 (Devroye & Lugosi, 2001). Table 2b shows the computed total 

variation distances. We use median estimates of fk
θ as our point estimate f k

θ
. The benefits 

of incorporating zero inflation into the model, not using fixed normalization factors, and 

the flexibility of the DPM over simple Gaussians are clearly observed for estimating a 

distribution of differential abundances. The total variation distance under BNP-ZIMNR is 

notably reduced, especially for k = 2 and 3, the levels with higher probability of OTU 

absence.

Additional simulations.

We performed additional simulations, Simulations 2–7, to further assess the model’s 

performance and scalability. For Simulation 2, we used a data simulation setup similar 

to the one for Simulation 1, but assumed a more complex structure with K = 6 different 

levels of a factor. We fit BNP-ZIMNR and the comparators to 100 simulated data sets using 

a specification similar to Simulation 1. In the simulation, BNP-ZIMNR outperformed the 

comparator models for all of the metrics that we considered. We found that the model scaled 

well with additional factor levels, providing accurate OTU level inference via θjk, as well as 

community level inference via Fk
θ and Fk

ξ. For Simulation 3 we assumed that Fk
χ, TR, χ ∈ θ, ξ

is a single Gaussian distribution as assumed under one of the comparators, B-ZIMNR, 

and kept the remaining simulation setup similar to that of Simulation 1. Although the 

simulation truth is closer to the assumptions made under B-ZIMNR, the results show that 

BNP-ZIMNR performs almost as well, and it exceeds that of B-ZIMNR for some criteria. 

For Simulation 4 we assumed a greater number of OTUs, J = 500, with K = 3. We 

assumed M = 30 subjects without replicates, resulting in fewer samples, n = 30. We further 

introduced between-subject heterogeneity for the zero inflation levels, which is different 

from the assumption under BNP-ZIMR, and assumed fewer excess zeros for conditions k 
= 2 and 3. BNP-ZIMNR performs better under most of the comparison criteria. It yields 

better estimates of δij and θjk, and better predictive metrics than the other models. We find, 

however, that BNP-ZIMNR and its variants suffer in the estimation of μij, possibly due to 

the smaller sample size with no replicates, as we show in Simulation 5, which has a similar 

setup to Simulation 4 but with replicates across the conditions. The results of Simulation 5 

show that the estimation of μij under BNP-ZIMNR and its variants is improved by replicates. 

For Simulation 6, we considered a case where two continuous covariates, zn = zn1, zn2  are 

present in addition to the experimental conditions, xi ∈ 1, …, K . Although BNP-ZIMNR 

can accommodate zi through Fx, z
χ  in Equation (3) fully nonparametrically, we considered a 

linear regression similar to edgeR and DESeq2, for a simple and more comparable exercise. 

In particular, we let log μij xi, zi, m = αjm + ri + θjk + zi
′βj, and placed normal priors on the 
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regression coefficients, βjp, βjp ∣ τβ, p
2 ∼indep N 0, τβ, p

2 , and τβ, p
2 ∼iid IG aτ

β, bτ
β , aτ

β = bτ
β = 1. We also 

considered the same extension for the other Bayesian models in comparison. Because ZoP 

does not allow continuous covariates, we did not include ZoP for comparison. BNP-ZIMNR 

performs very well for the estimation of βjp as well as of δij and θjk. The estimation of βjp

is significantly better under BNP-ZIMNR than under edgeR and DESeq2, potentially due 

to better estimation of θjk under BNP-ZIMNR. For simulation 7, we fit the model to a data 

set with fewer samples, using M = 5 subjects and n = 10 total samples, with J = 50 OTUs 

over K = 2 conditions. For most of the metrics considered, BZNP-ZIMNR outperforms the 

comparators under a setting with a smaller sample size. ZoP produces better estimates of 

μij’s due to its sample and OTU specific random effects, but their estimates of θj, k’s are very 

poor. The detailed results of the additional simulation studies are shown in Supplementary 

Section 3.

4 | CHRONIC WOUND MICROBIOME DATA ANALYSIS

In this section, we apply BNP-ZIMNR to study chronic wound microbiomes using the data 

set in Verbanic et al. (2019). The data set consists of microbiome samples collected from 

M = 18 subjects with chronic wounds. Swab samples were collected from chronic wounds 

pre- and post-debridement, along with a healthy skin swab sample from a control site, 

for each of the subjects. The K = 3 experimental conditions result in n = 54 samples in 

total. We let k = 1, 2, and 3 represent healthy skin, pre-debridement wound swabs, and post-

debridement wound swabs, respectively. The study aims to investigate how debridement 

influences the composition of the microbial community of the wound, and also to compare 

the microbial composition of the wound surface to that of healthy skin. We analysed the 

data to infer changes in the community-level microbial richness and diversity as well as 

differential abundances of individual OTUs. Better understanding of the wound microbiome 

and the effects of debridement on the wound microbiota can further elucidate the role of the 

microbiome on wound healing. From the swab samples, the 16S rRNA gene was amplified 

by PCR and sequenced using high throughput sequencing, and the sequence reads were 

organized into an OTU table for statistical analysis. A total of 22,753 OTUs were observed 

after removing singletons. We restricted our attention to OTUs with nonzero counts in more 

than 20% of the samples for at least one experimental condition to obtain reliable inference. 

After pre-processing, J = 92 OTUs were included in the analysis. It was checked by our 

biological collaborators that biologically interesting OTUs were not removed from analysis. 

The degree of zero inflation varies widely by experimental condition, with 8% of the OTU 

counts equal to zero from the healthy skin samples, versus 65% and 67% of the OTU 

counts equal to zero in the pre-debridement and post-debridement conditions, respectively. 

Supplementary Figure 8a–c illustrate histograms of the empirical proportions pjk of zero 

counts in the samples for the conditions. Panels (d)–(f) show histograms of total counts Y i •

in samples for each k. From the figures, the samples from conditions k = 2 and 3 have 

more zeros and have lower total counts. The observed zeros in the pre/post-debridement 

conditions may be due to the absence of the OTUs under those conditions.

We specified hyperparameters similar to those in the simulations. The MCMC simulation 

was run over 140,000 iterations, with the first 40,000 iterations discarded as burn-in and 
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every fifth sample kept as thinning and used for inference. The MCMC took approximately 

11 mins for every 5000 iterations of the MCMC on a 3.2 GHz Intel i5–6500 CPU running 

Ubuntu Linux.

Community level inference provided by fk
ξ and fk

θ is shown in Figure 4. Posterior estimates 

of fk
ξ and fk

θ are shown by the coloured lines, with pointwise 95% CIs shown by the 

shaded regions, where the colours, red, blue and green, represents the healthy skin (k = 

1), pre-debridement wound (k = 2), and post-debridement wound (k = 3), respectively. 

The differences between the estimates under the healthy skin condition and those under 

the wound conditions are substantial, but the wound microbial community does not change 

immediately after debridement, similar to the previous findings in Gardiner et al. (2017) 

and Verbanic et al. (2019). In panel (a), f k
ξ
 is stochastically lower for the healthy skin 

condition, suggesting greater species richness in a healthy skin sample than in a wound 

sample. For the wound conditions, f k
ξ
 assigns more density to larger values and also has 

higher dispersion. Panel (b) shows that f k
θ
 assigns more density to higher values in the 

healthy skin condition than in the pre-/post-debridement conditions. The bulk of the density 

for the wound conditions is given to values less than zero and the density estimates have 

long left tails. The distributions imply that on average OTUs in the wound conditions tend to 

have low abundance compared to their baseline. f k
θ
 are slightly skewed, but overall f k

ξ
 and f k

θ

do not show a substantial departure from unimodal symmetric distributions.

The model also provides inference for individual OTUs. Figure 5 illustrates the posterior 

distributions of εjk and θjk for some selected OTUs, j = 28, 34 and 75. From panels (b), 

(c), (e) and (f), OTUs 34 and 75 that belong to genus Micrococcus and Corynebacterium, 

respectively, are highly abundant in skin, but not in wounds. The OTUs are absent in 

wounds with high probability. The increased likelihood of absence from wound samples and 

the depleted abundance in wound samples when present are consistent with the previous 

findings in Verbanic et al. (2019) and Grice et al. (2009), indicating these OTUs are 

associated with a healthy skin microbiome. OTU j = 28 belonging to genus Pseudomonas 
is noted to be significantly associated with wounds (Verbanic et al., 2019), and is also 

known to be a pathogen in chronic wounds (Kalan et al., 2019; Loesche et al., 2017; 

Wolcott et al., 2016). However, panels (a) and (d) do not show a significant association with 

wounds. The lack of significant differences may be due to the high variability of wound 

composition among patients and small sample size. We also conducted sensitivity analyses 

to the specification of some fixed hyperparameters, Lθ, Lξ, Lr, Lα, υr and υα. Changes in 

the posterior inference was minimal under these alternative specifications. More details are 

discussed in Supplementary Section 4.

The comparators are applied to the chronic wound data and their inferences are compared 

to the posterior inference under our BNP-ZIMNR. The healthy skin condition is used as the 

reference group for ZoP, edgeR, and DESeq2 to infer differential abundance for individual 

OTUs. Supplementary Figure 11b–g compare estimates of θjk − θj1, k = 2 and 3, from the 

comparators to those from BNP-ZIMNR. For the Bayesian models, we computed DIC and 

LPML. Both DIC and LPML indicate BNP-ZIMNR provides a better fit to the data than 
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BNP-MNR, BNP-ZIMNR-FN and ZoP as shown in Supplementary Table 3. It is observed 

that the inferences under BNP-ZIMNR and B-ZIMNR are similar as implied by f k
ξ
 and f k

θ
 in 

Figure 4. DIC and LPML indicate the two models yield close model fit.

Additional Real Microbiome Analysis.

For more illustration, we analysed a second real microbiome data from the Human 

Microbiome Project (HMB), where microbiome samples were collected from two different 

skin subsites for 90 subjects. We constructed four experimental conditions, one for each 

combination of the subsites and sex of the subjects. The number of samples from a subject 

varies from 1 to 4, and the data set has a total of 146 samples. Zeros are less prevalent in 

this data set than in the wound microbiome data. In this analysis, we find that BNP-ZIMNR 

sensibly characterizes differential abundance across subsites and sex, indicating potential 

for BNP-ZIMNR’s broad applicability to microbiome studies. More details are included in 

Supplementary Section 5.

5 | DISCUSSION

We have presented BNP-ZIMNR, a Bayesian nonparametric regression approach to model 

count data in the presence of high zero inflation, with application to microbiome studies. 

Estimates of Fk
χ, χ ∈ θ, ξ , which are produced from the BNP modelling approach, give 

a different, more nuanced look at how diversity and differential abundance are related 

to covariates than statistical tests alone. Our model construction for baseline abundances 

through mean-constrained regularizing priors removes the need to arbitrarily set a reference 

condition which would affect posterior inference. The simulation studies indicate BNP-

ZIMNR provides better parameter estimates than popular alternatives across a range of 

different settings, but more importantly show the model can recover Fk
χ after accounting 

for sequencing depth, zero inflation, and baseline taxa abundance levels. Direct, community-

level comparison of differential abundance and diversity is thus possible by examining Fk
χ

across different values of k. This use was illustrated by applying BNP-ZIMNR to two real 

data sets, where Fk
χ confirmed findings from previous literature, and also provided a richer 

view of differential abundance and diversity in these communities.

BNP-ZIMNR may be extended to accommodate more complex data structures. In 

microbiome studies, where samples are taken from different geographic locations or from 

the same environment over time, the composition of the microbial communities is expected 

to change by spatial locations/time points x. Parfrey and Knight (2012) and Galloway-Peña 

et al. (2017) studied spatial and temporal changes in the human microbiota, the latter 

understanding longitudinal variability in the microbiome as ‘critical’ to the development 

and use of microbiome-based therapeutics in clinical practice. In general, DDPs provide 

a convenient way to model a collection of distributions which may be related to each 

other across x. Griffin and Steel (2011) and Nieto-Barajas et al. (2012), for example, 

use a DDP prior for a time series of random probability distributions, and Gelfand et al. 

(2005) and Duan et al. (2007) developed a variation of the DDP to flexibly model spatial 

dependence for point-referenced spatial data. In this vein, BNP-ZIMNR can be extended 
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to accommodate spatial/temporal dependence in random distributions Fx
χ, and may offer a 

different way of exploring temporal/spatial changes in microbial abundance and diversity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
[Simulation 1] Panels (a) and (b): Histograms of δ ij = P δij = 1  when δij

TR = 0 and δij
TR = 1. 

Panel (c): Posterior means of εjk plotted against the simulation truth. Colours/shapes indicate 

the factor levels: k = 1, red squares; k = 2, green circles; k = 3, blue triangles
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FIGURE 2. 
[Simulation 1] Panels (a)–(c): Posterior means of differential abundances θjk for k = 1, 2, 3, 

respectively, along with 95% credible intervals and reference lines. Panel (d): Posterior 

estimates of κjk for cases of (j, k) with κjk
TR = 0, that is, when OTU j is absent in all samples 

with level k
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FIGURE 3. 
[Simulation 1] Panels (a)–(c) shows posterior estimates of fk

ξ for each k, k = 1, 2, 3, and 

panels (d)–(f) of fk
θ. Dashed coloured lines are estimates with shaded 95% pointwise credible 

intervals. Black solid lines represent the simulation truth. Rugs show ξjk
TR and θjk

TR

Shuler et al. Page 21

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2023 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 
[Chronic Wound Data] Estimates of fk

ξ and fk
θ are shown in panels (a) and (b). The three 

experimental conditions, healthy skin (k = 1), pre-debridement (k = 2) and post-debridement 

(k = 3), are indicated by the colours red, green and blue, respectively. 95% pointwise 

credible intervals for each condition are shown by the shaded areas
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FIGURE 5. 
[Chronic Wound Data] Panels (a)–(c) illustrate the posterior distributions of εjk for each 

of the conditions for three selected OTUs j = 28, 34, 75. Panels (d)–(f) have the 

posterior distributions of θjk. k = 1, 2, and 3 denote healthy skin, pre-debridement, and 

post-debridement, respectively
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TABLE 1

[Simulation 1: Comparison] RMSEs of δij, θjk − θj1, k = 2,3, and μij are shown in (a). Performance metric 

averages over 100 simulated data sets with standard deviations in parenthesis. k = 1 is used as the reference 

group for the difference in θ. For (b), k = 3 is used as the reference group and RMSE of θjk − θj3, k = 1, 2 is 

given

Model δij θj2 − θj1 θj3 − θj1 μij

(a) Parameter estimation

 BNP-ZIMNR 0.019 (0.005) 0.308 (0.060) 0.325 (0.057) 3154 (818)

 BNP-MNR – 3.909 (0.504) 4.762 (0.504) 65,190,628 (89,816,163)

 BNP-ZIMNR-FN 0.021 (0.005) 2.234 (0.279) 2.386 (0.263) 4680 (2032)

 B-ZIMNR 0.019 (0.005) 0.325 (0.066) 0.340 (0.056) 3277 (839)

 ZoP 0.200 (0.033) 2.759 (0.278) 3.156 (0.249) 3769 (1282)

 edgeR – 2.218 (0.303) 2.693 (0.303) 7924 (1860)

 DESeq2 – 3.157 (0.640) 4.085 (0.712) 8200 (1954)

Model θj1 − θj3 θj2 − θj3

(b) Estimation of difference in θ with k = 3 as a reference

 BNP-ZIMNR 0.325 (0.057) 0.393 (0.054)

 BNP-MNR 4.762 (0.504) 4.468 (0.446)

 BNP-ZIMNR-FN 2.386 (0.263) 0.610 (0.182)

 B-ZIMNR 0.340 (0.056) 0.418 (0.053)

 ZoP 4.348 (0.356) 3.636 (0.388)

 edgeR 2.693 (0.303) 3.302 (0.380)

 DESeq2 4.102 (0.663) 5.184 (0.801)

The bold is used to indicate the best performing model.

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2023 July 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shuler et al. Page 25

TABLE 2

[Simulation 1: Comparison] (a) Average model comparison metrics over 100 simulated data sets with standard 

deviations in parenthesis. (b) Average total variation distance of Fk
θ as compared to the simulation truth both 

with and without zero inflation. Standard deviations in parenthesis

Model DIC LPML

(a) DIC and LPML

 BNP-ZIMNR 50,994 (1107) −26,391 (528)

 BNP-MNR 62,909 (1317) −32,328 (647)

 BNP-ZIMNR-FN 51,780 (1098) −26,964 (529)

 B-ZIMNR 51,017 (1109) −26,413 (535)

 ZoP 2,600,574 (91,077) −486,874 (31,409)

Model F1
θ F2

θ F3
θ

(b) Total variation distance between Fk
θ, TR

 and F k
θ

 BNP-ZIMNR 0.158 (0.063) 0.195 (0.073) 0.163 (0.060)

 BNP-MNR 0.209 (0.069) 0.489 (0.033) 0.510 (0.039)

 BNP-ZIMNR-FN 0.775 (0.029) 0.269 (0.108) 0.304 (0.116)

 B-ZIMNR 0.330 (0.037) 0.341 (0.005) 0.330 (0.006)

The bold is used to indicate the best performing model.
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