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ABSTRACT

Sequential Cascaded Networks are recurrent higher order connectionist networks which are
used, like finite state automata, to recognize languages. Such networks may be viewed as discrete
dynamical systems (Dynamical Recognizers) whose states are goints inside a multi-dimensional
hypercube, whose transitions are defined not by a list of rules, but by a parameterized non-linear
function, and whose acceptance decision is defined by a threshold applied to one dimension.
Learning proceeds by the adaptation of weight parameters under error-driven feedback from per-
formance on a teacher-supplied set of exemplars. The weights give rise to a landsc where
input tokens cause transitions between attractive points or regions, and induction in this frame-
work corresponds to the clustering, splitting and joining of these reﬁms. Usually, the resulting
landscape settles into a finite set of attractive regions, and is isomorphic to a classical finite-state
automaton. Occasionally, however, the landscape contains a "Strange Attractor” (e.g fig 3g), to
which there is no direct analogy in finite automata theory.

Figure 3g: Infinite states of a "strange” automaton?

1. Introduction & Background

Recently, J. Feldman (personal communication) posed the language acquisition problem, as
a challenge to connectionist networks. In its most general form, it can be stated quite simply:
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Given a language, specified by example, find a machine which can recognize (or gen-
erate) that language.

The problem is long-standing and has many specialized variants, especially driven by the
oals of of various disciplines. On the one hand mathematical and computational theorists might
concerned with the basic questions and definitions of learning, or with optimal algorithms
(Angluin, 1982; Feldman, 1972; Gold, 1967; Rivest & Schapire, 1987). another hand,
linguists may be concerned with how the question of learnability discriminates among grammati-
cal frameworks and specifies necessarily innate properties of mind. On the third hand, psycholo-
gists might be concerned, in detail, with how a computational model actually matches up to the
empirical data on child language acquisition. Rather than attempting to survey these areas, I
int to the excellent theoretical review by (Angluin & Smith, 1983) and the books by (Wexler
Culicover, 1980) and by (MacWhinney, 1987) covering the linguistic and psychological
approaches.

In this paper I expose a recurrent high-order back-propagation network to both positive and
negative exa%Bfes of %olean strings, axsrg report that altgguilja the network does not find the
minimal-description finite state automata for the languages (which is intractable), it does induc-
tion in a novel and interesting fashion, and searches through a hypothesis space which, theoreti-
cally, is not constrained to machines of finite state. This interpretation is dependent on an analo
among automata, neural networks, and non-linear dynamical systems. The pairwise sub-
analogies are, of course, longstanding, as (McCullogh & Pitts, 1943) connected automata to
neural nets, (Ashby, 1960) studied nets as dynamical systems, and (Wolfram, 1984) treated (cel-
lular) automata as dynamical systems.

Although we usually think of the transitions among states in a finite-state automata as bein

fully specified by a table, a transition function can also be specified as a mathematical function o
the current state and the input. For example, to get a machine to recognize boolean strings of odd
parity, one merely has to specify that the next state is the exclusive-or of the current state and the
input. Generalizing from a multilayer networks’ ability to perform exclusive-or to the various
constructive and existence proofs of the functional/interpolative power of such networks (Hornik
et al.,, To Appear; Lapedes & Farber, 1988; Lippman, 1987), it is pretty obvious that recurrent
neural networks can work just like finite state automata, where the transition table is folded up
into some moderately complex boolean function of the previous state and current input.

From a different point of view, a recurrent network with a state evolving across k units can
be considered a k-dimensional discrete-time dynamigal system, with a ise initial condition,
2;(0) and a state space in a bounded subspace of R™ (i.e., "in-a-box" (Anderson et al., 1977)).
The input string, y,(¢), is merely considered "noise” from the environment which may or may not
affect the systems evolution, and the governing function, F, is parameterized by weights, W:

2p(t +1) = Fy(z¢(1),y(1))

If we view one of the dimensions of this system, say z, as an "acceptance” dimension, we
can define the language accepted by such a Dynamical Recognizer as all strings of input tokens
evolved u:'rroxgo itclle precise initial state for which the accepting dimension of the state 18 above a
certain threshold.

The first question to ask is how can such a dynamical system be constructed, or taught, to
accept a partic language? The weights in the network, individually, do not correspond directly
to graph transitions or to phrase structure rules. The second question to ask is what sort of genera-
tive power can be achieved by such systems?

2. The Model

To begin to answer the question of learning, I now present and elaborate upon my earlier
work on Cascaded Networks (Pollack, 1987), which were used in a recurrent fashion to learn par-
ity, depth-limited parenthesis balancing, and to map between word sequences and proposition
representations (Pollack, To A ). A Cascaded Network is a well-controlled higher-order
connectionist architecture to which the back-propagation technique of weight adjustment
(Rumelhart et al., 1986) can be lied. Basically, it consists of two subnetworks: The function
network is a standard feed-forward network, with or without hidden layers. However, the weights
are dynamically computed by the linear context nerwork, whose outputs are mapped in a 1:1
fashion to the weights of the function net. Thus the input pattern to the context network is used
to "multiplex” the the function computed, which can result in simpler learning tasks. For exam-
ple, the famous Exclusive-or function of two inputs can be decomposed into two simpler func-
tions of one input which are selected by the other:

y if x=0
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A simple 1-1 feedforward network (with 2 weights) can implement either of these func-
tions. Idcnu&nl's (3y = 1.5), and inversion is f(l.S ~ 3y), where g(z)=1/1+e™*, the usual sig-
moidal squashing tion. The essential idea of cascading is that these solutions in weight space
can be a parameterized vector function of x.

Back- gation is quite straightforward on a cascaded network. After determining the
error terms for the weights of the function network, these are used as the error terms for the out-
put units of the context network.

When the outputs of the function network are used as inputs to context network, a system
can be built which learns to produce specific outputs for variable-length sequences of inputs.
Because of the multiplicative connections, each input is, in effect, processed by a different func-

tion.
Z (1)

— Wk.(t)
J

Z0) 70

Figure 1. A sequenrial cascaded network. The outputs of the function nerwork are

used as the next inputs to the context network, yielding a system whose function varies

over time.
Figure 1 shows a block dia of a simple sequential cascaded network. Given an initial con-
text, z,(0), and a sequence of inputs, yj(t), t= 1...n, the network computes a sequence of state vec-
tors, z;(¢), r=1...n by dynamically changing the set of weights, w,,,(:g:"

wii(t) = W 2p(1-1)
2x(r) = g(wyj(r) y;(r))

In previous work, I assumed that the teacher can supply a consistent and generalizable
desired state for each member of a large set of strings. Unfortunately, this severely overconstrains
the model. In learning a two-state machine like parity, this doesn’t matter, as the 1-bit state fully
determines the output. Such a teacher would be too powerful in the case of a higher-dimensional
system, where we may know what the desired output of a system is but we don't know what its
internal recurrent state should be.,

Jordan (1986) showed how recurrent back-propagation networks could be trained with
“don’t care” conditions. If there is no specific preference for the value of an output unit for a par-
ticular training example, simply consider the error term for that unit to be 0. is will work, as
long as that same unit receives feedback from other examples. When the dont-cares line up, the
weights to those unit will never change.

The first reaction, fully unrolling a recurrent network by maintaining vector histories
(Rumelhart et al., 1986) has not lead to spectacular results (Mozer, 1988), the reason being that
very tall networks with equivalence constraints between interdependent layers are unstable. My
solution to this dilemma involves a backspace, unrolling the loop only once: After propagating
the errors determined on only a subset of the weights by the known accept bit, 4:

JoE
B (s =(24(n) =d) z,(n) (1 = z,(n))
dE _ JE
8w‘,l-(n) - dz,(n)

yi(n)
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The error on the remainder of the weights (e.g. i =(1 - kli#a} ) is calculated by recycling the
error on the accept plane with the network reset (o its penultimate state:

x(n-1)

JE - JE d
dz;(n=1) j awojk awaj(")
JE - JE (n=1)
ow;j(n-1)  dzi(n-1) Yi
oE oE
OWijx " Ow(n=1) %n=2)

This is done, in batch (epoch) style, for a set of examples of varying lengths.

3. Experiments

Connectionist learning algorithms are very sensitive to the statistical properties of the set of
exemplars which make up the learning environment. This has lead some psychological research-
ers to include the learning environment in the experimental parameters to manipulate (Plunkett &
Marchman, 1989). Otherwise, it may not be clear if the results of a connectionist learning archi-
tecture are due to itself or due to skill or luck with setting up a collection of testcases. Therefore,
I chose to work with test cases from the literature.

Tomita (1982) performed beautiful experiments in inducing finite automata from positive
and negative examples. He used a Fenetica y inspired hillclimbing procedure, which manipu-
lated 9-state machines by randomly adding, deleting or moving transitions, or inverting the
acceptability of a state, and accepting mutations based on their ability to improve the machine.
Tomita ran his system on 7 cases and their complements. Each case was defined by two small sets
of boolean strings, accepted by and rejected by the regular languages listed below.

1%
(10)*
no odd zero strings after odd 1 strings
no triples of zeros
pairwise, an even sum of 01's and 10’s.
number of 1’s - number of 0's = 3n
O*1*0*]*

NN EsE W —

For uniformity, I ran all 7 cases on a sequential cascaded network of a 1-input 4-output
function network (with bias, 8 weights to set) and a 3-input 8-output context network with bias.
The total of 32 weights is essentially arranged as a 4 by 2 by 4 array. Only three of the output
dimensions were fed back to the context network, along with a set of biases, and the 4th output
unit was used as the acceptance dimension. The standard back-propagation learning rate was set
to 0.3 and the momentum to 0.7. All 32 weights were reset to random numbers between 0.5 for
each run. Termination was when all acce strings returned output bits above 0.8 and rejected
strings below 0.2. I changed initial conditions during the Feriod of experimentation, and used an
initial state of (.2 .2 .2) for cases 1, 3, and 4, and (.5 .5 .5) for the rest.

3.1. Resuits

Of Tomita’s 7 cases, all but cases #2 and #6 converged without a problem in several hun-

dred epochs. Case 2 would not converge, and kept treating negative case 110101010 as correct; I

had to modify the training set (by added reject strings 110 and 11010) in order to overcome this

roblem. Case 6 took several restarts and thousands of cycles to converge, cause unknown.
esentation of the complete experimental data is in a longer report (Pollack, 1990).

However, none of the minimal-description regular languages were induced by the network.
Even for the first language 1*, the network did not create an inescapable error state, so a 0 fol-
lowed by a long string of 1's would be acc%pted by the network. If the network is not inducing
the smallest consistent FSA, what is it doing?

4. Analysis

In my attempts at understanding the resultant networks, the first approach was to analyze
their corresponding finite-state automata. The procedure was very simple. I ran the network as a
generator, subjecting it to all possible boolean strings as input, and collecting first, the set of
strings for which the acceptance dimension was past threshold, and second, the set of states
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(points in 3-space) visited by the machine.

Maphine curput
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Figure 2. Three stages in the adaptation of a network learning parity. (a) the test
cases are separated. but there is a limit point ﬁfor 1* at abour 0.6. (b) after lflmher
training, the even and odd sequences are slightly separated. (c) after a lirtle more
training, the oscillating cycle is pronounced.

Collecting the strings indicated one tmemjal problem with the approach. After training the
system can ‘‘fuzz out’’ for longer inputs the ones given in the test cases. This can be exam-
ined for any particular recognizer. We simply observe the limit behavior on the accepting dimen-
sion for very long strings. For parity, since the string 1* requires an oscillation of states, we can
examine the acceptance dimension as a function of the length. Figure 2 shows three stages in the
adaptation of a network for parity. At first, despite success at separating a small training set, a sin-
gle attractor exists in the limit, so that long strings are indistinguishable. After a little further
training, the even and odd strings are separated, and after still further training, the separation is
enough to set a threshold easily.

What initially appeared as a bug turns out to indicate a veliy interesting form of induction.
Under feedback pressure to adapt, a slight change in weights leads to a point attractor being
"bifurcated” into two. The result, in terms of performance, is significant! Before the split the net-
work only worked correctly on short finite strings; afterwards, it worked on infinite strings.

4.1. Visualizing the Machines

Based upon preliminary studies of the parity example, my initial h esis was that a set
of clusters wouldg found, organized in so[:ne geometric fashion to be ssed by the way
input causes the state to jump around. Thus, after collecting the state information, it seemed that
this would cluster into dense regions which would corrmnd to states in a FSA. [ wrote a diag-
nostic gggm to explore this space automatically, b}: i gman unexplored state and combining
it with 0 and 1 inputs. To remove floating-point fuzz, it had a parameter € and threw out new
states which were within € euclidean distance from any state already known. Unfortunately, some
of the machines seemed to grow exponentially in size as € was lowered!

One reason for this seems to be that many "ravine” shaped clusters rather than point clusters
are developed. Because the states are "in a box" of low dimension, we can view these machines
graphically to gain some understanding of how the state space is being arranged. Graphs of the
states visited by all possible inputs up to length 10, for the 7 test cases are shown in figure 3. Each
figure contains 2048 points, but often they overlap.
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. The lack of closure under € can now be seen as a completcl; different sort of attractor, mak-
ing my earlier mapping attempt reminiscent of Mandelbrot's (1977, p. 25) essay about measuring
the coastline of Britain. The variability in these structures centainly deserves further study, espe-
cially with regards to what types of [andscapes are possible with different sized networks and
alternative activation functions. The images (a) and (d) are what were expected, clumps of points
which closely map to states of equivalent FSA's. Images (b) and (e) have simple ravines, which
bleed into each other at their ends, probably indicating that longer strings will fuzz out.

» Images (c), (), and (g), are complex and quite unexpected, and will be further discussed
ow.

5. Related Work

The architecture and learning paradigm I used is closely related to recurrent archtecture
devised by (Elman, 1988) and explored by others. Both networks rely on extending Michael
Jordan's networks in a direction which separates visible output states from hidden recurrent
states, without making the unstable "back-propagation mrouég time" assumption. Besides our
choice of language data to model, the two main differences are that

(1) They use a "predictive"” amdem. where error feedback is Erovided at every time step in the
computation, I used a "classification” paradigm, feeding back only at the end of the
given examples.

(2) They use a single layer (quasi-linear) recurrence between states, whereas I use a higher-
order (quadratic) recurrence. It is certainly plausible that this quadratic nature allows more
"radical" non-linearities to blossom.

Besides continued analysis, scaling the network up beyond binary symbol alphabets,
immediate followup work involves comparing and contrasting our respective models with the
other two possible models, a higher-order network trained on prediction, and a quasi-linear model
trained on classification.

6. Discussion and Conclusion

The state spaces of the dynamical recognizers for Tomita cases 3, 6, and 7, are interesting,
because, theoretically, they mnz be infinite state machines, where the states are not arbitrary or
random, requiring an infinite table of transitions, but are constrained in a powerful way by some
mathematical principle. I believe that it is closely related to related to Barnsley's work on iterated
systems, where affine "shrinking” transf?rmations direct an infinite stream of random points onto
a underlying fractal or strange attractor. In the recurrent network case, the "shrinking" is accom-
plished via the sigmoidal function, and the stream of random points are all possible input strings.

Certainly, the link between work in complex dynamical systems and neural networks is
well-established both on the neurobiological level (Skarda & Freeman, 1987) and on the
mathematical level (Demmda & Meir, 1988; Huberman & Ho!gg. 1987; Kurten, 1987). It is time
that this link be further developed, especially as it applies to the question of the adequacmf con-
nectionist, and other "emergent” approaches to high-level cognitive faculties, such as language
(Pollack, 1989). The big question i1s whether any of the information structures which can be gen-
erated by complex dynamical systems can be at all correlated with the structures arising in natural
language. Along these lines, (Crutchfield & Young, 1989) have analyzed the computation under-
lying period-doubling in chaotic dynamical systems and has found power equivalent to indexed
contex!-free grammars.

In conclusion, I have by no means proven that a recurrent dynamical system can act gs an
efficient recognizer and generator for non-regular laJJ%la%es. though it does seem obvious.” But
since Dynamical Recognizers are not organized as a PDA’s or Turing Machines, it is not clear
where the range of languages learnable by these systems would fit inside the Chomsky Hierarchy.

| Negative information is not crucial to the classification paradigm. Some distinction must be made among
strings in order that the state space doesn’t collapse into a point. The accept/reject bit is just the smallest such
distinction.

2 My use of the term “attractor” is more related to a stable pattern emerging from deterministic chaos
(Lorenz, 1963) than to the traditional use (as energy minima) in optimization models (Ackley et al., 1985;
Hopfield & Tank, 1985).

} Assuming rational numbers for states, a recurrent multiplicative relationship would be enough to stant
counting, which is necessary for beginning to handle context-free embeddings, of the sort a"b": eg.
consider separate boolean inputs for a and b, and a recurrence z (¢t+1) = Sa(t)z (¢t) + 2b(t)z (¢). Assuming
irrationals in the recurrence relationship, as physicists inadvertently do, and an ideal transcendental sigmoid,
the "competance” languages may not even be computable.
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Figure 3. Images of the antractors for six cy’ the seven Tomita testcases. The points
visited by all boolean input strings up to length ten are plorted. The seventh was
viewed earlier.
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Nevertheless, we can consider the implications for language (and language acgiulj]silion) of a
family of automata which smoothly evolve between finite and infinite state machines without
massively duplicated transition tables: It will give rise to an induction method which will apply
without a priori specification of the grammatical framework of a language in question. Genera-
tive capacity is neither natively assumed nor directly manipulated, but is an emergent property of
the (fractal) geometry of a bounded non-linear system which arises in response to a specific learn-
ing task and 1s only revealed through performance.

This work is funded by Office of Naval Research Grant NOOO14-89-J-1200.
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