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ABSTRACT OF THE THESIS 

 

Neuroinflammation in Alzheimer’s Disease Contributes to A2-type Reactive Astrocytic Profile 

in iPSC Derived Patient Astrocytes  

 

by 

 

Lauren T. Hui 

Master of Science in Biology 

University of California San Diego, 2021 

Professor Fred H. Gage, Chair 

Professor Yishi Jin, Co-Chair 

 

 Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by 

loss of neurons and synapses throughout the brain. Increased neuroinflammation has been 

observed in the brains of AD patients and is hypothesized to play a role in the pathology of the 

disease. Inflammation in the brain is thought to be primarily initiated by the non-neuronal cells 

of the brain, glia cells. One type of glia, astrocytes, are suspected to play a role in the onset and 

progression of AD through inflammation. Recent characterization of reactive astrocytes has 

identified two activated astrocyte states: a harmful, pro-inflammatory A1 state or a helpful, anti-

inflammatory A2 state when exposed to CNS injury. In this thesis, I asked if A1 or A2 astrocyte 

states were different between AD and control astrocytes. Here, I analyzed RNA-sequencing data 



xi 

 

from AD astrocytes generated from patient-derived induced pluripotent stem cells (iPSCs) along 

with age-matched controls to identify the relative proportions of A1 and A2 states. Surprisingly, 

I found that AD astrocytes have an increase in A2-type, “helpful” astrocytes relative to age-

matched cognitively normal controls. These results reflect the complexity of AD and suggest 

new ways of thinking about inflammation in AD.  
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INTRODUCTION 

The aim of this thesis is to characterize the inflammation status of astrocytes in 

Alzheimer’s disease (AD), utilizing RNA-sequencing data from astrocytes derived from patient 

induced pluripotent stem cells (iPSCs). Our dataset is composed of 3 differentiations of 

astrocytes each from 6 individuals: 3 with AD and 3 cognitively normal, aged-matched controls.  

 Reactive astrocytes likely play a significant role modulating neuroinflammation in AD, 

by influencing disease progression and severity of symptoms related to the disease (Glass et al. 

2010). Furthermore, known familial mutations associated with AD, such as PSEN1, have been 

shown to alter astrocyte behavior and core astrocytic functions and compromises their ability to 

support neurons in AD (Oksanen et al. 2017).  Central nervous system (CNS) injury studies have 

proposed different activation states for astrocytes that can range from harmful (A1) to helpful 

(A2), which upregulate pro-inflammatory or anti-inflammatory responses (Liddleow et al. 2017). 

I hypothesized that the harmful reactive state of astrocytes (A1) is implicated in exacerbating the 

inflammatory response in AD and would exhibit differential gene expression in their 

transcriptome compared to controls.  

BACKGROUND 

1. Alzheimer’s Disease 

Alzheimer’s disease (AD) is a complex age-related neurodegenerative disorder with both 

sporadic and familial forms; it is characterized by a progressive decline in cognitive abilities 

such as memory, language, personality, and behavior, leading to dementia and eventually death 

(Weller and Budson 2018). It is estimated that over 50 million people worldwide have dementia, 

and of those, 60-70% of cases can be attributed to AD. AD not only affects patients, but their 

families and caregivers, who face rising costs of care as well as emotional and physical 

https://paperpile.com/c/ecbKGw/cNIe
https://paperpile.com/c/ecbKGw/cNIe
https://paperpile.com/c/ecbKGw/Jy1y
https://paperpile.com/c/ecbKGw/uxw3
https://paperpile.com/c/ecbKGw/5ltm
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difficulties associated with being a long-term caregiver. Up to 10 million new cases are reported 

each year, making it one of the most pressing health concerns today for the world’s aging 

population (Alzheimer’s Association 2020).  

Multiple clinical diagnostic criteria have been established to diagnose AD at different 

stages: early preclinical with no symptoms, a middle stage with mild cognitive impairment, and a 

final stage with symptoms of dementia (“Alzheimer’s Disease Diagnostic Guidelines” n.d.). 

These stages and their severity are assessed with cognitive assessments in combination with 

biomarker tests, where prior to 1984, the only confirmation of diagnosis was post-mortem 

(“Alzheimer’s Disease Diagnostic Guidelines” n.d.) Cognitive impairment can be assessed by 

administering a combination of tests including the Montreal Cognitive Assessment (MoCA), 

Mini-Mental State Examination (MMSE), and Braak staging, a method to quantify the 

prevalence of proteinaceous aggregates per area in the patient brain on a scale of (I-IV) (Adler et 

al. 2019). A combination of magnetic resonance imaging (MRI), hypometabolism on 

fluorodeoxyglucose (FDG) positron emission tomography (PET), and hypoperfusion on single-

photon emission tomography (SPECT) have shown abnormalities in the brain prior to cognitive 

impairment (Cummings 2012).  

95% of AD cases are sporadic, meaning they have no known familial genetic cause, and 

only about 5% of AD cases are attributable to a familial cause from a heritable genetic mutation 

(Bali et al. 2012). Historically, sporadic AD has been understudied since animal models do not 

sporadically develop AD; most studies utilize models with known familial AD mutations. This 

study utilizes cells generated from sporadic-onset patients diagnosed with AD, which gives 

unique and new insight into the transcriptomes of astrocytes from sporadic AD patients. 

https://paperpile.com/c/ecbKGw/F1jE
https://paperpile.com/c/ecbKGw/93Bx
https://paperpile.com/c/ecbKGw/xtnJ
https://paperpile.com/c/ecbKGw/mRGK
https://paperpile.com/c/ecbKGw/mRGK
https://paperpile.com/c/ecbKGw/EXyb
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However, it is unknown whether the patients had any familial AD-related mutations, or the 

patients’ overall protein load or ApoE status at time of cell collection. 

Historically AD has been diagnosed post-mortem by the presence of extracellular 

amyloid beta plaques and intracellular tau neurofibrillary tangles, pathological hallmarks. The 

exact pathogenesis of AD is not known. Pathological hallmarks suggest that Aβ and hyper-

phosphorylated tau are involved in late-stage AD, although a causal link is still debatable. 

Mutations in several genes of interest increase the risk of developing AD, including inheritable 

familial mutations. Familial AD is typically caused by mutations in the gene for amyloid 

precursor protein (APP) or mutations in presenilin genes PSEN1 and PSEN2, whose protein 

products participate in processing APP (Dorszewska et al. 2016). Mutations in APP processing 

leads to buildup of amyloid plaques and impairs clearance of the proteins, leading to the 

pathological amyloid beta plaques associated with AD. Several genetic factor risk factors for 

developing AD have been found, such as the ε4 allele of ApoE, which also increases risk of 

earlier age of onset (van der Lee et al. 2018).  

The APP gene has 18 exons which may be alternatively spliced, producing 10 different 

isoform products from 563 to 770 amino acids in length. The APP 695 product is predominant in 

the central nervous system of healthy patients and is cleaved by the gamma secretase complex to 

produce the amyloid-beta peptide (Aβ), typically 39 to 42 amino acids long (Kelleher and Shen 

2017). The gamma secretase complex is a common site of mutation, and the effects of mutation 

are seen in familial AD (Piaceri, Nacmias, and Sorbi 2013). The gamma secretase complex is 

made up of four proteins: nicastrin, presenilin-1, PEN-2, and APH-1. Of these, presenilin-1 is 

one of the most common sites of mutation, with the PSEN1/PSEN2 gene mutations being some 

of the most well-known genetic causes of AD due to it causing increased production of Aβ42 or 

https://paperpile.com/c/ecbKGw/lnyl
https://paperpile.com/c/ecbKGw/lGd4
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enhanced APP processing (Kelleher and Shen 2017). The size of Aβ is utilized as a marker of 

abnormal APP processing: Aβ40 is the common isoform seen in healthy patients whereas Aβ42, 

the longer variant, is highly susceptible to amyloid fibrillogenesis and is upregulated in familial 

AD.  

2. Inflammation in AD 

A common theme of AD is the presence of neuroinflammation, regardless of whether it 

manifests as familial or sporadic AD. The exact mechanism by which inflammation is mediated 

in AD is unclear, but it has been tied primarily to Aβ peptides, neurofibrillary tangles, and 

overall neuronal degeneration, all of which are hallmarks of AD shown in models and in 

postmortem tissue (Neuroinflammation Working Group et al. 2000). Inflammation appears to 

have both neuroprotective and detrimental qualities: in acute responses, it appears to be 

neuroprotective, but when it becomes chronic, inflammation can become detrimental (Kim and 

Joh 2006; Kinney et al. 2018).  

It is hypothesized that Aβ peptides activate microglia, which are responsible for releasing 

pro-inflammatory products, including reactive oxygen species (ROS), nitric oxide, and 

cytokines, which can then activate astrocytes and cause astrogliosis and further inflammatory 

responses (Baik et al. 2016). Specific cytokines have been associated with inflammatory 

signaling in AD, including TNF-α, IL-1β, IL-6, NFκB, IL-10, and TGF-β (Kinney et al. 2018). 

This sustained immune response and inflammation can further damage neurons, which continues 

a feed-forward response that activates microglia and causes additional cytokine release, 

inflammation, and contributes to neurodegeneration (Hickman, Allison, and El Khoury 2008) 

New studies have revealed that the innate immune system contributes to formation of 

amyloid plaques via 𝛾-secretase modulation (Hur et al. 2020). As previously discussed, 𝛾-

https://paperpile.com/c/ecbKGw/w2Ab
https://paperpile.com/c/ecbKGw/JUig
https://paperpile.com/c/ecbKGw/sHv1+Mfi7
https://paperpile.com/c/ecbKGw/sHv1+Mfi7
https://paperpile.com/c/ecbKGw/XfCp
https://paperpile.com/c/ecbKGw/Mfi7
https://paperpile.com/c/ecbKGw/a7FA
https://paperpile.com/c/ecbKGw/gQFl
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secretase activity is critical to AD development as it regulates production of Aβ peptides. 

Interferon-induced transmembrane proteins were recently identified as novel regulators of 𝛾-

secretase, pointing to a greater role of the immune system and cytokine release in AD 

progression (Hur et al. 2020). This led me to hypothesize that immune system-related genes and 

inflammation-related genes would be significantly upregulated in AD vs control astrocytes. 

3. iPSC generation and current methods of AD modelling 

 Induced human pluripotent stem cells (iPSC) have proved effective in modelling disease 

pathology since their discovery in 2007. iPSCs provide a human-specific primary cell culture 

system to complement existing animal models. Because iPSCs are derived directly from patient 

cells, translating findings to the clinic are now more possible than ever, and was chosen for this 

study as it allows us to examine sporadic-onset AD, which has been historically understudied 

due to a lack of appropriate models. The iPSC system allows researchers to generate nearly every 

cell type in the human body and observe disease states in vitro. Since iPSCs are infinitely 

expandable, they provide a major improvement to human tissue availability by providing a 

limitless source of samples that can be derived from a wide variety of patient cell-types, 

including blood and skin fibroblasts (Medvedev, Shevchenko, and Zakian 2010). 

 Reprogramming somatic cells, such as dermal fibroblasts, to a pluripotent state is 

achieved through only four transcriptional factors, Oct3/4, Sox2, c-Myc, and Klf4 (also known 

as the Yamanaka factors) (Yamanaka 2007). From iPSC stage, addition of reprogramming 

factors at specific timepoints has allowed researchers to induce a variety of cell types relevant to 

the diseases being studied.  

The Yamanaka method is limited by several factors, including integration of exogenous 

viral transgenes into the host genome and low induction efficiency. Inserting retroviruses in the 

https://paperpile.com/c/ecbKGw/gQFl
https://paperpile.com/c/ecbKGw/VX3j
https://paperpile.com/c/ecbKGw/Dxcu
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genome increases the risk of tumorigenicity, and other methods of increasing induction 

efficiency were not able to resolve these issues (Medvedev, Shevchenko, and Zakian 2010). An 

alternate iPSC induction method was found in 2009 to resolve both these issues: the Sendai 

virus. The Sendai virus (SeV) is an RNA virus that carries no risk of altering the host genome; 

SeV vectors replicate in the cytoplasm as negative-sense single-stranded RNA, which does not 

interact with nor integrate into the host genome and has high efficiency relative to the Yamanaka 

method alone (Fusaki et al. 2009). Utilizing the SeV delivery system in conjunction with the 

Yamanaka factors allows for effective iPSC generation without risk of integration to the host 

genome, which is important for preserving the genetic hallmarks of disease pathology. The SeV 

delivery system is vital for generation of reliable in vitro cell models for research as it preserves 

endogenous genetic material while consistently supporting transformation vectors. In AD 

models, iPSCs generated from patient cells must remain unaltered by exogenous genes in order 

to preserve the endogenous factors contributing to the AD phenotype, including heritable risk 

factors.  

 The iPSC system has been used in studies of AD to model the progression of the disease, 

examine genetic risk factors, and provide a model for drug development and testing. In our 

experiment, the SeV delivery system was utilized to generate reactive astrocytes from confirmed 

AD patients and age-matched controls.  

Astrocytes derived from iPSCs vary in terms of their functionality and morphology, 

largely dependent on the protocol used to generate them. It is generally accepted that astrocyte 

identifiers are stellate morphology and positive expression of S100β and glial fibrillary acidic 

protein (GFAP), though other markers such as A2B5 and CD44 may be used (Krencik and 

Zhang 2011). Functionality of astrocytes may be assessed by glutamate uptake, calcium 

https://paperpile.com/c/ecbKGw/VX3j
https://paperpile.com/c/ecbKGw/5z4d
https://paperpile.com/c/ecbKGw/wSFq
https://paperpile.com/c/ecbKGw/wSFq
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transients, and response to pro-inflammatory stimuli (Santos et al. 2017). Though there are no 

singularly definitive markers agreed upon for astrocytes, multiple markers and functionality 

assessments can and should be utilized to assess the quality and robustness of the differentiated 

astrocytes. 

4. Astrocytes in AD, Astrocyte Reactivity 

Astrocytes normally play a support role in the brain; they secrete small molecules to 

promote and maintain synapses, secrete protective antioxidants such as glutathione, supply 

nutrients to nervous tissue, regulate the blood-brain barrier, and play a role in repair and recovery 

after traumatic brain injury (Siracusa, Fusco, and Cuzzocrea 2019). Astrocytes also form scars 

after CNS injury and play a role in axon guidance and regeneration, which may be of interest for 

AD treatment since synapses are damaged in AD (Anderson et al. 2016). They are the most 

abundant type of glial cell and previous studies have reported that they comprise 20-40% of all 

glial cells (Verkhratsky and Butt 2013). When assessing astrocytes for function, calcium 

homeostasis, cytokine and antioxidant small molecule release, and glycolytic stress are often 

utilized as a benchmark.  

Studies have been shown that astrocytes with the same genetic profile as AD patients 

have altered metabolism, altered cytokine release in pro-inflammatory conditions, and show an 

inability to propagate calcium transients (Oksanen et al. 2017). The immune system and 

complement cascade have been associated with abnormal clearing or development of Aβ and are 

considered a risk factor for AD (González-Reyes et al. 2017). This led us to theorize that altered 

astrocyte activity may be linked to pro-inflammatory activity or an altered response to 

inflammatory signalling, contributing to the progression of AD symptoms. Upregulation of pro-

https://paperpile.com/c/ecbKGw/tdSR
https://paperpile.com/c/ecbKGw/8fPj
https://paperpile.com/c/ecbKGw/o8vN
https://paperpile.com/c/ecbKGw/gHWu
https://paperpile.com/c/ecbKGw/Jy1y
https://paperpile.com/c/ecbKGw/8RmG
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inflammatory genes such as IL-6, IL-1β, NO, and TNFα have been previously associated with 

Aβ species, such as Aβ1-42, implicated in AD (Lindberg et al. 2005; Hou et al. 2011).  

It has been observed that two different astrocytic states arise post-spinal cord injury, 

termed A1 and A2 (Liddelow et al. 2017). Reactive microglia have been shown to induce an A1 

state through release of cytokines IL-1α, TNF, and C1q, which causes the A1 state to lose 

essential astrocytic functions such as induction of excitatory synapses and phagocytic capacity 

(Liddelow et al. 2017). They are also highly neurotoxic to CNS neurons and mature 

oligodendrocytes, even when caspase-2 and caspase-3 inhibitors are added to cell culture. The 

transcriptome of A1 astrocytes demonstrate upregulation of H2-D1, IIGP1, PSMB8, SRGN, 

AMIGO2, SERPING1, GGTA1, HW-T23, GPP2, FKBP5, C3, and FBLN5 (Li et al. 2019). They 

have also been identified as present in other neurodegenerative diseases, such as Huntington’s 

disease (Khakh et al. 2017), Parkinson’s disease, amyotrophic lateral sclerosis, and multiple 

sclerosis (Liddelow et al. 2017). Aged astrocytes also take on a more A1-like reactive phenotype, 

which can be reduced in mice lacking microglial-secreted cytokines mentioned above. The aged 

astrocytes lose normal functions similar to A1-reactive astrocytes post-CNS injury, and may 

contribute to cognitive decline and vulnerability in critical brain regions (Clarke et al. 2018). 

Reportedly, complement component C3 is the most common and most characteristic upregulated 

gene expressed by A1 astrocytes, with up to 60% of GFAP+ astrocytes in the prefrontal cortex 

being C3+ in human AD tissue (Liddelow et al. 2017).  

In contrast, the A2 state is neuroprotective and releases trophic factors that promote 

healing and repair of membranes and tissues. They have previously been associated with post-

stroke ischemia and AQP4 to reabsorb excess fluid in brain edemas and to secrete small 

molecules to promote neurotrophic factors in the CNS (Zador et al. 2009; Papadopoulos et al. 

https://paperpile.com/c/ecbKGw/1BX7+wQYJ
https://paperpile.com/c/ecbKGw/uxw3
https://paperpile.com/c/ecbKGw/uxw3
https://paperpile.com/c/ecbKGw/mYE4
https://paperpile.com/c/ecbKGw/tEJp
https://paperpile.com/c/ecbKGw/uxw3
https://paperpile.com/c/ecbKGw/JlY6
https://paperpile.com/c/ecbKGw/uxw3
https://paperpile.com/c/ecbKGw/OtPm+4sDV
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2004). Upregulated A2 genes include Clcf1, Tgm1, Ptx3, S100a10, Sphk1, Cd109, Ptgs2, Emp1, 

Slc10a6, Tm4sf1, B3gnt5, Cd14, and Stat3  (Liddelow et al. 2017). Of these, S100a10 is 

particularly noteworthy for its role in promoting cell proliferation, membrane repair, and 

inhibition of apoptosis. S100a10 also promotes production of anti-inflammatory cytokine TGFβ, 

which participates in synaptogenesis and has a neuroprotective role (Li et al. 2019).  

5. Summary of Thesis Aims 

This thesis aims to explore the changes in the transcriptome of sporadic AD patient-

derived astrocytes generated from iPSCs and compare them to those of age-matched controls. 

Sporadic AD has historically been understudied due to a lack of appropriate modelling systems 

and using the iPSC system provides new insight into sporadic forms of AD that may reveal 

differences or similarities to familial AD that have not been observed previously. Analysis of the 

differentially expressed genes may shed light on changes in cell function and signaling in AD 

astrocytes.  

Additionally, this thesis aims to examine the transcriptome of astrocytes and their role in 

AD, as it has been shown that familial AD mutations can cause astrocyte dysfunction and disrupt 

neuronal homeostasis. The cause of neuroinflammation in AD is unknown, however, astrocytes 

are of interest as they play a role in the inflammation cascade. AD astrocytes may exhibit a more 

pro-inflammatory activated state than controls. 

Lastly, this thesis examines whether astrocytes in AD more closely resemble the 

proposed A1 “harmful” or A2 “helpful” states as described previously in literature (Liddelow et 

al. 2017). Based on previous literature, I hypothesized that AD astrocytes more closely resemble 

the A1 “harmful” state which would show significant upregulation in the defined A1 genes 

compared to controls.  

https://paperpile.com/c/ecbKGw/OtPm+4sDV
https://paperpile.com/c/ecbKGw/uxw3
https://paperpile.com/c/ecbKGw/mYE4
https://paperpile.com/c/ecbKGw/uxw3
https://paperpile.com/c/ecbKGw/uxw3
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METHODS 

Astrocyte Generation and RNA Extraction 

Astrocytes were generated in triplicate from 3 stable patient-derived induced pluripotent 

stem cell lines and 3 age-matched controls as previously described (Santos et al. 2017). Briefly, 

iPSCs were differentiated into glia progenitor cells (GPCs) via embryoid body formation in the 

presence of 500ng/mL Noggin (Peprotech) for 2 weeks with 10ng/ml PDGFAA (R&D Systems) 

added for an additional week. Next, GPCs were dissociated to single cell and expanded as a 

monolayer in astrocyte medium (DMEM/F12 Glutamax with N2 and B27 [Thermo Fisher 

Scientific] with 10% fetal bovine serum [FBS, Omega Scientific]) with human 20ng/mL FGF2 

for 2 weeks, and human 10ng/mL human LIF (Alomone Labs) supplemented for the last week.   

RNA was extracted via Qiagen RNeasy kit and reverse-transcribed to cDNA via 

invitrogen SuperScript III. Samples were submitted to Illumina next-generation sequencing. 

SolexaQA++ was used to trim low quality reads and cutadapt to trim Illumina adapters.  

RNA-seq Data Quality Control 

Reads were mapped using StAR (Dobin et al. 2013) against the Genome Reference 

Consortium Human Build 38 (Schneider et al. 2016). Raw, unnormalized counts were obtained 

and analyzed using the DeSeq2 package (Love, Huber, and Anders 2014) and EdgeR packages 

(Y. Chen, Lun, and Smyth 2016). The apeglm package was utilized for LFC shrinkage (Zhu, 

Ibrahim, and Love 2019). A principal component analysis (PCA) was generated initially from 

raw, unnormalized counts using the DeSeq2 package and the pcaExplorer function to observe 

whether disease and control groups had a significant difference (Marini, Federico, and Binder 

2019). Read counts and gene length bias were analyzed against a normal distribution using a 

dispersion plot generated with DeSeq2, then quality control was performed. Genes with raw 

https://paperpile.com/c/ecbKGw/tdSR
https://paperpile.com/c/ecbKGw/p2UK
https://paperpile.com/c/ecbKGw/faUU
https://paperpile.com/c/ecbKGw/3Qoa
https://paperpile.com/c/ecbKGw/pDws
https://paperpile.com/c/ecbKGw/OfLM
https://paperpile.com/c/ecbKGw/OfLM
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averaged expression less than 25 were removed, and remaining genes were filtered by p-value to 

remove any genes with p-value greater than 0.05. Log2fold change (LFC) was considered 

significant if greater than 1.5 and the identified genes were considered “differentially expressed 

genes (DEGs)”.  

An MA plot was generated using DeSeq2 with all genes that passed quality control to 

visualize DEGs. Lastly, a Pearson correlation plot was generated with DeSeq2 to visualize and 

predict relationships between samples using both a heatmap and hierarchical clustering.  

Differential Gene Expression Analysis 

DEGs were then submitted to Enrichr and String-DB for gene ontology and protein-

protein interaction analysis (E. Y. Chen et al. 2013; Kuleshov et al. 2016; Szklarczyk et al. 

2019). Only upregulated DEGs were submitted to String-DB, and both upregulated and 

downregulated DEGs were submitted to Enrichr.  

DEGs were also compared to existing pre-established gene families listed on Enrichr: 

“Inflammation” genes from Inflammation mediated by chemokine and cytokine signaling 

pathway Homo sapiens P00031 from Panther_2016 (188 genes); “Early Onset” genes from 

Alzheimer Disease, Early Onset from DisGeNET (115 genes); “Late Onset” genes from 

Alzheimer Disease, Late Onset from DisGeNET (252 genes); “Familial” genes from Familial 

Alzheimer Disease (FAD) from DisGeNET (187 genes). DEGs were also compared to A1 and 

A2 gene lists reported from literature (Liddelow et al. 2017). 

RESULTS 

Quality Control 

 The first priority of this project was to ensure quality of the data, and assess any 

variability between individual samples or between replicates. To accomplish this, a principal 

https://paperpile.com/c/ecbKGw/0aKF+zIC5+LspD
https://paperpile.com/c/ecbKGw/0aKF+zIC5+LspD
https://paperpile.com/c/ecbKGw/uxw3
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component analysis was performed to reduce dimensionality across the cohorts to obtain an 

initial “snapshot” of the data sets without compromising the quality of data (Figure 1).  

The principal component analysis (PCA), consisting of the 9 AD and 9 control samples, 

showed clear separation between the two axes, suggesting an observable difference between the 

AD and control data sets (Figure 1). The AD samples clustered along the left side of the X-axis , 

and the control groups  clustered along the right side of the X-axis (PC1, 53% variance). 

Interestingly, there was also some separation between AD and control along the y-axis (PC2, 

23% variance), although it was not as consistent. One control group clusters closer to the AD set 

than the other controls, suggesting an outlier that may be more AD-like than others. It has been 

previously observed that patients may be cognitively normal at time of sample collection but 

develop AD at a later point in time; this may have been the case of samples from this control 

patient, however, we cannot attribute this result conclusively as we lack the patient clinical data 

to confirm this finding (Supp. Figure 1). However, individual replicates from each group were 

consistently clustered together, supporting the robustness of the data set and consistency between 
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handling of replicates of each sample. 

 

Figure 1: Principal component analysis of disease vs control samples reduced along two axes. 

 In order to investigate if differences in read depth accounted for any of the variability 

indicated by PCA, individual raw read counts were compared per sample. The raw, 

unnormalized read counts can be observed in Figure 2. The total counts for each group showed 

some minor variations between samples on a linear scale, but demonstrated good consistency 

between samples, suggesting that the quality and depth of the reads were consistent across all 
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samples. 

 

Figure 2: Individual read counts for all samples, approximately equal. AD samples have slightly fewer read counts 

that may be due to natural variations in number of cells submitted for signaling. 

 

Normalizing the raw linear read-counts to log scale demonstrated that the reads were 

approximately equal for all samples that were sequenced (Figure 3). Counts from AD 7, 8, 9 

replicates, had slightly fewer counts per million (log2 CPM), potentially suggesting variation in 

total RNA or cell number input, was not different enough to raise concern as this minor 
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difference did not affect this sample via PCA (Supp. Fig. 1).

 

Figure 3: Normalized log2 counts per million for all samples. 

Differential Expression Analysis 

 A dispersion plot was generated to control for read count (or gene length) bias to 

determine normalization of all genes relative to a best fit curve (Figure 4). The dispersion plot 

suggests there was a normal spread of gene counts along the axis of dispersion and that several 

genes (bold dots) do not fit the normalization model, suggesting a biological basis for dispersion.  

The analysis provides confidence in the underlying biology and removes potential artifacts of 
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sequencing, allowing for more analysis on our dataset. 

 

Figure 4: Dispersion plot generated to control for read count (or gene length) bias, showing the majority of counts fit 

along the normalization model. 

Differential sequence analysis was performed after categorizing AD and control groups 

into “disease” versus “control”, respectively. Subsequent visualizations were generated using a 

variance-stabilizing transform of the data, which yielded the most stable normalization of the 

data (Supp. Fig. 1). Heatmap analysis of differential expression (Supp. Fig. 3) revealed 

consistent upregulation and downregulation of gene groups differentially between the disease 

and control groups.  



17 

 

Normalized gene counts were compared between AD and control groups using DeSeq2 to 

identify and analyze differential gene expression between the disease and control groups. These 

results were visualized via an MA-plot (Figure 5). The results suggest hundreds of statistically 

significant differentially expressed genes (DEGs; p-value ≤ 0.05) between AD and control 

groups across 13,454 genes that passed quality control. Of these genes, 1653 (12%) were 

significantly upregulated with a log fold change greater than 1.5, and 1933 (14%) were 

significantly downregulated with a log fold change less than 1.5.  

 

Figure 5: MA-plot visualizing differential expression analysis. Each dot represents a gene. Red dots are significantly 

upregulated, while blue dots are significantly downregulated. Black dots indicate non-significant log-fold change.  

MA Plot Visualizing Differentially Expressed Genes Between 
Disease and Control States 
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 The relationships between the AD and control groups were examined via unbiased 

hierarchical clustering of DEGs. This analysis was visualized via Pearson’s correlation heatmap 

(Figure 6).   One cluster of controls were more similar to an AD “disease” group than the other 

control groups. This finding reflected our initial principal component analysis where AD 

replicates 4, 5, and 6 were closer to Ctrl 1, 2, and 3 replicates than other AD or Ctrl groups 

(Supp. Fig. 2). This may be due to the age-matched control sample being cognitively normal at 

time of sample collection but may have been diagnosed with AD or dementia after collection of 

the sample. However, this study lacks the clinical data needed to make such a conclusion; this 

suggests that RNA-seq data on iPSC derived AD astrocytes demonstrate an AD specific 
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transcriptomic profile.

 

Figure 6: Heatmap and hierarchical clustering of differentially expressed genes from all samples generated from 

DeSeq2 data.  

Analyzing potential functions of differential gene expression 

 All genes with greater than twofold upregulation and p-value of <0.05 were uploaded to 

String-DB for analysis of interactions between gene products (von Mering et al. 2005). K-means 

clustering was performed on the network and three distinct hubs were identified via interactions 

from curated databases and experimentally determined interactions. In the first cluster (green, 

left, Figure 7), the central gene/protein of interest is IL1β, implicated in multiple prior studies 

with inflammation, AD, and the immune response (Kinney et al. 2018). Closely tied to it are 

http://www.ncbi.nlm.nih.gov/pubmed/15608232
https://paperpile.com/c/ecbKGw/Mfi7
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genes from the Wnt pathway (Wnt5a), genes for differentiation (PDGFRA, platelet-derived 

growth factor receptor alpha), genes for second-messenger signaling pathways (ADCY6, 

adenylate cyclase type six), and closely related inflammation and cytokine/chemokine pathways 

(CXC family genes). The CXC genes act as pro-inflammatory signals, regulating the 

inflammation response that is particularly of note in AD as it has been shown in AD patient 

brains (Liu et al. 2014). Also upregulated was VCAM1, a proliferation marker, and IGF1R, 

insulin-related growth factor 1 receptor. Upregulation of this cluster, with a p-value of <0.05, as 

seen in this analysis strongly continues to support the theory that inflammation plays a role in the 

progression and severity of symptoms for AD at a molecular level.  

 The second cluster of note is closely related to the inflammation cluster seen by the 

cytokine/chemokine pathways, centering on genes of the complement system, which include C3, 

C5, CFB, C4a and C4b. The complement system (or complement cascade) regulates the immune 

response; this ties in closely with the upregulation of pro-inflammatory genes and 

cytokine/chemokine pathways. Importantly, the complement system is directly involved in 

synapse pruning and has been implicated in AD (Brucato 2020). Additionally, genes from the 

Ras-Raf-MEK-ERK signaling pathway are closely linked to the complement system gene cluster 

in this visualization and were upregulated in our dataset.   

The last cluster of interest in blue included voltage-gated potassium channels and their 

subunits (KCNB1 family) and metalloproteases (ADAMTS1 family). Oxidation of KCNB1 

channels has been reported in a mouse model of AD, which becomes toxic to neurons (Wei, 

Shin, and Sesti 2018). The ADAMTS1 family is associated with extracellular matrix damage and 

repair, and has been shown to be downregulated in animal models of neurodegenerative diseases 

such as multiple sclerosis (Gurses et al. 2016). There are also extracellular matrix gene linkages 

https://paperpile.com/c/ecbKGw/VpSd
https://paperpile.com/c/ecbKGw/ZOLG
https://paperpile.com/c/ecbKGw/oJoZ
https://paperpile.com/c/ecbKGw/oJoZ
https://paperpile.com/c/ecbKGw/kW5l
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and ion channels in the third cluster. Extracellular matrix protein levels have been shown to be 

changed in AD patients and animal models, and have been shown to interact with Aβ peptides 

(Ma et al. 2020).  

 

Figure 7: String-DB K-means clustering of differentially expressed genes (p<0.05), showing linked gene ontologies 

and gene families.  

https://paperpile.com/c/ecbKGw/tkkm
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Functional interaction enrichments for biological process, molecular function, and 

cellular component gene ontology were analyzed from the DEGs in the String-DB generated 

network. DEGs and their associations with cell component gene ontology revealed connections 

to AD and inflammation with a high confidence score (Figure 8) (Szklarczyk et al. 2019). “Size” 

along the x-axis indicates a ranking of confidence, with 1 being the highest possible confidence 

(von Mering et al. 2005). The dot “strength” indicates strength of co-expression between the 

DEG list and the gene ontology term. Gene ontology analysis of the most upregulated DEGs 

were associated with terms for the integrin alpha4-beta7 complex, which is involved in the CD4 

cell-surface complex formation to regulate the immune response, and surprisingly, the cardiac 

troponin complex (Cicala et al. 2009). Other upregulated cell components to note were the 

NLRP3 inflammasome complex, and inflammasome complex, and integrin complex, which are 

all involved with inflammation and the immune response. 

https://paperpile.com/c/ecbKGw/LspD
https://paperpile.com/c/ecbKGw/DW6I
https://paperpile.com/c/ecbKGw/OxOj
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Figure 8: Cell component associations from differentially expressed genes from String-DB analysis.  

 The upregulated genes revealed patterns in upregulated gene processes as well, with 

regulation of cell proliferation in midbrain, the cell-matrix adhesion involved in amoeboid cell 

migration, cytokine secretion involved in immune response, and negative regulation of 



24 

 

complement activation significantly upregulated (Figure 9). 

 

Figure 9: Top 30 gene processes associated with differentially expressed gene list generated by String-DB. 

 From the upregulated genes, molecular function associations yielded several functions of 

interest, including upregulation in microsatellite binding, multiple troponin binding types, insulin 

receptor binding, insulin binding, and insulin-like growth factor-activated receptor activity 

(Figure 10). This is consistent with previous research showing a change in metabolism by AD 

astrocytes: AD astrocytes have been previously shown to have impaired glycolytic flux (Le 

Douce et al. 2020)  

https://paperpile.com/c/ecbKGw/Qtuu
https://paperpile.com/c/ecbKGw/Qtuu
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Figure 10: Molecular function associations for all differentially expressed genes generated by String-DB. 

Gene Ontology Analysis 

 A more stringent analysis was performed on DEGs, that included only genes with a log 

two-fold change of great than 2 (up or down) and a p-value of less than or equal to 0.05 as 

determined by DEseq2. This analysis resulted in a smaller list of significant genes with 101 

upregulated DEGs 169 downregulated DEGs. These up and downregulated genes were submitted 

to Enrichr and gene ontology analysis for biological function, molecular function, and cell 

component were performed (Figure 11). Of the upregulated genes, the most notable associated 

biological processes were related to inflammation (neutrophil chemotaxis, neutrophil migration, 
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granulocyte chemotaxis); unexpectedly, multiple processes involving muscle filament sliding 

and contraction were also upregulated. Of the molecular functions of the upregulated genes, a 

similar pattern formed with upregulation of chemokine receptor binding, chemokine activity, and 

cytokine activity as the top GO terms. Secondary to those molecular functions were related to 

actin binding, metallopeptidase activity, collagen binding, and actin filament binding. Lastly, the 

upregulated genes were associated with plasma membrane and actin cytoskeleton portions of the 

cell, as well as endoplasmic reticulum lumen. These upregulated genes point to increased 

motility of the AD astrocytes as well as increased cytokine secretion and inflammatory 

signalling. 

 Of the differentially downregulated genes, the top gene ontology terms for biological 

processes included cell-cell adhesion, cell morphogenesis, and various terms involving muscle 

morphogenesis and development. Of note are downregulation in processes for cell-cell junction 

organization, regulation of MAPK cascade, and positive regulation of cell communication: these 

support prior research indicating decreased cell signalling capability in AD astrocytes 

(Brambilla, Martorana, and Rossi 2013). The GO terms enriched in the downregulated genes for 

molecular function included multiple downstream secondary messenger pathways, GABA 

receptor activity, growth factor activity, and cytokine activity. Of the downregulated genes, the 

cell components which they were associated with were also portions of the plasma membrane, as 

well as the GABA-A receptor complex, vesicle membranes, and the early endosome membrane. 

The differential downregulation in the GABA receptor complex and activity continues to 

contribute to the pattern of decreased signalling capability in AD astrocytes (Rissman, De Blas, 

and Armstrong 2007).  

https://paperpile.com/c/ecbKGw/9oAr
https://paperpile.com/c/ecbKGw/4t8h
https://paperpile.com/c/ecbKGw/4t8h
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Figure 11: Gene ontologies for all differentially upregulated (n=101) and downregulated (n=169) (p<0.05) genes 

from Enrichr analysis ranked by p-values.  

 Differentially regulated (p<0.05) genes (both up- and downregulated) were also 

compared to existing gene libraries (Figure 12). These gene lists were Alzheimer Disease, Early 

Onset from DisGeNET (115 genes), Alzheimer Disease, Late Onset from DisGeNET (252 

genes), Familial Alzheimer Disease (FAD) from DisGeNET (187 genes), and Inflammation 

mediated by chemokine and cytokine signaling pathway Homo sapiens P00031 from 

Panther_2016 (188 genes). Of the total number of genes which make up these categories, DEGs 

from our dataset accounted for the majority (>60%) of each category with p<0.05. The gene 

library with the highest percent of matches was from the familial AD library (140/187 genes 

present, 74.8% match), followed by early-onset (78/115, 67.8% match), late-onset (164/252, 

65.0% match), and inflammation (115/188, 61.1% match) libraries. This continues to support the 

relationship between familial AD and early-onset AD, with literature-reported genes of interest 

PSEN1 (up), ApoE (down), Il1β (up) all differentially regulated between the AD and Ctrl 
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datasets. The differential regulation of inflammation-related genes continues to be supported by 

this data. It is unusual to see the downregulation of ApoE in this case as it is usually a risk factor 

for AD, but one study reported a heterozygous ApoE mutation conferred protection against the 

PSEN1 mutation and delayed early-onset AD in the patient (Zalocusky, Nelson, and Huang 

2019) 

 

Figure 12: Differentially expressed genes compared to existing gene libraries for familial AD, early-onset, late-

onset, and inflammation showing >60% present in the astrocyte samples. 

 Lastly, the DEGs were analyzed with respect to reported A1 and A2 upregulated genes 

from literature (Li et al. 2019) (Figure 13). Of the differentially expressed genes, 7/13 were 

upregulated, 4/13 were downregulated, and 2/13 were not present from the A2-associated gene 

group. Of the A1-associated genes, 4/12 were upregulated in our gene set, 2/12 were 

downregulated, and 6/12 were not significantly differentially expressed in our dataset. From this 

data, it is surprising to see that the AD astrocytes more closely resembled the A2 astrocytes than 

A1 astrocytes.  

https://paperpile.com/c/ecbKGw/Bkdc
https://paperpile.com/c/ecbKGw/Bkdc
https://paperpile.com/c/ecbKGw/mYE4
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Though there were significant upregulated genes related to inflammation and astrogliosis, 

the astrocytes more closely resembled the A2 state as they had more commonly expressed DEGs, 

suggesting that neuroinflammation may be pushing the astrocytes to a more anti-inflammatory 

state, rather than further contributing to the inflammation response. This may further support the 

theory that neuroinflammation is facilitated by and caused by microglia rather than astrocytes 

(Hemonnot et al. 2019). This is significantly different from the initial hypothesis and though it 

points to a role of inflammation in astrocytes, the astrocytes may be responding by building a 

more robust anti-inflammatory response to repair the damage, encourage synaptic growth and 

neuronal survival, rather than contributing further to the pro-inflammatory response. This also 

suggests that A1 and A2 states are not so clearly defined and may fall along a spectrum of states 

rather than strict classifications; more research is required to confirm this (Liddelow 2017). 

 

Figure 13: Differentially expressed (p<0.05) genes from the astrocyte dataset associated with A1 and A2 states. 

*Actual gene identifiers, log2FC, p-values and p-adjusted values of up/downregulation from A1 & A2 in supp. table 

1. 

https://paperpile.com/c/ecbKGw/QkOl
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DISCUSSION & FUTURE DIRECTIONS 

 The results of this study are consistent with previous literature illustrating 

neuroinflammation in AD, with significant changes in gene expression (p<0.05, LogFC>2) in 

pro-inflammatory, cell-signaling, and immune-related genes in AD astrocytes compared to 

controls (Kinney et al. 2018). This has not been demonstrated before in AD astrocytes, and 

suggests that the transcriptome of AD astrocytes is distinctly different from that of controls, 

which provides new insight into clinical applications for earlier detection of AD. It is also 

significant because our AD astrocytes were not previously exposed to neurons, suggesting these 

changes are attributable to the disease state. Though the data set displayed significant 

upregulation in inflammatory gene ontology (61.1% differentially expressed in our data set), we 

cannot conclude that the inflammation can be solely attributed to astrocytes, and the lack of co-

culture with microglia or neurons in this experiment limits the conclusions that can be drawn 

about the feed-forward inflammation pattern hypothesized of AD.  

The astrocytes in this study more closely resembled A2 astrocytes with 11/13 of the 

genes differentially expressed, compared to 6/12 of the A1 astrocyte genes. Previous studies 

showed that activated microglia were responsible for inducing the neurotoxic A1 state (Liddelow 

et al. 2017). In the absence of these activated microglia and without previous exposure to 

neurons, AD astrocytes more closely resembled the A2 state. However, these results may be 

different in astrocytes co-cultured with neurons or microglia, which is a future direction of 

interest.  

 It is also important to note the significant upregulation (LogFC = 3.182918) in C3 in the 

AD astrocytes compared to control, which is the most significant A1 “marker”. Its A2 

counterpart, S100a10, was only upregulated with LogFC = 0.142075 (Supp. Table 1). However, 

https://paperpile.com/c/ecbKGw/Mfi7
https://paperpile.com/c/ecbKGw/uxw3
https://paperpile.com/c/ecbKGw/uxw3
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other A2-associated genes such as Ptx3 (LogFC = 2.359031) and Emp1 (LogFC = 1.191145) 

were significantly upregulated, and are tied to A2 roles that activate the complement cascade, 

signaling, and proliferation. The significant upregulation in C3 may be tied to an overall increase 

in pro-inflammatory genes associated with AD rather than only being attributed to a neurotoxic 

A1 state. AMIGO2, an A1-associated gene, was also significantly downregulated (LogFC = -

2.47877) when it was expected to be upregulated (Li et al. 2019).  

 Out of the significant differentially regulated genes, the AD genes more closely 

resembled the familial AD library (140/187 genes present, 74.8% match) and early-onset library 

(78/115, 67.8% match) rather than the late-onset library (164/252, 65.0% match). This finding 

may more reflect the state of the literature more than the biology of our astrocytes as almost all 

published databases are derived from familial lines, whereas our astrocytes were derived from 

sporadic AD patients. Alternatively, this point may suggest a closer correlation between familial 

AD genes and sporadic AD, which may be useful for prediction and detection of AD. Literature 

has also suggested that epigenetic mechanisms may play an essential role in disease development 

that may differ between sporadic and familial forms: more research is needed to conclude this 

(Piaceri, Nacmias, and Sorbi 2013). As ~85% of AD cases are of the sporadic type, it is 

imperative that the field continues its research in this area to identify potential treatments, 

prevention methods, and early-detection methods for sporadic AD (Awada 2015). 

 

 

 

 

 

https://paperpile.com/c/ecbKGw/mYE4
https://paperpile.com/c/ecbKGw/oFPv
https://paperpile.com/c/ecbKGw/HLCi
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SUPPLEMENTAL FIGURES 

 

Supplemental Figure 1: Principal component analysis with individual sample identifications, clustered by group AD 

vs control, generated with pcaExplorer (Marini and Binder 2019). 

https://paperpile.com/c/ecbKGw/FoU1
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Supplemental Figure 2: Variance Stabilizing Transformation (VST) of dataset, used in DeSeq2 analysis. 
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Supplemental Figure 3: Heatmap generated from variance stabilizing transformed data illustrating biased clustering. 

There is less variation in this heatmap than Figure 3 likely due to the normalization. 
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Supplemental Table 1: A1 and A2 genes and log2FoldChange, p-value, and p-adjusted values from this dataset. All 

values p<0.05. n.p. = not present 

A1 log2FoldChange pvalue padj 

H2-D1 n.p.   

IIGP1 n.p.   

PSMB8 n.p.   

SRGN 0.322346 0.417637 0.598837 

AMIGO2 -2.47877 1.63E-21 6.09E-19 

SERPING1 0.595193 0.151633 0.304989 

GGTA1 n.p.   

HW-T23 n.p.   

GPP2 n.p.   

FKBP5 -0.00577 0.977321 0.98821 

C3 3.182918 2.43E-05 0.000312 

FBLN5 0.831142 0.006555 0.029155 

A2 log2FoldChange pvalue padj 

Clcf1 -0.84991 0.000109 0.001071 

Tgm1 0.963734 0.011254 0.044171 

Ptx3 2.359031 3.36E-05 0.00041 

S100a10 0.142075 0.530744 0.694614 

Sphk1 -0.53995 0.005019 0.023479 

Cd109 -0.55917 2.28E-10 1.29E-08 

Ptgs2 -0.03986 0.821882 0.898261 

Emp1 1.191145 7.37E-05 0.000769 

Slc10a6 n.p.   

Tm4sf1 0.310014 0.097334 0.222444 
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Supplemental Table 1: A1 and A2 genes and log2FoldChange, p-value, and p-adjusted values from this dataset. 

All values p<0.05. n.p. = not present, continued 

A2 log2FoldChange pvalue padj 

B3gnt5 0.138028 0.485333 0.656777 

Cd14 n.p.   

Stat3 0.294854 3.59E-05 0.000433 

 

Supplemental Table 2: Differentially upregulated genes and log2FoldChange, p-value, and p-adjusted values from 

this dataset. All values p<0.05. 

Upregulated Genes log2FoldChange pvalue padj 

ABI3BP 2.685213 0.000245 0.002055 

ACTC1 4.915088 8.15E-05 0.000838 

ADAMTS1 2.038403 1.30E-16 2.69E-14 

ADAMTS2 2.681236 1.37E-05 0.000195 

ADGRE5 2.37332 1.53E-12 1.40E-10 

ANGPTL1 2.11516 0.000991 0.006453 

ARHGAP6 2.564953 1.37E-09 6.38E-08 

ASPN 4.00088 3.82E-11 2.62E-09 

ATP5F1E 2.165929 1.67E-05 0.000229 

BNC1 2.024166 9.53E-05 0.000956 

BST2 2.137641 3.13E-08 9.93E-07 

C3 3.182918 2.43E-05 0.000312 

CDH18 2.815228 1.64E-06 3.22E-05 

CHI3L2 2.514101 0.000178 0.001582 

CLCA2 2.437934 0.001884 0.01079 

COL14A1 2.628606 8.53E-07 1.82E-05 

COL21A1 4.635872 3.60E-09 1.48E-07 
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Supplemental Table 2: Differentially upregulated genes and log2FoldChange, p-value, and p-adjusted values from 

this dataset. All values p<0.05, continued. 

Upregulated Genes log2FoldChange pvalue padj 

COL5A3 2.156682 0.001583 0.0094 

COLEC12 2.586665 9.29E-18 2.23E-15 

CTSK 3.763913 1.21E-31 1.09E-28 

CXCL1 4.213759 2.61E-12 2.25E-10 

CXCL3 2.828405 1.88E-12 1.65E-10 

CXCL5 3.019072 1.94E-07 4.94E-06 

CXCL6 3.393492 3.29E-10 1.81E-08 

CXCL8 2.892556 5.14E-07 1.17E-05 

DCLK1 2.493678 1.28E-06 2.58E-05 

EBF1 2.039797 6.80E-11 4.34E-09 

ELN 2.476029 0.028118 0.088948 

ENO3 3.317624 2.76E-07 6.72E-06 

ENPP2 2.525136 9.59E-12 7.41E-10 

ERAP2 2.719549 2.45E-08 8.13E-07 

EREG 2.4048 8.00E-07 1.72E-05 

ERG 3.384284 5.57E-05 0.000613 

FAM167A 2.127629 7.65E-05 0.000794 

FILIP1 2.449946 0.00014 0.0013 

FSTL5 3.797814 5.61E-07 1.27E-05 

HEY2 2.552646 8.69E-05 0.000884 

IFIT1 2.258584 2.37E-13 2.59E-11 

IGF2 4.343556 1.52E-10 9.16E-09 

IL1B 3.4109 2.99E-06 5.45E-05 
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Supplemental Table 2: Differentially upregulated genes and log2FoldChange, p-value, and p-adjusted values from 

this dataset. All values p<0.05, continued. 

Upregulated Genes log2FoldChange pvalue padj 

IRX3 2.273251 2.90E-14 3.72E-12 

ITGA7 2.457062 4.52E-10 2.36E-08 

ITGA8 2.523243 0.00581 0.026401 

KCNB1 2.230243 0.000114 0.001099 

KCNK2 3.200713 2.93E-11 2.03E-09 

KREMEN2 2.296043 0.002641 0.014139 

KY 2.33402 2.41E-06 4.51E-05 

LINC00869 2.402602 1.34E-11 9.88E-10 

LOC730101 2.102725 9.81E-11 6.11E-09 

MAP1LC3C 2.295673 1.04E-07 2.86E-06 

MGP 3.657555 2.32E-37 4.46E-34 

MYH3 7.428292 1.60E-10 9.54E-09 

MYL4 3.126259 1.18E-05 0.000173 

MYPN 2.220905 4.27E-05 0.000498 

NEB 3.800056 9.93E-05 0.000987 

NHSL2 2.292378 4.15E-11 2.83E-09 

NPR3 2.114785 0.000292 0.002373 

NPTX1 3.428522 6.45E-15 9.86E-13 

PDE4B 2.024184 1.82E-12 1.62E-10 

PDE7B 3.054406 1.63E-07 4.23E-06 

PDGFRA 2.498424 0.000211 0.001826 

PLAC9 2.159798 1.34E-07 3.59E-06 

PLP1 2.045277 1.44E-14 2.00E-12 
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Supplemental Table 2: Differentially upregulated genes and log2FoldChange, p-value, and p-adjusted values from 

this dataset. All values p<0.05, continued. 

Upregulated Genes log2FoldChange pvalue padj 

PLPP3 2.128656 0.000113 0.001095 

PLPPR4 2.986062 4.28E-06 7.40E-05 

PNMA2 2.060199 0.000847 0.005687 

PODN 2.24589 1.81E-05 0.000245 

PPL 2.508454 8.41E-07 1.80E-05 

PRDM16-DT 2.06191 9.50E-08 2.63E-06 

PRRX1 2.466145 1.70E-10 1.01E-08 

PTH1R 2.741176 3.46E-05 0.000419 

PTX3 2.359031 3.36E-05 0.00041 

RAB11FIP4 3.19363 4.14E-16 8.07E-14 

RCAN2 2.105669 1.62E-05 0.000224 

RELN 2.11747 0.025164 0.081955 

ROR2 2.818234 8.97E-08 2.50E-06 

RPL9 3.358643 4.82E-12 3.95E-10 

SAMD12 2.070903 2.62E-07 6.41E-06 

SECTM1 4.498976 4.22E-81 5.68E-77 

SELENBP1 2.680398 2.59E-08 8.52E-07 

SERPINB2 3.243222 2.19E-11 1.56E-09 

SFRP2 4.983 6.51E-08 1.89E-06 

SFRP4 2.002569 0.004248 0.020558 

SFTA1P 2.597378 4.41E-09 1.78E-07 

SLC7A14 2.35032 0.000174 0.001553 

SLC7A2 3.151247 7.56E-15 1.13E-12 
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Supplemental Table 2: Differentially upregulated genes and log2FoldChange, p-value, and p-adjusted values from 

this dataset. All values p<0.05, continued. 

Upregulated Genes log2FoldChange pvalue padj 

ST8SIA1 2.107076 1.55E-09 7.10E-08 

STAC3 3.951911 7.78E-07 1.68E-05 

TGFBR3 2.590984 6.06E-29 4.80E-26 

TINAGL1 2.452342 0.000288 0.002347 

TMEM119 3.008593 0.000113 0.001095 

TMTC1 2.257303 2.36E-08 7.87E-07 

TNNC1 3.12855 5.61E-05 0.000616 

TNNT2 5.956004 1.77E-08 6.12E-07 

TRABD2A 2.294568 1.76E-05 0.00024 

TSPAN18 2.363879 0.001132 0.007166 

TTN 2.362393 4.08E-06 7.11E-05 

VCAM1 2.606968 0.003743 0.018644 

WNT2 3.485474 9.19E-10 4.43E-08 

ZNF528-AS1 2.185297 1.66E-15 2.94E-13 

ZNF560 2.235274 2.45E-06 4.57E-05 

 

Supplemental Table 3: Differentially downregulated genes and log2FoldChange, p-value, and p-adjusted values 

from this dataset. All values p<0.05. 

Downregulated 

Genes 

log2FoldChange pvalue padj 

ACTBL2 -2.52666 1.60E-17 3.70E-15 

ACTG2 -2.25957 7.03E-11 4.44E-09 

ACVR1C -2.92695 1.56E-05 0.000217 

ADAMTS16 -2.91692 7.31E-07 1.59E-05 
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Supplemental Table 3: Differentially downregulated genes and log2FoldChange, p-value, and p-adjusted values 

from this dataset. All values p<0.05, continued. 

Downregulated 

Genes 

log2FoldChange pvalue padj 

ADAMTS9 -2.67483 5.71E-05 0.000623 

ADGRL3 -2.62219 0.00184 0.010598 

ALDH1A3 -2.49886 0.000174 0.001551 

AMIGO2 -2.47877 1.63E-21 6.09E-19 

ANKRD1 -3.26576 5.99E-22 2.44E-19 

ANO4 -4.58202 9.59E-10 4.61E-08 

ANOS1 -2.36696 2.60E-05 0.000331 

AQP1 -2.12013 0.000125 0.001186 

ARAP2 -2.12721 4.78E-07 1.10E-05 

B3GALT5 -2.22809 2.85E-06 5.23E-05 

B3GALT5-AS1 -2.05547 1.53E-05 0.000214 

B4GALNT1 -2.56173 2.85E-07 6.93E-06 

BAALC -2.76473 5.43E-08 1.62E-06 

BACH2 -2.18916 5.79E-12 4.67E-10 

BCHE -2.73752 2.52E-44 6.79E-41 

BEGAIN -2.66411 1.01E-05 0.000152 

BMP2 -2.40422 9.10E-10 4.42E-08 

BMP4 -3.03396 8.43E-09 3.12E-07 

BMP6 -2.71906 6.81E-08 1.96E-06 

BTBD11 -2.63132 3.90E-06 6.87E-05 

C5orf46 -2.50126 4.95E-25 2.56E-22 

CACNA2D3 -2.40994 0.001027 0.006633 
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Supplemental Table 3: Differentially downregulated genes and log2FoldChange, p-value, and p-adjusted values 

from this dataset. All values p<0.05, continued. 

Downregulated 

Genes 

log2FoldChange pvalue padj 

CACNG4 -3.60728 2.59E-08 8.52E-07 

CADM1 -3.81757 1.06E-20 3.49E-18 

CADM3 -4.01514 5.75E-05 0.000625 

CCDC81 -2.32226 2.16E-11 1.54E-09 

CD24 -3.22019 1.95E-23 9.05E-21 

CDH10 -2.46638 1.49E-10 9.04E-09 

CDH6 -2.07441 7.68E-05 0.000797 

CDKN2B -2.68322 5.50E-20 1.72E-17 

CELSR1 -3.13868 7.15E-12 5.63E-10 

CHD5 -2.0722 1.32E-05 0.00019 

CHRM2 -3.80955 6.25E-12 4.97E-10 

CLSTN2 -2.52946 7.83E-09 2.93E-07 

CNTNAP3 -3.40524 2.09E-19 6.12E-17 

COL11A1 -3.3353 6.70E-11 4.31E-09 

COL25A1 -4.55126 1.78E-35 2.39E-32 

COL7A1 -2.00872 0.000165 0.001492 

CXADR -2.3936 1.03E-06 2.13E-05 

DACH1 -3.13273 3.84E-10 2.08E-08 

DCBLD1 -2.34442 4.56E-14 5.58E-12 

DCLK2 -2.47053 7.50E-13 7.37E-11 

DIRAS3 -2.21371 0.000537 0.003908 

DOK6 -3.94813 8.02E-13 7.82E-11 
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Supplemental Table 3: Differentially downregulated genes and log2FoldChange, p-value, and p-adjusted values 

from this dataset. All values p<0.05, continued. 

Downregulated 

Genes 

log2FoldChange pvalue padj 

DSC3 -2.34503 1.37E-05 0.000195 

DSG2 -2.18938 5.42E-16 1.03E-13 

DYNC1I1 -3.67947 8.72E-09 3.21E-07 

EDN1 -2.44488 8.57E-25 4.27E-22 

EGF -2.44351 1.96E-06 3.80E-05 

EPHA3 -2.02705 8.66E-07 1.84E-05 

EPHA4 -2.45358 4.99E-11 3.36E-09 

ERMN -4.99101 4.36E-12 3.65E-10 

FAM198B-AS1 -2.17181 4.00E-07 9.29E-06 

FAT3 -2.501 2.21E-07 5.56E-06 

FLJ16779 -4.91521 2.14E-10 1.23E-08 

FSTL3 -2.35005 6.05E-10 3.06E-08 

GABBR2 -2.22742 2.74E-07 6.69E-06 

GABRA5 -3.68904 3.45E-06 6.21E-05 

GABRB3 -2.44738 0.000217 0.001868 

GASK1B -2.07925 2.84E-11 1.99E-09 

GNA14 -2.05097 8.60E-05 0.000875 

GPAT3 -2.07235 9.08E-07 1.92E-05 

GPC4 -3.68079 8.19E-09 3.03E-07 

GREM2 -2.15449 5.80E-05 0.00063 

GRIP1 -2.02287 0.000214 0.001845 

HOXB2 -3.4419 9.22E-09 3.36E-07 
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Supplemental Table 3: Differentially downregulated genes and log2FoldChange, p-value, and p-adjusted values 

from this dataset. All values p<0.05, continued. 

Downregulated 

Genes 

log2FoldChange pvalue padj 

HSD17B6 -3.07198 1.06E-08 3.81E-07 

HSPB8 -2.03764 1.13E-09 5.35E-08 

IGFBPL1 -2.50161 0.000319 0.002553 

IGSF10 -2.49598 9.72E-08 2.69E-06 

IL11 -2.37512 2.66E-08 8.72E-07 

IL7R -2.43884 9.95E-15 1.44E-12 

INSYN2A -2.02882 4.43E-05 0.000512 

ITGB8 -2.10956 1.87E-08 6.39E-07 

JAKMIP2 -2.22862 9.24E-05 0.000933 

KCNH1 -2.15448 2.27E-08 7.60E-07 

KCNJ2 -2.7627 1.25E-06 2.54E-05 

KIF5A -3.8533 1.94E-17 4.42E-15 

KISS1 -4.15162 8.76E-14 1.04E-11 

KIT -2.52305 2.40E-05 0.000309 

KRT7 -3.77202 1.49E-05 0.000209 

LAMC2 -2.66003 1.88E-06 3.66E-05 

LARGE1 -2.21855 8.28E-06 0.000127 

LBH -2.06319 2.02E-08 6.89E-07 

LDLRAD4 -4.45603 1.70E-10 1.01E-08 

LIMCH1 -2.00896 5.09E-05 0.00057 

LINC00862 -3.29514 3.26E-07 7.78E-06 

LINC01239 -2.09343 1.66E-09 7.56E-08 
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Supplemental Table 3: Differentially downregulated genes and log2FoldChange, p-value, and p-adjusted values 

from this dataset. All values p<0.05, continued. 

Downregulated 

Genes 

log2FoldChange pvalue padj 

LIPG -2.53351 8.63E-07 1.84E-05 

LIPH -2.91343 8.38E-06 0.000129 

LOC101928595 -3.18134 0.00019 0.001671 

LRATD2 -3.58517 2.17E-15 3.65E-13 

LUZP2 -2.48735 2.83E-08 9.15E-07 

LYPD1 -3.4772 1.27E-13 1.47E-11 

LYPD6 -2.13936 5.69E-05 0.000622 

MAGEL2 -2.85819 8.97E-13 8.62E-11 

MAP3K9 -3.33963 2.14E-14 2.85E-12 

MCTP1 -2.31895 2.20E-06 4.18E-05 

MEIS1 -2.35233 2.82E-33 2.92E-30 

MMP24 -2.3608 6.61E-05 0.000703 

MYCT1 -4.72944 7.41E-32 7.12E-29 

MYLK -2.05452 4.25E-23 1.84E-20 

MYLK2 -2.24093 5.05E-11 3.38E-09 

MYOZ1 -2.1801 0.000334 0.002656 

MYRF -2.62536 3.62E-23 1.62E-20 

NCF2 -2.87024 7.42E-13 7.35E-11 

NKAIN4 -4.12496 4.61E-08 1.39E-06 

NOVA2 -4.25467 2.66E-09 1.14E-07 

NOX4 -2.14452 2.12E-08 7.19E-07 

NPPB -5.15645 2.53E-09 1.09E-07 
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Supplemental Table 3: Differentially downregulated genes and log2FoldChange, p-value, and p-adjusted values 

from this dataset. All values p<0.05, continued. 

Downregulated 

Genes 

log2FoldChange pvalue padj 

NRG1 -2.45064 3.55E-13 3.73E-11 

OTULINL -2.22134 6.99E-09 2.68E-07 

PALMD -2.25866 1.93E-06 3.74E-05 

PCDHGA2 -2.02935 0.006168 0.027755 

PDE11A -3.66665 1.85E-09 8.33E-08 

PDGFB -4.16758 5.50E-08 1.63E-06 

PLPP4 -2.14715 9.63E-11 6.02E-09 

PLPPR3 -2.13941 1.33E-05 0.000191 

PLXDC1 -2.23861 6.26E-07 1.38E-05 

PLXDC2 -2.83034 4.42E-12 3.65E-10 

PMEPA1 -2.53538 1.40E-14 1.97E-12 

PPP1R14A -2.00451 8.55E-06 0.000131 

PTPRE -2.0262 6.86E-08 1.97E-06 

PWWP3B -2.43542 4.22E-05 0.000494 

QPCT -2.04045 5.94E-42 1.33E-38 

RAC2 -2.21984 7.56E-05 0.000786 

RASGRF2 -3.2767 1.54E-11 1.13E-09 

RBP1 -4.18406 4.96E-12 4.02E-10 

RIMS2 -2.65511 2.27E-07 5.69E-06 

RPS28 -3.92513 9.63E-10 4.61E-08 

RTN1 -4.46368 1.01E-10 6.24E-09 

SALL1 -2.51743 1.08E-07 2.94E-06 
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Supplemental Table 3: Differentially downregulated genes and log2FoldChange, p-value, and p-adjusted values 

from this dataset. All values p<0.05, continued. 

Downregulated 

Genes 

log2FoldChange pvalue padj 

SDC1 -2.23455 1.32E-05 0.00019 

SHC4 -3.12482 1.40E-10 8.53E-09 

SHROOM3 -2.04949 1.78E-13 2.01E-11 

SIGLEC15 -2.00466 6.35E-11 4.13E-09 

SLC15A4 -2.9534 4.95E-09 1.97E-07 

SLC35F3 -3.59926 1.77E-07 4.58E-06 

SLCO3A1 -2.95581 7.36E-09 2.80E-07 

SNRPN -2.01656 3.70E-06 6.57E-05 

SORBS1 -2.11538 6.36E-06 0.000103 

SORCS2 -2.38388 0.000127 0.001198 

SOX5 -2.24511 2.73E-05 0.000344 

SPINT2 -2.02041 4.60E-09 1.84E-07 

SPP1 -3.99776 2.09E-13 2.31E-11 

SPTBN2 -2.85316 5.16E-11 3.43E-09 

ST8SIA6 -2.35005 9.13E-07 1.92E-05 

SYNDIG1 -2.06605 0.002213 0.012236 

SYT1 -2.40706 3.85E-08 1.18E-06 

TAFA5 -2.29658 0.002803 0.014782 

TAGLN3 -2.72439 0.000107 0.001052 

TENM2 -4.4537 8.98E-08 2.50E-06 

TGFBI -2.74274 5.77E-37 9.70E-34 

TLL2 -2.91693 1.03E-07 2.84E-06 
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Supplemental Table 3: Differentially downregulated genes and log2FoldChange, p-value, and p-adjusted values 

from this dataset. All values p<0.05, continued. 

Downregulated 

Genes 

log2FoldChange pvalue padj 

TMEM35A -2.17364 5.34E-15 8.26E-13 

TNFAIP2 -2.83776 2.68E-15 4.45E-13 

TNFSF4 -2.46034 2.28E-05 0.000296 

TRPV2 -2.23202 0.01019 0.04105 

TSPAN2 -3.18684 1.28E-06 2.58E-05 

TYRP1 -2.34239 4.21E-05 0.000492 

VAT1L -2.87041 4.44E-05 0.000513 

WNK4 -2.32157 4.92E-11 3.33E-09 

XYLT1 -4.92837 6.43E-13 6.51E-11 

ZFPM2 -2.65357 2.82E-13 3.06E-11 

ZNF503 -2.19006 2.30E-14 3.00E-12 
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