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SUPERCONVERGENCE OF TETRAHEDRAL LINEAR FINITE
ELEMENTS

LONG CHEN

(Communicated by Zhimin Zhang)

Abstract. In this paper, we show that the piecewise linear finite element

solution uh and the linear interpolation uI have superclose gradient for tetra-

hedral meshes, where most elements are obtained by dividing approximate

parallelepiped into six tetrahedra. We then analyze a post-processing gradient

recovery scheme, showing that the global L2 projection of ∇uh is a supercon-

vergent gradient approximation to ∇u.

Key Words. superconvergence, finite element methods, tetrahedral elements,

post-processing

1. Introduction

Superconvergence of the gradient for the finite element approximation for second
order elliptic boundary value problems and gradient recovery schemes have been
an active research topic; see, for example, Babus̆ka and Strouboulis [1], Chen and
Huang [8], Lin and Yan [12], Wahlbin [13] and Lakhany, Marek, and Whiteman
[11] for overviews of this field. Recently Bank and Xu [2, 3] have developed some
new techniques and obtained some new superconvergence results for linear finite
element elements on two dimensional triangular meshes. The goal of this paper
is to extend their results to three dimensions, namely to linear tetrahedral finite
element.

The model problem that we study in this paper is

−∇ · (D(x)∇u) = f, x ∈ Ω
u = 0, x ∈ ∂Ω.

Here D(x) is a 3 × 3 symmetric matrix function in (L∞(Ω))3×3 and uniformly
positive definite. For simplicity, we assume f is smooth enough and Ω is a polyedr
in R3 partitioned into a quasiuniform triangulation Th with mesh size h ∈ (0, 1).
Let Vh ⊂ H1

0 (Ω) be the corresponding finite element space of continuous piecewise
linear functions associated with Th, and let uh ∈ Vh be the finite element solution
of the above second order elliptic boundary value problem.

Unlike in the two dimensional case, superconvergence results in three dimensions
are relatively rare [7, 9, 10, 5]. The difficulty is partially due to the loss of symmetry
in three dimensions [4]. In this paper, we only deal with a special triangulation of
which most elements are obtained by dividing each O(h2) parallelepiped into six
tetrahedra (see Section 3 for details). For this kind of triangulation, we numerically
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274 L. CHEN

observed that superconvergence occurs for linear elements, due to the cancellation
of the lowest order terms in some asymptotic expansion of the local error. It is,
however, difficult to combine elementwise error estimates together, since the normal
component of the gradients of the test functions is discontinuous. Thus we follow
the new approach in [2] to derive some expressions for the element error that involve
only the tangential derivative of the test function on the edges.

Our first result is that the gradient of the finite element approximation uh is
superclose to the gradient of the piecewise linear interpolant uI of the solution u.
More precisely, we have

(1) |uh − uI |1,Ω . h1+min(σ,1)‖u‖3,∞,Ω.

Estimate (1) holds on quasi-uniform meshes, where most elements are obtained by
dividing each O(h2) parallelepiped into six tetrahedra except for a region of size
O(h2σ); see Section 3 for details.

The estimate (1) is known in the literature for the special case σ = ∞ [7, 9, 10].
Recently Brandts and Kř́ıžek [5] extend the results of [7, 9, 10] for tetrahedra
into arbitrary n- simplex. Our new estimate (1) is a significant generalization,
since firstly, our analysis is based on local identities for each element and thus, it
is straightforward to extend our results to meshes in which an O(h1+α) (instead
of O(h2)) approximate local symmetry property holds for most patches of edges.
Second, the relaxation parameter σ makes our analysis to work for more general
meshes, especially for domains with unstructured boundaries.

Based on the superconvergence results, one can construct schemes to get better
approximations of ∇u; see for example, [16, 17, 14, 15] and [6]. The second major
component of this work is a superconvergent approximation to ∇u by a gradient
recovery procedure. In Section 4, we show that

(2) ‖∇u−Qh∇uh‖0,Ω . h1+min(σ,1/2)‖u‖3,∞,Ω,

where Qh is the L2 projection to V3
h. As remarked in [2], both the superconvergence

and gradient recovery results can be generalized to a more general non-self-adjoint
and possibly indefinite problem.

The rest of this paper is organized as follows. We introduce some notation and
technical identities for our analysis in Section 2. We prove the estimate (1) and (2)
in Section 3 and Section 4 respectively.

2. Local Error Expansion

In this section we shall derive some useful identities for our analysis. The key
identity is contained in Lemma 2.4, which is a generalization of the integral formu-
las of rectangular elements [12] and triangular elements [2] in two dimensions to
tetrahedral elements in three dimensions.

Let τ be a tetrahedron in R3, with vertices {pk}4k=1 and the corresponding
nodal basis functions (barycentric coordinates) {ϕk}4k=1. We assume that R3 has
the orientation given by the right-hand rule and τ has the induced orientation.
Let Fk denote the surface opposite vertex pk with the induced orientation and nk

the unit outward normal vectors of Fk. We also use the symbol 4klm to denote
the face with vertices pk,pl, and pm. If the orientation of 4klm, given by the
order of k, l, m, coincides with the induced orientation from τ , we say 4klm has the
consistent orientation with τ . Let eij denote the oriented edges of element τ from
pi to pj and tij , dij the corresponding unit tangent vectors and length, respectively
(see Fig 1). Let θkl be the angle between tkl and the supporting plane of Fl. In
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Figure 1. A tetrahedron

general, θkl 6= θlk. Let Dτ be a constant symmetric 3× 3 matrix defined on τ . We
define ξij = ni · Dτnj . Since Dτ is symmetric, ξij = ξji.

Lemma 2.1. Under the above assumptions we have

∇u · Dτnk =
4∑

l=1,l 6=k

ξkl

cos θkl

∂u

∂tkl
.

Proof. It is an immediate consequence of

Dτnk =
4∑

l=1,l 6=k

nl · Dτnk

nl · tkl
tkl =

4∑

l=1,l 6=k

ξlk

cos θkl
tkl.

¤

Lemma 2.2. Let uq be a quadratic polynomial and uI the continuous piecewise
linear interpolant for uq on τ . Then for a constant vector t,

∫

τ

∇(uI − uq) · t =
1
2

4∑

k=1

nk · t
∫

Fk

4∑

i,j=1,i<j

d2
ijϕiϕj

∂2uq

∂t2
ij

.

Proof. By the Taylor expansion,

(3) (uI − uq)(x) =
1
2

4∑

k=1

ϕk(pk − x) · ∇2uq(pk − x).

Noting that pk − x =
∑

i ϕieki, we get

(uI − uq)(x) =
1
2

4∑

i,j=1,i<j

d2
ijϕiϕj

∂2u

∂t2
ij

.

The desired result follows from Green’s formula. ¤

Lemma 2.3. For a function u ∈ W 1,1(τ) we have

1
cos θlk

∫

Fl

ϕkϕmu− 1
cos θkl

∫

Fk

ϕlϕmu =
1

cos θlk

1
cos θkl

∫

τ

(ϕk + ϕl)ϕm
∂u

∂tkl
,

and
1

cos θlk

∫

Fl

u− 1
cos θkl

∫

Fk

u =
1

cos θlk

1
cos θkl

∫

τ

∂u

∂tkl
.
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Proof. By Green’s formula

∫

τ

∇(fu) · tkl = nk · tkl

∫

Fk

fu + nl · tkl

∫

Fl

fu

= −nk · tlk

∫

Fk

fu + nl · tkl

∫

Fl

fu.

We then set f = (ϕk + ϕl)ϕm to get the first identity, where we use facts
f |Fk

= ϕlϕm, f |Fl
= ϕkϕm and f is a constant along lines parallel to tkl, since

f = (1− ϕm − ϕn)ϕm. The second identity is obtained by setting f = 1. ¤

To prove the next lemma, we need the following identity for the triangle 4klm.

(4) d2
lm

∂2u

∂t2
lm

− d2
km

∂2u

∂t2
km

= (d2
lm − d2

km)
∂2u

∂t2
kl

+ 4|4klm| ∂2u

∂tkl∂nkl,m
,

where nkl,m is the unit outward normal vector of edge tkl on the supporting plane
of triangle 4klm. The proof can be found in [2].

The next identity is a fundamental one in our analysis.

Lemma 2.4. Let uq be a quadratic polynomial and vh ∈ Vh. Then we have

∫

τ

∇(uI − uq) · Dτ∇vh

=
4∑

k,l=1,k 6=l

∂vh

∂tkl

ξkl

4 cos θkl

[
(d2

lm − d2
km)

∫

Fk

ϕlϕm
∂2uq

∂t2
kl

+4|4klm|
∫

Fk

ϕlϕm
∂2uq

∂tkl∂nkl,m

]
,

where we choose m such that 4klm has the consistent orientation with τ .

Proof. By Lemmas 2.1-2.3, we have:

∫

τ

∇(uI − uq) · Dτ∇vh =
1
2

4∑

k=1

∇vh · Dτnk

∫

Fk

4∑

i,j=1,i<j

d2
ijϕiϕj

∂2uq

∂t2ij

=
4∑

k,l=1,k 6=l

∫

Fk

∂vh

∂tkl

ξkl

2 cos θkl

4∑

i,j=1,i<j

d2
ijϕiϕj

∂2uq

∂t2
ij

=
4∑

k,l=1,k 6=l

[ ∂vh

∂tkl

ξkl

4 cos θkl

∫

Fk

4∑

i,j=1,i<j

d2
ijϕiϕj

∂2uq

∂t2
ij

+
∂vh

∂tlk

ξkl

4 cos θlk

∫

Fl

4∑

i,j=1,i<j

d2
ijϕiϕj

∂2u

∂t2
ij

]

=
4∑

k,l=1,k 6=l

(I1 + I2 + I3),
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where

I1 =
∂vh

∂tkl

ξkl

4

(
1

cos θkl

∫

Fk

d2
mnϕmϕn

∂2uq

∂t2
mn

− 1
cos θlk

∫

Fl

d2
mnϕmϕn

∂2uq

∂t2
mn

)
,

I2 =
∂vh

∂tkl

ξkl

4

(
1

cos θkl

∫

Fk

d2
lmϕlϕm

∂2uq

∂t2
lm

− 1
cos θlk

∫

Fl

d2
kmϕkϕm

∂2uq

∂t2
km

)
, and

I3 =
∂vh

∂tlk

ξlk

4

(
1

cos θlk

∫

Fl

d2
knϕkϕn

∂2uq

∂t2
kn

− 1
cos θkl

∫

Fk

d2
lnϕlϕn

∂2uq

∂t2
ln

)
.

Here we choose m,n such that 4klm and 4lkn have the consistent orientation with
τ . By Lemma 2.3 and identity (4), we have:

I1 = 0,

I2 =
ξkl

cos θkl

∫

Fk

ϕlϕm

[
(d2

lm − d2
km)

∂2uq

∂t2
kl

+ 4|4klm| ∂2u

∂tkl∂nkl,m

] ∂vh

∂tkl
,

I3 =
ξlk

cos θlk

∫

Fl

ϕkϕn

[
(d2

kn − d2
ln)

∂2uq

∂t2
lk

+ 4|4lkn| ∂2u

∂tlk∂nlk,n

] ∂vh

∂tlk
.

Hence, the lemma follows. ¤

From Lemma 2.4, using the standard scaling argument and the Bramble-Hilbert
Lemma on the reference element, we obtain the following result.

Lemma 2.5. Let u ∈ H3(τ). Then we have
∫

τ

∇(uI − u) · Dτ∇vh

=
4∑

k,l=1,k 6=l

∂vh

∂tkl

ξkl

4 cos θkl

[
(d2

lm − d2
km)

∫

Fk

ϕlϕm
∂2u

∂t2
kl

+4|4klm|
∫

Fk

ϕlϕm
∂2u

∂tkl∂nkl,m

]
+ O(h3)‖u‖3,τ‖v‖1,τ ,

where m is defined as in Lemma 2.4.

3. A Superconvergence result

In this section, we shall derive a superconvergence result for the linear finite
element approximation for a model second order elliptic problem based on the
identities we derived in the previous section.

We begin with the property of the triangulation Th. We say four points {pk}4k=1

in space form an O(h2) parallelogram, if ‖e21 + e41 − e31‖ = O(h2). A hexadron
is called O(h2) approximated parallelepiped if each face is an O(h2) parallelogram.
Let e be an interior edge in the triangulation Th. The patch of e, which is the union
of tetrahedra sharing e, is denoted by Ωe.

Definition 3.1. Assume that the triangulation Th = T1,h∪T2,h and T1,h is obtained
by dividing O(h2) parallelepipeds into six tetradra (see Fig. 2.). Let E = E1

⊕ E2

denote the set of interior edges in Th and Ωi,h =
⋃

e∈Ei
Ωe. The triangulation Th is

O(h2σ) irregular if for each e ∈ E1, Ωe ⊂ T1,h, while |Ω2,h| = O(h2σ).

Lemma 3.2. Let the triangulation Th be O(h2σ) irregular. Let Dτ be a piecewise
constant matrix function defined on Th, whose entries Dτ,ij satisfy

|Dτ,ij | . 1, |Dτ,ij −Dτ ′,ij | . h,
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Figure 2. An O(h2)
parallelepiped is triangu-
lated into six tetrahedra

Figure 3. Another type
of the patch Ωe for e ∈ E1

for i, j = 1, 2, 3. Here τ and τ ′ are tetrahedra having a common edge. Then

|
∑

τ∈Th

∫

τ

∇(u− uI) · Dτ∇vh| . h1+min(σ,1)‖u‖3,∞,Ω|v|1,Ω.

Proof. Let E = E1

⊕ E2

⊕ E3. E1, E2 are defined in the Definition 3.1 and E3 denotes
the set of boundary edges. For each τ , we denote

αklm =
ξkl

4 cos θkl
(d2

km − d2
lm), βklm =

ξkl

cos θkl
|4klm|.

Applying Lemma 2.5, we only need to estimate

I =
∑

τ∈Th

4∑

k,l=1,k 6=l

∂vh

∂tkl

[
αklm

∫

Fk

ϕlϕm
∂2u

∂t2
kl

+ βklm

∫

Fk

ϕlϕm
∂2u

∂tkl∂nkl,m

]
,

= I1 + I2 + I3,

where

Ii =
∑

ekl∈Ei

∑

τ∈Ωekl

∂vh

∂tkl

[
αklm

∫

Fk

ϕlϕm
∂2u

∂t2
kl

+ βklm

∫

Fk

ϕlϕm
∂2u

∂tkl∂nkl,m

]
,

for i = 1, 2, 3. In above formulas, Fk, αklm and βklm are different for different
tetrahedra. To simplify the notation, we omit the index τ .

It is easy to get

(5) |αklm| . h2, |βklm| . h2,

and

(6) |
∫

Fk

ϕlϕm
∂2u

∂t2
kl

∂vh

∂tkl
| . h−1|u|2,∞,Ω

∫

τ

|∇vh|.

Since we only consider the homogeneous Dirichlet boundary conditions, I3 = 0.
Now we estimate I1. For e ∈ E1, the patch Ωe is one of two types in Fig. 2 and
Fig. 3. We first consider the case that Ωe is an O(h2) parallelepiped. Without loss
of generality, we index the vertices in Fig. 2. We will group the coefficients of ∂vh

∂t17
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and ∂vh

∂t71
in different tetrahedra together to see the cancellation. In τ = τ1567, we

have term
∂vh

∂t17

[
α175

∫

F567

ϕ7ϕ5
∂2u

∂t2
17

+ β175

∫

F567

ϕ7ϕ5
∂2u

∂t17∂n17,5

]
,

while in τ ′ = τ1347 we have

∂vh

∂t71

[
α′713

∫

F134

ϕ1ϕ3
∂2u

∂t2
71

+ β′713

∫

F134

ϕ1ϕ3
∂2u

∂t71∂n′71,3

]
.

Since Ωe is an O(h2) parallelepiped, it is easy to see that

|α175 − α′713| . h3, |β175 − β′713| . h3,
∣∣∣
∫

F567

ϕ7ϕ5
∂2u

∂t2
17

−
∫

F134

ϕ1ϕ3
∂2u

∂t2
17

∣∣∣ . ‖u‖3,∞,Ωh3, and

∣∣∣
∫

F567

ϕ7ϕ5
∂2u

∂t17∂n17,3
−

∫

F134

ϕ1ϕ3
∂2u

∂t71∂n′71,5

∣∣∣ . ‖u‖3,∞,Ωh3.

By paring all coefficients of ∂vh

∂t17
and ∂vh

∂t71
in the similar way and using (5) and

(6), we have
|I1| . h2‖u‖3,∞,Ω|vh|1,Ω.

For edges in E2, we simply use (5) and (6) to get

|I2| . h2

∫

Ω2,h

|∇2u||∇vh| . h(
∫

Ω2,h

|∇2u|2)1/2|vh|1,Ω . h1+σ|u|2,∞,Ω|∇vh|1,Ω.

Combing them together, we get the desired estimate. For the patch in Fig. 3, we
can also pair the coefficients in the similar way to get the desired estimate. ¤

With Lemma 3.2 we can prove a superconvergence result for the following elliptic
equation

−∇ · (D(x)∇u) = f, x ∈ Ω,(7)
u = 0, x ∈ ∂Ω.(8)

Here D(x) is a 3 × 3 symmetric matrix function in (L∞(Ω))3×3 and uniformly
positive definite. The weak form of (7) and (8) is to find u ∈ H1

0 (Ω) such that

(9) B(u, v) =
∫

Ω

∇v · (D∇u) = f(v)

for all v ∈ H1
0 (Ω).

In order to insure that (9) has a unique solution, we assume that the eigenvalues
of D satisfy 0 < µ ≤ λmin ≤ λmax ≤ ν uniformly in Ω. Let Vh ⊂ H1

0 (Ω) be the
space of continuous piecewise linear polynomials associated with a quasi-uniform
triangulation Th, and consider the approximate problem: find uh ∈ Vh such that

(10) B(uh, vh) = f(vh)

for all vh ∈ Vh. The following result is standard in FEM

‖u− uh‖1,Ω ≤ ν

µ
inf

vh∈Vh

‖u− vh‖1,Ω.

We define the piecewise constant matrix function Dτ in terms of the diffusion
matrix D as follows:

Dτij =
1
|τ |

∫

τ

Dijdx.

Note that Dτ is symmetric and positive definite.
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Theorem 3.3. Assume that the solution of (9) satisfies u ∈ W 3,∞(Ω). Further,
assume the hypotheses of Lemma 3.2, with Dτ defined as above. Then

‖uh − uI‖1,Ω . h1+min(σ,1)‖u‖3,∞,Ω.

Proof. We begin with the identity

B(u− uI , vh) =
∑

τ∈Th

∫

τ

∇(u− uI) · Dτ∇vhdx

+
∑

τ∈Th

∫

τ

∇(u− uI) · (D −Dτ )∇vhdx

= I1 + I2.

The first term I1 can be estimated using Lemma 3.2. The second term I2 can be
easily estimated by

|I2| . h2‖u‖2,Ω‖v‖1,Ω.

Thus
|B(u− uI , vh)| . h1+min(σ,1)‖u‖3,∞,Ω‖vh‖1,Ω.

We complete the proof by choosing vh = uh − uI and using the fact that

µ‖uh−uI‖21,Ω ≤ B(uh−uI , uh−uI) = B(u−uI , uh−uI) ≤ ν‖u−uI‖1,2,Ω‖uh−uI‖1,2,Ω.

¤

4. A Gradient Recovery Algorithm

Once we get the supercloseness between ∇uh and ∇uI , we can develop post-
processing schemes to improve the approximation order of ∇uh. In this section, we
show that Qh∇uI is superconvergent to ∇u for O(h2) irregular meshes, where Qh

is the L2 projection to V3
h, namely (Qhu,vh) = (u,vh) for all u ∈ (L2(Ω))3 and

vh ∈ V3
h.

Lemma 4.1.
∫

τ

(uI − u) =
1
40

∫

τ

4∑

i,j=1,i<j

d2
ij

∂2uq

∂t2
ij

+
∫

τ

(uq − u),

where uq is the quadratic interpolant of u.

Proof. The proof is similar to that in Lemma 2.2. Here we use the fact that
∫

τ

ϕiϕj =
|τ |
20

.

¤

Lemma 4.2. Let u ∈ W 3,∞(Ω) and assume the hypotheses of Lemma 3.2 hold.
Then

‖∇u−Qh∇uI‖0,Ω . h1+min(σ,1/2)‖u‖3,∞,Ω.

Proof. Given vh ∈ V3
h, we have

(11) (Qh∇(u− uI),vh) = (∇(u− uI),vh) = (uI − u,∇ · vh) +
∫

∂Ω

(u− uI)vh · n.

We estimate the two terms on the right-hand side of (11). First,

(12) |
∫

∂Ω

(u− uI)vh · n| . h3/2|u|2,∞,Ω‖v‖0,Ω.
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For the other, we use Lemma 4.1 to get
∫

τ

(uI − u)∇ · vh =
1
40

∫

τ

4∑

i,j=1,i 6=j

d2
ij

∂2uq

∂t2
ij

∇ · vh +
∫

τ

(u− uq)∇ · vh

=
1
40

∫

τ

4∑

i,j=1,i 6=j

d2
ij

∂2u

∂t2
ij

∇ · vh

+
1
40

∫

τ

4∑

i,j=1,i6=j

d2
ij

∂2(uq − u)
∂t2

ij

∇ · vh +
∫

τ

(u− uq)∇ · vh

=
1
40

4∑

k=1

4∑

i,j=1,i6=j

∫

Fk

d2
ij

∂2u

∂t2
ij

vh · nk +
1
40

∫

τ

4∑

i,j=1,i 6=j

d2
ij∇

∂2u

∂t2
ij

vh

1
40

∫

τ

4∑

i,j=1,i 6=j

d2
ij

∂2(uq − u)
∂t2

ij

∇ · vh +
∫

τ

(u− uq)∇ · vh

= I1 + I2 + I3 + I4

Easy estimates show

|I3|+ |I4| . h3‖u‖3,τ |vh|1,τ . h2‖u‖3,τ‖vh‖0,τ , and |I2| . h2‖u‖3,τ‖vh‖0,τ .

Now we estimate
∑

τ⊂Th

I1 =
1
40

[ ∑

Fk⊂∂Ω

∑

τ⊃Fk

∫

Fk

4∑

i,j=1,i<j

d2
ij

∂2u

∂t2
ij

vh · nk

+
∑

Fk⊂Ω

∑

τ⊃Fk

∫

Fk

4∑

i,j=1,i<j

d2
ij

∂2u

∂t2
ij

vh · nk

]

= I11 + I12.

Since we only consider the homogeneous Dirichlet boundary condition, I11 = 0.
For I12, we first notice that for each interior triangle, there are two tetrahedra
containing it with opposite normal direction. Thus I12 can be simplified in this
way

I12 =
2∑

i=1

∑

ekl∈Ei

∑

τ∈Ωekl

∫

Fk

d2
kl

∂2u

∂t2
kl

vh · nk.

Then following the pattern of the proof in Lemma 3.2, we get

|(Qh∇(u− uI),vh)| . h1+min(σ,1/2)‖u‖3,∞,Ω‖vh‖0,Ω.

Taking vh = Qh∇(u− uI), we find that

‖Qh∇(u− uI)‖0,Ω . h1+min(σ,1/2)‖u‖3,∞,Ω.

Lemma 4.2 now follows from the triangle inequality

‖∇u−Qh∇uI‖0,Ω ≤ ‖∇u−Qh∇u‖0,Ω + ‖Qh∇(u− uI)‖0,Ω.

¤
An immediate consequence of Theorems 3.3 and Lemma 4.2 is

Theorem 4.3. Let u ∈ W 3,∞(Ω) and assume the hypotheses of Theorem 3.3 and
Lemma 4.2 are valid. Then

‖∇u−Qh∇uh‖0,Ω . h1+min(σ,1/2)‖u‖3,∞,Ω.
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Proof. Using the triangle inequality

(13) ‖∇u−Qh∇uh‖0,Ω ≤ ‖∇u−Qh∇uI‖0,Ω + ‖Qh∇(uI − uh)‖0,Ω,

estimate the two terms on the right-hand side of (13) by Theorem 3.3 and Lemma
4.2. ¤
Remark 4.4. The superconvergence rate in Theorem 4.3 is weaker than that in
Theorem 3.3 due to boundary constrain (12).
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