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Molecular Plant
Research Article
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ABSTRACT

Low-coveragewhole-genomesequencing isaneffectivestrategy forgenome-wideassociationstudies inhu-

mans, due to the availability of large referencepanels for genotype imputation. However, it is unclearwhether

this strategy can be utilized in other species without reference panels. Using simulations, we show that this

approach is evenmore relevant in inbred species such as rice (Oryza sativa L.), which are effectively haploid,

allowing easy haplotype construction and imputation-basedgenotype calling, evenwithout the availability of

large reference panels.We sequenced 203 rice varietieswith well-characterized phenotypes from the United

StatesDepartment of AgricultureRiceMini-CoreCollection at an averagedepth of 1.53 andused thedata for

mapping three traits. For the first two traits, amylose content and seed length, our approach leads to direct

identificationof thepreviously identifiedcausalSNPs in themajor-effect loci.For the third trait,pericarpcolor,

an important trait underwent selection during domestication, we identified a new major-effect locus.

Althoughknown loci canexplaincolor variation in the varietiesof twomainsubspeciesofAsiandomesticated

rice, japonica and indica, the new locus identified is unique to another domesticated rice subgroup, aus, and

together with existing loci, can fully explain the major variation in pericarp color in aus. Our discovery of a

unique genetic basis of white pericarp in aus provides an example of convergent evolution during rice

domestication and suggests that ausmay have a domestication history independent of japonica and indica.
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INTRODUCTION

In humans, genome-wide association studies (GWAS) have suc-

cessfully identified thousands of common genetic variants contrib-

uting to susceptibility to diseases (Hindorff et al., 2016). In inbred

plant species, including many important crops such as rice and

soybean, GWAS have the potential to be even more efficient for

identifying phenotype–genotype associations because with just

one-time genotyping of a population, the panel of inbred lines can

bekept immortal in seedbanksandcanbephenotyped fordifferent
traits in different environments in both present and future studies.

With the advances on next-generation sequencing (NGS) technol-

ogy,DNA sequencing has becomeanappealing alternative toSNP

arrays for genotyping, extendingGWASbeyond common variants,

and holding the promise to capture rare alleles and structural

variants. In humans, even with extremely low sequencing depth
Molecular Plant 9, 975–985, July 2016 ª The Author 2016. 975
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(0.1–0.53), NGS-based GWAS have statistical power commensu-

rate to that of SNP array-based GWAS (Pasaniuc et al., 2012). The

critical component for retaining high statistical power at such a low

coverage is genotype imputation relying on the availability of a

comprehensive panel of reference haplotypes. However, such

reference panels of haplotypes are not available for most other

species.

In rice, both SNP array (Zhao et al., 2011) and sequencing-based

genotyping strategies (Huang et al., 2010, 2012b; Chen et al.,

2014) have been adopted for GWAS covering diverse sets of

traits. These efforts have systematically examined the genetic

architecture of agronomic traits (Huang et al., 2010, 2012b),

metabolism (Chen et al., 2014), and gene–environment

interactions (Zhao et al., 2011) in rice, and have contributed

a wealth of genomic and germplasm resources for both the

research community and rice breeders. Genome sequencing-

based strategies for GWAS have also found wide applications in

other crops, including foxtail millet (Jia et al., 2013), sorghum

(Morris et al., 2013), maize (Li et al., 2013; Wen et al., 2014),

soybean (Zhou et al., 2015), and sesame (Wei et al., 2015).

However, no study has systematically examined the impact of

sequencing depth on the mapping power of GWAS in the crop

populations with inbred genomes. In this study, we address this

question by exploring the potential of low-coverage sequencing

strategy for GWAS in inbred species. Even in the absence of large

reference panels, low-coverage sequencing may be highly effec-

tive in inbred species that are effectively haploid and thereby avoid

someof the technical challenges associatedwith diploid genotype

calling. We show that in inbreeding species, GWAS using low-

coverage (1–23) sequencing data has similar power as that using

genotypes from high-coverage data even when utilizing a de novo

SNP discovery strategy. Furthermore, we sequence 203 inbred

lines in the United States Department of Agriculture (USDA) Rice

Mini-Core Collection (Agrama et al., 2009), at an average depth

of 1.53. This collection contains a representative subset of the

rice entries in the USDA rice germplasm collection (Agrama

et al., 2009; Li et al., 2010), making it suitable for mapping

studies aimed at detecting genetic variation segregated in a

diverse set of rice varieties. Using this strategy, we show that

two agronomically important loci can be mapped to the level

of causal SNP. We also discover a new locus contributing to

pericarp color missed by previous mapping studies.

RESULTS

Sequencing Depth and GWAS Mapping Power in
Inbreeding Species

To evaluate the power of GWAS by low-coverage sequencing

data in inbred species, we used coalescent-based simulations

to generate samples consisting of fully inbred individuals with

sequencing data at various depths. We adopt a model mimicking

rice demography and biology (see Methods) so that the patterns

of mutation and local recombination can be accounted for

realistically. We first evaluate false and true SNP discovery rate

and genotype calling accuracy, then evaluate mapping power

under different sequencing depth and sample size scenarios.

As expected (Li et al., 2011b; Fumagalli, 2013), SNP discovery

rate is largely decided by the joint effect of sample size and

sequencing depth (Supplemental Figure 1). The probability of
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detecting an SNP with allele frequency, f, in a fully genotyped

sample of n haploid individuals is

hnðfÞ= 1� fn � ð1� fÞn : (Equation 1)

Assuming the classical distribution of allele frequencies propor-

tional to 1/f, the detection probability of SNPs with a minor allele

frequency (MAF) greater than 5% in the population is then

R 0:95

0:05
hnðfÞ=fdf

R 0:95

0:05
1=fdf

: (Equation 2)

This upper bound, corresponding to fully known genotypes, is

effectively achieved at 53 sequencing depth in different sam-

ple size scenarios, using an ascertainment criterion of a likeli-

hood ratio >15 (Supplemental Figure 2). In the small sample

size scenario, e.g. 30 individuals, the detection power drops

dramatically with sequencing depth. For example, 96% of

polymorphic sites with MAF >5% can be detected at 53

sequencing depth, but only 87% at 13, 77% at 0.53, and

31% at 0.13. However, the detection power loss can be

compensated by increasing sample size. With a sample size of

200 or greater, sequencing at 0.53 can achieve detection

power essentially identical to that of true genotypes. The false-

positive rate in SNP discovery, using the likelihood ratio SNP

ascertainment criterion, is low overall, and drops dramatically

as sample size and sequencing depth increases. For the 13

dataset, the false-positive rate is essentially 0 when the sample

size is 100 or larger (Supplemental Figure 2).

The genomes of inbred species are effectively haploid, greatly

reducing the genotype calling problems associated with diploid

data. Many studies have used diploid genotype callers, designed

for outbred species, when calling genotypes in inbred genomes

(Huang et al., 2010, 2012b; Jia et al., 2013; Li et al., 2013; Morris

et al., 2013; Chen et al., 2014; Wen et al., 2014; Wei et al., 2015;

Zhou et al., 2015), thereby in reality not taking advantage of

the reduced complexity of the problem. However, methods

for genotype calling from populations with different level of

inbreeding are available (Vieira et al., 2013). By incorporating the

inbreeding coefficient of each individual as prior when calling

genotype, genotype calling in inbred species can be greatly

improved. In our simulations with 200 fully inbred individuals,

the genotype calling accuracy is close to 100% for all

sequencing depth scenarios when applying stringent genotype

filtering (see Methods and Supplemental Figure 3). Using high-

quality genotypes, we carried out genotype imputation for

the remaining SNPs with Beagle (Browning and Browning,

2007). Imputation based on linkage disequilibrium (LD) is

effective in inbreeding species, because haplotypes are directly

available in the inbred regions and LD also decays more slowly.

For the 0.13 dataset, in which 91% of genotypes are missing

data after initial genotype calling, the accuracy of imputed

genotypes is poor at 76%, but quickly climbs to 94% at a

sequencing depth of 0.53, under which 48% of genotypes are

missing. For 13 data or above, all missing data could be

imputed without significant loss of accuracy (Supplemental

Figure 3).

With the fully imputed genotype datasets, we calculated map-

ping power as a function of sequencing depth and h2, the
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Figure 1. Mapping Power by Sequencing
Depth, Narrow-Sense Heritability, and Num-
ber of Causal Loci.
(A–D) We simulated phenotypes for different

numbers of causal SNPs (n ranges from 1 to 4 in

A–D) and narrow-sense heritability (h2), for 200

inbred individuals at depths of 0.13, 0.53, 13, 23,

53, and 203. The mapping power was calculated

as the percentage of tests where the causal SNPs

(or flanking SNPs) were associated with the trait

with genome-wide significance at the 0.05 signifi-

cance level.
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narrow-sense heritability of a trait, which can also be interpreted

as the proportion of total phenotypic variance caused by all

causal SNPs combined for a polygenic trait (Figure 1). In all

scenarios, 13 data provide similar power to that of 203 data in

terms of both mapping power (Figure 1) and power to identify

causal variants (Supplemental Figure 4), indicating that there is

essentially no statistical advantage in terms of mapping power

in using high-coverage sequencing data. At a sequencing

depth of 0.53, the mapping power is only slightly reduced for a

Mendelian locus (n = 1) but more dramatically reduced in other

cases. At h2 = 0.59, the 0.53 sequencing scenario provides

maximal power of 93% for a Mendelian locus. When

phenotypic variation is contributed by multiple quantitative trait

loci (QTLs), the 0.53 scenario has reduced power compared

with the 203 scenario. If the sequencing depth is extremely low

(0.13), the mapping power is greatly reduced, never reaching

50% of that of 203 datasets in any scenario. The loss of power

is largely due to the loss in the power of SNP discovery and the

reduction in effective sample size due to imperfect imputation.

Therefore, based on the simulation results, we recommend a

sequencing depth of 1–23 when designing sequencing-based

GWAS in inbred species.

Genome Sequencing of a Diverse Rice Collection

We sequenced the USDA Rice Mini-Core Collection (Agrama

et al., 2009), a rice population consisting of 203 diverse rice

germplasm accessions (Supplemental Table 1). This collection

was systematically developed from 1794 core entries in the
Molecular Plant 9,
USDA rice collection based on both

phenotypic and genotypic data, and is

considered to be a representative subset of

more than 18 000 accessions of rice entries

worldwide in the USDA rice germplasm

collection (Figure 2A) (Agrama et al., 2009;

Li et al., 2010). The samples are from 75

countries spanning the regions of genetic

diversity and cultivation of rice (Figure 2B

and Supplemental Figure 5). In total, 1280

million reads were generated, representing

an average genomic coverage of 1.53 for

each accession. We employed a short-

read remapping alignment strategy with

Stampy (Lunter and Goodson, 2011) that

led to significant improvement in mapping

quality when compared with the strategy

using BWA (Li and Durbin, 2009) only

(Supplemental Figure 6). The remapping
strategy was especially successful in indica rice, with a 10%

increase in the ratio of mapped paired end reads with mapping

quality score >30. Overall, 65% of genomic regions of each

accession were covered by at least one high-quality sequencing

read (Supplemental Figure 7). After mapping the sequenced

reads of each individual to the rice genome, we called SNPs in

non-repetitive genomic regions of this population with ANGSD

(Korneliussen et al., 2014). In total, 2.3 million high-confidence

SNPs were obtained, representing six SNPs per kilobase pair.

We adopted genotype likelihoods-based methods to analyze the

genetic structure of this population (Fumagalli et al., 2014). These

methods account for the uncertainty regarding genotypes

inherent in low-coverage data (Nielsen et al., 2011). NGSadmix

analyses split the mini-core population into five ancestries

corresponding to indica, aus, aromatic, temperate japonica,

and tropical japonica under the K = 5 model (Figure 2).

Principal component analysis (PCA) (Supplemental Figure 8)

decomposed the population into five clusters corresponding

to the five subgroups. Notably, there are large numbers of

admixed accessions located in the PCA space between major

clusters, reflecting a complicated history of hybridization and

differentiation in rice cultivation history. The first four PCs add

up to explain 21.6% of the total SNP variation, which is much

less than in previous studies (Zhao et al., 2010, 2011). This is

largely due to the fact that genome sequencing in this study

captures many more rare alleles than previous studies based

on SNP arrays.
975–985, July 2016 ª The Author 2016. 977



A B

 Core
 1,794

Minicore
   203

Whole Collection
       18,412
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Figure 2. The USDA Rice Mini-Core Collection.
(A) TheMini-Core Collection was developed to retain the genetic diversity of 1794 core entries, which again was selected to be representative entries from

more than 18 000 accessions in the USDA whole rice germplasm collection.

(B) The 203 domesticated entries in the Mini-Core Collection comes from 75 countries. Each dot on the world map represents one variety. The horizontal

bar below summarizes the distribution of subpopulations of all domesticated entries in the Mini-Core Collection. The ancestry of each entry was inferred

using NGSadmix. The color codes are blue for indica (IND), orange for aus (AUS), gold for aromatic (ARO), deep pink for tropical japonica (TRJ) and green

for temperate japonica (TEJ).
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Domesticated rice is a mostly self-pollinating plant, and rice

germplasm has been held in seed banks for many generations

through selfing. Therefore, their genomes are expected to be

mostly homozygous. In accordance with this expectation, we

found that most of the rice accessions have estimates of

inbreeding coefficients (F) close to 1 (Supplemental Figure 9).

Using a prior for genotype calling based on these estimates of

F (Vieira et al., 2013), we called genotypes at SNP sites for

each individual and obtained a genotype dataset with an overall

missing rate of 32.8%. We evaluated the accuracy of the

genotype dataset by Sanger sequencing. The concordance rate

between the genotypes obtained from the two experiments is

98.9%. After imputation, the missing data were fully inferred,

but the concordance rate remained at 98.5% (Supplemental

Table 2).

GWAS on Grain Length

Previous studies have accumulated comprehensive pheno-

typic data on the Mini-Core Collection (Yan et al., 2009; Li

et al., 2010, 2011a, 2012; Bryant et al., 2011; Jia et al., 2012).

With the whole-genome SNP markers now available, we can

conduct GWAS with unprecedented resolution for this mapping

population. We here present results for seed length, amylose

content, and pericarp color. GWAS was carried out using

GEMMA (Zhou and Stephens, 2012). We notice that the use

of a relatedness matrix as covariate in GEMMA corrects for

the confounding factor of population structure (Figure 3).

Genome-wide critical values were obtained using permutation

(see Methods).

For grain length, only one signal exceeded the 5% genome-

wide critical value (Figure 3A and 3B). The significant SNP is
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located in the genic region of GS3 (Os03g0407400), a gene

underlying a major QTL controlling the grain length and weight

of rice (Fan et al., 2006). In fact, the significant SNP is a

C/A polymorphism in the second exon of the gene, which

introduces a stop codon and truncates the amino acid

sequence at position 178 of the expressed protein. Previous

studies have also identified this SNP as strongly associated

with grain length (Fan et al., 2006) and have identified it

as a causal mutation (Mao et al., 2010). We detected

two other SNPs in our rice population (Chr3:16731513 and

Chr3:16732415) in this gene, neither of which, however,

correlated with the phenotype (P = 0.90 and P = 0.04,

respectively), adding further evidence to the previous studies

arguing that the C/A mutation is causal.

GWAS on Amylose Content

We then performed a GWAS on amylose content in rice kernels,

a major determinant of rice stickiness, and found a major peak

on chromosome 6 (Figure 3C and 3D). This region harbors

121 SNPs highly associated with the trait. The peak SNP,

Chr6:1765761, is a G/T polymorphism located on the genic

region of Wx (Os06g0133000), which encodes a starch

synthase (Supplemental Figure 10). The gene is the major QTL

for amylose content in rice endosperm (Wang et al., 1995).

Previous studies have showed that the Chr6:1765761 SNP falls

on splice site 5 of Wx, with the T allele leading to dramatically

reduced levels of spliced mRNA by post-transcriptional regula-

tion, giving rise to glutinous rice (Wang et al., 1995; Hirano

et al., 1998). In our rice population, rice accessions with T and

G alleles have average amylose content of 13.7% and 24.1%,

respectively (Supplemental Figure 11). These observations

support the conclusion of previous studies (Wang et al., 1995;



Figure 3. GWAS for Agronomic Traits in
Rice.
(A, C, and E) Manhattan plot of genome-wide

association results for (A) grain width, (C)

amylose content, and (E) pericarp color in rice.

The dotted horizontal line marks a significance

level of 0.05 after correction for multiple tests

as determined by independent permutations for

each trait.

(B, D, and F) The corresponding QQ plot of the

distribution of observed P values versus those

expected under the null for the three GWAS.
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Hirano et al., 1998) that SNP Chr6:1765761 is the causal

polymorphism for amylose content variation. Chr6:1765761 is

located in the center of an LD block, which is approximately

250 kb long (Supplemental Figure 12), suggesting that strong

artificial selection on the gene has given rise to a selective

sweep in this region (Olsen et al., 2006).

In the cases of both amylose content and seed length, our

study design had power to identify major QTLs of agro-

nomically important traits. Furthermore, the high-density

marker set provides power to identify the causal SNP with

high probability. However, these traits had been extensively

studied previously, and our study could only confirm the con-

clusions of previous studies. In the next example, we illustrate

the use of the design to identify novel QTLs for rice pericarp

color.

GWAS on Pericarp Color

Rice pericarp coloration differs between wild and cultivated rice,

with the vast majority of wild or weedy species of Oryza having

red pericarp color, while most cultivars have a white pericarp

(Sweeney et al., 2007). The red pericarp of rice has attracted

research interest for a century because of its convenient use as

a genetic marker (Kato and Ishikawa, 1921), and more recently

because of its implications in rice domestication (Izawa et al.,

2009) and also its potential nutritional importance (Shirley,

1998). The red pigmentation in rice grains is proanthocyanidin,

whose biosynthetic pathway is mostly shared with that of

anthocyanidin (Furukawa et al., 2007). Previous molecular
Molecular Plant 9,
studies identified two genes, Rc and Rd, to

be necessary for red pigmentation in rice

grains (Sweeney et al., 2006; Furukawa

et al., 2007). Sweeney et al. (2006) further

identified two independent loss-of-function

alleles of Rc: rc, characterized by a 14-bp

deletion in Rc, and Rc-s, characterized by

a C/A mutation resulting in the truncation

of the protein before the helix-loop-helix

domain. The Rcrd genotype produces

brown pigmentation and RcRd red pigmen-

tation in the pericarp (Sweeney et al., 2006;

Furukawa et al., 2007). Rice harboring

rc allele has a white pericarp, and this

is the common allele shared by white-

pericarp rice of both indica and japonica

varieties (Sweeney et al., 2007). Rc-s

allele is specific to aus varieties which, for
unknown reasons, produces both white and light-red pericarps,

independently of the alleles in the Rd (Sweeney et al., 2007).

We conducted a GWAS on rice pericarp coloration (Figure 3E and

3F) and we first examined the polymorphisms in a priori defined

gene regions. In the genic region of Rd, 15 SNPs were detected

from the population, among which there are two SNPs known

to affect function, Rd1 and Rd2 (Konishi et al., 2008), which

introduce two independent stop codons. However, we found

none of the SNPs to be significantly associated with the

phenotype. This is likely due to the fact that Rd only helps to

increase pigment content in the presence of the Rc allele,

and the mutations in Rd do not eliminate pericarp coloration

(Sweeney et al., 2006; Furukawa et al., 2007; Konishi

et al., 2008). In the Rc gene region, the causal Rc-s SNP

at Chr7:6068017 was found to be strongly associated with

pericarp coloration (�log10(P) = 8.1), representing the second

highest peak in the Manhattan plot (Figure 3D). Examination on

the associated SNP in our study showed that the signal

is exclusively driven by rice from the aus and admixture

subgroups (Supplemental Table 3). Since the 14-bp mutation in

the rc allele is not included in our genotype dataset, and it is likely

that no SNP linked with the mutation was included either, we find

no polymorphism in indica/japonica varieties that are highly asso-

ciated with the phenotype in Rc region. Intriguingly, there are four

aus varieties with genotype–phenotype associations that are not

predicted by the results of previous studies. GSOR310703 and

GSOR311111 have the C allele at the Chr7:6068017 position,

but their pericarps are white. We thus predicted that these
975–985, July 2016 ª The Author 2016. 979
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Figure 4. Evolution of Pericarp Color in aus.
(A) Pericarp color variation in aus varieties. Aus

harboring Rc or rc has red pericarp. When con-

taining an Rc-s allele, the pericarp color aus vari-

eties is light red in the context of qPc10+ and white

in the context of qPc10�.
(B) qp estimated in both AUS-A and AUS-G pop-

ulations.

(C)Genetic distance between AUS-A (aus varieties

harboring allele A at Chr10:20912658) and AUS-G

is highly elevated in the qPc10 region. Each dot

represents the average value of genetic distance

calculated over all polymorphic sites in 20-kb re-

gion. The x axis is the physical position along

chromosome 10. The blue box defines a �700 kb

region with increased genetic differentiation be-

tween AUS-A and AUS-G.

(D) A haplotype network based on the number of

pairwise differences among haplotypes in a 20-kb

region harboring Chr10:20912658 in the Mini-Core

population. We used pegas (Paradis, 2010), an

R package, to generate the figure. Each pie chart

represents one unique haplotype, and the radius

of the pie chart is proportional to the log2(number of chromosomes with that haplotype) plus a minimum value. Six major haplotype groups were

labeled with Roman numerals on the upper right. The lengths of edges are proportional to the number of differences, and the scale is shown at the

button left. ARO, aromatic; barthii, Oryza barthii; IND, indica; TEJ, temperate japonica; TRJ, tropical japonica.
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varieties harbor the rc allele. Examination on reads mapped to

this region confirmed our prediction with four and two high-

quality reads (mapping quality >30) support, respectively. Two

other varieties, GSOR310945 and GSOR311181, harbor Rc-s

but have light-red pericarp. Thus, the Rc locus alone is inade-

quate for explaining the white pericarp of aus varieties. In our

GWAS, another association signal was observed on Chr10, rep-

resenting a new QTL for rice pericarp coloration (henceforth de-

noted qPc10). The peak SNP, located at Chr10:20912658, is a

G/A polymorphism with�log10(P) of 13.9, representing the stron-

gest association with phenotype among all SNPs in the sample.

Interestingly, the statistical power at this site is also mostly

contributed by aus/admixture varieties (Supplemental Table 4).

To validate the association signals, we scored the pericarp

coloration for 206 aus varieties from the 3000 rice genomes

project (Alexandrov et al., 2015; The 3000 Rice Genomes

Project, 2014). Association tests showed that both signal SNPs

discovered in our GWAS are significantly correlated with

pericarp coloration in this independent worldwide aus varieties

panel (P = 2.2 3 10�16 for Chr7:6068017 and P = 1.6 3 10�11

for Chr10:20912658, Spearman’s r test). Interestingly, the two

rice accessions in the Mini-Core Collection that contain the

Rc-s allele but have light-red pericarp also have the ancestral

allele (G) at Chr10:20912658, and all aus varieties with white

pericarp harbor the mutated allele (A) at the site. Thus, qPc10 is

the missing locus, which, combined with the Rc locus, can fully

explain the pericarp coloration in aus varieties (Figure 4A and

Supplemental Table 5). The Chr10:20912658 SNP is located

in an intergenic region. To find candidate genes for qPc10, we

searched the flanking regions. One possible candidate gene is

Os10g0536400 located 23 kb upstream of Chr10:20912658,

which codes for a flavanone 3-hydroxylase (F3H). F3H catalyzes

the chemical reaction from flavanones to dihydroflavonols, which

is the first committed step of the biosynthesis of anthocyanins

and proanthocyanidins, the two major compounds responsible
980 Molecular Plant 9, 975–985, July 2016 ª The Author 2016.
for the coloration of rice pericarp (Furukawa et al., 2007).

Through PCR amplification and sequencing, we identified

151 variants on the gene and 2-kb promoter region of

Os10g0536400 in the aus population, but none of the variants

generate any association signal stronger than Chr10:20912658.

It is possible that differences in expression level cause the pheno-

typic variation. However, further genetic and molecular evidence,

including examination of the expression profile of the gene on the

same genomic background, are needed to validate the involve-

ment of this gene in rice pericarp coloration.
Evolution of Pericarp Color in aus

The accumulation of proanthocyanidin in grains of wild rice

contributes to plant defense against pathogens or predators.

Mutations leading to white pericarp are therefore thought to

be selected against in nature (Shirley, 1998). However, the

pericarp of most cultivated rice is white, suggesting that

selection for white pericarp was induced during domestication

by farmers (Sweeney et al., 2007). Our findings show that the

genetic basis of pericarp color in aus is different from that in

indica and japonica rice, suggesting independent selection on

this domestication trait in aus. The first step in the evolution

toward white pericarp in aus involved an independent stop-

codon mutation in Rc (Rc-s), which now has a frequency of

86.7% (13/15) in white-pericarp aus varieties in our rice panel

and 91.5% (43/47) in white-pericarp aus varieties from the 3000

rice genomes project (Alexandrov et al., 2015). This mutation

turned the pericarp color of rice from red to light red. Next,

when a mutation in qPc10 was introduced onto the Rc-s

background, white pericarp in aus arose. Consistent with

this scenario, we detected a reduction of nucleotide diversity

in qPc10 region by 64.0% in aus accessions with the

derived allele (AUS-A) at Chr10:20912658 compared with aus

accessions with the ancestral allele (AUS-G) at the site

(Figure 4B). The extent of diversity in the region is significantly
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reduced among haplotypes carrying the derived allele (P = 0.017,

Supplemental Figure 13). The genetic distance between AUS-A

and AUS-G, which was measured as an average distance be-

tween two sequences that are randomly drawn from two popu-

lations, is 0.40. This is significantly elevated when compared

with the genomic background value of 0.06 (P = 0.0044,

Supplemental Figure 14). These results support the hypothesis

of a recent selective sweep that eliminated haplotype diversity

in this region in the aus population, likely due to selection

imposed by farmers in favor of white rice. When we extend the

genetic distance calculation to the flanking regions, we find

a highly differentiated block with sharp boundaries spanning

�700 kb from position 20 400 000 to 21 100 000 (Figure 4C).

This is remarkable because it suggests that AUS-A and AUS-G

form haplotype groups that are divergent from each other in

this large genomic region. This pattern is not easy to explain

just by a scenario of selection from standing variation, but may

suggest that the haplotype was introduced by gene flow from a

divergent variety and/or has been experiencing recombination

suppression. To test the gene-flow hypothesis, we searched for

the source of both haplotype groups from other rice subgroups

in our sequenced rice panel and constructed a haplotype network

including all haplotypes from five major rice subgroups using all

SNPs within a 20-kb region (Figure 4D). The network consists

of two major clusters, one containing most indicas and one

of the two major differentiated haplotype groups within aus or

haplotype III (AUS-G), and the other containing all japonicas,

aromatic varieties, some indicas plus another aus subgroup or

haplotype I (AUS-A) (Figure 4D). The minimal distance between

haplotype groups I and III is 82 nucleotide differences. This

pattern suggests that AUS-A varieties have obtained this haplo-

type by gene flow from japonica varieties. Moreover, haplotype

I is slightly more divergent from haplotype III than from haplotype

II (largely consisting of japonica varieties). This pattern is consis-

tent with expectations under the hypothesis that AUS-A was

introduced into aus from japonica varieties.

DISCUSSION

Low-coverage sequencing-based GWAS in inbreeding species

using a de novo SNP discovery strategy is a cost-effective

approach for association mapping. With both simulated and

real data, we have shown that a sequencing depth of approxi-

mately 13 provides almost the same mapping power for GWAS

as deep sequencing. In fact, in the real data, evenwith reasonably

small panels, we were in several cases able to identify the caus-

ative SNP directly. The critical component for this framework is

the use of population panels and imputation-based methods for

genotype calling. The lesson from human genetics, that low-

coverage sequencing can be highly effective (Pasaniuc et al.,

2012), is even more true for inbreeding species which, for the

purpose of genotype calling, can be considered to be haploid.

This leads to easy resolution of haplotypes and much higher

genotype calling accuracy. This framework does not rely

on existing comprehensive haplotype panels, and thus should

have an immediate application to GWAS in many other

inbreeding species where such resources are not available. For

computational reasons, our simulations used an approach in

which we first called genotypes without imputation and then

imputed the missing genotypes. For real data analyses we

would instead recommend using direct imputation-based geno-
type calling (e.g., Browning and Browning, 2007). Such

methods will likely greatly improve the performances of low-

coverage approaches (e.g., 0.13) over that reported here.

However, for low-coverage whole-genome resequencing pro-

jects, the limiting factor for further reducing cost has shifted to

the cost of sample preparation (Rohland and Reich, 2012).

When we applied the approach to real data, we identified a new

locus for pericarp color variation in aus rice. Interestingly, white

pericarp seems to have evolved twice, providing an example of

convergent evolution in rice domestication. This result suggests

that much of the domestication history of aus is independent

of that of japonica and indica. Either aus represents an inde-

pendently domesticated rice type that subsequent to early

domestication received extensive gene flow from other rice vari-

eties, or it arose from the same early domestication event but

then split up from other domesticated varieties before white

rice had evolved in these varieties.

TheRiceMini-CoreCollection sequenced in the current studycon-

tains immortalized germplasm resources and is available through

the seed bank (http://www.ars.usda.gov/Main, accessed on

March7,2016). Theenormousgeneticdiversityof rice represented

in this collection has attracted researchers to join the efforts for

phenotypic characterization, and as a result comprehensive

phenotypic information, including field and kernel traits (Li et al.,

2010, 2011a, 2012; Bryant et al., 2011), disease resistance (Jia

et al., 2012), and rice grain nutrients (Pinson et al., 2015), have

been accumulated. The genomes sequenced in this study

provide a new opportunity for interrogating the genetic basis

underlying these traits. As illustrated here, the diversity of the

collection, in combination with low-coverage sequencing, pro-

vides sufficient power to map major-effect loci, even to the level

of individual causal SNPs. In addition, it provides a basis for new

experimental approaches for studying phenotypes experimentally

under different environments, providing an accessible open-

source platform for synthetic studies of genotype–phenotype

associations and gene–environment interactions in rice.
METHODS

Simulation of Sequencing Data

To realistically simulatepopulations inMSMS (EwingandHermisson, 2010),

we used population parameters specific to rice. We assumed an effective

population size of 125 000 (Caicedo et al., 2007), a mutation rate of 6.5 3

10�9 (Gaut et al., 1996), and a recombination rate of 4 cM/Mb (Tian et al.,

2009). We simulated 10 000 DNA fragments of 2 Mb, representing

a population consisting of 10 000 fully inbred diploid individuals. The

command line used for MSMS was: ‘‘java -jar msms.jar 10000 1000 -t

10000 -r 40000 2000000.’’ The population simulation was replicated 1000

times for downstream analysis. From each simulated population, we

randomly drew samples of 30, 60, 100, 200, and 400 individuals. For each

individual in a sample, we used ART (Huang et al., 2012a), a software that

simulates the Illumina sequencing process with an empirical error model,

to generate 100-bp non-gapped, mapped reads in SAM format of various

depth directly (‘‘-len 100 -ir 0 -dr 0 -ir2 0 -dr2 0 –sam’’). We simulated

sequencing data with depth ranging from 0.13 to 203 for each individual.

SNP Detection and Error Estimation for Simulations

The package ANGSD (Korneliussen et al., 2014) (version 0.542) was used

for SNP detection. The implemented algorithm calls SNPs across

individuals based on whether the minor allele frequency is significantly
Molecular Plant 9, 975–985, July 2016 ª The Author 2016. 981
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larger than 0 as determined by a likelihood ratio test (Nielsen et al., 2011).

We used the ‘‘minLRT R15’’ criterion, which corresponded to a

significance level of approximately 0.0001 for rejecting the hypothesis of

the site being non-polymorphic, thereby inferring an SNP. To reduce po-

tential false positives introduced by mismapping at gapped region, we

included the arguments ‘‘-baq 1 -C 50.’’ The arguments ‘‘-minMapQ

20 -minQ 20’’ were also used to restrict genotype calling to sites covered

by reads with both high mapping and base quality. For genotype calling,

we adopted a population-based strategy but corrected for the inappro-

priate Hardy–Weinberg equilibrium assumption by using the inbreeding

coefficient of each individual as prior. To further control the genotype qual-

ity, we restricted genotype calling to sites covered by at least one high-

quality read (‘‘-geno_minDepth 1’’). We also set the threshold for genotype

posteriors to be greater than 0.9 (‘‘-postCutoff 0.9’’).

The filtered SNPdataset was comparedwith the simulated true genotypes

in sites with MAF R5%, to estimate the power of SNP discovery, SNP

false discovery rate, and genotype accuracy under different sample size

and sequencing depth scenarios. The SNP discovery power was calcu-

lated as the proportion of SNPs with MAF R5% in the population that

were detected to be polymorphic. The false discovery rate was calculated

as the proportion of SNPs that were called as polymorphic but actually

were not polymorphic in the population. The genotyping accuracy was

measured as the proportion of correct genotype calls.

Phenotype Simulation

We assumed a simple model of additive and equal effects (e) among loci.

The phenotype of each individual was simulated from an N(ne, VE) distri-

bution, where VE is the phenotypic variance explained by environmental

factors and n is the number of loci in which the individual carries a causal

mutation. Phenotypes were simulated under different numbers of causal

loci (n, ranging from 1 to 4) and different narrow-sense heritability (h2,

ranging from 5% to 100% with a step of 5%). For each combination of

h2 and n, we first randomly drew n sites from the genotype dataset with

MAF R5% of the population as causal loci. For each chosen locus, we

randomly let one of the alleles be causal and recorded the corresponding

allele frequency f. The effect of each locus (e) can thus be calculated by

solving the following equations: h2 =
VG

VE +VG
and VG =

Pn
i = 1e

2fið1� fiÞ .
Without loss of generality, we let VE + VG = 1. For each individual, n can

then be tabulated.

GWAS

We used imputed genotype datasets for GWAS. Genotype imputation

was performed on genotypes obtained as described using Beagle

(Browning and Browning, 2007) version 3.3.2. The command line used

for imputation is ‘‘java -Xmx10 g -jar beagle.jar unphased = sample.bgl

missing = N out = imputed.’’ The imputed genotype dataset was

converted to BED format using PLINK (Purcell et al., 2007) version 1.07.

We carried out GWAS with GEMMA (Zhou and Stephens, 2012), which

uses a linear mixed model for association tests, using an estimating

a relatedness matrix as a covariate. For real rice data, we further

controlled population structure by using the first four principal

components from PCA (see Population Structure Analysis of the Rice

Mini-Core Collection) as covariates. Genome-wide critical values were

determined by permutations: each studied phenotype was permuted for

200 times; for each permuted phenotype, GWAS was conducted and

the genome-wide lowest P value was recorded. We then took the 5%

lowest tail from the 200 recorded minimal P values as the threshold for

genome-wide significance. The Manhattan and QQ plots for GWAS

were generated using the R package qqman (Turner, 2014).

Rice Material and Sequencing

The Rice Mini-Core Collection was requested from USDA-ARS Ge-

netic Stock Oryza Collection (http://www.ars.usda.gov/Main/Docs.htm?

docid=23695, accessed March 7, 2016). All accessions had been purified
982 Molecular Plant 9, 975–985, July 2016 ª The Author 2016.
as single seed decent (Li et al., 2010). Received seeds were compared

with database photos for identification. They were then planted in

Hainan (October 2011 to June 2012) for identification and phenotyping.

In brief, germinated seeds were disseminated on seedbeds evenly so

that they grew into the seedling stage under normal field management.

After approximately 20 days, rice seedlings were transplanted to

specifically designed rice plots with row distance R35 cm and plant

distance R20 cm within a row. To avoid cross-pollination, we bagged

each rice line at the top before flowering. The rice samples were further

identified and confirmed at the flowering stage and harvesting. After

confirmation, rice seeds from a single line were incubated in a plant

growth chamber at 30�C for 10 h (day/light) and at 28�C for 14 h (night/

dark) for 2 weeks. Young seedlings were harvested and used for further

genomic DNA preparation. We adopted a CTAB method to extract DNA.

In brief, �2 g of fresh seedling material was soaked and grounded into

fine powder in liquid nitrogen and thoroughly mixed with 23 CTAB DNA

extraction buffer (100 mM Tris-HC1 [pH 8.0], 1.4 M NaCl, 20 mM EDTA

[pH 8.0], 2% CTAB). After incubation at 28�C for 30 min, DNA was ex-

tracted with equal volume of chloroform and precipitated with 0.8 volume

of isopropanol. Genomic DNAwas washed twice with 99% ethanol before

being dissolved in 100 ml of water. We determined the DNA concentration

with Nanodrop 2000 (Thermo Scientific, Waltham, MA), and no less than

3 mg of DNA for each sample was used for sequencing library construc-

tion. DNA libraries (400–500 bp) were prepared and sequenced with a

Hiseq2000 genome analyzer (Illumina, San Diego, CA) following manufac-

turer’s instructions, with 90-bp paired end reads generated. The raw

sequence data were further processed by removing adaptors and low-

quality reads (more than 50% of bases have quality%5). The library prep-

aration, genome sequencing, and raw data processing were conducted in

BGI-Shenzhen, China.
Polymorphism Detection in Rice Population

Clean reads were mapped to the reference rice genome (Kawahara et al.,

2013) (IRGSP-1.0) with BWA version 0.7.0 (Li and Durbin, 2009) using

default parameters. With the mapped reads, we conducted remapping

using Stampy version 1.0.20 (Lunter and Goodson, 2011). PCR

duplicates were removed by ‘‘rmdup’’ in SAMtools version 0.17 (Li et al.,

2009). To reduce miscalls caused by misalignment in INDEL regions, we

realigned reads at the gapped region with GATK version 2.6 (DePristo

et al., 2011). Before SNP calling, we masked all repeat regions in

the rice genome to avoid false SNPs caused by mapping errors. As

the false positives in SNP calling may further introduce errors in all

downstream analysis, we applied stringent filtering. A repeat sequence

database was created by combining the repeat database from RAP-DB

(http://rapdb.dna.affrc.go.jp/) and that from the Rice Genome Annotation

Project (http://rice.plantbiology.msu.edu/). In total, 179 Mb of the

rice genome was masked from downstream analysis. From the non-

repetitive region of the genome, we detected polymorphic sites with

ANGSD using the previously described protocol. We further filtered the

SNP dataset by removing all sites with a missing rate greater than 60%.

These efforts led to a SNP dataset of 2 288 867 sites. Genotypes were

called at these sites, and the accuracy of the genotype dataset was eval-

uated by Sanger sequencing. In brief, we used seeds from the same plants

as used for genome sequencing for samples from each of the japonica,

indica, and aus subgroups, to account for artifacts caused by mapping

of divergent genomes to the same reference genome. DNA was extracted

from young seedlings, fragmented into 300–12 000 bp, purified by gel

extraction of 500–700 bp fragments, and inserted into TA plasmids

(pMD 18-T; TaKaRa, Japan). The ligation products were transformed

into homemade competent Escherichia coli DH5a. After culture and

PCR screening, positive strains with inserted fragment size of 500–

700 bp were sent to BGI-Shenzhen for plasmid isolation and sequencing

(3730 DNA Analyzer; Applied Biosystems, USA). For each sample, we

sequenced 100–200 random clones. The sequences were then cleaned

by removing vector sequences and the T and A nucleotides at the

50 and 30 end, which were introduced by the TA cloning. The clean

http://www.ars.usda.gov/Main/Docs.htm?docid=23695
http://www.ars.usda.gov/Main/Docs.htm?docid=23695
http://rapdb.dna.affrc.go.jp/
http://rice.plantbiology.msu.edu/
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sequences were mapped to the rice genome to call genotypes in order

to evaluate the accuracy of genotypes called from the Illumina data. The

results are summarized in Supplemental Table 2.

Population Structure Analysis of the Rice Mini-Core Collection

We adopted genotype likelihoods-based methods for population struc-

ture analysis (Fumagalli et al., 2014). These methods avoid biases

associated with genotype calling and are especially suitable for analysis

of low-coverage genomic data. We reduced genome-wide SNP marker

redundancy by randomly picking one SNP from every 5-kb region, which

yielded a SNP dataset consisting of 52 838 sites evenly distributed across

the rice genome. Genotype likelihoods at the these sites were estimated

for downstream analysis using ‘‘-doGlf 2’’ and ‘‘-GL 1’’ arguments (Li,

2011) in ANGSD (version 0.542). PCA was conducted with ngsCovar

from the ngsTools (Fumagalli et al., 2014) package. We excluded sites

with MAF less than 5% by using ‘‘-minmaf 0.05,’’ and we also disabled

normalization as suggested in Patterson et al. (2006) by applying ‘‘-norm

0.’’ Structure analysis was performed using NGSadmix (Skotte et al.,

2013), which estimates individual ancestry directly from genotype

likelihoods. We ran NGSadmix by varying K from 2 to 7. For each K,

we ran NGSadmix for 200 replications with different seeds, and the

clustering model with highest likelihoods was selected. Based on

the clustering model with K = 5, we assigned each individual to one of

the five subgroups of Oryza sativa using the following rule: accessions

with R80% genetic ancestry derived from one of the five populations

will be assigned to this subgroup, otherwise they will be assigned

as admixed. To calculate the inbreeding coefficient for each individual,

we used ngsF (Vieira et al., 2013) with default parameters and an

input genotype likelihoods file produced by ANGSD using argument

‘‘-doGlf 0’’. All plots were created with R version 3.0.2.

Population Genetic Analysis at the Associated Loci

The local LD pattern at the Wx gene region was calculated by including

125-kb regions from both sides of the gene. In total, 1527 SNP markers

were included, and imputed genotypes were obtained to construct the

Wx haplotypes. The squared allele-frequency correlation (r2) for all pairs

of SNPs was determined with Haploview (Barrett et al., 2005). To reveal

the population genetic pattern at the qPc10 locus, we divided all aus

samples into two subpopulations according to their allelic states at

site Chr10:2091265. We estimated the diversity at the qPc10 locus

for AUS-A and AUS-G using the average number of pairwise differences

(qp) calculated using ‘‘-doThetas’’ in ANGSD. The approach in ANGSD

accommodates missing data and inherent uncertainty in low-coverage

data and produces estimates comparable with those that would have

been obtained from true genotypes without uncertainty (Korneliussen

et al., 2014). To test the genome-wide significance of the diversity

reduction for AUS-A, we retrieved all non-redundant polymorphic sites

with MAF R0.4 (comparable with the MAF of the site Chr10:20912658,

which is 50%) in the aus population. For each site, the aus population

was divided into two subpopulations according to the ancestral/derived

information and the ratio of qps was calculated for these two subpopu-

lations in a 20-kb region around Chr10:20912658. The ancestral/derived

state was inferred by comparisons to the Oryza punctata genomic

sequence (Wang et al., 2014). The genetic distance between the

two populations, calculated as described by He et al. (2011),

measures the average distance for all pairwise comparisons between

sequences randomly drawn from the two populations, and ranges

from 0 to 1. To evaluate the genome-wide significance of genetic

distance between alleles at the qPc10 region, we adopted the same

procedure as described for the diversity reduction and calculated

the genetic distance between the two subpopulations harboring

different alleles. The distribution of the genetic distances is plotted in

Supplemental Figure 14.
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