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Spatial Structure, Environmental
Heterogeneity, and Population
Dynamics: Analysis of the
Coupled Logistic Map

Bruce E. Kendall*

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson,
Arizona 85721, and National Center for Ecological Analysis and Synthesis,
University of California, Santa Barbara, California 93106

and

Gordon A. Fox

Department of Biology 0116, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093-0116, and Department of Biology, San Diego State University,
San Diego, California 92182

Spatial extent can have two important consequences for population dynamics: It can
generate spatial structure, in which individuals interact more intensely with neighbors than
with more distant conspecifics, and it allows for environmental heterogeneity, in which
habitat quality varies spatially. Studies of these features are difficult to interpret because the
models are complex and sometimes idiosyncratic. Here we analyze one of the simplest possible
spatial population models, to understand the mathematical basis for the observed patterns:
two patches coupled by dispersal, with dynamics in each patch governed by the logistic map.
With suitable choices of parameters, this model can represent spatial structure, environmental
heterogeneity, or both in combination. We synthesize previous work and new analyses on this
model, with two goals: to provide a comprehensive baseline to aid our understanding of more
complex spatial models, and to generate predictions about the effects of spatial structure and
environmental heterogeneity on population dynamics.

Spatial structure alone can generate positive, negative, or zero spatial correlations between
patches when dispersal rates are high, medium, or low relative to the complexity of the local
dynamics. It can also lead to quasiperiodicity and hyperchaos, which are not present in the
nonspatial model. With density-independent dispersal, spatial structure cannot destabilize
equilibria or periodic orbits that would be stable in the absence of space. When densities in the
two patches are uncorrelated, the probability that the population in a patch reaches extreme
low densities is reduced relative to the same patch in isolation; this ““rescue effect’’ would
reduce the probability of metapopulation extinction beyond the simple effect of spreading of
risk.

* E-mail: kendall@nceas.ucsb.edu. Fax: (805) 892-2510. Present address: National Center for Ecological Analysis and Synthesis, University of
California, Santa Barbara, California 93106.
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Pure environmental heterogeneity always produces positive spatial correlations. The dynamics
of the entire population is approximated by a nonspatial model with mean patch characteristics.
This approximation worsens as the difference between the patches increases and the dispersal
rate decreases: Under extreme conditions, destabilization of equilibria and periodic orbits
occurs at mean parameter values lower than those predicted by the mean parameters. Apparent
within-patch dynamics are distorted: The local population appears to have the wrong growth
parameter and a constant number of immigrants (or emigrants) per generation.

Adding environmental heterogeneity to spatial structure increases the occurrence of
spatially correlated population dynamics, but the resulting temporal dynamics are more
complex than would be predicted by the mean parameter values. The three classes of spatial
pattern (positive, negative, and zero correlation), while still mathematically distinct, become

increasingly similar phenomenologically.

1. INTRODUCTION

The individuals comprising a population are distributed
in space. This has two potentially important consequences
for population dynamics: There may be spatial population
structure (individuals interact more frequently with
neighbors than with more distant individuals), and
there may be environmental heterogeneity (individuals at
different locations experience different environments,
and thus different birth and death rates). Spatial structure
is frequently invoked to explain competitive coexistence
(Levin,1974; Iwasa and Roughgarden, 1986; Kishimoto,
1990; Nee and May, 1992), the persistence of predator—
prey and host—parasitoid interactions (Huffaker, 1958;
Allen, 1975; Hilborn, 1975; Gurney and Nisbet, 1978;
Fujita, 1983; Nachman, 1987; Reeve, 1988; Sabelis and
Diekmann, 1988; Comins et al., 1992), and the regional
persistence of small populations subject to local stochastic
extinction (den Boer, 1981; Day and Possingham, 1995).
Spatial structure is also the dominant feature of meta-
population models (reviewed in Gilpin and Hanski,
1991; Hanski and Gilpin, 1997). Environmental hetero-
geneity has most frequently been studied in the context of
source-sink dynamics (Pulliam, 1988; Pulliam, 1996).

There are many important questions about these effects
of spatial extent. What causes synchrony (or asynchrony)
between populations at various locations? Does spatial
structure stabilize (or destabilize) population dynamics?
Could the population persist in the absence of spatial
structure? Given that a population is spatially structured,
at what level of detail do we need to sample it in order to
understand the underlying processes? These questions,
and others like them, are difficult to answer empirically,
because they require population data of large spatial and
temporal extent, tied to information about dispersal (but
see Hanski and Woiwood, 1993; Holyoak and Lawler,
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1996; Sutcliffe et al., 1996). Thus we we must turn to
theory for guidance.

The spatial component of population dynamics has
inspired a variety of modeling formalisms, which differ in
grain and detail. Space, time, and local population state
may be treated as discrete or continuous variables. Local
population processes and explicit spatial locations may
or may not be explicitly modeled. For example, a coupled
map lattice is discrete in time and space, has a continuous
range of local densities, has nonlinear local population
dynamics, and usually includes explicit space (Comins et
al., 1992; Allen et al., 1993; Doebeli, 1995; Rohani and
Miramontes, 1995; Comins and Hassell, 1996; Ruxton
and Doebeli, 1996; Heino et al., 1997). In these models
episodes of within-patch reproduction and survival (which
may involve multiple species) alternate with dispersal
among patches. This formalism can be used to examine
both population structure, by letting the dispersal rate be
small, and spatial heterogeneity, by letting the birth and
death parameters vary among patches.

Coupled map lattices are capable of generating
complex spatial patterns, even when the environment is
identical across patches (Comins et al., 1992; Ruxton and
Doebeli, 1996; Ruxton and Rohani, 1996), and are used
in physics to study spatio-temporal chaos (reviewed in
Kaneko, 1993). If dispersal is density-independent and
there is either a single species without age-structure or
there are two competing species, then an equilibrium that
is stable in the absence of spatial structure cannot be
destabilized by spatial structure (Rohani et al., 1996).
There have been few additional generalizations, however:
Most studies of coupled map lattices are dominated by
phenomenological descriptions of the observed dynamics.
We need to understand the underlying mathematical
processes in these models, so that we can develop insight
into which phenomena are general. One approach to this
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problem starts with the simplest models that combine
nonlinear population dynamics and spatial structure,
and develops a thorough mathematical understanding of
these models. These simple models can serve as building
blocks for more complex models, and the insights gained
from them can aid our understanding of the complex
models.

In this paper we present such an analysis for a model
with two patches linked by density-independent dispersal,
with single-species dynamics within each patch given by
a simple one-dimensional nonlinear model. This model
can be used to look at spatial population structure and
spatial environmental heterogeneity, both separately
and together. This model has been studied previously
(Gyllenberg et al., 1993; Hastings, 1993; Lloyd, 1995);
we combine those results (mostly pertaining to spatial
structure) with many new ones to develop a broad syn-
thesis of the model. This mathematical synthesis is our
primary objective in this paper, but we also point out
some biologically interesting insights gained along the
way. We describe the model in Section 2, and in Sections
3-5 we detail the analyses relevant to spatial structure
alone, environmental heterogeneity alone, and both in
combination. Mathematical propositions and their proofs
are in Appendix A. In Appendix B we review published
analyses of closely related models, mostly from the physics
literature, to assess which of our results might be mathe-
matically robust. At times our analysis is quite technical
and assumes some knowledge of nonlinear dynamics
(see, for example, Thompson and Stewart, 1986; Baker
and Gollub, 1996). For those wanting a general overview
of our results, we suggest reading Section 2, the concluding
subsections of Sections 35, and the Discussion (Section 6).

2. MODEL FORMULATION

Within-patch dynamics are governed by the logistic
map:

x;= f(x;)=rx;(1 —x;) (1)

(i indexes the patch identity; the prime denotes the
succeeding generation). The variable x; represents local
density in patch 7; its maximum value is one. The dynamics
of this map are well understood (May, 1976). If the growth
rate parameter r; is between 0 and 1, the equilibrium at
x;=0 is stable. If 1 <r;<3 the equilibrium at x,=
1 —1/r; is stable. At r,=3 there is a period-doubling
bifurcation, starting a period-doubling cascade that leads
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to the onset of chaos at r;~3.57. If r;,>4 the map
generates negative numbers and is no longer inter-
pretable as an ecological model.

We use density-independent dispersal to couple the
patches: in each time step a constant fraction of each
local population moves to the other patch. We assume
that the dispersal rate is an intrinsic property of the
organism, so the fraction leaving the natal patch is inde-
pendent of patch quality. Dispersal and local interactions
must happen in sequence (or else confounding effects
result when individuals contribute to density-dependence
in their natal patch after emigrating; Hassell ez al., 1995);
we measure the population after dispersal but before the
next round of local interactions.

The complete model is

X1 =(1=D)rix;(1—x;)+ Dryx,(1—x,)
(2)

x5=(1—=D) ryx,(1 —x;)+ Drix (1 —x,),

where x; and x, are the population densities (scaled from
zero to one) in the two patches, r; and r, are the growth
rate parameters in the two patches, and D is the dispersal
rate. As we describe in the analyses that follow, the
majority of the non-equilibrium dynamics generated by
Eq. (2) can be grouped into six qualitative classes of
spatial pattern, which we define and illustrate in Table 1.

Most previous analysis of the model has focused on
spatial structure (r, =r,; Section 3). Yamada and Fujisaka
(1983) and Lloyd (1995) describe the stability criterion
for the strictly in-phase orbits, and Gyllenberg et al.
(1993) and Hastings (1993) give the positions and stability
of the various equilibria and period-2 orbits. Lloyd (1995)
gave qualitative descriptions of the various complex attrac-
tors. However, aside from the Naimark bifurcation (the
discrete-time analog of the Hopf bifurcation, in which the
eigenvalues are complex) that destabilizes the out-of-
phase two-cycle, the types of bifurcations associated with
these stability changes have not been described. When there
are multiple coexisting attractors, the basin boundaries
form a sort of “fractal checkerboard,” with ever smaller
blocks towards the edges of the unit square (Gyllenberg et
al., 1993; Hastings, 1993). This fractal pattern is destroyed
by only small amounts of noise (Hastings, 1993).

There are many fewer results for environmental heter-
ogeneity (Sections 4 and 5). Gyllenberg et al. (1993)
numerically determined the parameter values for which the
equilibria and two-cycles are stable. When dispersal (D) is
large, the two populations tend to be nearly in phase,
whereas for weaker coupling (D~ 0.1) the two popula-
tions can be substantially uncorrelated (Hastings, 1993).
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TABLE 1
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Qualitative Classes of Non-Equilibrium Dynamics Generated by the Coupled Logistic Map. The Axes of the Phase Portraits are x, and x,,
Running from 0 to 1; the Time Series Are x,, x,, and X = (x; +x,)/2

Class

Definition

Typical phase portrait

Typical time series

Strictly in-phase

Approximately in-

phase

Strictly out-of-
phase

Approximately out-

of-phase

Anti-phase®

Uncorrelated

z1(n) = x2(n) for all n

z1(n) = axz(n) for all n and some

z1(n) = z2(n + p/2) and z2(n) =
z1(n + p/2) for all n, where the period
p is even

z1(n) & aza2(n + p/2) and z2(n) ~
az1(n -+ p/2) for all n and some a > 0,
where the period p is even

Pair of orbits, P1 and P2: for
each (z1(n),z2(n)) in P1 there is
a (y1(m),y2(m)) in P2 satisfying
z1(n) = y2(m) and z2(n) = y1(m),
and vice versa

No obvious relationship between z3
and z2

“ The phase portrait shows both anti-phase orbits; the time series is of the one in solid circles.
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The next three sections detail the analysis of the
coupled logistic map.

3. SPATIAL STRUCTURE ALONE

We model spatial spatial structure with low dispersal
and identical growth rates in the two patches. “Low
dispersal” means D < 0.25: less than a quarter of the local
population emigrates. As we show below, this is the highest
dispersal rate that allows asynchronous attractors.

All of the major classes of dynamics (Table 1) can be
found under spatial structure. The strictly in-phase, or
synchronous, dynamics are identical to the dynamics
in the absence of space. The predominant out-of-phase
dynamics are organized around a period-two cycle, which
follows the torus route to chaos. When neither the in-phase
nor the out-of-phase dynamics are stable, the attractors are
either approximately in-phase or uncorrelated, depending
on the presence or absence of the unstable out-of-phase
periodic orbits.

TABLE 2
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The equations describing the equilibria, two-cycles,
and major bifurcations are collected in Tables 2 and 3.
Spatial structure is the most-studied aspect of the coupled
logistic map; we indicate where appropriate the source of
qualitative and quantitative insights. In this section we add
some new quantitative results, which are mostly detailed in
Table 3 and proved in Appendix A; but our major contribu-
tion is the collection of qualitative insights that show the rela-
tionships among the various sorts of dynamics (Section 3.5).

3.1. Strictly In-Phase Dynamics

If the two subpopulations start with identical densities,
then in each patch, the number of immigrants exactly
balances the number of emigrants. Thus the dynamics in
each patch proceed as if there were no spatial structure,
and the two subpopulations will remain synchronized
indefinitely. These dynamics proceed on the line x, = x,
(the “diagonal”); this line is an invariant manifold, meaning
that any population starting on it remains on it. The
diagonal need not be locally attracting, however.

Fixed Points and Two-Cycles of the Coupled Logistic Map under Conditions of Spatial Structure Alone

Orbit Location
Fixed points (0,0); (IL1)
(1—1/r, 1 —1/r) (IL.2)
1+ 1)(r—
Strictly in-phase two-cycle (x, x):x:r+ — (;:_ Jr=3) (IL3)
Strictly out-of-phase two-cycle (u +Z 1 , “ 7; + 1> :
_ 1
Y= 1=2py
_ [H(1=2D)+1][(r—2)(1—-2D)—1]
i r(1—2D) (I14)
. u+v+1u—v+1
Anti-phase two-cycles X :
2 2
1
2 __ (1 _ 2 ol ¥ — _ 2 _ _ _ 2
u _7%2(1_21))2[;(, 2)(1—2D)2— 1+ /[(r—2)(1—2D) =3][r(r—2)(1—2D)>+11] (IL5)
2 2
[ R R . SR
e T, 1

Note. These are all described by Gyllenberg et al. (1993).
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TABLE 3

Bifurcations of the Coupled Logistic Map under Conditions of Spatial Structure Alone

Kendall and Fox

Bifurcation

Non-spatial period-doubling of equilibrium
(IL.2)

Spatial period-doubling of equilibrium (I1.2)

Local stability boundary of strictly in-phase
dynamics

Pitchfork bifurcation of strictly out-of-phase
two-cycle (11.4)

Eigenvalues of strictly out-of-phase two-cycle
(I1.4) become complex

Naimark bifurcation of strictly out-of-phase
two-cycle (11.4)

“Period-two” out-of-phase orbits become

chaotic

Criterion Comments and sources
r=3 (ITL.1) Same as non-spatial logistic map
1 .. .
r=2+ —2D (I11.2) Gyllenberg et al. (1993),% Proposition 4; gives
o rise to strictly out-of-phase two-cycle (11.4)
1
D= 5 (1—e=4) (I11.3) Yamada and Fujisaka (1983) and Lloyd (1995);
proof elaborated in Proposition 1. A4, is the
Lyapunov exponent of the non-spatial logistic
map with parameter r
/ 3
r=1+4+ /1 +W (111.4) Gyllenberg et al. (1993),% Lloyd (1995);® this
(1-2D) stabilizes the strictly out-of-phase two-cycle
(I1.4) and gives rise to the pair of anti-phase
two-cycles (IL.5)
I+ 1+ (2—3D) (IILS5) New result: Proposition 5
r= —_—= . w :
(1-2D)? u p
r—1+\/1+;+; (I11.6) Gyllenberg et al. (1993)
= 1—2D  (1—2D)? ' Y geta
9.71 7.19
rel+ \/9.61 ~1-2D +m (ITI.7) ~ New result: numerical approximation

“ Gyllenberg et al. (1993) demonstrate the stability boundary but do not identify the bifurcation type.

b Lloyd (1995) identifies the bifurcation type.

Ifthe subpopulations start with similar, but not identical,
densities, then they become synchronized if the strictly
in-phase dynamics are locally stable (Eq. (I11.3), Fig. 1).
The stability criterion relates the complexity of the non-
spatial dynamics, represented by the Lyapunov exponent
of f, and the level of dispersal (Yamada and Fujisaka,
1983; Lloyd, 1995; these proofs overlook some subtleties,
which we address in Proposition 1). The more complex
the non-spatial dynamics, the more dispersal is needed to
synchronize the populations.

If in the absence of space the attractor would be peri-
odic or equilibrial, then the synchronous dynamics are
locally stable for any amount of dispersal (Lloyd 1995).
Thus, spatially induced instability can only occur when
the local dynamics are chaotic, and dispersal is not too
large. These strictly in-phase periodic orbits need not be
globally stable, however, and often coexist with out-of-
phase attractors.

If the strictly in-phase dynamics are chaotic, then even
if the local stability criterion is satisfied, the trajectory
will sometimes move away from synchrony for short periods.

This occurs because the magnitude of expansion and
contraction varies over a chaotic attractor; but it reveals
that this stability, while ‘local’ with respect to the in-
phase dynamics, is fundamentally different from the local
stability of equilibria and cycles (near a stable equilibrium,
for example, a trajectory moves monotonically towards
the attractor).

We will revisit the stability of the strictly in-phase
dynamics in Section 3.4, after examining the other classes
of dynamics.

3.2. Out-of-Phase Dynamics

The predominant out-of-phase dynamics are centered
around a period-two cycle (Eq. (I1.4)). This two-cycle
appears from a spatially-induced period doubling of the
spatially symmetric equilibrium. It is a saddle when it
first appears; it gains stability through a pitchfork bifur-
cation, and then follows the torus route to chaos. We
describe this sequence in detail, and then briefly discuss
the higher order out-of-phase orbits.
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FIG. 1. Bifurcations of strictly in-phase dynamics. Solid line: local
stability criterion (Eq. (I11.3)); strictly in-phase dynamics are stable to
the right of the curve and unstable to the left. Dashed line: Gyllenberg
et al’s (1993) conjectured global stability criterion. Dotted line: trans-
ition of the out-of-phase two-cycle from a saddle to a stable node. The
strictly in-phase dynamics are globally attracting in much of the region
between the dotted and dashed lines (Section 3.5).

3.2.1. Out-of-phase periodic orbits. There are two
ways to understand the appearance of the out-of-phase
two-cycle. The first, described eloquently by Lloyd (1995),
is to imagine the system without dispersal. If the local
dynamics are a two-cycle, then the two subpopulations
may be, depending on starting conditions, oscillating
either in or out of synchrony with each other; the local
densities attained are the same in either case. A small
amount of dispersal does not change the qualitative pattern.
The local densities in the out-of-phase cycle are slightly
different, however, and the basins of attraction of the two
attractors are somewhat deformed.

The second way of understanding the out-of-phase
dynamics is to fix the dispersal and vary r (Fig. 8). When
the spatially homogeneous equilibrium (Eq. (IL.2))
period-doubles to produce the in-phase two-cycle (Eq.
(IL.3)), which is locally stable, the equilibrium is left as a
saddle (Gyllenberg et al,1993): it is still attracting in the
off-diagonal direction. At a higher value of r the equi-
librium period-doubles again (Eq. (II1.2), Proposition 4),
in the off-diagonal direction, producing the out-of-phase
two-cycle (Eq. (I1.4)). This two-cycle is itself a saddle, as it
inherits the along-diagonal instability of the equilibrium.
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FIG. 2. Bifurcations of the strictly out-of-phase two-cycle. Solid
line: the orbit appears via a period-doubling bifurcation from the equi-
librium. Dashed line: the orbit becomes stable via a pitchfork bifurca-
tion. Dotted line: the eigenvalues of the orbit become complex. Dashed-
dotted line: the orbit is destabilized via a Naimark bifurcation. The
orbit is a saddle in region 1, a stable node in region 2, a stable focus in
region 3, and an unstable focus in region 4.

The strictly out-of-phase two-cycle goes through several
stability changes as r is increased (Table 3; Fig. 2). The first
is a pitchfork bifurcation (Eq. (111.4)): the larger eigenvalue
passes through + 1, and the out-of-phase two-cycle becomes
a stable node. The values of the two eigenvalues converge
with further increases in r; upon becoming identical they
become a complex conjugate pair (Eq. (IIL5)), and
the two-cycle becomes a stable focus, with trajectories
spiraling in towards the attractor. When D =0, this
corresponds to the point where the eigenvalue of the non-
spatial two-cycle changes from positive to negative. The
magnitudes of the complex eigenvalues increase with r;
when they pass through + 1, the two-cycle goes through
a Naimark bifurcation (Eq. (II1.6)) and becomes an
unstable focus.

A pair of anti-phase two-cycles (Eq. (I1.5)) is produced
at the pitchfork bifurcation (Gyllenberg et al, 1993).
When D =0, this represents one subpopulation following
the two-cycle and the other balanced at the unstable
equilibrium. There are two such orbits, depending on
which subpopulation is following the two-cycle. The
orbits are saddles when they first appear; as r increases,
the stable eigenvector goes through a period-doubling
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bifurcation, causing the two-cycles to become unstable
nodes and producing an anti-phase pair of saddle four-
cycles. Numerical investigations show that the stable
manifolds (the nonlinear extensions of the stable eigen-
vectors) of the saddle anti-phase two-cycles form the
boundaries between the basins of attraction of the in-
phase and out-of-phase attractors, which is a kind of
“fractal checkerboard,” (see figures in Gyllenberg et al.,
1993; Hastings, 1993; Lloyd, 1995). This boundary remains
after the anti-phase two-cycles have become sources (and
hence do not have stable manifolds); we suspect that they
are maintained by the stable manifolds of the saddle anti-
phase four-cycles (and the higher-order orbits that follow
them up the period-doubling chain).

3.2.2. Out-of-phase invariant loops. When the out-
of-phase two-cycle is destabilized by the Naimark bifur-
cation, the new attractor is a two-piece invariant loop
that surrounds the two-cycle (see Figs. 7 and 11 in Lloyd,
1995). This quasiperiodic attractor is topologically
conjugate to the canonical circle map. Along Eq. (I11.6),
the rotation number (the average angular fraction of the
loop traversed per iterate) decreases monotonically from
1/2 at D =0 to about 11/25 at r =4 (Proposition 6). The
rational values of the rotation number correspond to
periodic orbits on the loop; these expand into “locking
regions” of periodic orbits with nonzero width above the
Naimark bifurcation. Each locking region contains an anti-
phase pair of stable periodic orbits, and a corresponding
anti-phase pair of periodic saddles separating them.

The only locking region that covers a substantial region
of parameter space is the “strong resonance” at low values
of D. There are a pair of stable four-cycles in this region.
At D =0 these are simply two of the four combinations
of unlinked four-cycles (Lloyd, 1995). Between them on
the invariant loop is an anti-phase pair of saddle four-
cycles; when D = 0 these correspond to one patch following
the four-cycle and the other following the unstable two-
cycle. As r increases the range of D-values for which these
anti-phase four-cycles exist increases.

3.2.3. Out-of-phase chaotic dynamics. In the strong
resonance region, the out-of-phase attractors follow
the period-doubling route to chaos as r increases. This
route is somewhat unusual, however, in that each period-
doubling bifurcation produces an anti-phase pair of new
orbits, and the saddles also period-double. Thus there are
n distinct out-of-phase 2 x n-cycles and an equal number
of saddles separating them. After the accumulation point,
as the chaotic bands merge with each other in the reverse
of the period-doubling cascade, they also merge with the
other members of the relevant pair, resulting in a 2 x n-
piece chaotic attractor, with each piece approximately

Kendall and Fox

square (Fig. 3). Each band-merging is a crisis (Grebogi et
al., 1983), caused, we suspect, by a collision of the attrac-
tors with a stable manifold of the saddle chaotic orbits
separating the anti-phase pair of attractors. Immediately
beyond the crisis, the pairs of chaotic structures nearly
maintain their separate identity: the trajectory only
occasionally switches from one to the other. Further
increases in r cause the pieces to merge, and their “folded”
structure knits together seamlessly (Fig. 3).

The remainder of the invariant loop broadly follows
the torus route to chaos with increasing r. The transition
is complicated, as there are many coexisting attractors,
and each locking region has its own transitions to chaos.
The analogy with the circle map breaks down: there

1.0 I I T T

0.8 B 4

0.6 N
- W |

0.4 §

0.2 - —

0.0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

0.90
0.85
T 0.80

0.90
0.85

0.80

0.90
0.85
0.80

FIG. 3. Band merging in the out-of-phase chaotic attractor.
(a) The four-piece attractor: r=3.6132, D=0.01. (b) Magnification
of the upper portion of (a), showing the coexisting anti-phase orbit.
(c) Just past the crisis: r =3.613665, D =0.01. A single orbit is plotted,
but transitions between the members of the former anti-phase pair are
infrequent. (d) Complete band-merging: » =3.625, D =0.01.
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are bifurcations of the periodic orbits, such as Naimark
bifurcations, that are not found in the circle map. Outside
of the locking regions, however, there is a fairly distinct
transition from quasiperiodicity to chaos. The quasi-
periodic invariant loop is deeply folded, and the multi-
part chaotic attractor follows the general outline of the
previously existing invariant loop. Further increases in
r cause the parts of the attractor to expand until each
of the two pieces of the attractor is filled with points
(Table 1).

We determined the approximate condition for the
transition to two-chaos numerically (Eq. (I111.7)). The
two-part chaotic attractor has each piece centered on one
of the points of the unstable strictly out-of-phase periodic
orbit; the trajectory hops back and forth between the
two. Each piece is a simply bounded region that is com-
pletely covered by points; but the density of points varies
within the attractor.

The points on the out-of-phase chaotic orbit appear to
fill a region of the state space, albeit with variation in
density. This resembles hyperchaos (Rdssler, 1979; Baier
and Klein, 1990), in which there is folding in two or more
directions. Kaneko (1983) makes a similar observation,
claiming that some of the attractors in his version of the
coupled logistic map were hyperchaotic because they had
two positive Lyapunov exponents. In invertible maps
hyperchaos requires at least three state variables (Klein
and Baier, 1991). The coupled logistic map, however, is
is not invertible. The closest invertible analog would have
four state variables, so hyperchaos (or something very
similar) seems plausible in the coupled logistic map.

Further increases of r lead eventually to the destabiliza-
tion of the out-of-phase chaotic orbit via a crisis. Lloyd
(1995) notes that when D =0 this is caused by a collision
between the out-of-phase attractor and the unstable equi-
librium. With dispersal it is more complex. We conjecture
that the collision is with a stable manifold of the anti-phase
chaotic saddle derived, via a period-doubling cascade,
from the anti-phase two-cycles.

3.2.4. Higher order out-of-phase orbits. Arguments
exactly analogous to those for the equilibrium reveal that
every stable in-phase periodic orbit eventually produces
an out-of-phase periodic orbit via a spatial period-doubling,
This spatial period-doubling always occurs at a higher value
of r than the non-spatial period-doubling. Every such out-of-
phase orbit goes through a sequence of bifurcations and
associated dynamics that is identical to that described above
for the out-of-phase two-cycle. The associated attractors
are small, as are their basins of attraction. The one excep-
tion is the out-of-phase four-cycle, which, when r is large,
retains stability to a slightly larger value of D than does
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the out-of-phase two-cycle; it appears to be the only out-
of-phase attractor in this region.

The scaling of these bifurcation sequences is not com-
pletely clear, but we can make some observations. First,
the curve along which the out-of-phase orbit arises, as
well as that along which it gains stability (Eqs. (I11.2) and
(IIL.4) for the two-cycle), must intersect the r-axis at the
value of r corresponding to that period-doubling in the
logistic map. In addition, all of the curves along which
the orbits arise pass through r =4, D =0.25, and they do
notintersect one another (Proposition 7). As we discovered
numerically for the four-cycle, the curves of the pitchfork
bifurcations can cross one another.

The tangent bifurcations that open the periodic windows
of the in-phase dynamics also give rise to sets of anti-phase
orbits. Consider the three-cycle that appears via a tangent
bifurcation at r ~ 3.83. If D =0, then three separate saddle-
node pairs of three-cycles are formed at the tangent bifurca-
tion: strictly in-phase, x, follows x,, and x, leads x,. For
positive D, we suspect that the tangent bifurcations give
rise to a saddle-node pair in which the node is unstable;
the saddle is then stabilized by a pitchfork bifurcation
(Fig. 4).

3.3. Uncorrelated Dynamics

When ris large and D is small then neither the in-phase
nor out-of-phase dynamics are attracting. The resulting
“uncorrelated” attractor (which is truly uncorrelated
only when D =0) contains all of the unstable out-of-phase
periodic orbits, and the out-of-phase chaotic topologies

3.88 T T T T

3.86

3.84

3.82 - .

0.000 0.002 0.004 0.006 0.008 0.010
D

FIG. 4. Stability regions of the in-phase (dashed lines) and out-of-
phase (solid lines) three-cycles. The lower boundary of each is a saddle-
node bifurcation, while the upper is a period-doubling bifurcation. The
stability region of the in-phase three-cycle continues unchanged for
larger D.
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FIG. 5. An uncorrelated chaotic attractor. r=3.9; D =0.07. The
unstable strictly out-of-phase two-cycle is indicated by +.

associated with them (Fig. 5). This causes transient
periodicity (Kendall et al., 1993), in which the trajectory
spends extended periods trapped in the unstable manifolds
of the unstable periodic orbit, showing episodes of nearly
periodic dynamics (in this case, out-of-phase) within the
less regular time series.

When the dynamics are following the uncorrelated
attractor, the apparent return map for the local dynamics
of one of the patches looks like a logistic map with noise.
The distribution of densities is very different from that
found for an isolated patch, however (Fig. 6). In an
isolated logistic map with large r, the population is
frequently at its maximum and minimum values. In the
uncorrelated attractor, by contrast, the local densities
achieve these extreme values only rarely. This is a conse-
quence of transient periodicity: the trajectory spends a
lot of time shadowing the out-of-phase two-cycle, which
does not attain the lowest population densities.

3.4. Destabilization of the Strictly In-Phase
Dynamics

The destabilization of the strictly in-phase chaotic
orbit is a statistical phenomenon, as the relative strengths
of the contracting and expanding parts of the dynamics
shift. Although the long-term trend changes from con-
vergence to divergence, the deviations from that trend
are almost identical on both sides of the bifurcation. This
is unlike the bifurcations of equilibria and periodic orbits;
we suspect that it is a crisis, in which the stable manifolds
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Fig. 6. The probability of finding a local population (x,) at a given
size, calculated by iterating the model for 50 000 generations and count-
ing how many times (x) falls within one of 200 bins between zero and
one. (a) No dispersal: r=3.95, D=0. (b) Low dispersal, leading to
uncorrelated dynamics: r =3.95, D =0.07.

of the out-of-phase orbits come arbitrarily close to the
diagonal.

If any out-of-phase dynamics are stable when the strictly
in-phase orbit is destabilized, all orbits go to one of the
out-of-phase attractors. This is easy to understand, as the
approximately in-phase attractor cannot coexist with a
stable strictly out-of-phase cycle (the cycles are on its
boundary) and the uncorrelated attractor cannot coexist
with any stable approximately out-of-phase orbits (it
would have to contain them). Thus the destabilization of
the strictly in-phase dynamics represents an unusual
situation in which a global bifurcation (crisis) can be
identified via linear stability analysis. We conjecture that
this will be possible whenever the dynamics in question
lie on an invariant manifold with dimension one (or more)
less than the dimension of the full state space.

If all of the out-of-phase periodic orbits are still saddles
when the chaotic in-phase orbit is destabilized, then the
approximately in-phase dynamics become globally attract-
ing. All of the existing out-of-phase saddles lie on the
boundary of the approximately in-phase dynamics (Fig. 7);
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FIG. 7. An approximately in-phase chaotic attractor. r=4,
D =0.1992. The saddle strictly out-of-phase two-cycle is indicated
by +.
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the lines of dense points follow the stable manifolds of
these saddles. This attractor exhibits intermittency (episodes
of nearly periodic dynamics; Pomeau and Manneville, 1980)
as the trajectory nears these orbits.

If all of the out-of-phase orbits have been destabilized by
crises when the in-phase orbit is destabilized, then the result-
ing uncorrelated dynamics are globally attracting. This
attractor looks qualitatively similar to the approximately in-
phase attractor, but its internal topology is quite different.

3.5. Spatial Structure: Synthesis

The preceding sections contain a lot of information,
and they may seem overwhelming. However, the various
types of attractor fit together in a relatively simple way,
which we summarize here.

Consider a transect through parameter space in which
r is increasing, or D is decreasing, or both; as long as the
transect ends up in the upper left of parameter space
the picture is qualitatively similar. An example (with
increasing r) is shown in Fig. 8. Initially the strictly
in-phase dynamics are globally attracting. Out-of-phase
periodic orbits arise via spatial period-doublings of the

FIG. 8. Bifurcation diagram of the coupled logistic model exhibiting spatial structure; D =0.1. Solid lines are stable orbits, dashed lines are
saddles, and dotted lines are unstable orbits. The uncorrelated attractor is shown on the back plane of the diagram.
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in-phase orbits. These orbits are initially saddles, become
stable via pitchfork bifurcations, and are destabilized
again by Naimark bifurcations. The latter produce
out-of-phase tori, which in turn become chaotic. The
out-of-phase chaotic attractors are destabilized by crises,
leading to uncorrelated dynamics.

Somewhere along the way the strictly in-phase dynamics
have lost local stability. This always occurs after the out-of-
phase two-cycle has appeared; often some of the out-of-
phase orbits are already stable, such that there are multiple
attractors. If the out-of-phase orbits are still unstable
when the diagonal is destabilized then the approximately
in-phase dynamics become globally attracting; otherwise
the only attractors are out-of-phase.

The uncorrelated attractor contains topological
elements from both the in-phase and out-of-phase
dynamics, and indeed it is possible to identify transient
episodes of both types of behavior in the time series. We
have not done any comprehensive analysis of the effects
of noise in this study, but we have noted that adding
noise when there are coexisting in-phase and out-
of-phase attractors can produce patterns similar to
uncorrelated dynamics, as the noise switches the system
back and forth between the two attractors.

The local stability of the strictly in-phase dynamics
depends on an interaction between dispersal and the
complexity of the local dynamics. When are the strictly
in-phase dynamics globally stable? Gyllenberg et al.
(1993) conjecture that the global stability criterion is
Eq. (I11.2), the spatial period-doubling of the equilibrium.
With larger dispersal rates than this, there are no equilibria
or periodic orbits except on the diagonal, so the diagonal
is almost certainly globally attracting. What about smaller
dispersal rates? The strictly in-phase dynamics are the only
attractor present in most of the region between Eq. (II1.2)
and the closer of Egs. (IT1.3) and (II1.4) (where the out-
of-phase two-cycle is a saddle and the strictly in-phase
dynamics are locally stable; Fig. 1). The only exception
we have found is for large r, where the out-of-phase four-
cycleis stable at larger D than is the out-of-phase two-cycle.
This is not global attraction in the strictest sense, for the
out-of-phase saddles are not in the basin of attraction of
the strictly in-phase attractor. Almost all initial values
are attracted to the diagonal, however, so it is global
attraction in a practical sense.

4. ENVIRONMENTAL
HETEROGENEITY ALONE

We turn now to environmental heterogeneity, which
is the exact opposite of spatial structure: the dispersal
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rate is high (D > 0.25) and the patches differ in quality
(ry #r,). In contrast to the variety of spatial patterns
that can arise under spatial structure, all of the attractors
under environmental heterogeneity are in-phase. In this
section we explore some of the subtleties that underly this
simplicity. We require several new quantities: the mean
population density, X = (x; + x,)/2; the mean growth rate
parameter, 7 = (r, +r,)/2; and the difference between the
growth rates in the two patches, Ar=|r; —r,]|.

4.1. Dynamics of Mean Population Density

When there is complete mixing each generation (D = 0.5),
then the global attractor is strictly in-phase, with dynamics
governed by the logistic map with the mean value of r
(Proposition 9). When D < 0.5, there is no exact solution
for the dynamics of x. Numerical simulations indicate
that the in-phase attractor remains globally stable, but it
no longer lies on the diagonal (which is not even an invariant
manifold). The relationship between x, and x,, however,
is very nearly linear. As D decreases, the attractor thickens,
making the transverse structure more apparent (Fig. 9a).
Furthermore, the slope of the attractor (in the x;,—x,
plane) deviates progressively more from one.

Nevertheless, Proposition 9(ii) is still a very good
approximation even when D is substantially less than 0.5
(Fig. 9). This approximation starts to break down for
smaller values of 7, however. In Fig. 10 we show the
major bifurcations for several values of D. The boun-
daries of the period-3 window are essentially unaffected
by the value of D: they occur near where one would
expect for a single logistic map with r=7. Similarly,
bifurcations in the parameter region of one-piece chaos
change little with increasing D. However, when D < 0.5
the bifurcations of the period-doubling sequence, as well
as the final band-merging creating the one-piece attractor,
occur at a lower value of 7 than would be expected by the
simple approximation. This effect increases with increasing
Avr and decreasing D. At the extreme, when D = 0.25 and
Ar =4, the equilibrium period-doubles at 7 =2.

Even when the attractor is thickened in the middle, the
upper and lower ends converge into points; we can define
the “slope” of the attractor as the slope between those
lower and upper points (this is just the ratio of the ranges
of x, and x,). This slope depends in a simple way on D, 7,
and Ar. We investigated this relationship with numerical
simulations. We chose values of D from 0.25 to 0.5 in
steps of 0.01, 7 from 3.7 to 4.0 in steps of 0.01, and Ar
from 0 to 0.64 in steps of 0.01. For the smaller values of
7 we used a smaller range of Ar to ensure that the attrac-
tor was a single piece. For each combination of param-
eters, we initialized the system at (x;, x,)=(0.1,0.2),
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FIG. 9. Approximately in-phase dynamics under environmental heterogeneity. 7=3.7; Ar=0.6; D =0.25. (a) Phase portrait of the attractor.
(b) Return map of the mean population size, X. The points are generated by the map; the curve is X' = 3.7x(1 — x). (¢) Return map for x,. (d) Return
map for x,. The curves are the logistic map with local value of r: r; =4, r, = 3.4. (e) and (f) Same as (c) and (d), except that fitted curves are logistic
map with constant immigration/emigration added: x, = 0.066 + 3.58x,(1 — x), x, = —0.091 + 3.90x,(1 — x>).

allowed the system 1000 iterates to converge to the
attractor, and recorded the dynamics for a further 10,000
iterates.

We defined o to be the absolute value of the deviation
of the slope of the attractor from one. Casual inspection
of the data suggested that J varied linearly with 7 and
quadratically with Ar and (1 —2D). Since J =0 when-
ever Ar=0 or (1—-2D)=0, we used multiple linear
regression to fit

o0=Ar(1=2D)o, + p, 7+ 7y, Ar
+ (a4 B+ 7, Ar)(1 —2D) ] (3)

(Table 4). The fit is extremely close, suggesting that some
simple mechanism underlies the phenomenon, but we
have not been able to come to any such understanding.
The effects of the parameters on the slope are consistent
throughout the range of values covered by this fit:
00/0 Ar and 00/0(1 — 2D) are always positive and 00/0F is
always negative. This is in accord with Fig. 10: the

dynamics become less like those in a homogeneous
environment as Ar is increased and 7 and D are
decreased.

42. Local Dynamics

Hidden beneath the relative simplicity of the mean
population dynamics are fairly substantial deformations
of the underlying local dynamics (Fig. 9). The return
maps for the local population size are more steeply
humped than any logistic map, and the best fit logistic
maps substantially underestimate the differences between
the populations. In fact, the local dynamics can be closely
approximated by a logistic map with a constant immigra-
tion term added:

Xy ra,+bx,(1—x)

(4)

X5 R ay+byxs(1—x,)

This again misidentifies the local population growth rate;
and although the immigration term would indicate that
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FIG. 10. Bifurcations of the approximately in-phase attractor for environmental heterogeneity. The bifurcations are (in order from the lower left
of each panel): period-doubling of the equilibrium; period-doubling of the two-cycle; accumulation of the period-doubling sequence; final band-
merging to create a one-piece chaotic attractor; and the lower and upper bounds of the period-three window. (a) D =0.5. (b) D=0.45. (c) D =0.35.

(d) D=0.25.

dispersal is important, it misidentifies the true spatial
structure.

We examined the effects of parameter variation on
model misidentification. We varied the parameters of the
coupled logistic model in the same way as described
above for the slope of the attractor. For each set of
parameter values, we iterated the model for 10,000
iterates and then fit Eq. (4) to the time series. We then fit
our estimates of a;,a,,b,—7, and b,—7 to Eq. (3)
(Table 4). The terms not involving ( Ar)? are opposite in
sign and roughly equal in magnitude between the two
subpopulations. The largest effect, both on the error in
the intrinsic growth rate and on the immigration/emigra-
tion term, comes from the quadratic relationship with
(1 —2D). The assymetries reflect patterns in the differences
between the coefficients of the two populations: (a, — a,)
and (b, — b,) seem to depend quadratically on 7 and Ar,
but cubically on (1 —2D).

4.3. Environmental Heterogeneity: Summary

Environmental heterogeneity, with high dispersal rates
and differing growth rates in the two patches, only allows
one type of attractor: in-phase. The dynamics of mean

TABLE 4

Coefficients of Eq. (3), Describing the Change in Slope of the Attractor
(8), and the Change in the Values of the Coefficients of Eq. (4), with
Changes in Ar, (1—2D), and 7

Response ay B Y1 5] B2 V2
0 0.593 —0.0862 0.0552 313 —0.532 —0402
a; 227 —0463 —0.157 —5.32 1.27 0.200
b, —7 —6.61 1.31 0.621 13.7 —3.05 —0.834
a, —2.37 0487 —0.0574 529 —126 —0.184

by—7 619 —120 0378 —104 2.14 0.216

population size can be approximated by the logistic map
with the mean value of the two growth parameters. This
approximation is exact when there is complete mixing
each generation (D =0.5), and its accuracy declines with
decreasing dispersal and increasing difference between
patches.

Within-patch dynamics look deceptively simple: a single
patch can be approximated by a logistic map with a
constant immigration or emigration term. This structure
is qualitatively wrong, and the estimates of the growth
rate parameter are also far from the truth. Thus, when
there is substantial environmental heterogeneity, it is
important to work at the scale of the whole population,
or at least recognize that there are spatially mediated
interactions that are not apparent from the local dynamics.

5. SPATIAL STRUCTURE WITH
ENVIRONMENTAL HETEROGENEITY

In this section we examine the combination of spatial
structure and environmental heterogeneity. To do so, we
retain r, #r,, but allow D to be small. Gyllenberg et al.
(1993) found the regions of stability for the fixed points
and both in-phase and out-of-phase two cycles; see their
Figs. 5-7.

5.1. In-Phase Dynamics

When r, # r,, the in-phase dynamics no longer occur
on the diagonal, but an in-phase attractor may still exist.
In fact, for very small Ar, the in-phase attractor lies very
close to the diagonal. In this section we first study the
fixed-point and periodic attractors that exist for very
small Ar, and then consider how these results change for
larger Ar. Finally we examine the transition to chaos.
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5.1.1. Analytic approximations. When Ar is very
small, there can be attractors homologous to the strictly
in-phase attractors that exist when Ar =0; they lie very
close to the diagonal. When chaotic, they are nearly one-
dimensional. Thus we can get an approximate under-
standing of the in-phase dynamics by studying the
eigenstructure of the Jacobian along the diagonal.

The eigenvalues are given by

2i(x)
=[7(1=D)+./F> D>+ (Ar)>(1—2D)/4 |(1 —2x).
(5)

|A,(x)] increases, and | 1,(x)| decreases, with increasing Ar.
The eigenvectors do not, of course, line up exactly parallel
and perpendicular to the diagonal, but the deviations are
small if Ar is small enough and D is not too small. The
directions are still independent of x and they are always
perpendicular to each other, but they rotate slowly as the
parameters are varied.

If we make the approximation that the “on-diagonal”
dynamics are one-dimensional, then we can reconstruct
those dynamics by integrating 4,(x). The result is

¥ =[F(1=D)+ /P> D>+ (Ar)?> (1-2D)/4 ] x(1—x).
(6)

The term in the square brackets can be thought of
as the “effective r,” i.e.,, this term takes the place of r in
the discrete logistic map. It is greater than 7 by the
(Ar)? (1 —2D)/4 term. This means that, for a given 7, the
“effective r” increases with increasing Ar. Moreover, this
effect is magnified by decreasing D. In other words, the
effect of increasing r in the one-dimensional case can be
mimicked here by increasing the variation among patches
and decreasing the dispersal rate between them. This
is exactly the effect we already showed for pure environ-
mental heterogeneity.

The second eigenvalue, however, decreases with increas-
ing Ar. Thismeans that the in-phase dynamics will be locally
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attracting at a lower value of D than when Ar=0. Thus,
environmental heterogeneity makes in-phase dynamics
more likely to be attracting, but it also makes those dynamics
more complex.

5.1.2. Fixed points and cycles. As the value of one
of the r’s is increased slightly while the other is held
constant, the fixed point moves slightly off the diagonal:
the equilibrium value is higher in the patch with the larger r.
Similarly, the points visited on periodic attractors deviate
slightly from those visited in the equal ’s case; the patch
with the higher r has larger-amplitude oscillations.

As suggested by Eq. (5), the eigenvalues deviate slightly
from those that occur when r; =r,: one of the new eigen-
values is slightly larger, and the other slightly smaller, than
in the symmetric case. Period-doublings occur at smaller
values of 7 than in a homogenecous environment. For
example, when Ar=0.1 and D =0.1, the initial period-
doubling occurs at 7~ 2.992, rather than 7= 3.

The eigenvectors of the in-phase periodic orbits rotate
as 7 is increased. This is an intriguing phenomenon, but,
despite extensive numerical investigations, we have not
been able to determine either the cause of the rotation or
the effects on the chaotic in-phase attractors that are
present at larger 7.

5.1.3. Onset of chaos. Past the accumulation point of
the period-doubling cascade, the chaotic bands are nearly
one-dimensional and parallel to one another, but they
are not aligned (Fig. 11a). As 7 is increased, these bands
grow longer; but they overlap, rather than meeting. How
then does band-merging occur? At some point there is a
crisis: the trajectory leaves the bands and follows another
path for a while, eventually settling on the adjacent band
(Fig. 11b). We do not know what causes this crisis, but
we speculate that unstable out-of-phase periodic orbits
are involved. As 7 is increased further, the transition
sequence between the two bands becomes ever more
frequently traveled, resulting in a hollow parallelogram;
eventually the center fills in (Figs. 11c and 11d). This new
band of period 2"~ ! is thickened, with a high density of

FIG. 11. In-phase dynamics with spatial structure and environmental heterogeneity, showing the final band-merging of the approximately
in-phase attractor. Ar=0.5 and D =0.1 throughout. (a) ¥=3.55. (b) 7=3.56. (¢) r=3.65. (d) 7= 3.75.
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points in the regions corresponding to the former bands.
This process goes on at each band-merging, so that the
final merging to a one-piece chaotic attractor results in a
large, diamond shaped attractor rather similar to the
approximately in-phase attractor of the equal r’s case,
except that here there are clusters of points corresponding
to higher-order bands (Fig. 12a). If D is small enough,
the in-phase dynamics may be destabilized (through a
boundary crisis) before it reaches the last band-merging;
in that case the out-of-phase dynamics become globally
attracting (Fig. 12b).

52. Out-of-Phase Dynamics

The dominant collection of out-of-phase dynamics is
organized around the two-cycle. We found the bifurca-
tions of these orbits and attractors numerically (Fig. 13).
We were not able to make rigorous analytic determina-
tions of the bifurcation types, but using the nature of the
stability changes and analogies to Section 3, we could
make some high-probability guesses. The out-of-phase
two-cycle arises through a period-doubling bifurcation
off of the equilibrium. It is initially a saddle; it is stabi-
lized by a pitchfork bifurcation. If Ar is large enough,
however, then the saddle two-cycle period-doubles along
its stable direction before it reaches the pitchfork bifurca-
tion; the resulting four-cycle is a saddle, which in turn
either period-doubles or is stabilized by a pitchfork bifur-
cation. At extreme values of Ar, the saddle out-of-phase
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orbits can period-double all the way to chaos without
being stabilized. It is unclear what role the pitchfork
bifurcation is playing here. The dynamics are reminiscent
of a crisis, but it is possible that a critical periodic orbit
on the boundary of the chaotic orbit changes stability
from an unstable node to a saddle.

Within the stability region, there are two qualitative
sets of bifurcations. When Ar is small, then we see the
familiar Naimark bifurcation to a two-torus, which goes
through a complex set of phase lockings to chaos. When
Aris large then, the out-of-phase two-cycle goes through
a period-doubling route to chaos. The multi-piece chaotic
attractors that result from this are Hénon-like (many
folded bands, in contrast to space-filling hyperchaos); at
some point in the band-merging sequence (usually from
eight to four) there is a crisis rather than a true band-
merging, and the hyperchaotic attractor is formed. The
four-cycle also arises via a tangent bifurcation from the
two-torus: this shows that the whole period-doubling
sequence can be considered part of the 2 x 1 locking region
of the torus. Indeed, the relationship of the four-cycle to
the two-torus suggests that there are actually two pairs of
four-cycles. This would indicate that the “period-doubling”
is actually a Naimark bifurcation directly into a locking
region.

There is a region where the period doubling stops at 8,
and the 8-cycle undergoes a Naimark bifurcation. The
resulting 8-torus is only present in a very small region of
parameter space, however.
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FIG. 12. Approximately in-phase dynamics for (a) 7=3.637734 and (b) 7=3.649391. In both cases, D=0.1, Ar=0.1. In (b), the in-phase
trajectory is a long transient: it eventually converges to the out-of-phase two-cycle (marked + ).
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The out-of-phase orbits lose their stability on the upper
right through an interior crisis: the structures of the chaotic
out-of-phase orbits can be seen in the transient periodicity
of the ensuing uncorrelated attractor. If Ar is extremely
large, then none of the out-of-phase orbits are ever
stable, and there is a direct transition from in-phase to
uncorrelated dynamics.

As D is increased, there is very little change in the
qualitative nature of the bifurcation structure. The only
major change is one we have already seen: when D is
small, the two-torus goes to chaos by way of the four-
cycle, whereas for larger D the transition is much more
confused as many locking regions are encountered. The
total size of the parameter region for which the out-of-
phase dynamics are stable decreases somewhat with
increasing D, and the whole structure moves in the direc-
tion of increasing r. These two quantitative results were
noted by Gyllenberg et al. (1993), who examined the
stability of the out-of-phase two-cycle. The other major
effect is that the area of parameter space containing
quasiperiodic motion on the two-torus increases with
increasing D.

The other out-of-phase periodic orbits generate iden-
tical bifurcation structures, albeit in miniature. The only
one commonly encountered is that of the four-cycle, which
largely overlaps the lower left portion of the two-cycle’s
stability region. All of the higher-order orbits lose their
stability at relatively low values of Ar.

5.3. Uncorrelated Dynamics

When Aris small, the uncorrelated attractor is similar
to the one found in the symmetric model: roughly diagonal,
hyperchaotic, with strong transient periodicity from the
out-of-phase period-two orbits. It is found in the narrow
region between the crisis that destabilizes the out-of-
phase orbit and the r =4 axes (at the top and right of
Fig. 13). Its shape is increasingly skewed as Ar increases
(Fig. 14); this is accompanied by the dropping out of the
higher-order out-of-phase orbits.

When Ar is so large that the out-of-phase orbits are
never stable, a different picture emerges. Recall that in the
case of environmental heterogeneity, the “band-merging”
of the approximately in-phase attractor is actually a crisis.
This continues to be true for D < 0.25, but the difference
is that the slope of each of the pieces of the “in-phase”
attractor is extremely different from one. Thus the crisis
produces a nearly rectangular attractor, with the structures
of the two-piece attractor forming its upper and lower
boundaries (see Fig. 11). This attractor is so thick that
calling it “in-phase” becomes problematic; the resulting
“slope” (along the diagonal) is also very different from

27

4.0

3.4 3.6 3.8 4.0
T4

FIG. 13. Bifurcations of the out-of-phase orbits with spatial struc-
ture and environmental heterogeneity; D =0.1. Solid lines: pitchfork
bifurcations. Long-dashed lines: period-doubling bifurcations. Short-
dashed lines: saddle-node bifurcations. Dotted line: Naimark bifurca-
tion. Dash-dotted lines: transition to two-chaos. Dash-double-dotted
lines: crisis that destabilizes the out-of-phase attractor. The numbers
are the periods of the orbits; “T” denotes torus and “C” denotes chaos.

the slopes of the individual pieces of the two-piece attractor.
This attractor also has transient periodicity; but it derives
from the in-phase periodic orbits, rather than the out-of-
phase ones.

We do not yet fully understand the transition between
these two types of uncorrelated attractor. It seems to be
smooth, however, with the relative intensity of the trans-
ient periodicity gradually shifting from out-of-phase
to in-phase. At extreme values of Ar, and especially for
small D, the two types of two-chaos are very similar
(essentially parallel structures), and without knowledge
of their topological provenance we would have difficulty
distinguishing them. There still are many topological
mysteries, especially regarding the existence of the out-
of-phase periodic orbits, that are largely unresolvable.

5.4. Spatial Structure and Environmental
Heterogeneity: Summary

When environmental heterogeneity is added to spatial
structure, then all of the qualitative dynamics of spatial
structure alone, except the strictly in-phase and strictly
out-of-phase dynamics, remain. Environmental hetero-
geneity does introduce quantitative changes in the dynamics.

When the difference between the patches is small, then
the dynamics are qualitatively similar to those produced
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FIG. 14. Transition from out-of-phase to uncorrelated dynamics under spatial structure and environmental heterogeneity. (a) Out-of-phase
chaos: 7=3.825, Ar=0.25, D=0.1. (b) Uncorrelated dynamics: 7= 3.875, Ar=0.25, D =0.1.

by spatial structure alone. Strictly in-phase dynamics do
not exist, but there are tightly correlated approximately
in-phase dynamics. These dynamics remain attracting at
lower dispersal rates than would be predicted by the
mean growth rate, but the temporal dynamics are more
complex, just as they are under environmental hetero-
geneity alone. The out-of-phase and uncorrelated dynamics
are also little changed by mild environmental heterogeneity.

At intermediate levels of environmental heterogeneity,
the out-of-phase dynamics change qualitatively. The eigen-
values of the out-of-phase two-cycle never become complex,
and the two-cycle period-doubles to chaos. Higher order
out-of-phase orbits, such as the four-cycle, are never stable
unless environmental heterogeneity is small, and even the
out-of-phase two-cycle disappears at very large levels of
environmental heterogeneity.

6. DISCUSSION

Our primary goal in this paper was to establish a
comprehensive baseline upon which to build our further
understanding of spatially structured populations. We
have developed a fairly complete analysis of the coupled
logistic map under the circumstances representing spatial
spatial structure (low dispersal) and environmental
heterogeneity (unequal patches). We have synthesized

existing analysis and phenomenology, together with a
variety of new results, to show how the various patterns
generated by this surprisingly complex model fit
together. When both aspects of spatial structure are
involved the patterns are less clear-cut, but we have
provided sketches of the phenomena and how they relate
to one another.

We expect that many of the results from this simple
model will generalize to more spatially extensive and
biologically complex models. As a preliminary assess-
ment of this generality we compared our results with
those reported for a variety of similar models, mostly
from mathematical physics (Appendix B). The stability
criterion for the strictly in-phase orbits holds whenever
dispersal is density-independent, regardless of the local
map or the size of the system. The bifurcation structures
of the out-of-phase orbits seem to be generic to diffusively
coupled single-hump maps, and many of the qualitative
details are retained with non-diffusive coupling. Further-
more, analogies of many of the features of the simple
model can be found in larger systems. Our results seem to
be most sensitive to changes in the dispersal function.
Density-dependent dispersal may destabilize equilibria
that would be stable in the absence of space (Ruxton,
1996). Asymmetric dispersal rates, which might be caused
by prevailing winds or the slope of a hillside, can increase
the propensity towards out-of-phase dynamics (Doebeli,
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1995). In a one-dimensional array of sites with one-way
dispersal, as might be found in a stream, the complexity
of the local dynamics increases with increasing distance
downstream (Kaneko, 1985).

The coupled logistic map is clearly not a model of real
populations. Nevertheless, as a simple metaphor for
spatially structured populations, this model has inspired
a number of preliminary conceptual generalizations,
which we present here. This is not meant as a comprehen-
sive interpretation of all our mathematical results, but
rather a selection of certain striking phenomena that
have changed the way we think about spatio-temporal
population dynamics.

In-phase dynamics represents an absence of spatial
pattern. In the coupled logistic map, these dynamics
occur if dispersal is large relative to local instabilities; if
the within-patch dynamics are stable, then the in-phase
dynamics are always at least locally stable. The relation-
ship among the stability of the strictly in-phase orbits,
the dominant Lyapunov exponent of the local dynamics,
and the strength of the coupling is robust for density-
independent dispersal, not only for alternate forms of
local dynamics, but also for larger systems. We expect
that a similarly simple relationship will hold for any type
of density-independent dispersal.

When the patches are identical, the lack of spatial
pattern associated with the in-phase dynamics means
that spatial structure truly can be neglected in studying
the dynamics of the population. Care needs to be taken,
however, if the in-phase attractor is not globally stable:
a sufficiently large spatially uncorrelated perturbation
might knock the population onto an alternate attractor
that does display spatial pattern.

Synchronization of patches is also found in the presence
of environmental heterogeneity. Indeed, the effects of
heterogeneity may be difficult to observe in the field, for
there is little change in the nature of the local population
dynamics across large changes in habitat quality. However,
ignoring the spatial heterogeneity gives only a coarse-
grained view of the dynamics, and has little value for
predicting the response of the population to habitat
change. Heterogeneity could even mislead attempts to
understand population dynamics at a smaller spatial
scale. Suppose a model were developed to describe the
local population dynamics, and the relevant parameters
were estimated directly, through measurements of birth
and death rates, for example. Even if the model were
largely correct, failure to take into account the spatial
structure of the population would lead to serious dis-
crepancies between the predicted and observed dynamics.
At this stage it is important to recognize that the error
lies not in the form of the local model, but in the discounting
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of spatial effects. This also shows the hazards of parameter
estimation through curve fitting, rather than direct
measurement. A simple model might fit the local or
global dynamics quite well, giving the illusion of under-
standing; only direct measurements of vital rates would
reveal that the fitted parameters are not actually observed
anywhere, and that spatial structure underlies the apparent
simplicity of the global dynamics.

When there is both spatial structure and environmen-
tal heterogeneity, then the “in-phase” dynamics cease
to resemble anything we would call spatial synchrony,
unless the system is at an equilibrium or two-cycle. The
intrinsic dynamics in the two patches are very different,
and dispersal is not strong enough to average them. This
makes it easier to recognize the environmental hetero-
geneity, unless the population is at a global equilibrium.

How common are synchronous population fluctua-
tions in nature? The phenomenon is common in cyclic
boreal species, such as Norwegian rodents (Myrberget,
1973; Christiansen, 1983), Finnish grouse (Ranta et al.,
1995b), and Canadian hares (Smith, 1983). Extensive
monitoring projects on British butterflies, moths, and
aphids and Finnish vertebrates reveal that synchrony
tends to decline with distance (Pollard, 1991; Hanski and
Woiwood, 1993; Ranta et al., 1995a; Lindstrom et al.,
1996; Sutcliffe et al., 1996). This has been interpreted
both as evidence for limited dispersal (Ranta et al.,
1995a; Lindstrom et al, 1996) and as evidence that
temporal environmental variability is spatially correlated
(the Moran effect; Hanski and Woiwood, 1993; Sutcliffe
et al., 1996). It is not clear how the Moran effect interacts
with the actively desynchronizing forces of low to inter-
mediate dispersal.

Out-of-phase dynamics occur only when dispersal is of
intermediate strength; the strength required increases
with the complexity of the within-patch dynamics. These
out-of phase dynamics produce spatial pattern, and they
can only occur in the spatial context. They also introduce
a problem of scale. As Hastings (1993) points out, the
total population size is constant in the out-of-phase two-
cycle. Thus a study conducted only at a regional scale
would misrepresent the population as having simple,
stable dynamics.

One might object that out-of-phase dynamics are an
artifact of the two-patch structure of our model. However,
there is some empirical evidence for the phenomenon.
Studies of mites (Nachman, 1981) and beetles (Nakamura
and Ohgushi, 1983) present figures suggesting that strongly
linked patches are fluctuating in phase, whereas across
weak links the oscillations are systematically out of
phase. The required information—moderately long time
series collected at the subpopulation level, together with
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independent assessments of the relative strength of disper-
sal among the various patches—have been collected in a
number of other systems, but have not been published in
sufficiently detailed form to allow us to interpret them.

Models with more than two patches also find spatial pat-
tern. Many of these are host-parasitoid models (Hassell ez
al., 1991; Comins et al., 1992; Rohani and Miramontes,
1995; Comins and Hassell, 1996), in which the mechanism
producing the pattern is likely to be qualitatively different
(more like the activation/inhibition of excitable media,
often leading to spiral waves). One- or two-dimensional
arrays of coupled logistic maps with local dispersal can
generate patterns where each subpopulation is out of
phase with all of its neighbors (Kaneko, 1987; Kaneko,
1989b). In a one-dimensional array of single-species maps
with long range dispersal (dispersal declines with distance),
moderate dispersal can lead to spatial waves, in which
each subpopulation is fluctuating in a two-cycle, but at a
given time there is a sinusoidal pattern in density through
space (Ruxton and Doebeli, 1996). This is clearly a long-
range analogue to out-of-phase dynamics.

The patterns of local dynamics in the uncorrelated
attractor show that even small amounts of dispersal can
have large impacts on the local dynamics. A subpopula-
tion of the coupled system is much less likely to have a
very low population size than is an equivalent isolated
population; this puts it at a lower risk of local extinction.
This process, in which spatial structure enhances local
persistence, is analogous to the “rescue effect” (Brown
and Kodric-Brown, 1977): immigrants from outside the
subpopulation prevent the local population size from
reaching the extreme lows that would be generated by its
intrinsic dynamics.

When one of the r’s is less than one, the model becomes
a type of source-sink system (Pulliam, 1988): the popu-
lation in the low-quality patch cannot persist without
immigration from the high-quality patch. Source-sink
dynamics have important conservation implications: if we
eliminate the source population, then the sink populations,
deprived of their source of immigrants, will deterministi-
cally go extinct (Pulliam, 1988). The coupled logistic model
adds a new twist. Imagine that the growth rate in the source
population is very high, and that emigration occurs only
if there is marginally suitable habitat to go to (or that
emigrants, if they find no suitable place to settle, return
to their natal patch). As long as the sink patch is present,
the dynamics of the source population will be stable.
Elimination of the sink habitat, however, will destabilize
the source population, and the ensuing large-amplitude
oscillations in population size may lead to stochastic
extinction. A similar result appears in a two-patch host-
parasitoid model (Holt and Hassell, 1993), but that
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model is confounded by the fact that the sink patch is
also a refuge from parasitism.

In a study of ten globally coupled logistic maps with
global perturbations, Allen et al. (1993) show that values
of r that lead to chaos in the uncoupled map reduce the
probability of global extinction. Extinction risk rises
dramatically in the periodic windows. This phenomenon
is explained by our Proposition 1. The dispersal rate they
use is low enough that the strictly in-phase chaotic dynamics
are always locally unstable, so that the subpopulations
would become desynchronized, reducing the risk that
all would be near zero simultaneously. Indeed, it seems
likely that a rescue effect would have been present, with
a reduction in the within-patch probability of low popu-
lation size. Proposition 1 shows, however, that the periodic
strictly in-phase orbits are always locally stable, so that
there is a good chance that the subpopulations can
become synchronized. This synchronization puts the
global population at a much higher risk of extinction.
However, the average duration of the the asynchronous
chaotic transients increases exponentially with the number
of patches (Kaneko, 1990), so that this phenomenon will
not be observed in large systems.

We have not considered the effects of noise in this
analysis. Much of the fine structure, such as the small
periodic windows, will disappear when noise is added. We
would like to know which of the phenomena we report will
persist in the presence of noise, for actual populations are
always subject to exogenous perturbations. Our experi-
ence, however, is that to understand the effects of noise in
nonlinear systems such as the coupled logistic map, we
must first have a thorough understanding of the underlying
deterministic dynamics. This paper serves the latter role.

We stated at the outset that developing a theory of
spatio-temporal population dynamics is a hard problem.
Even in the “simple” model discussed here there is much
that still escapes our comprehension. While it is impor-
tant not to get too caught up in fine-scale deterministic
details that will never be realized in actual ecological
systems, this complexity underscores the value of starting
with simple models to establish our understanding of
general phenomena in spatio-temporal dynamics.

APPENDIX A: PROPOSITIONS

PrOPOSITION 1. If D>3(1—e~*), where A, is the
Lyapunov exponent of the logistic map with parameter r,
then the strictly in-phase dynamics are locally stable.

Proof. This proof consists of a linear stability analysis
of the orbit on the diagonal, which we denote &, . If &, is
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an equilibrium or cycle then the analysis is conceptually
straightforward, although we introduce some tricks to
avoid having to calculate the orbit explicitly. If &, is
chaotic, however, we must address a number of subtleties
to make the proof rigorous.

Let J(x) be the Jacobian of Eq. (2) evaluated at
x; = x, = x. The eigenvalues of J are

A(x)=r(1—2x),

(A.1)
Ax(x)=(1—=2D) r(1 —2x);

the associated normalized eigenvectors are e (x)=
(ﬂ, ﬁ) and e,(x) = (f, —ﬂ). The eigenvectors are
always parallel and perpendicular, respectively, to
thediagonal, and if0 < D < 1, |4,(x)| > |1,(x)]|. Also notice
that A,(x) is simply the derivative of the logistic map
evaluated at x.

The Lyapunov exponents of ., can be estimated by
evaluating the Jacobian along each point of an orbit:

1
A,;(xo) :nlijrio " log [|J(x, 1) J(x,_2) -~ J(xo) €;(xo)l
(A.2)

(see, for example, Eckmann and Ruelle, 1985). The logistic
map does not contain coexisting attractors, so the
dependence of 4 on Xx, is critical only if x, is on an
unstable periodic orbit (or equilibrium); we choose a
“typical” value of x, that is not one of these. We can take
advantage of the fact that the eigenvectors are independent
of x to simplify Eq. (A.2): for example,

J(x1) J(xo) €;(x0) = J(x1) 2;(x0) €;(x0)
= 2:(x0) J(x1) €;(xo)
= 4;(xo) J(xy) €;(xy)
= Z:i(x1) 4i(x0) €i(xo)  (A.3)
(we could not do this if the eigenvectors depended on x).

This simplification, together with the fact that ||e;(x,)| =1,
gives

1
Ai(xo) = lim —log [4;(x,_1) A;(x,_2) -+ 4;(x0)]

n—>oo N
1n—1
= lim ¥ log |,(x)). (A4)
n— oo j=0

A, is simply the Lyapunov exponent of the logistic map,
and 4,= A4, +1log(1—-2D).
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If &, is a periodic orbit, then we are done: the absolute
value of the eigenvalues are e! and e“2, and we apply
standard stability criteria. If both eigenvalues are less
than one, then the orbit is stable. In particular, if the
orbit is a stable periodic orbit of the nonspatial map
(A4, <0),then A, < A, is also less than zero (log(1 —2D) is
negative), and the orbit is locally stable in the coupled
system.

“Linearizing” around a chaotic orbit is somewhat more
subtle. We need first to show that there is a neighborhood
of &, in which trajectories “shadow” the orbit on %,
linearly approaching or moving away from the diagonal.
The stability of ., is then determined by whether or not,
on average, trajectories in the neighborhood approach
the diagonal.

LEMMA 2. If r <4, then there exists a neighborhood
N of &, with width 6 >0 such that the dynamics in the
diagonal direction are governed by the logistic map + 0(5?)
and dynamics in the off-diagonal direction are perpendicular
to the diagonal.

Proof. We proceed by assuming the existence of a
neighborhood satisfying the lemma, and show that the
required 0 is greater than zero.

Reparameterize the system to follow the coordinate
frame defined by e,(x) and e,(x):

_X1+X2
_72 R

yzzﬂngixl‘

Y1

In this coordinate frame, y, is the perpendicular projec-
tion of (x,, x,) onto the diagonal and | y, | is the distance
from (x,, x,) to the diagonal. The dynamics in this new
coordinate frame are described by

2
/ ry
J’1:Vy1(1_y1)_72

(A.6)
(1=2D) ryy(1 =2y1).

)

As long as the trajectory is within /", then y, <J, and
the dynamics along the diagonal are governed by y} =
ry1(1 —y,) —e, where ¢ <r6?/2. The distance from the
diagonal grows or shrinks linearly in y, (although the
rate and direction are determined by y;). Thus if J is
small enough we can approximate Eq. (A.6) by

Yi=ry(1—yy)

(A7)
Va=(1=2D)ry,(1—=2y,).
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“Small enough” means ¢ is small compared with the
logistic equation over the entire range of y, explored by
the dynamics. When y, is small, y; ~ry; — ¢, so we require
¢<<min, y; where we take ming, y; to mean “the
minimum value of y, attained by an orbit on &%, .” This
minimum depends, of course, on r. Thus we choose
our neighborhood /" to be small enough that 0 <J <
ming _ y,. Thisis possible for all r <4, because ming_ y,
> 0. If r=4, then y, can come arbitrarily close to zero,
and so we cannot find a nonzero value of 0 to guarantee
the linearization. ||

We now show that there are trajectories starting near
(but not on) the diagonal that remain in .4#* when 4, <0.

LemMa 3. If A,(x) <O for an orbit on &, starting
at x, then there is an y > 0 such that the trajectory starting
at (x, y) and governed by Eq. (A.6) remains within N

Proof. At first glance this proposition seems trivial.
However, since 4, is a long term average, we need to
take care with sequences {x,} such that [1,(x e {x,} )| > 1
for all i. These might represent “escape hatches” where
the trajectory can monotonically move away from the
diagonal in spite of the long-term average attraction.

First consider the case where the sequence {x;} is
finite, with m elements. If r <4, then for any ./~ we can
choose y<[(1—2D)reming_y,;]"" so that a trajec-

tory starting on the escape hatch with y, =y will end the
sequence with y, <& min 7. V1 Thus we can always find
an initial condition that is close to, but not on, the
diagonal such that the finite escape hatch {x,} will not
cause the trajectory to leave .4".

Are there places where the escape hatches are effec-
tively infinite, so that no matter how small the initial
value of y,, the trajectory will monotonically depart from
A7 Indeed there are. Any trajectory starting on the
unstable manifold (in the e, direction) of an unstable
in-phase periodic orbit will move monotonically away
from the diagonal; and since this manifold is invariant, it
does not matter how close to the diagonal the initial condi-
tion is. Very close to the diagonal, this manifold is simply
perpendicular to the diagonal, with the value of y, corre-
sponding to the nonstable periodic orbit of the logistic
map. However, although there are an infinite number of
nonstable periodic orbits present in the chaotic attractor
of the logistic map, and they may be dense, they have
measure zero. Thus, just as almost all trajectories of the
logistic map will never land exactly on a nonstable
periodic orbit, almost no trajectories of the coupled
logistic map will land on an infinite escape hatch. ||
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Finally, we need to show that y, goes to zero for trajec-
tories in .4/". Comparing Eqs. (A.6) and (A.1), it is clear
thaty,(n) = y,(0) [T7_, 4,(»,(i)). Ifnislarge, thenlog y,(n)
~log y,(0)+nAd,. Since A,<A,<0, lim,_, ., log y,(n)
= — o0, and y, goes to zero.

This proof does not work for r =4. However, at that
point, the conjectured curve for local stability passes
through D =0.25, which is also the value at which we
have shown that ., is globally attracting. |

PROPOSITION 4. At the parameter values defined by
Eq. (I11.2) the equilibrium solution on the diagonal under-
goes a period-doubling bifurcation in the off-diagonal
direction, giving rise to the two-cycle (11.4). This orbit is a
saddle, with ., =1 (4, =1 at the bifurcation iff D =0) and
A <1 (A, =1 only at the bifurcation).

Proof. At Eq. (II1.2), 4, passes through —1; at this
point A, = —(1—2D)~". Thus the equilibrium, which
has already undergone one period-doubling to produce
the in-phase two-cycle, period-doubles a second time,
in a direction perpendicular to the diagonal. It then
becomes a repelling node. The eigenvalues of the result-
ing out-of-phase two-cycle are 1; = (1 —2D) =2 (which is
the square of the eigenvalue of the equilibrium) and
A, =1. Thus the out-of-phase two-cycle “inherits” the
instability in the diagonal direction from the equilibrium.

Although it seems clear what is happening as curve
(IIL1.2) is crossed, we need to ensure that there are not any
oddities cropping up as a consequence of the two-param-
eter, two-variable nature of the system. So we need to
first determine whether, in a neighborhood in parameter
space of a given point on curve (II1.2), and a neighbor-
hood in state space of the equilibrium, the problem can
be reduced to a one-parameter, one-variable problem.

The simplest choice for a reparameterization of the
problem is to take a line normal to the bifurcation curve.
This is everywhere defined, as Eq. (II1.2) is everywhere
differentiable. Thus our new parameter, u, defines a curve
in the original parameter space given by

I (1=2D,)?
1w, 2

r=hy(u)=2 n (A8)

D =hy(n)=Do—p, (A9)

where D, is the value of D where the bifurcation curve is
crossed. u 1s zero at the bifurcation; negative values of u
are below the bifurcation curve. This parameterization is
defined everywhere on 0 < D, <0.25.

The bifurcation takes place in the direction of the
second eigenvector of the equilibrium, which we already
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know from the proof of proposition 1 is perpendicular
to the diagonal. Furthermore, the error associated with
the linearization grows only as y3, so very close to the
equilibrium we can just look at the dynamics along the
eigenvector, which is in turn the dynamics of y,. The
value of y, is fixed at the equilibrium value of 1 — 1/r.
Letting x = y,, we can reduce the system locally to

S, 1) =(1-2h)(2—hy) x (A.10)
S, )= (1=2h,)* (2—hy) hix?
F(1=2h,)2 (2 —hy)? x. (A.11)

It is now straightforward (but tedious) to show, using the
formulas in Wiggins (1990, p. 373), that f undergoes a
period-doubling bifurcation at x=0, u=0. ||

PrOPOSITION 5. The strictly out-of-phase two-cycle
Eq. (11.4) changes from a stable node to a stable focus at
Eq. (IIL5).

Proof. This transition occurs when the eigenvalues of
the strictly out-of-phase two-cycle change from real to
complex. The eigenvalues are

A=[2+2(1-5D)1—=D)—r(r—2)(1-2D)*

+2D . /(2—3D)> —r(r—2)(1—2D)* | /(1 —2D)?,
(A.12)

which become complex when the quantity under the radical
passes through zero. It is easy to show that this occurs at
Eq. (IIL5). Along this curve 4= D?/(1 —2D)? which is
less than one if D <0.25, so the orbit is stable at the
transition. ||

PROPOSITION 6. Along the Naimark bifurcation curve
defined by Eq. (111.6), the absolute value of the rotation
number decreases, smoothly and monotonically, from % at
D =0 to approximately 3% at r=4.

Proof. The Naimark bifurcation reaches r=4 at
D =0.13925. Along the Naimark bifurcation, the rotation
number p can be evaluated directly from the eigenvalues
of the periodic orbit. The eigenvalues are complex: 1=
Re[A] +iIm[ 2]. We can express this in polar coordinate

form: 4 = ae™, where o = \/Re[/l]z +Im[4]? and

tan—1 10LA] it Re[4]>0,
0= Re[4] (A13)
B Im[ ] ’
a+tan- 2B e Rera1<0

—Re[ /]
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(the latter case is to account for the limited range of
tan—'; at the Naimark bifurcation the real part of the
eigenvalue is negative, so we use the second case). In the
linearized system, o gives the rate of radial movement
towards or away from the periodic orbit, and 6 is the
angular movement as the orbit spirals into or away from
the periodic point; =1 at the Naimark bifurcation.
Furthermore, the nonhyperbolic fixed point at the origin
can be thought of not only as an equilibrium, but also as
an invariant loop with radius zero. The rotation number
on this loop is simply the fraction of the circle represented
by 6:

_0
p_27r
m[i] 1
_ —1 _
=2 TRe[i] 2
I 420 /JA0=3D)1-D) 1
—— tan—! S (A4
2 n (U —4p+20%) T2 A

The absolute value of this function declines monotonically
and continuously from 1/2 at D=0 to about 0.43818 at
D =0.13925. Equation (IIL.6) is thus equivalent to the
K =0 line of the circle map, and all the rational values of
Eq. (A.14) correspond to the tips of the locking regions
with rotation number p. |

PROPOSITION 7. Let P; be the ith strictly out-of-phase
orbit to arise as r is increased with D =0 (thus P, is the
two-cycle, P, the four-cycle, etc.), and let r = h;( D) be the
curve along which P; arises via the off-diagonal period-
doubling. Then:

(i)  h;(D)<h(D) forall j<iand D <0.25; and
(i) 7;(0.25)=4 for all i.

Proof. From the proof of Proposition 1, we know
that £,,1s defined by the criterion A4,(P,) + log(1 —2D) =0,
where A,(P,) is the Lyapunov exponent of the n-cycle in
the logistic map. The second part of the proposition
follows directly from the following lemma:

Lemma 8. When r =4, all of the periodic orbits of the
logistic map have Lyapunov exponent log 2.

Proof. We proceed by finding a map that is topologi-
cally conjugate to the logistic map at » =4 for which we
can show the desired result. Recall that two maps f and
g are topologically conjugate if there is a diffeomorphism
h such that goh=ho f. Corresponding fixed points and
periodic orbits have the same eigenvalues in f and g
(Wiggins, 1988). It is also clear that conjugacy is transitive.
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It is widely known that f(x) = rx(1 — x) is topologically
conjugate to g(y)=1—Ay?% where A=[(r—1)2—1]/4
and y =/h(x)=r(x—1/2)/A. In particular, » =4 is equiv-
alent to 4 =2. Collet and Eckmann (1980) noted that
g(y)=1—-2y* is topologically conjugate to p(z)=
1 —2|z|, wherez=¢(y) = (4/n) sin—' \/(y+1)/2— 1; the
proof of this is straightforward.

Thus the logistic map at » =4 is topologically conjugate
to . The derivative of y is +2 everywhere except at z=0
(the latter need not concern us, for y?(0) = — 1, whichis a
fixed point, so z =0 is not on a periodic orbit). Thus all the
period-n orbits of y, and hence of £, have eigenvalue +2”".
The Lyapunov exponent of the period-n orbit is
A(P) =137 log2=log2. 1

The first part of the proposition follows from the obser-
vation (for which we have no formal proof, but which is
clear numerically) that, beyond the superstable point
(where A,(P,) = —0), the Lyapunov exponents of all of
the periodic orbits increase monotonically with r, and have
negative second derivative. Given that all of these curves
intersect at r =4, they cannot cross at any r <4. |

ProrosITION 9. If D=0.5, then:

(1) the diagonal is always attracting; and
(i) the mean population density is governed by
x'=rx(1—x).
Proof. Since(1 — D)= D =0.5, the governingequations
are

x7=0.5r,x1(1 —x1)+0.5r,x,(1 — x,) (A1)
x5 =0.5r,x,(1 —x5) +0.5r; x,(1 —x4).

Thus from any initial condition x}=x5, and x;=x,
thereafter.

Since x; =Xx,, the mean density Xx=x,=x,. It is
governed by

(A.16)

APPENDIX B: COMPARISONS WITH
RELATED MODELS

We are searching for results that are generally applicable
when density dependence interacts with spatial structure.
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This requires, at the very least, that the results be mathe-
matically robust to substantive structural changes in the
model. In a subsequent study we will systematically vary
the local dynamics, the dispersal function, and the size of
the system. Here we develop a preliminary assessment of
the mathematical robustness of our model by comparing
it with published analyses of related models (many without
direct biological interpretation). We discuss, in turn,
pairs of logistic maps with alternative coupling functions,
alternative local maps with diffusive coupling, and
models of many logistic maps with diffusive coupling.

A common coupling form in the physics literature
is x;= f(x;)+D(x;—x;) (Kaneko, 1983; Hogg and
Huberman, 1984; Waller and Kapral, 1984; Daido,
1984a,b; Sakaguchi and Tomita, 1987; Wang et al., 1989;
Wang and Lowenstein, 1990; Kook et al., 1991). The
qualitative phenomenology of this model is very similar
to the one we have been examining. Strictly in-phase
orbits period-double in both the on-diagonal and off-
diagonal directions, the latter producing strictly out-of-
phase orbits. The out-of-phase orbits lose stability
through Naimark bifurcations; and the transition to
hyperchaos through a torus and the destabilization of
the approximately out-of-phase chaotic attractors also
follows the same qualitative pattern as we have shown.
However, the quantitative details are quite different. The
spatial period-doubling bifurcations occur at lower values
of r than do the non-spatial ones. The stability region of
the equilibrium shrinks with increasing coupling (Hogg
and Huberman, 1984), showing that coupling need
not be inherently “stabilizing.” The strictly out-of-phase
orbits are stable when they appear, whereas the strictly
in-phase orbits are saddles at the period-doubling, gaining
stability through a separate pitchfork bifurcation (Sakaguchi
and Tomita, 1987; this is the inverse of the results for the
system we have studied); unlike our model, there is not
a continuous sequence of stable strictly in-phase orbits
through the period-doubling cascade. The uncorrelated
attractor looks very different from the ones we have
studied (Sakaguchi and Tomita, 1987, Figs. 7 and 8).

Another commonly studied form of coupling is x;=
f(x;)+ Dx; (Fregyland,1983; Van Buskirk and Jeffries,
1985; Ferretti and Rahman, 1987a, b, 1988). This also
shares many of the qualitative features of our model,
including Naimark bifurcations of the out-of-phase orbits,
but there begin to be substantial deviations as well. There
are large Hénon-like attractors; in our model they only
appear as elements of a multi-part chaotic attractor. The
onset of period-doublings and chaos occurs at substantially
reduced values of r, even for moderate coupling strengths.

A third coupling form is x; = f(x,)(Dx;+¢) with D=3
and e=1 (Lopez-Ruiz and Pérez-Garcia, 1991, 1992).
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The equilibrium period-doubles to an out-of-phase two-
cycle, which goes through a Naimark bifurcation and
through a torus to chaos; but the chaotic attractor is
extremely different from any of the ones we have studied
(it does, however, show some similarity to attractors
pictured in Kaneko, 1983). The transition from the invariant
loops to chaos seems to be very different from the ones we
have studied. Moreover, the bifurcations of the equilibrium
and the two-cycle occur at very low values of r, all less
than one.

There are a few models that use density-independent
dispersal, but different models for the local dynamics.
Coupled “sigmoidal maps,” f(x)=ax/(1+ x"), display
the familiar sequence of uncorrelated chaos, approximately
out-of-phase chaos and torus, strictly out-of-phase two-
cycle, and strictly in-phase chaos as coupling strength
decreases (Doebeli, 1995). The out-of-phase chaotic attrac-
tor is nearly indistinguishable from the attractors we have
seen (Losson and Mackey, 1994). A similar bifurcation
structure was found in a two-patch age-structured
model (Hastings, 1992). Losson and Mackey (1994) also
couple two tent maps (similar to y(z) in Lemma 8). They
show the presence of the four attracting four-cycles
(strictly in-phase, strictly out-of-phase, and the anti-
phase pair). They obtain the familiar criterion for the
local stability of the strictly in-phase orbits, and analytic
expressions for transitions such as the crisis from the out-
of-phase chaotic attractor to the uncorrelated attractor;
the formulas are complicated and not very informative,
however. Yamada and Fujisaka (1983) coupled two
modified Brusselator models (continuous-time models
used to simulate the Belousov-Zaboutinsky chemical
reaction). They extracted a mapping by taking a Poincaré
section of each oscillator. The result was the familiar
collection of attractors: strictly out-of-phase two- and
four-cycles, out-of-phase quasiperiodic and chaotic
attractors, strictly in-phase attractors, and uncorrelated
attractors.

There have been many studies of large arrays of coupled
logistic maps (for a review see Kaneko, 1993). Each
oscillator can be coupled to all the other oscillators
(global coupling) or to its nearest two (one-dimensional
space) or four (two-dimensional space) neighbors. As
one might imagine, the phenomenology becomes much
richer (and harder to describe). There are a few comparisons
that can be made with our work, however. The local
stability condition for the strictly in-phase orbits in
globally coupled maps is identical to our Proposition 1
(Kaneko, 1989a); but the basin of attraction of the strictly
in-phase orbits decreases very rapidly with the number of
oscillators (Kaneko, 1993). In “fully developed spatio-
temporal chaos” there are no periodic windows (Kaneko,
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1990). This seems to correspond with observations of our
system when the attractors are of the hyperchaotic type.
Virtually all of our chaotic attractors that do show periodic
windows look similar to attractors of the Hénon map,
in that they exhibit folded one-dimensional manifold
structure, corresponding to a single positive Lyapunov
exponent.

There are a number of attracting states of the larger
systems that might be thought of as analogous to our
system of two oscillators. With nearest-neighbor coupl-
ing, a commonly encountered attractor is temporally
periodic with a “zigzag” (one-dimensional) or “checker-
board” (two-dimensional) spatial pattern. In these cases
each site is strictly out-of-phase with all of its neighbors,
and the dynamics can just as well be described by our
model with strictly out-of-phase dynamics. However, our
model cannot predict how this spatial symmetry will be
broken, nor what will occur when the dynamics are
temporally chaotic. In globally coupled maps there is a
remarkable region of parameter space where the oscillators
cluster into a small number of groups, with the members of
each cluster all following the same trajectory (Kaneko,
1989a). If the system settles down to two clusters, then the
subsequent dynamics can be described by a two-oscillator
system with appropriate weighting of the coupling terms to
account for the different size of the clusters. At first glance
it seems like a way to model patches with different carrying
capacities, but the effect is more subtle than simply inserting
K’s into our model. It is as if the smaller patch, in addition
to producing fewer emigrants because the population is
small, receives fewer immigrants because it is hard to
find: many emigrants from the larger patch simply return
home. Again, our simple model cannot say anything
about bifurcations away from the clustered state.

In some informal explorations of a two-dimensional
nearest-neighbor system, we have observed “islands” of
spatiotemporal periodicity, each of different phase, separated
from one another by regions of aperiodic dynamics. We
also observed temporally period-three solutions in which
there was a tremendous variation in the actual values
attained by the various oscillators, even though each was
following a three-cycle. These are analogous to the odd-
out-of-phase orbits described here.
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