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Abstract 

Purpose 

With recent substantial improvements in modern computing, interest in quantitative imaging with 

CT has seen a dramatic increase.  As a result, the need to both create and analyze large, high-quality 

datasets of clinical studies has increased as well.  At present, no efficient, widely-available method 

exists to accomplish this.   The purpose of this technical note is to describe an open-source high-

throughput computational pipeline framework for the reconstruction and analysis of diagnostic CT 

imaging data to conduct large-scale quantitative imaging studies and to accelerate and improve 

quantitative imaging research.   

Methods 

The pipeline consists of two, primary “blocks”: reconstruction and analysis.  Reconstruction is carried 

out via a GPU queuing framework developed specifically for the pipeline that allows a dataset to be 

reconstructed using a variety of different parameter configurations such as slice thickness, 

reconstruction kernel and simulated acquisition dose.  The analysis portion then automatically 

analyzes the output of the reconstruction using “modules” that can be combined in various ways to 

conduct different experiments.  Acceleration of analysis is achieved using cluster processing.  

Efficiency and performance of the pipeline are demonstrated using an example 142 subject lung 
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screening cohort reconstructed 36 different ways and analyzed using quantitative emphysema 

scoring techniques. 

Results 

The pipeline reconstructed and analyzed the 5,112 reconstructed datasets in approximately 10 days, 

a roughly 72x speedup over previous efforts using the scanner for reconstructions.  Tightly-coupled 

pipeline quality assurance software ensured proper performance of analysis modules with regard to 

segmentation and emphysema scoring. 

Conclusions 

The pipeline greatly reduced the time from experiment conception to quantitative results. The 

modular design of the pipeline allows the high-throughput framework to be utilized for other future 

experiments into different quantitative imaging techniques.  Future applications of the pipeline 

being explored are robustness testing of quantitative imaging metrics, data-generation for deep 

learning, and use as a test platform for image processing techniques to improve clinical quantitative 

imaging. 

 

1. INTRODUCTION 

Quantitative imaging studies often require large amounts of clinical imaging data.  While modern 

machine learning methods (such as training neural networks) are typically the most notable in terms 

of data requirements, other applications and studies also would benefit from broader access to 

custom datasets.  Applications include investigations into robustness of quantitative imaging 

approaches, image-processing algorithm development and testing, and development of new 

quantitative imaging techniques such as computer aided diagnosis/detection (CAD).   
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At present, access to these high-quality, large datasets is somewhat limited.  Publicly available 

datasets such as LIDC 
1
, NLST

2
, Maastro NSCLC

3
, etc., represent one means to access large scale 

datasets, however are limited by the number of reconstructions available per patient (typically one), 

the reconstructions selected (optimized for human readers, not necessarily computer vision or 

algorithms), and are typically heterogeneous in terms of scanner and protocols used to acquire the 

data.  While this is a good representation of clinical variability, it is challenging if not impossible to 

achieve a highly-controlled dataset when reconstruction parameters are to be varied and 

investigated.  Finally, large scale public datasets quickly go out-of-date due to the turnover and 

update cycle of CT imaging systems.  Another approach is retrospective assembling of datasets from 

PACS.  This allows for more control over the reconstructions acquired, however is still limited to 

reconstructions optimized for/selected by human readers, and requires substantial time and effort 

to assemble datasets large enough for some studies. 

A promising approach pursued in our work has been the collection and storage of raw projection 

data from CT scanners, and then subsequently returning to the scanner at a later date to perform 

reconstructions.  This has been employed in Young et al. 2015
4
 and Young et al. 2017

5
 to great 

effect, and furthermore this allows for preprocessing of the raw projection data, such as simulated 

noise addition/dose reduction and projection domain denoising, opening up new research pathways 

not previously possible.   

However, the workflow of collecting, processing and returning raw data to the scanner (illustrated in 

Fig. 1) is not without substantial logistical limitations as well.  Raw projection data must be re-

imported to the scanner, the scanner reconstructions cannot be operated in “batch-mode,” and 

reconstructions different than the clinical protocols often cannot be preprogrammed, and must be 

manually configured via a graphical user interface.  Finally, all image data must be exported and 

returned to the lab site, uploaded to a secure network share and organized for storage and future 

use.  When cohort sizes are small and only a few reconstructions per subject required, this is a viable 
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approach, however it quickly becomes burdensome.  For example, to assemble the dataset used in 

Young et al. 2017
5
 required six months (3 reconstructions per patient for 481 patients).  Increasing 

the number of parameters investigated, or investigating an additional source of variation (e.g. 

acquisition dose, reconstruction kernel, or slice thickness) dramatically increases the time and labor 

required to generate datasets used in QI analysis.  If timely, large scale quantitative imaging research 

is to be conducted, an improved approach is required. 

Since there is significant interest in performing quantitative imaging work, it would be highly 

valuable develop a high-throughput system of reconstructing raw projection data to create the large 

datasets required to represent the desired range of acquisition and reconstruction parameters 

necessary for such studies.  Such a system would decrease the time and labor required to perform 

such studies, as well as achieve a system of organization allowing multiple QI metrics to be tested on 

the same datasets.  By developing such a system, more parameter configurations can be 

investigated, and larger cohorts can be tested providing more thorough, statistically powerful 

studies in less time and requiring less researcher labor. 

In this work, we develop and detail the construction of such an automated system (referred to as 

“the pipeline").  It will be shown that the developed pipeline achieves the following: (1) allows for a 

wide range of acquisition and reconstruction parameters to be configured and applied to raw CT 

projection data, (2) performs the high-throughput reconstruction of large data sets, (3) automatically 

organizes the resulting reconstructed volumes for archiving and QI analysis, (4) allows for highly 

configurable post-processing and analysis to be applied to the reconstructions, (5) produces QI 

results in a manner to facilitate  easy, rapid statistical analysis, and finally (6) functions as an 

automated tool that requires minimal human intervention after initial configuration.  To illustrate 

the utility and performance of the pipeline in the setting of quantitative imaging, a cohort (N=142) of 

low dose lung cancer screening exams with a wide range of acquisition and reconstruction 

conditions  (36 combinations of slice thickness, reconstruction kernel and simulated acquisition 
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dose) was created for analysis in another manuscript; the focus of this manuscript is on the technical 

developments and computational performance of the pipeline while the focus on the future 

manuscript will be the analysis results of the image datasets across the acquisition/reconstruction 

parameter space.  

 

2. BACKGROUND 

It was identified in previous studies
4–6

 that the lack of automation in the clinical reconstruction 

process was a substantial limitation building datasets for quantitative imaging.  Although this is often 

a highly repetitive task when employed in research (i.e. configuring the same set of reconstruction 

parameters across large cohorts of patients) very suitable for automation, clinical systems are 

engineered for manual configuration to fit in better with the clinical workflow.  While, some 

manufacturers offer proprietary “recon boxes,” that provide some measure of offline reconstruction 

and automation, these are not widely available, difficult to acquire, and not fully-customizable for a 

researcher’s needs.  Additionally, they are likely to be tied to proprietary data formats which prevent 

the possibility of simulation studies, which are often of interest to the reconstruction and 

quantitative imaging community.  In a previous technical note, free, open-source weighted filtered 

backprojection reconstruction software for diagnostic CT was released
7
, which allows the offline 

reconstruction of clinical datasets, effectively enabling researchers to build their own “recon boxes” 

using a published, clinically-similar reconstruction method.  

The workflow illustrated in fig. 2, shows the simplification possible with pervasive automation.  The 

user is only required to interact with the workflow during the export/import of raw data and the 

configuration of the pipeline, detailed in sec. 3.A.  While this automation is largely made possible via 

the customizable, offline reconstruction approach offered by FreeCT_wFBP, it is the pipeline (i.e. the 

automation framework) that leverages the reconstruction software and enables high-throughput 

studies.   
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3. PIPELINE DESIGN AND IMPLEMENTATION 

The pipeline is a collection of compiled programs and Python scripts designed to carry out 

reconstruction and quantitative imaging analysis.  While the pipeline should be thought of as a 

generalizable framework for high-throughput imaging work, it has been developed thus far with the 

specific application of robustness testing of quantitative imaging metrics for diagnostic CT, which 

involves the evaluation of a quantitative imaging test across a range of different acquisition and 

reconstruction parameters such as slice thickness, reconstruction kernel, and acquisition dose.  This 

application however gives an excellent example of the different, more general components of the 

pipeline.  For this manuscript, the pipeline has been specifically configured to test the robustness of 

quantitative emphysema scoring approaches using CT image data.  

 

The pipeline workflow, illustrated in fig. 3, is roughly the following (1) reading of the raw projection 

data (2) raw data preprocessing (3) reconstruction (4) image data processing (5) analysis and (6) final 

results.  Initially raw projection data must be parsed into a format readable by the reconstruction 

software.  At present, the pipeline accepts a binary format as well as an open-format, vendor 

independent DICOM format
8
.  Thus, the pipeline is easily extensible to work on non-standard, 

proprietary data via the programming of a small raw data reading module that converts into either 

of these two open formats.  After reading the raw data, the desired preprocessing is applied. In the 

case of robustness testing, a calibrated noise addition module
4, 9

 is used at this stage to simulate 

reduced-dose scans, however this could also be other processing steps such as projection-domain 

filtering, or denoising algorithms (e.g. [10-11].   

Reconstruction of the raw data is performed next to create the desired image datasets.  In the 

current pipeline, FreeCT_wFBP
7
 is utilized to perform the desired reconstructions, which can include 

variations of reconstructed slice thickness and reconstruction kernel.  
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It should be noted that the pipeline can accept image data from most sources, including other open-

source reconstruction software, and image datasets reconstructed at the clinical scanner. This is 

made possible via a data conversion module that accepts image data in multiple formats (including 

DICOM, NIfTI, mhd, binary data and others) and converts to the format utilized by the analysis 

modules.  This also allows for image-domain processing (e.g. denoising, smoothing, etc.) to be 

applied after reconstruction if desired.  In the case of robustness testing, image denoising algorithms 

are being tested to assess whether their ability to “stabilize” quantitative measures (i.e. reduce the 

variation caused by changing reconstruction and acquisition parameters).   

Finally, analysis is carried out through a series of modules that perform tasks required to produce 

the final result.  In this work, the analysis performed is emphysema scoring and requires the 

modules that perform image conversion, segmentation, calculation of a lung histogram, and finally 

the emphysema scoring and aggregation of final results.  This is discussed more in sec. 3.D. analysis 

modules.  The pipeline is designed so that each module can be replaced based on the requirements 

for a given experiment, enabling future experiments to leverage the underlying high-throughput 

design and framework to automate and accelerate imaging data generation and analysis. 

To achieve high-throughput for reconstruction, a custom GPU framework was developed.  While fig. 

3 illustrates what is happening in each stage of the pipeline, following subsections cover how the 

primary components of the computing framework achieve this.  The primary components of the 

framework are: the “launcher” which starts the pipeline; the “daemon”, which dispatches individual 

jobs and ensures system resources are optimally utilized; and the “queue item” script, which 

processes an individual reconstruction from start to finish.  A schematic flowchart view of the 

components discussed below can be found in fig. 4.   
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3.A. Launcher and Configuration Files 

The launcher script is the first of the three primary programmatic components and serves to parse a 

simple configuration file into a job-list, update the pipeline queue, and subsequently start full 

pipeline execution managed by the “daemon.” After the pipeline launcher has started the daemon, 

the launcher exits and is not utilized further for a given set of cases. 

Configuration files are written in YAML (http://yaml.org), a simple, human-readable “data 

serialization” format that is well supported across many platforms and programming languages, in 

particular Python.  A sample configuration file is given in listing 1 (Supplementary file).  Users can 

request any number of doses,      , and any number of slice thicknesses,      , to explore; the 

pipeline is capable of assessing any number of reconstruction kernels (     ), however is limited to 

the offerings of the reconstruction software.  The three used in this work are currently the only 

three offered with FreeCT_wFBP.  In the pipeline’s present implementation, the total number of 

reconstructions per patient will thus be                  . 

The launcher script’s handling of job list creation, and spawning of all further processes simplifies the 

role of the researcher in experimental setup which increases throughput and reduces the risk of 

possible configuration errors. 

 

3.B. Daemon 

The daemon is a management script that runs in the background and ensures that system resources 

are utilized continuously and efficiently.  The daemon performs three primary functions: (1) poll the 

GPU resources of the current system and detect when they are available, (2) spawn “queue_items” 

which handle the processing of individual reconstructions (see below) when GPU resources are 

available, and (3) evaluate the exit status of the queue items for logging/debugging purposes. 
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The daemon runs continuously once the pipeline is launched until there are no more items in the 

current queue.  Checking for available GPUs is done via the polling of a directory of lock files every 

five seconds.  If an available GPU is detected (i.e. no lock file is present) the daemon removes the 

next item from the job queue, assigns it to the GPU, generates a corresponding lock file, and spawns 

a new queue item.  This ensures that multiple jobs do not compete for the same resources and that 

all of a system’s available GPU resources are used continuously to maximize throughput. 

 

3.C. Queue items 

The queue item script handles the processing of an individual reconstruction from start to finish.  

After receiving its instructions from the daemon in regard to which reconstruction to compute, and 

which GPU to utilize, the primary steps of this process are data-fetch (i.e. retrieval of raw data from 

network storage), simulation of reduced dose data if required, and reconstruction according to 

requested parameters.  In addition to these tasks, the queue item also manages data organization 

for the given reconstruction, generating a specific directory structure inside of the project library (a 

directory specified in the configuration file) that prepares the case for quantitative imaging analysis. 

 

3.D. Other Pipeline components 

Analysis Modules 

A pipeline analysis module consists of an execution script, designed to process an individual 

reconstructed image dataset in a pipeline library, and a launch script that dispatches jobs to a 

network cluster for batch-mode execution of the analysis module for all reconstructions in the 

library.  Because of this design and the fixed library directory structures (see below) of the pipeline, 

the analysis modules can be readily applied to new pipeline datasets without modification. Thus, a 

key advantage of the pipeline is the simplicity with which a user can apply quantitative image 
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analysis tools to the large-scale pipeline datasets.  An example of this is the automated lung 

segmentation module since many quantitative tests, such as global emphysema scoring (performed 

in this work) or computer automated detection
10

, require the patients’ lungs to be segmented.  

Because this is implemented as a module, the lung segmentation code can be readily utilized for any 

study.  Running the different analysis modules in sequence produces the complete quantitative 

studies desired.  (An example of the modular breakdown of the analysis for this work can be found in 

fig. 8). 

 

Quality Assurance 

A critical challenge of the pipeline is to ensure that reconstructions and analysis tasks were 

performed correctly.  To accomplish this on the large scale required for the pipeline, slice 

visualizations are automatically generated and presented to researchers in structured HTML 

documents allowing for the rapid review of the thousands of image volumes generated.  Samples 

visualizations are shown in fig. 5.  A sample HTML quality assurance document is show in fig. 6 

highlighting the ease with which errors can be detected using this approach.  Since the generation of 

QA documents is a key component of each analysis module, this approach can scale with dataset size 

and allows researchers to easily review and correct problems.   

 

Pipeline Automation 

Finally, the pipeline is highly automated, however it is intentionally not completely fully automated.   

While complete automation of all pipeline components, reconstruction and analysis, is achievable, 

key breakpoints have been implemented to allow for quality assurance (discussed above) to be 

performed on the results. 
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Logging and tracking 

Output of each individual process (stdout, stderr, and Python logging) is captured and stored in 

logfiles.  In addition to its utility for debugging, the extensive logging with timestamps allows for the 

mining of performance data from pipeline runs. This is useful for identifying bottlenecks in 

processing and further improving pipeline throughput. 

 

Data organization 

The pipeline creates a unique directory structure designed specifically for quantitative imaging 

analysis and stores imaging data and study metadata directly into the structure for further analysis.  

The elements of the directory structure are described in tables 1 and 2.  Because the directory 

structure is standardized across all pipeline runs, post-processing and analysis tasks are simple to 

apply across all image volumes in a pipeline library, and all analysis data is stored with its respective 

image data making aggregation for statistical analysis efficient and straightforward.  Furthermore, 

multiple QI analyses can be performed on the same dataset using different analysis modules. 

 

Code Availability 

The pipeline GPU queuing framework source code as well as the analysis cluster framework code is 

being made available under the free, open-source GNU General Public License version 3.0 to 

encourage usage in research and quantitative imaging.  Full details can be found on the Github 

page
11

, however in brief this means that users are free to copy, distribute and modify the software 

provided changes are identified and dated in the source code and any modifications are made freely 

available under the same license.  The reconstruction software has also previously been made freely 

available
7
.  At present, the code for the calibrated noise addition and the analysis modules 

(segmentation, internal data format conversion, etc.) cannot be released due to proprietary code 
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and research agreements, however free, open-source versions would work within the frameworks 

being released, and future efforts from our research group may result in the release of some of this 

code.  The pipeline automation infrastructure is not platform specific and should run on any system 

with Python3 installed, however at this time the pipeline requires at least one CUDA-capable GPU to 

be installed on the system.  

Unfortunately, not all of the modules can be made publicly available at this point (i.e. the noise 

model, proprietary raw data readers, etc.), however the purpose of this work is to highlight the 

utility and flexibility of the pipeline in its current form.  Additionally, a key intent of making the 

pipeline open-source and freely-available is to enable users to develop their own modules and 

leverage the pipeline’s automation infrastructure to improve experimental throughput.  Details of 

the reconstruction modules, including filtered backprojection (FreeCT_wFBP) and a recently released 

iterative reconstruction package (FreeCT_ICD) can be found in [
12

] and [
13

], respectively. 

 

4. EXPERIMENTAL METHODS 

To illustrate the utility and performance of the pipeline, datasets were created for a project in which 

lung cancer screening CT datasets representing a wide range of acquisition and reconstruction 

parameters were created. This dataset used the raw data from 142 subjects to create image datasets 

that represented 4 dose levels (original and 3 simulated reduced dose levels), 3 reconstruction 

kernels and 3 slice thicknesses.  The experiment was conducted under IRB approval and raw 

projection data was separated from any PHI. 

 

4.A. Dose Reduction and Reconstruction 

To explore robustness of emphysema scoring to protocol variation, a range of parameters were 

selected to capture the possible variability one might see clinically, and additionally some 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

configurations that would push the limits of study “acceptability” for diagnosis, in particular with 

respect to dose reduction.  For this study, four doses were explored: 100%, 50%, 25%, and 10% of 

the original screening studies (approximately 2.0, 1.0, 0.5 and 0.1 mGy CTDIvol), three 

reconstructions kernels: smooth, medium and sharp (corresponding roughly to Siemens B10f/B20f, 

B40f/B50f, and B60f respectively), and three slice thicknesses: 0.6, 1.0, and 2.0mm.  Thus, each study 

was evaluated under 36 different parameter configurations and samples of each of these parameter 

configurations are shown in fig. 7. 

Simulated dose reduction was performed on the raw data with a noise model
9
, an implementation 

of which has been validated and utilized for similar, previous experiments
4, 5

.  The model adds noise 

to individual projections considering quantum and electronic noise. Electronic noise is an important 

consideration since the starting dose of CT lung cancer screening is already low; samples of 

electronic noise were acquired directly from the scanner on which all patients were scanned.  

Additionally, a realistic attenuation model of the bowtie was generated using measurements from 

the scanner.  For the pipeline, a GPU implementation of the noise model has been developed that 

achieves an acceleration of roughly 12x. 

All reconstructions were performed using the open-source, free software FreeCT_wFBP, designed to 

be similar to the clinical weighted filtered backprojection algorithms utilized on Siemens scanners.  

While not precisely the same algorithm, when applied to raw data from the scanner utilized, it has 

been shown to meet the criteria specified by the ACR CT accreditation protocol
14

, and produce 

clinically-similar reconstructions
7
. 

 

4.B. Analysis 

Threshold- and histogram-based emphysema scoring was chosen as an example task on which to 

test the pipeline because they are established approaches and have been the subject of much 

research to date
15–20

.  Four analysis modules were utilized to carry out the analysis: (1) data format 
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conversion (2) lung segmentation (3) calculation of the lung histogram, and (4) emphysema scoring 

(shown in fig. 8).  The data format conversion reads the reconstructed image data and image 

metadata and converts it to a custom format suitable for use with the automated segmentation tool. 

The lung segmentation module reads the converted image data and runs previously-published, fully-

automated lung segmentation software
21

.  The histogram calculation module then utilizes both the 

converted image data and the generated segmentation to create a histogram of the lung voxels. 

Finally, the emphysema scoring module pulls on all of the previously generated data to achieve final 

scoring values for the various executed tests.  The metrics calculated for this experiment were 

density mask metrics
22

, calculated by evaluating the number of voxels in the lung below the given 

threshold (e.g. -950HU), and percentile metrics, calculated by evaluating the location of the N
th

 

percentile of the lung parenchyma histogram (most commonly the 15
th

 percentile).  Additionally, 

mean, median and volume of the lung was computed.  Density mask metrics were computed using 

thresholds from -900HU to -970HU in increments of 10HU, and 10
th

, 15
th

 and 20
th

 percentiles were 

computed. 

 

4.C. Computing Hardware 

The reconstruction portion of the pipeline was run on an Alienware Aurora R4 computer with an 

Intel i7-4960X CPU (3.6 GHz, 15 MB L3 cache), 32 GB of RAM, and two Nvidia GeForce GTX 780 GPU 

(2304 cores, base clock speed of 863 MHz) with 3.2 GB of global memory each.  Analysis of the 

reconstructed volumes was performed on an in-house computing cluster built with HTCondor cluster 

software with 15-25 computers in use at a time. 
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4.D. Performance Analysis 

Log files generated by the pipeline were mined for timing data using a Python script that is part of 

the pipeline software package
11

.  Start and stop times for each major processing step were recorded 

for each individual reconstruction (i.e. data fetch time, simulated dose reduction, and image 

reconstruction), and elapsed times were computed for both the individual steps as well as the 

overall execution time for the job queue items (times for all individual steps plus any pipeline 

overhead).  Average times across all 5,112 reconstructed image datasets were computed and 

compared with previous similar experiments conducted by our research group. 

 

5. PERFORMANCE RESULTS 

5.A. Reconstruction 

Table 3 summarizes the timing results for the experiment conducted and the average times required 

for each processing step of the pipeline run.   

For the data-generation portion of the pipeline (reduced dose simulation, image reconstruction, and 

post-reconstruction data handling), the most time-consuming step is reconstruction requiring on 

average approximately 4.4 minutes, while simulated dose reduction and data handling requires less 

than ten seconds on average.  In general, the GPU implementation of simulated dose reduction 

requires approximately 1.5 minutes to process a full case and the data-fetch requires approximately 

30 seconds when these steps are required, however if the required raw data file is already in the 

library, or the required dose reduction has already been simulated, the pipeline does not re-

compute them.  Thus, most scans end up not requiring a separate data fetch or dose reduction step, 

reducing the average time required for these steps dramatically.   
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The total size for the reconstructed dataset consisting of 5,112 reconstructions and 568 raw data 

files (142 x 4 dose levels) required approximately 2 terabytes of storage.  Raw data files were on 

average approximately 2 gigabytes and reconstructed image data ranged from 200-600 megabytes 

per reconstruction. 

 

5.B. Analysis 

Analysis required approximately one day to complete all steps for the 142 cases reconstructed 36 

different ways (a total of 5,112 reconstructed image datasets).  The most time-consuming part of 

analysis proved to be the cluster configuration overhead of each node when a job is dispatched. This 

step is required to ensure that the node has access to the network and remote resources required to 

run the given analysis step (i.e. mounting network drives, configuring the path to ensure access to 

pipeline scripts, etc.).  This configuration step proved to be a substantial computational burden since 

it is called for each reconstruction volume and each module (5,112 recons x 4 modules = 20,448 

times for this experiment).  In total, it accounted for nearly 80% of the computing time, or roughly 

20 hours of the total 24 hours required to analyze this dataset.  Potential avenues to mitigate this for 

future experiments are discussed below, however despite the computational demands of the auto-

mount script, the capability to analyze 5,112 unique reconstructions in approximately one day 

confirms the overall efficiency and strengths of the high-throughput model utilized by the pipeline. 

 

5.C. Quality Assurance 

Thirty-one reconstructions did not succeed on the first try, and had to be re-queued and re-

processed.  The failures were likely due to GPU memory conflicts since one of the graphics cards was 

being used to drive a computer display (which would not occur on a dedicated system); all 

succeeded on the second try.  The pipeline software package provides a script that automatically 
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identifies failed reconstructions and adds them back to the job queue making this “clean up” step 

simple and fast to perform for the researcher.   

Additionally, automated segmentation is known to be imperfect, and the structured QA documents 

allowed for the fast identification of segmentations with errors.  30 subjects were identified as 

having one or more segmentations that needed revision.  Most errors occurred on the 0.6mm slice 

thickness. Criteria for error identification this included substantial airway inclusion in the 

segmentation, and/or “truncation” of the upper lung which were easily visible in the segmentation 

QA document.  Once the failed cases were identified, segmentations for them were manually edited 

to correct errors.  Quality assurance of all results required less than one day. 

 

6. DISCUSSION 

In total, the pipeline required slightly over one week for data generation and analysis for 142 lung 

screening patients, assessing 36 unique reconstruction configurations of each scan. The total 

number of reconstructions analyzed was 5,112 and 15 quantitative imaging metrics were computed 

for each reconstruction (all 15 were histogram based).  The pipeline allowed for this experiment to 

be conducted approximately 80 times faster, and with substantially less researcher involvement 

required than the most comparable experiment conducted by our research group, which required 

approximately six months for data generation (i.e. simulated dose reduction and reconstruction) and 

more for quality assurance and analysis
5
.  While a larger cohort was assessed in [5] (N=481), only 

one “dimension” of CT parameter space (i.e. acquisition dose) was assessed, and only three data 

points per patient were tested (i.e. 100%, 50%, 25% of clinical dose) for a total number of 

reconstructions of 1,443. 
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The reconstruction portion of the pipeline is highly optimized and performed extremely well.  

Reconstructions were generated as expected with few failures.  Failures were easily identified and 

reprocessed to complete the dataset which helps make the pipeline be an efficient and robust tool 

for large-scale quantitative imaging work.   

The pipeline is programmed to automatically scale to the system on which it is running.  Improved 

GPU hardware and a greater number of GPUs on the pipeline system will further accelerate the 

pipeline without any code modifications required.  “Deep learning” workstations, such as one 

recently acquired by our research group, are becoming more common in research groups and 

typically contain four, state-of-the-art GPUs.  Preliminary tests suggest that the new workstation’s 

Nvidia GTX 1080Ti GPUs reconstruct cases 5x faster than the GTX 780 GPUs utilized for this work due 

to a faster clock speed and a greater number of computing cores.  With four GPUs in the new 

machine, this suggests that all of the data for this work could have been generated in approximately 

one day. 

While faster than any previous alternatives, it was observed that the current implementation of the 

analysis modules could be improved.  Namely, the computational overhead required for the cluster 

node configuration script was a substantial burden requiring more time than the actual quantitative 

image processing steps.  The simplest potential solution would be to revise the node configuration 

script and optimize for only the specific resources required for a given experiment (a “general” 

version giving access to all resources was used in this work).  This will be done for the next 

experiment using the pipeline, however it is not clear that this will yield substantial improvements in 

performance. Another potential pathway to improve this would be to let a single cluster node 

process all modules for a given reconstruction.  While this is a promising route forward, it is 

somewhat less easily adapted for general quantitative imaging than the current modular 

implementation due to the dependence of some processing steps on data from other 

reconstructions (e.g. in this case, segmentations from the 100% cases were utilized for the reduced 
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dose cases, instead of attempting to segment the low-dose cases).  Implementation of modules 

would be experiment specific, and a parent “analysis” script (analogous to the reconstruction 

“queue items”) would be required.  These scripts would also be required to build in protection for 

race conditions and shared resources to ensure accurate results and reduce node latency.  

While the highest throughput is achieved when using the pipeline for both reconstruction and 

analysis, the pipeline workflow has been constructed to accept image input from multiple sources.  

In particular, there may be instances where it is beneficial to perform quantitative evaluation of 

image data from a clinical scanner or other devices (such as a manufacturer “recon box”), which is 

fully achievable under the data paradigm utilized.  Even non-standard or proprietary image formats 

are usable, however a small data conversion tool or script will likely need to be added to the data 

conversion module to translate into a format directly usable by the pipeline. 

Future improvements to the pipeline are planned, namely a more robust, integrated interface that 

combines reconstruction process monitoring, quality assurance, and analysis module configuration 

into one application.  New reconstruction algorithms are under development, namely a free, open-

source fully model-based iterative reconstruction for clinical diagnostic CT data, and will be added as 

a configuration option to the pipeline allowed users to select from weighted filtered backprojection 

or iterative reconstruction
23

 and more fully capture the broad variety of clinically-realistic 

reconstructions.  Lastly, while the pipeline’s current implementation is intended for CT imaging, the 

GPU job queuing framework developed here is generalizable beyond just CT reconstructions and 

would be an important tool allowing researchers to leverage multi-GPU workstations and servers in 

a manner not currently available without custom scripts and substantial programming investment. 

There are many possible research applications of the pipeline, namely any application in which a 

quantitative test or image processing technique needs to be evaluated across a wide variety of 

reconstruction, acquisition conditions, or a large cohort of subjects.  For example, robustness testing 

of existing and newly developed metrics is an important application, where users would ensure that 
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their quantitative technique reflects the underlying patient biology and disease rather than just the 

reconstruction parameters utilized (i.e. if the test is robust, little or no change should be observed in 

the quantitative output).  This was explored in [
24

] to evaluate emphysema scoring, as well as the 

possible benefits of image denoising for emphysema scoring.  Another key application of the 

pipeline is in the generation of data for research into CAD and/or deep learning.  In these cases, 

different reconstructions or simulated acquisition changes can be used to realistically augment 

training and testing data, and then the analysis portion of the pipeline could be utilized to evaluate 

the results.   

Additional modules will further augment the pipeline’s utility.  While we have described modules for 

reconstruction, noise addition, and a limited set of analysis tasks, additional modules could be 

designed to perform more complex analysis, as well as data augmentation.  Some possible examples 

include model observer studies [
25–27

], simulating lesions and other pathology [
28, 29

], evaluating 

denoising techniques [
24, 30, 31

], evaluating image normalization approaches [
32, 33

], and many more.  

Because of the modular design of the pipeline, many studies could theoretically benefit from the 

automation possible, however users will typically observe the most benefit with large-scale studies 

in which manually running all individual components is not viable.   

In order to take full advantage of the pipeline, some prerequisites need to be met.  First, users must 

have access to raw projection data, be it from the clinical scanner or from a simulation.  This can be 

a challenge if physical access to the scanner console is not available, or if manufacturers do not allow 

the exporting of the projection data.  Second, users must be able to decode the raw projection data 

if it is stored in a proprietary format.  This has been recognized as a challenging problem in the 

diagnostic CT community and effort has been made to overcome this such as the introduction of a 

DICOM-based vendor-independent CT raw data format
8
.  Finally, to achieve the calibrated noise 

reduction discussed in this work, a “noise model” for each scanner must be developed which 

involves characterizing the scanner’s bowtie filter as well as the detector’s electronic noise and gain.  
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This requires physical access to the scanner as well as a means of acquiring a zero tube current scan 

(i.e. no x-ray production), typically via service mode. 

While the pipeline is easy to use and eliminates much of the need for users to write their own 

automation scripts and software, it is recommended that users have some basic familiarity with 

Python for any module programming/reprogramming that is desired, and YAML for the writing of 

configuration files.  These languages are widely-used and well-supported with substantial online 

resources.  Including new or modified modules into the pipeline is very straightforward and is 

accomplished by adding or changing one line of code to the pipeline “queue item” script.  Custom 

user-created modules can be implemented using any language and added the same way.  Use of the 

pipeline with additional image preprocessing scripts (i.e. bilateral filtering carried out in MATLAB) 

was performed in [34] 
34

.  Custom modules will be necessary to extend the pipeline’s automation 

framework to different research tasks. 

 

7. CONCLUSION 

The pipeline’s demonstrated reduction of the time required to go from experiment conception to 

finalized quantitative results is an important advancement for the future investigation of 

quantitative imaging.  The pipeline represents an impressive amount of computing power, however 

its most important development are the new studies it can enable that were previously intractable 

due to logistical overhead of data acquisition, and the new scientific insights possible with such a 

data paradigm.  

This work has shown that the pipeline is a high-throughput, automated framework for the 

systematic exploration and analysis of quantitative imaging across many CT parameter 

configurations, and performs well in the context of robustness testing of a histogram-based 

quantitative imaging metric.  It allows for the processing and analysis of large imaging datasets and is 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

particularly powerful when starting from raw CT data, although the analysis modules can be applied 

to any image data.  The highly organized data output is suitable for rapid processing and 

customization for future analysis and finally, the pervasive automation present substantially reduces 

the labor burden to conduct such large-scale studies.  Indeed, the pipeline has already found 

applications in robustness studies, deep-learning training data generation and output evaluation
30

, 

and simulation data generation for other experiments
35–37

.  Future expansions of the reconstruction 

and analysis modules would make the pipeline suitable to other cutting-edge areas of CT research, 

such as photon-counting CT or dual-energy CT.  

While previous investigations into the impacts of quantitative imaging have been performed (e.g. 

[13-18]) they have not been comprehensive enough to establish robust confidence for widespread 

clinical use.  One potential application of the pipeline is the exhaustive search of clinical parameters 

to establish “acceptable” conditions under which a given quantitative test can be performed reliably.  

From these conditions, future CT protocols can be designed in which clinicians can confidently use 

quantitative image tests to assess their patients.  The pipeline is the first tool of which the authors 

are aware that allows for the thorough investigation of such interplay between CT imaging and 

reconstruction parameters and represents an exciting new pathway towards new experiments. 
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FIGURE 1: Illustration of workflow using clinical scanner reconstruction.  (0) A clinical study is 

performed and the raw projection data is temporarily stored in the scanner database. (1) Raw 

projection data is exported to an encrypted hard drive, returned to the lab and then (2) loaded into a 

secure raw data storage.  If preprocessing (3), such as reduced-dose acquisition simulation, is 

desired raw data is copied to a network node, preprocessing is performed, and the modified raw file 

is pushed back to network storage.  When data is ready to be reconstructed for an experiment it is 

(4) loaded back onto an encrypted external hard drive, carried back to the scanner, and (5) uploaded 

back into the scanner database. (6) Reconstructions are manually configured and performed across 

all cases and desired reconstruction parameters.  (7) All reconstruction image data is exported from 

the scanner back onto the encrypted hard drive, raw data is deleted from the scanner, and finally, 

image data is returned to the lab-based network storage location for reconstructed image data.  

Significant human intervention is required at each step of the seven-part workflow, indicated with 

dashed arrows. 

 

FIGURE 2: Illustration of the reconstruction workflow utilizing the pipeline.  (0) Clinical scans are 

acquired and raw projection data is temporarily stored in the scanner database. (1) Raw projection 

data is identified and exported to an encrypted hard drive, returned to the lab, and (2) uploaded to 

network-based network storage for raw data. When data is ready to be reconstructed, (3) the 

pipeline is set up with one configuration file or via the GUI interface.  The pipeline then manages all 

data-fetching, preprocessing, reconstruction, and uploading to the network-based image storage.  

No human interaction is required after the pipeline configuration. Image post-processing (prior to 

storage and subsequent analysis) may include, for example, denoising or other image-domain 

enhancement technique. 

 

FIGURE 3: Block diagram of pipeline workflow from raw projection data to final quantitative imaging 

data.  Each block represents a self-contained task that can be encapsulated in one or more 

“modules.”  Dashed lines represent optional processing pathways.  Modules can be programmed by 
the user and incorporated directly into the pipeline automation framework or can exist outside of 

the high-throughput framework as needed, such as the reconstructions coming from the scanner or 

some other alternative source.  Examples of the types of modules are given in each block. 
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FIGURE 4: Flow diagram of pipeline reconstruction computation.  Primary programmatic 

components are highlighted in orange (i.e. the Launcher, Daemon, and Queue item).  Supporting 

files (e.g. Config file, Case list, Queue, etc.) are not programmatic components themselves, however 

are critical to the proper functioning of the pipeline. 

 

FIGURE 5: Sample QA images utilized to verify reconstruction quality and that quantitative tests are 

being correctly applied. (a) Reconstruction, (b) reconstructions and lung segmentations, (c) 

quantitative emphysema scoring. 

 

FIGURE 6: Sample HTML document, viewable in a standard web browser.  Two errors are caught 

(highlighted with arrows).  A faulty segmentation is shown (top of the lungs is truncated in the 0.6 

mm slice) and a missing reconstruction or segmentation file is caught via the image missing from the 

grid.   

FIGURE 7: Sample reconstructions of an ROI in the lungs across the parameters utilized for this 

experiment.  ROI includes a small pocket of emphysema (right side, against lung wall).  The 

appearance and contrast of the emphysema pocket relative to the lung parenchyma changes 

substantially with parameter selection.  The scan most similar to what is performed clinically at our 

institution is highlighted with a red, dashed rectangle. 

 

FIGURE 8: Analysis modules used to generate quantitative results for emphysema scoring 

approaches assessed in this study.  Module 1 converts from standard image output file types to the 

file type used by the other analysis modules. Module 2 accepts converted image data and performs 

automated segmentation of the lungs.  Module 3 then leverages the output of the segmentation 

module as well as the image data to create a histogram of the lungs.  Finally, module 4 utilizes the 

results of all previous three modules to evaluate the different emphysema scores for this 

experiment.  Each analysis module is designed in such a way that it can be used for future 

experiments. 
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TABLE 1: Parent directory structure for a pipeline library.  The top-level directories hold information for the entire library, 

such as aggregated analysis results and high-level logging information.   

 

 

 

 

TABLE 2: Individual reconstruction directory structure (all stored in the “recon” directory from table 1).  Directories in this 
case store data only for one reconstruction.  This includes raw quantitative analysis data such as segmentations, and 

individual test results. 

 

Directory element Purpose 
Eval/ Directory containing “compiled” quantitative imaging data (e.g. 

complete multi-score results for the emphysema module) 

Img/ Directory containing all image data and metadata for the current 

reconstruction 

Log/ Directory containing all logging data for the current reconstruction 

as well as stdout and stderr output. 

Qa/ Directory for the storage of reconstruction-specific data used for 

quality assurance, for instance, a PNG visualization of overlay of the 

segmentation on top of the reconstruction 

Qi_raw/ Directory containing “raw” quantitative imaging results, such as a 

histogram of voxel values inside of an ROI, computer automated 

detection reports/results, etc. 

Ref/ Directory containing non-pipeline data specific to the 

reconstruction (i.e. “reference” data).  E.g. A clinical reconstruction 

being used for comparison against with the pipeline data; human-

reader markings being used for CAD comparison 

Seg/ Directory containing and segmentations for the current dataset.   

  

Directory element Purpose 
case_list.txt Stores original file paths to each raw data file used in the current 

library, and a “hash” value of the raw data file. The hash serves as a 
unique identifier, and helps to ensure it is not duplicated 

unnecessarily. 

Eval/ Directory containing final, aggregated quantitative imaging data 

ready for statistical analysis and interpretation.  

Log/ Directory containing copies of all pipeline logging data including the 

daemon log and logs from individual queue items. 

Qa/ Directory containing auto-generated structured documents to 

assist with quality assurance 

Recon/ Directory containing all of the reconstructed image data and results 

from individual queue items (note that there is further directory 

organization discussed in table 2) 

Recons.csv Contains a record of all reconstructions present in the library 

including data such as the source raw data file (and its unique hash 

value), parameter configuration information, and filepath to the 

image data.  
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TABLE 3: Timing results for pipeline run.  While speedup is notable by itself, it is also important to consider that no 

researcher involvement beyond initial configuration is required during the 8.75 days of run time, while substantial time and 

attention was required for Young et al. 2017.  “Queue item time” considers any computational or data organization 

overhead, in addition to the time required to perform data fetch, dose reduction, and reconstruction.  Total time is 

dependent on the system used to run the pipeline. Modern GPUs coupled with a greater number of GPUs in a system will 

substantially reduce the total run time since the individual reconstructions will run faster, and a greater number of 

reconstructions will be processed concurrently. 

 

 

 

 

 

 

 

Mean data fetch time 1.74 s 

Mean dose reduction time 8.81 s 

Mean reconstruction time 4.40 min 

Mean queue item time 5.57 min 

Total time, full dataset (2 GPUs) 8.75 days 

Approximate speedup over Young et al. 2017 72x 
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