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Abstract

Spontaneous and sensory-evoked activity propagates across varying spatial scales in the 

mammalian cortex, but technical challenges have limited conceptual links between the function of 

local neuronal circuits and brain-wide network dynamics. We present a method for simultaneous 

cellular-resolution two-photon calcium imaging of a local microcircuit and mesoscopic widefield 

calcium imaging of the entire cortical mantle in awake mice. Our multi-scale approach employs an 

orthogonal axis design where the mesoscopic objective is oriented above the brain and the two-

photon objective is oriented horizontally, with imaging performed through a microprism. We also 

introduce a viral method for robust and widespread gene delivery in the mouse brain. These 

approaches allow us to identify the behavioral state-dependent functional connectivity of 

pyramidal neurons and vasoactive intestinal peptide (VIP)-expressing interneurons with long-
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range cortical networks. Our novel imaging system provides a powerful strategy for investigating 

cortical architecture across a wide range of spatial scales.

Reporting summary

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.

Introduction

In the mammalian neocortex, single neurons integrate synaptic inputs arising from both local 

circuits and long-range projections originating in various cortical and sub-cortical structures 
1–3, giving rise to networks dedicated to processing various streams of information relevant 

for cognition, including sensory and motor representations4, 5. Anatomical, 

electrophysiological, and imaging studies have demonstrated distinct local and large-scale 

connectivity associated with varied feature encoding even for neighboring neurons in a 

single region6–10. Nevertheless, most experimental protocols are confined to measuring 

activity within single areas, limiting the ability to link the function of local circuits to global 

cortical dynamics. Recent studies have sought to bridge this gap by expanding the 

capabilities of existing techniques11–14, but methods for relating cortical function across 

these scales remain elusive.

Here, we describe a novel approach for performing simultaneous measurements of the 

micro-scale activity of single neurons and the meso-scale activity of diverse areas across the 

cortical mantle by combining two-photon and mesoscopic calcium imaging. To facilitate this 

approach, we have also developed a viral method for whole-brain expression of genetically-

encoded calcium indicators. Compared to previously described methods pairing extracellular 

electrophysiology with mesoscopic calcium imaging15, 16, our method has several 

advantages. With two-photon imaging, we can monitor hundreds of neurons simultaneously 

and target genetically defined (often sparse) cell populations. Furthermore, we can easily 

follow the same cells over days or weeks, allowing us to monitor the stability and flexibility 

of cortical circuits.

We utilize this system to study how individual cells in somatosensory cortex (S1) of awake 

mice associate with networks across the cortical mantle. We apply a novel functional 

parcellation for mesoscopic calcium imaging data17, finding that activity-based 

segmentation of cortical cell-centered networks (CCNs) reveals surprising heterogeneity in 

the large-scale connectivity of neighboring neurons. We leverage the cell-type specificity 

afforded by genetically-encoded indicators to determine the association of both pyramidal 

neurons and vasoactive intestinal peptide-expressing interneurons (VIP-INs) with distal 

cortical areas across behavioral state. These results highlight the power of our multi-scale 

imaging approach to reveal novel aspects of functional cortical architecture.
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Results

Design of a dual-axis microscope for simultaneous two-photon and mesoscopic imaging

To simultaneously record activity from hundreds of neurons at cellular resolution within a 

cortical area and the mesoscopic activity across the cortical mantle, we employ a “dual-axis” 

design18 that combines a widefield epifluorescence “mesoscope” using an objective 

positioned normal to the surface of the animal’s skull with a two-photon microscope using 

an ultra-long working distance (20 mm) objective positioned tangential to the skull surface 

and orthogonal to the mesoscope objective (Fig. 1a). To reflect the two-photon excitation 

and emission paths to/from the microscope, we utilize a square right angle glass microprism 

with an uncoated hypotenuse implanted into a small craniotomy over the brain surface (Fig. 

1a, left inset). The uncoated microprism enables imaging the same brain tissue with either 

the two-photon (reflected emissions) or mesoscopic (transmitted emissions) system (see Fig. 

2a).

Analysis of imaging quality revealed only modest loss of resolution caused by imaging 

through a microprism (Supplementary Fig. 1). We also had success with other similar 

objectives, suggesting the broad potential for this approach without the need for highly 

specific optics (see Supplementary Table 1). To prevent optical cross-talk, we interleave the 

acquisition of two-photon and widefield epifluorescence frames (Fig. 1a, upper inset). Thus, 

the start of each widefield frame lags the start of each two-photon frame by 34 – 67 

milliseconds, comparable to the rise time and substantially shorter than the decay time of 

current genetically encoded calcium indicators (e.g., GCaMP6f) for a single action 

potential19. As mesoscopic imaging of green fluorescent GCaMP6 signals may be 

contaminated by artifacts linked to both movement and hemodynamics20, we can collect 

both calcium-independent and -dependent emissions by interleaving frames of violet (395 

nm) and blue (470 nm) illumination, respectively 21. Two-photon excitation is conducted via 

a titanium-sapphire laser tuned to 920 nm. This system enables an overall acquisition rate 

for both modalities of up to 15 Hz (Fig. 1b–c).

Monitoring neuronal activity via micro- and meso-scale calcium imaging

We leveraged our previous experience to analyze data from the two imaging modalities 
8, 22, 23. For two-photon data, motion correction was performed by rigid body transformation 
24 followed by manual identification of regions-of-interest (ROIs) and neuropil subtraction 

(see Methods)8, 19. Notably, non-rigid motion correction and automated ROI extraction 25 

yielded similar results (Supplementary Fig. 2). After ROI extraction, calcium signals were 

normalized by baseline fluorescence to yield ΔF/F values. For the mesoscopic data, we 

performed top-hat filtering followed by baseline normalization and regressed out the violet-

illuminated isosbestic GCaMP6 signal to remove fluorescence changes attributable to 

motion and hemodynamic artifacts21

Imaging through a microprism on the cortical surface did not impact neuronal health or 

activity. Excitation power emerging from the prism necessary for successful 2-photon 

imaging was ~100 mW, within previously described limits for thermal damage26. Moreover, 

post-hoc staining revealed that imaging through the prism produced no activation of heat-
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shock proteins (HSP70/72), a marker of damaged tissue (Supplementary Fig. 3) 26, 27. We 

also acquired mesoscopic data in transgenic mice expressing GCaMP6f selectively in 

cortical pyramidal neurons (Slc17a7-cre;CaMK2α-tTA;TITL-GCaMP6f) before and after 

implantation of the glass microprism over right S1. Much of the area under the microprism 

continues to be optically accessible to the mesoscope (Fig. 2b). In awake mice, the 

correlation of spontaneous activity between right and left S1 is typically high, and we 

observed no difference in this interhemispheric correlation resulting from prism implantation 

(Pearson’s r before vs. after, p=0.87, n=7 mice, Fig. 2c). We also compared neuronal activity 

in V1 measured with a standard two-photon objective and with our dual imaging objective, 

before and after prism implantation. Analyses revealed that imaging through a prism did not 

negatively impact the signal-to-noise of visually evoked responses or the orientation 

selectivity of single neurons (Supplementary Fig. 1).

Having simultaneous meso-scale and cellular-resolution optical access to the same brain 

area also permits us to investigate the relationship between the mesoscopic signal and its 

cellular sources, indirectly inferred in previous studies15, 20, 21. We found that the 

mesoscopic signal was similarly correlated with layer 2/3 neuropil and the summed activity 

of all cell bodies in the two-photon field-of-view (p = 0.05, n=7 imaging sessions across 6 

mice). Interestingly, the activity of individual cell bodies was poorly correlated with the 

mesoscopic signal (Fig. 2d). These data suggest that the mesoscopic activity reflects 

substantial fluorescence from the neuropil, including dendritic and axonal processes of cell 

bodies not in the field of view.

Determination of functionally connected cell-centered networks using multi-scale imaging

We performed simultaneous two-photon imaging of layer 2/3 neurons in mouse S1 and 

mesoscopic imaging of the entire cortical surface in a cohort of juvenile transgenic mice 

expressing GCaMP6f in cortical pyramidal neurons (Fig. 3). Mice were awake and free to 

run on a circular treadmill28, 29. Previous studies have suggested that S1 neurons are linked 

anatomically and functionally to bilateral sensorimotor areas16, 30, and we sought to 

determine the extent to which this network structure is shared among neighboring cells 

within S1.

We estimated the relative probability of cell spiking from its ΔF/F31 (Fig. 3a–b) and 

computed the dot product with the ΔF/F for each mesoscopic pixel, producing an activity-

weighted map illustrating the co-activation-based functional connectivity of that neuron 

(Fig. 3c). To determine which pixels in these cell-centered networks (CCNs) are 

significantly activated or deactivated, we compared each CCN to a null distribution 

generated by randomly shuffling the timing of cell activity (Fig. 3c). We assessed the 

reliability of CCNs by computing this network structure separately for two halves of the data 

set (see Methods), and cells with a split-half Pearson’s correlation less than 0.3 were 

excluded from further analysis. Three example significance maps demonstrate that 

neighboring S1 neurons are coupled with distinct, though overlapping cortical networks 

(Fig. 3d). Notably, CCNs were highly similar for fluorescence time series extracted either 

manually or via automation (see Supplementary Fig. 2).
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To quantify this diversity of CCNs, we first superimposed these maps derived from 

spontaneous activity onto a 16 node-per-hemisphere anatomical parcellation based on the 

Allen CCFv3 atlas9. The anatomical parcels were only in modest agreement with the 

contours of the activity-dependent CCNs (Fig. 3d), potentially due to individual differences 

in the functional organization of cortical networks across mice. As a complementary 

approach, we utilized a multi-graph k-way spectral clustering algorithm 32 to determine a 

functional 16 node-per-hemisphere parcellation for each mouse based on awake, 

spontaneous mesoscopic calcium imaging data recorded prior to prism implantation (Fig. 

3e). This segmentation more closely approximated the CCN contours (Fig. 3d). To 

quantitatively compare the quality of fit provided by the two parcellations, we calculated the 

conditional entropy of each CCN given the parcellation (anatomical versus functional), 

where lower conditional entropy indicates a better fit. We found that across all three mice, 

the functional parcellation significantly outperformed the anatomical parcellation 

(anatomical: H=0.54±0.01, 0.56±0.01, 0.53±0.02; functional H=0.41±0.01, 0.39±0.01, 

0.42±0.02; p < 0.001 for all; Fig. 3e). Analysis of sensory-evoked responses also revealed 

closer agreement of activity for functional versus anatomical parcellations (Supplementary 

Fig. 4).

CCNs may represent underlying structural motifs that reflect patterns of long-range 

connectivity4, 6. In order to identify categories of CCNs from our data, we calculated an 

activity index vector for each cell, which is the number of activated and deactivated pixels in 

each parcel normalized by the number of pixels in the parcel. We clustered these values to 

identify the three most prominent meso-scale patterns of activity for each mouse (Fig. 3f–g, 

Supplementary Fig. 5). For all three mice, the most prominent patterns included bilateral S1 

activation, with variable activation of the medial motor cortex (cluster 1), deactivation of 

lateral motor cortex (cluster 2), and deactivation of visual (cluster 1) and retrosplenial cortex 

(clusters 1 and 3). Importantly, within these clusters are multiple outliers whose activity 

patterns are not well-captured by the cluster averages (Supplementary Fig. 6). Cells 

belonging to each cluster are spatially intermixed within the two-photon field-of-view (Fig. 

3h, Supplementary Figure 5), suggesting long-range connectivity may be independent of 

local somatic position. We also examined other methods for assessing network membership 

of individual cells,15, 16 and found qualitatively similar results (Supplementary Fig. 7).

Viral vector-driven whole-brain expression of GCaMP6

Both mesoscopic and two-photon imaging of neuronal activity typically rely on expression 

of genetically-encoded indicators such as GCaMP6, which can be limited by the complexity 

of breeding transgenic driver and reporter mouse lines33–35 and the potential for pathological 

activity following embryonic indicator expression36. To overcome these challenges, we 

optimized a viral approach to achieve widespread and robust expression of GCaMP6s 

throughout the mouse brain using serotype 9 adeno-associated virus (AAV9) injected into 

the transverse sinuses of early postnatal animals.

AAV9 crosses the blood-brain barrier37, and recently published work demonstrated whole-

brain gene delivery by retro-orbital injection of this serotype as well as other engineered 

AAV variants38. While retro-orbital injections are difficult and disruptive in early postnatal 
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mice due to eyelid closure, the transverse sinuses are easily accessible along the posterior 

edge of the cortex, and the delivery of large volumes of virus is relatively simple (Fig. 4a).

We performed sinus injections of AAV9-Syn-GCaMP6s at P1 in wild-type mice and 

observed robust, widespread expression of green fluorescence as early as P14 throughout the 

brain, including both the telencephalon and diencephalon (Fig. 4b–c, see Methods). Using 

this method, we labeled 48.3±2.4% and 46.4±9.1% of cortical neurons at P14 and P21, 

respectively, similar to the density of cells (59.3±7.0%) labeled in transgenic mice (Fig. 4d–

e). Virus injection also labeled 65.3±5.5% and 31.5±10.3% of thalamic neurons at P14 and 

P21, respectively (Fig. 4f–g). These virus-driven expression levels are sufficient for carrying 

out in vivo imaging (Fig. 4h–i). In our hands, neither widespread viral expression of 

GCaMP6 nor transgenic expression disrupted cortical electrophysiological activity relative 

to control mice (Supplementary Fig. 8). Moreover, we have also used this approach to drive 

indicator expression conditionally in genetically-specified GABAergic interneurons and in 

rats, enabling mesoscopic imaging in targeted cell types and across species39.

Distinct large-scale networks associated with arousal-modulated PNs and VIP-INs

A key advantage arising from the combination of optical imaging and genetically-encoded 

indicators is the ability to target sparse neuronal populations that may be critical for cortical 

function but are generally inaccessible to conventional electrophysiological approaches. For 

example, VIP-INs account for less than 2% of cortical neurons40, yet they have been 

strongly implicated in the arousal-dependent modulation of cortical activity via disinhibition 

of local pyramidal cells41, 42.

To investigate the coupling of VIP-INs to mesoscopic activity, we performed sinus injections 

of AAV9-Syn-GCaMP6s in P1 mice transgenically expressing the red fluorophore tdTomato 

in VIP-INs (see Methods). We also used local injections of AAV5-CAG-FLEX-GCaMP6s 

into S1 at P6 to boost GCaMP6s expression in VIP-INs. We then performed multi-scale 

imaging between P17-P19 (Fig. 5a). For all mice, we recorded whisker movements by 

videography (Fig. 5a–c) as a marker of arousal level29, 43. Across four mice, we analyzed 50 

red fluorescent VIP-INs and 342 presumptive pyramidal (non-tdTomato-expressing) cells. 

For each cell, we calculated the correlation of its ΔF/F with whisker motion energy (see 

Methods) and categorized cells as significantly modulated (positively or negatively) or non-

modulated by whisking (Fig. 5c).

Of the VIP-INs analyzed, most were positively modulated by whisking (31/50), while 

pyramidal neurons were more diverse with cells both positively (69/342) and negatively 

(45/342) modulated by whisking (Fig. 5d). We calculated CCNs for both VIP-INs and 

pyramidal cells and applied the same parcellation and clustering approach as described 

above (6 clusters, Fig. 5e–f; Supplementary Fig. 9). Across animals, most VIP-INs clustered 

into one or two groups with their CCNs demonstrating enhanced postero-medial activity and 

reduced fronto-lateral activity (see Fig. 5f–g, clusters 1 and 2). Many pyramidal neuron 

CCNs, particularly for the whisking-positive cells, exhibited a similar pattern. In contrast, 

other pyramidal neurons, including most whisking-negative cells, exhibited complementary 

CCNs with enhanced fronto-lateral and reduced postero-medial activity (Fig. 5f–g, clusters 5 

and 6). Neurons not modulated by whisking were broadly distributed across all clusters. 
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Together, these results suggest the existence of two general categories of large-scale 

networks that reflect opposing engagement of distinct cortical areas (Supplementary Fig. 

10).

We finally examined whether functional connectivity is stable across time and behavioral 

state. Overall, CCNs were highly correlated when the same neurons were imaged over two 

consecutive days (pyramidal r=0.85±0.03, n=19; VIP r=0.94±0.01, n=2; Supplementary Fig. 

11). However, within a single session there was considerable variability in CCN organization 

depending on behavioral state. We independently generated CCNs for the same cell, 

dividing the session into periods of whisking and quiescence (non-whisking). This analysis 

revealed substantial heterogeneity between cells in the extent of state-dependent CCN re-

mapping. Indeed, whisking-positive, whisking-negative, and non-modulated populations 

included examples of weak and strong re-mapping (Fig. 6). As a population, the whisking-

positive cells exhibited significantly less remapping than both the whisking-negative or non-

modulated neurons (p<0.001 for each, Kolmogorov-Smirnov test).

Discussion

In the neocortex, the local and long-range synaptic connectivity of single neurons is thought 

to underlie spatially distributed networks dedicated to a range of cognitive, emotional, and 

motor functions. However, simultaneous monitoring of neuronal activity across spatial scales 

spanning several orders of magnitude remains an experimental challenge. We have presented 

an approach designed for this purpose, centered on a novel system for simultaneous two-

photon cellular-resolution and mesoscopic whole-cortex calcium imaging. We provide novel 

evidence for diversity in the large-scale functional connectivity of individual cortical 

neurons. Consistent with anatomical studies, cells in S1 may participate in distinct networks 

based on their axonal projections9, 30, 44, 45. We find that CCNs derived from correlated two-

photon and mesoscopic imaging signals suggest two general categories of connectivity 

reflecting opposing activity in fronto-lateral and postero-medial regions (see Supplementary 

Fig. 10). Membership in these groups is strongly influenced by cell type (pyramidal neuron 

versus VIP-IN) and sensitivity to behavioral state (i.e., whisking). As in previous 

studies28, 41, 46, VIP-INs are largely activated during arousal-associated behavioral states. 

Thus, the large-scale connectivity of these cells, as well as similarly modulated pyramidal 

cells, with a broad network of posterior and medial regions may define an “arousal 

network”. Moreover, the ability to image sparse populations of cells, such as VIP-INs that 

comprise less than 2% of cortical neurons, is a central benefit of our approach versus similar 

methods based on electrophysiology15, 16.

We expect that combining cellular and mesoscopic imaging will open up new avenues into 

the exploration of neuronal and behavioral variability. For example, layer 2/3 neurons in S1 

respond sparsely and unreliably to whisker stimulation despite their necessity for whisker-

guided behavior 47, and similar results have been reported for primary visual cortex 48. We 

hypothesize that such variability at the single neuron level may correspond to fluctuations in 

cortical network dynamics only discernible with approaches such as mesoscopic imaging. 

Thus, applying this system to the investigation of cortical activity during task performance 

will likely provide critical insights into links between cells, circuits, and behavior.
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These imaging methods have been facilitated by the development of transgenic animals 

expressing bright, genetically-encoded indicators of activity and structure19, 34. While 

fluorescent calcium indicators have achieved prominence due to high signal to noise 

characteristics, recent advances in reporters of voltage49, 50 suggest the possibility of parallel 

mapping of cortical networks based on a range of markers. Indeed, we expect our transverse 

sinus injection technique for whole-brain gene delivery, along with other established 

methods for use in adult mice38, to accelerate the development of novel molecular imaging 

technologies without the need to generate costly transgenic animals.

Finally, these studies have been carried out in the context of a larger collaboration designed 

to relate neural activity across a broad range of spatiotemporal scales. Thus, we have also 

established an approach for carrying out mesoscopic calcium imaging simultaneously with 

functional magnetic resonance imaging (fMRI)17, linking the activity of genetically targeted 

cells to brain-wide activity measured by blood oxygenation level-dependent (BOLD) 

signaling. Overall, we believe that the technical and conceptual union of these varied 

techniques provides a powerful opportunity to drive novel investigation into the dynamic, 

functional architecture of the mammalian nervous system.

Online Methods

Dual-imaging microscope design

Our dual-imaging microscope is composed largely of commercially-available components or 

items that can be fabricated in a basic metalworking shop. The mesoscope is a Zeiss 

Axiozoom V.16 coupled to a PlanNeoFluar Z 1x, 0.25 NA objective with a 56 mm working 

distance. The mesoscope is mounted on a motorized Z-axis (Fluar Illuminator Z mot, Zeiss) 

with a manual X-axis dovetail slider (DTS50, Thorlabs) for precise positioning along two 

axes. Both the mesoscope and Z-axis motor are controlled remotely (EMS3 and Sycop3, 

Zeiss). Epifluorescence excitation is performed using a 7-channel LED driver (SpectraX, 

Lumencor) mated to the mesoscope by a 3 meter liquid light guide (Lumencor). The blue 

LED channel is filtered using a ET470/20x filter (Chroma) and the violet LED channel is 

filtered using a ET395/25x filter (Chroma). LED illumination is reflected onto the imaging 

plane using a FT495 (HE) dichroic mirror and epifluorescence emissions are filtered with a 

BP525/50 (HE) filter (38 HE, Zeiss) and recorded using a sCMOS camera (pco.edge 4.2) 

with 512×500 resolution after 4×4 pixel binning. Images are acquired by a computer running 

Camware software (pco). The intensity of the LED excitation at the imaging plane is 

between 0.027 mW/mm2 and 0.106 mW/mm2 calibrated for each experiment depending on 

the brightness of the indicator.

The two-photon microscope is a Movable Objective Microscope (MOM) with the Janelia 

wide-path design and galvo-resonant scanner (Sutter Instruments) that has been customized 

for optimal imaging in a horizontal configuration. Specifically, one of the PMTs was re-

positioned 180 degrees from its original position and springs were added to reduce strain on 

the micromanipulator. Two-photon excitation is performed using a Ti:Sapphire laser (MaiTai 

eHP DeepSee, Spectra-Physics) with built-in dispersion compensation. Laser intensity into 

the microscope is controlled using a Pockels cell (Conoptics) for rapid modulation and the 

laser is expanded and collimated with a 1.25x Galilean beam expander (ACN254-100-B and 
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AC254-125-B, Thorlabs). The laser is focused on the brain using an ultra-long-working 

distance objective with a 20mm WD and 0.40NA (M Plan Apo NIR 20x, Mitutoyo) that was 

selected for high transmission of visible and near-IR light. We also tested other objectives 

(see Supplementary Table 1) and achieved similar results. Fluorescent emitted light is 

reflected into the collection path by a FF735Di-02 dichroic mirror (Semrock), filtered with a 

ET500lp long pass filter (Chroma) and then split by a T565lpxr dichroic mirror (Chroma) 

into two GaAsP PMTs (H10770PA-40, Hamamatsu) with ET525/50m-2p (Chroma) and 

ET605/70m-2p (Chroma) filters for detection of green and red photons, respectively. The 

combination of excitation, dichroic, and emission filters described here results in a net OD 

of >15 in between the blue excitation illumination from the LED and the green emissions 

detected by the PMTs, which is sufficient to prevent contamination of the images formed by 

the two-photon microscope. The two-photon microscope is controlled using ScanImage 

2017 (Vidrio Technologies) and images are acquired at 512×512 resolution with or without 

bi-directional scanning (see below).

Synchronization of imaging modalities

For simultaneous mesoscopic and two-photon imaging where the same emitted photons are 

being collected by the two modalities, we interleave frame acquisitions using a Master-8 

(AMPI) stimulator to coordinate the timing and a Power3 DAQ and Spike2 software 

(Cambridge Electronic Design) to record all timing signals. Each “simultaneous” acquisition 

begins with a 33 – 66 millisecond two-photon acquisition (depending on whether bi-

directional scanning is employed), followed by the simultaneous triggering of blue LED 

excitation for 30 milliseconds and sCMOS camera frame acquisition for 20 milliseconds 

(the difference is due to the 10 milliseconds necessary for the rolling shutter of the camera to 

open) followed, in some experiments, by the simultaneous triggering of violet LED 

excitation for 30 milliseconds and a second sCMOS camera frame acquisition for 20 

milliseconds. The sequence ends with a 10 millisecond pause without any excitation or 

image acquisition, which is necessary to allow the PMTs to recover from the epifluorescence 

emissions excited by the LED. Data reported in Figures 2 and 3 were acquired without violet 

illuminated frames and bi-directional scanning and data reported in Figures 5 and 6 were 

acquired with violet illuminated frames and bi-directional scanning.

Surgical preparation and imaging set up

All surgeries were performed in accordance with the regulations set by the Yale University 

Institutional Animal Care and Use Committee and in accordance with NIH guidelines. The 

skin and fascia layers above the skull were removed to expose the entire dorsal surface of the 

skull from the posterior edge of the nasal bone to the middle of the interparietal bone, and 

laterally to the temporal muscles. The skull was thoroughly cleaned with saline and care was 

taken to not let the skull dry out. The edges of the skin incision were secured using 

cyanoacrylate (Vetbond, 3M). A custom headpost (see Fig. 1a, inset) was secured to the 

interparietal bone and along the lateral edge of the right parietal bone, first with Vetbond, 

and then with transparent dental cement (Metabond, Parkell), and a thin layer of dental 

cement was applied to the entire exposed skull. In some animals, a metal “visor” was also 

secured to the nasal bone to prevent light from the mesoscope from getting in the animal’s 

eyes. Once the dental cement dried, it was covered with a thin layer of clear nail polish or 
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cyanoacrylate (Maxi-Cure, Bob Smith Industries). The combination of the dental cement 

and cyanoacrylate substantially increases the transparency of the skull.

For all imaging experiments described here, the mice were then allowed to recover for at 

least 3 hours in a heated recovery chamber and mesoscopic imaging was performed to 

record spontaneous activity. We also measured activity evoked by deflection of the left 

whiskers (10 Hz stimulation for 1 second every 40 seconds or a single 100 millisecond 

deflection every 10 seconds) using a piezo bender (PL112, Physik Instrumente) and activity 

evoked by the sound of the piezo bender when positioned away from the whiskers. These 

stimuli were used to map the location of the right barrel cortex and bilateral auditory cortex, 

respectively.

On the day following mesoscopic imaging, the mice were re-anesthetized and meloxicam 

(0.3 mg/kg) was administered SQ, a 2 mm square craniotomy was performed over the 

mapped location of the right barrel cortex, and a 2 mm square BK7 glass microprism (Tower 

Optical) was lowered directly onto the surface of the dura and the edges were secured to the 

skull using a viscous cyanoacrylate (Gel Control, Loctite). In one mouse, a 1.5mm square 

craniotomy and glass microprism was used, and in two other mice, a circular glass coverslip 

was placed over the surface of the dura and the microprism was glued to the coverslip. Mice 

were then allowed to recover for at least 3 hours and either imaged on the same day as 

surgery or returned to their home cages for imaging on subsequent days.

For optimal two-photon imaging, we attempted to minimize aberrations and loss of 

excitation power through reflection by adjusting the horizontal angle of the prism face by 

rotating the stage to which the animal is head-fixed and the vertical angle of the objective by 

rotating the microscope head, minimizing autofluorescence of the prism face as it moves 

through the imaging plane. Using these procedures, we could typically image GCaMP6 up 

to 400 μm deep using laser power emerging from the prism of <100 mW while scanning and 

flyback blanking during acquisition of mesoscopic frames. This value corresponded to 280 

mW when the beam was parked at the center of the field of view.

This imaging preparation is stable over days to weeks if care is taken to clean and protect the 

implanted prism from debris in the animal’s home cage (or damage due to grooming 

behaviors). At the termination of an experiment, the microprisms could be recovered and 

cleaned with acetone, followed by 2M HCl, followed by 100% methanol, in which they 

could also be stored until a subsequent implantation.

Animal subjects

For dual-imaging experiments, we used either Slc17a7-cre/Camk2α-tTA/TITL-GCaMP6f 
34, 51(The Jackson Laboratory strains 023527, 024108), Slc17a7-cre/TITL2-GCaMP6s 
33(The Jackson Laboratory strains 023527, 031562), or VIP-cre/LSL-tdTomato 35, 52(The 

Jackson Laboratory strains 010908, 007909) mice. Mice were housed on a 12-hour light/

dark cycle with food and water available ad libitum. For histological validation of sinus 

injections, we used C57BL/6J mice.
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Transverse sinus injections

Postnatal-day-1 pups were taken out of their home cage with their entire litter and rested on 

a warm pad. Pups were anesthetized using hypothermia which was induced by laying them 

on ice for 2–3 minutes. They were then maintained on a cold metal plate for the duration of 

the procedure. A dissecting microscope was used to visualize the transverse sinuses (located 

on the dorsal surface of the mouse head between the parietal and interparietal bones). Fine 

scissors were used to make two small cuts (~2 mm) in the skin above each transverse sinus. 

To inject the virus, we used pulled capillary glass tubes. The sharp pipettes were filled with 

mineral oil and attached to a Nanoject III. Next, most of the mineral oil was pushed out of 

the pipette using the Nanoject, and vector solution was drawn into the pipette. For accurate 

movement of the Nanoject, we used a MP-285 micromanipulator (Sutter Instruments). The 

pipette was gently lowered into the sinus until the tip of the pipette broke through the sinus. 

The pipette tip was then raised up until it was 300–400 μm below the surface of the sinus. 

We next injected 4 μL of AAV9-Syn-GCaMP6s (Addgene) with a titer of ~3×1013 vg/mL. 

Injections were performed at a rate of 20 nL/second. An effective injection was verified by 

blanching of the sinus. After the injection, the skin was folded back, and a small amount of 

Vetbond glue was applied to the cut. The pup was then returned to the warm pad. After the 

entire litter was injected, the pups were returned to their home cage and gently rubbed with 

bedding to prevent rejection by the mother. At 13 or 20 days post-injection, juvenile mice 

were perfused with PBS and 4% paraformaldehyde (PFA) solution and brains were 

extracted, immersion fixed in PFA overnight, and rinsed with PBS.

Electrophysiological recordings

All extracellular single-unit and LFP recordings were made with an array of independently 

moveable tetrodes mounted in an Eckhorn Microdrive (Thomas Recording). Signals were 

digitized and recorded by a Digital Lynx system (Neuralynx). All data were sampled at 

40kHz. All LFP recordings were referenced to the surface of the cortex and recorded with 

open filters. Single unit data was filtered from 600–9000Hz. Awake recordings were made 

from mice that had received handling and were habituated to head fixation. On the recording 

day, a small craniotomy was made over the recording area under light isoflurane anesthesia. 

The craniotomy was then covered with Kwik-Cast (World Precision Instruments) after 

which the mouse was allowed to recover for 2 hours. Mice were then fitted with a headpost 

and secured in before electrodes were lowered into either V1 or the dorsal hippocampus. 

Spikes were clustered semi-automatically, initially using KlustaKwik 2.0 software to 

identify a maximum of 30 clusters using the waveform Energy and Energy of the 

waveform’s first derivative as clustering features. We then used a modified version of the M-

Clust environment to manually separate units and we selected well-isolated units. We further 

ensured that maximum contamination of the ISI (Inter-spike-interval) histogram <1.5 ms 

was smaller than 0.1%. The firing rate was computed by dividing the total number of spikes 

a cell fired in a given period by the total duration of that period. To compute LFP power 

spectra, we divided the data in 1s periods and calculated a multi-taper power spectral 

estimate for each segment.
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Histological processing and immunohistochemistry

For assessment of sinus injections, juvenile brains were cut into 150 μm coronal or sagittal 

slices using a vibratome (Leica). Slices were transferred into 0.04% Triton solution, then 

blocked overnight with 10% goat serum at 4°C. After blocking, primary antibodies were 

diluted in the blocking solution (1:500), and slices were incubated in the primary antibody 

solution for 5 days at 4°C. The primary antibodies used were rabbit anti-GFP conjugated to 

AF488 (Millipore) and mouse anti-NeuN (Millipore). Slices were then washed three times 

with PBS, and incubated in secondary antibody diluted in blocking solution (1:500) 

overnight at 4°C. The secondary antibody used was goat anti-mouse AF555 (Millipore). 

Slices were washed three times with PBS, incubated in DAPI diluted in PBS (1:1000) for 15 

min, washed three times with PBS and mounted on glass slides using Fluoromount G. 

Sagittal slice images were captured using a Zeiss Apotome microscope, and coronal slices 

used for quantification were imaged using a laser scanning confocal microscope (LSM 800, 

Zeiss) to determine co-localization between anti-GFP and anti-NeuN signals. Signal 

quantification was done using ImageJ software. Briefly, regions of interest (ROIs, i.e., cortex 

and thalamus) were selected, images were binarized, and the number of GCaMP6s+ and 

NeuN+ cells were counted manually. For each mouse, 2 to 6 separate fields-of-view were 

analyzed.

For assessment of Hsp70/72 levels, 40 μm coronal slices were cut from brains of mice that 

had undergone at least one hour of imaging through an implanted microprism. Blocking was 

performed overnight in a solution composed of 10% normal goat serum, 2% bovine serum 

albumin, and 0.5% Triton X-100, followed by incubation with 1:400 rabbit anti-Hsp70/72 

(Enzo, ADI-SPA-812) and then 1:500 goat anti-rabbit Alexa Fluor 647 (Invitrogen, 

A-21245). Washes between incubations were performed with blocking solution and 0.1% 

Triton X-100. Images were acquired using an upright fluorescence microscope (Olympus), 

and the intensity of Hsp70/72 staining was quantified as the ratio of fluorescence intensity in 

a 900 μm diameter region under the center of the prism to the matched region in the 

contralateral hemisphere.

Injections for VIP experiments

For experiments in which the activity of individual VIP cells was measured simultaneously 

with mesoscopic pyramidal cell activity across the cortical mantle, we performed transverse 

sinus injections at P1, as described above. Sinus injection of AAV9-Syn-GCaMP6s 

preferentially labels pyramidal cells (data not shown). Therefore, to enhance the expression 

of GCaMP6s in VIP cells in S1, we also performed cortical injections of AAV5-CAG-Flex-

GCaMP6s (Penn Vector Core) at P6. Between 400 – 600 nL of virus was injected using a 

Nanoject III. To perform these injections, a sharp glass pipette was cut to a 10 μm tip 

diameter and beveled at a 45° angle. Mice were anesthetized using 1–2% isoflurane and 

maintained at 37° on a water-recirculating heating pad. Meloxicam (0.3 mg/kg) was 

administered IP and lidocaine (0.5%) was administered locally SQ for analgesia. An incision 

was made to expose lambda and the pipette tip was moved with the micromanipulator to 

+1.8 mm anterior, +2.0 mm lateral from lambda, just above the surface of the skull. The 

skull was scraped with a scalpel blade at that location to thin it and then the pipette tip was 

slowly lowered until it pierced through, typically within 800 μm from the skull surface. The 
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tip was then slowly withdrawn to a depth of 400 μm below the surface of the skull and the 

brain was allowed to settle for 5 minutes prior to injecting the virus at a rate of 2 nL/second. 

Five minutes after completion of the injection, the pipette was withdrawn and the incision 

was closed with Vetbond. The pup was allowed to recover on a warm heating pad. Prior to 

returning injected mice to their home cage, they were mixed with all of their littermates 

(injected and uninjected) and rubbed with bedding to prevent rejection by the dam.

Behavioral monitoring

To perform simultaneous mesoscopic and two-photon imaging in awake, behaving mice, we 

head-fixed the mice such that they could run freely on a cylindrical running wheel as 

described previously29. To assess the behavioral state of the mice, we performed 

videography of the face, including the whiskers and pupil, using a miniature CMOS camera 

(Flea3, FLIR) with a variable zoom lens (13VM20100AS, Tamron). The face was 

illuminated with an 850 nm NIR LED array. Face image acquisition was time-locked to the 

onset of the two-photon acquisition to ensure constant luminance across frames.

Quantification of imaging resolution—To calculate point spread functions (PSFs) for 

different methods of two-photon imaging, we embedded 0.2 μm yellow-green fluorescent 

microspheres (Invitrogen, F8848) in 1.5% agarose and took 45μm × 45μm × 50 μm z-stacks 

(11.4 × 11.4 × 2 pixels per μm) through either a double coverslip or a 2 mm square 

microprism. To compare with conventional upright two-photon imaging, we also performed 

measurements using a Zeiss W Plan Apochromat 20× 1.0 NA objective. We estimated PSFs 

by the lateral and axial full-width-at-half max of 20–25 well-separated bead images for each 

modality.

We also performed in vivo two-photon calcium imaging in approximately matched fields-of-

view through a double coverslip and through a 2 mm microprism. In two Slc17a7/TITL2-

GCaMP6s mice33, we implanted a double coverslip above left visual cortex and imaged 

layer 2/3 in awake mice during passive viewing of full-field drifting gratings (spatial 

frequency 0.04 cycles/degree, temporal frequency 0.5 cycles/second, 10 presentations of 12 

orientations, 2 second stimulus, 5 second inter-stimulus interval) presented to the right eye. 

Using the surface vasculature, we approximately matched the locations of imaging using the 

Zeiss water-immersion and Mitutoyo air objectives through the double coverslip. We then 

glued the microprism over the double coverslip and imaged the same region through the 

microprism using the Mitutoyo air objective. Signal-to-noise ratio was calculated as the 

mean amplitude of the response of each cell during stimulus presentation divided by the 

standard deviation of its fluorescence. Orientation selectivity index was calculated for 

visually responsive cells as 1 – circular variance53, with the response to each presentation of 

a drifting grating calculated as (F – F0) / F0, where F is the mean fluorescence during the 

two second grating presentation and F0 is the mean fluorescence during the two seconds 

preceding grating presentation. A cell was classified as visually responsive if its mean 

response to one or more drifting grating directions was greater than one standard deviation 

above its mean normalized fluorescence (ΔF/F).
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Analysis methods

Two-photon data pre-processing—Two-photon data was motion corrected for x-y 

displacements by rigid body transformation using the moco toolbox24 in ImageJ (NIH). For 

data acquired from VIP-cre/LSL-tdTomato mice, motion correction was performed on the 

tdTomato frames and the calculated offsets were applied to the GCaMP frames. Motion-

corrected frames were then top-hat filtered across time to compensate for whole frame 

changes in brightness and ROIs were manually selected and neuropil signal was removed 

from each ROI’s fluorescence signal as described elsewhere8, 19. ΔF/F was calculated for 

each cell using the 10th percentile as the baseline. In some cases of cells expressing both 

GCaMP6 and tdTomato, we observed bleaching in the green fluorescence intensity over a 

20-minute dual-imaging session. To compensate, we fit the baseline of each cell’s ΔF/F trace 

with a second-order exponential and removed the decay component. We use skewness as a 

proxy measure for cell activity, calculating skewness for each cell’s ΔF/F trace and 

excluding all cells with a value less than 0.5. For all experiments, we confirmed by visual 

inspection that this threshold results in a very low false positive rate for both pyramidal and 

VIP cells. To compare with alternative cellular data extraction methods, we used Suite2p25 

set to default parameters for non-rigid correction of motion artifacts and automatic 

extraction of ROIs. This approach yielded similar results (see Supplementary Fig. 2).

Mesoscopic data pre-processing—Mesoscopic data was rotated to align the anterior 

posterior axis with vertical and then a mask was super-imposed to remove pixels outside of 

cortex as well as over the superior sagittal sinus. Slow drifts in the baseline fluorescence of 

each pixel were removed using top-hat filtering across time (300 frame filter object). For 

data acquired without interleaved violet illuminated frames, ΔF/F for each pixel was 

calculated using the top-hat filtered traces and setting the baseline to the 10th percentile 

value for each pixel across time. To remove changes presumably attributable to motion or 

hemodynamic artifacts, we performed global signal regression, which zero-centers the data, 

and then spatially smoothed the data using a Gaussian filter (σ = 2). For data acquired with 

interleaved violet illuminated frames, we performed pixel-wise regression of the (top-hat 

filtered) violet illuminated fluorescence values from the blue illuminated fluorescence 

values. GCaMP fluorescence emissions under violet illumination are largely calcium-

independent 19. Therefore, fluctuations in fluorescence values should be largely attributable 

to (sub-pixel or z-axis) brain motion or hemodynamic artifacts. ΔF/F for each pixel was then 

calculated using the mean fluorescence value for each pixel across time and each frame was 

spatially smoothed using a Gaussian filter (σ = 2).

Behavioral state measures pre-processing—To calculate running speed, the angular 

position of the wheel (recorded at 5000 Hz) was down-sampled by a factor of 100 and 

converted to real displacement. To quantify whisking, we cropped the facial videos to only 

include the area corresponding to the whiskers and calculated motion energy as the frame-

to-frame change in intensity of each pixel. In addition to the displacement of the whiskers, 

this measure also reflects movements of the mouse’s nose.

Cell-centered network calculation—Cell-centered networks (CCNs) were calculated 

by taking the dot product of the matrix of ΔF/F values for all mesoscopic pixels over time 
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and each cell’s normalized spike probability vector. The single cell spike probability vectors 

were calculated using constrained-foopsi31 normalized by the integral of each cell’s spike 

probability over time. This method has two advantages – the first is to increase the weighting 

of the onset of calcium transients to more accurately approximate the timing of cell spiking 

and the second is to center all of the derived network map pixel values to the mean of their 

activity over time. This facilitates easy comparison of CCNs within animals. To determine 

which cortical areas are significantly activated or deactivated coincident with the activity of 

individual cells, we generated a null distribution of CCNs for each cell by randomly 

circularly shifting the timing of cell spike probability relative to pixel ΔF/F. This method is 

necessary due to the statistical dependence of successive timepoints in a cell’s spike 

probability vector. All pixels below the 5th percentile or above the 95th percentile of the 

distribution were classified as significantly deactivated or activated, respectively. For all 

significance maps shown, blue pixels are referred to as “deactivated” and yellow pixels are 

referred to as “activated.”

We compared our method to similar methods from other groups (calculating the correlation 

of cell activity and pixel activity15 or averaging the activity of time points when the cell is 

estimated to have fired an action potential16) and found that results were consistent across 

methods.

Parcellation of mesoscopic imaging data—For the anatomical parcellation, we used 

a parcellation based on the Allen Common Coordinate Framework version 3 (CCFv3). We 

combined some small parcels, such as the higher-order visual areas (8 defined areas 

combined into 2 parcels), to create a 16-node-per-hemisphere parcellation, which we aligned 

to each mouse using the superior sagittal sinus, transverse sinuses, inferior cerebral veins, 

and the stimulation evoked positions of barrel and auditory cortex. To compensate for 

differences in the angle of the skull between mice, we scaled the two hemispheres 

independently.

For the individualized functional parcellation, we applied a multi-graph k-way spectral 

clustering algorithm, as is described in greater detail elsewhere17. For each mouse, the 

parcellation was determined using mesoscopic-only imaging data collected prior to 

microprism implantation. In this way, we avoid overfitting of the activity within each 

session. To apply the parcellation to the data collected during subsequent dual-imaging 

trials, we calculated the transformation to register the dual-imaging acquisitions to the 

mesoscopic acquisition using an automated intensity-based registration and then applied the 

same transformation to the functional parcellation. For all animals, the transformation was 

rigid, except for one animal for which the parcellation was also linearly scaled. We set the 

number of parcels to 16 per hemisphere in order to match the anatomical parcellation. The 

functional parcellations of the two hemispheres were obtained separately, thus there is no 

guarantee that the parcels from the two hemispheres are symmetric. Moreover, differences in 

surface vasculature between mice had a notable impact on the parcellation results. In spite of 

this, the functional parcellation shows a large degree of symmetry across a range of number 

of parcels from N=2 to N = 20 per hemisphere.
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We quantified the alignment between the significance maps and the parcellations using an 

information theory measure called conditional entropy H(Y/X). Y represents the 

significance map and X represents the parcellation (anatomical or functional). If the 

significance map aligns with the parcellation, the information contained in X and Y are 

similar, thus the conditional entropy will be low. If Y is completely determined by X, then 

H(Y/X) = 0. On the contrary, if Y is independent of X, H(Y/X) will be high. Two 

conditional entropy values were calculated for each neuron (same significance map), one 

based on the functional parcellation and the other based on the anatomical parcellation.

Clustering of cell-centered networks—Using the significance map for each selected 

neuron, we calculated the fraction of pixels within each parcel that are significantly activated 

or deactivated, resulting in an activation index and a deactivation index for every parcel. We 

combined all of these activation and deactivation indices into a single feature vector for each 

neuron, summarizing the pattern of whole-cortex activation (and deactivation) coincident 

with its activity. To find the representative mesoscopic patterns of activation for all neurons, 

we clustered the feature vectors for all recorded neurons within an animal using the spectral 

clustering algorithm (same algorithm used to generate the functional parcellation). In this 

way, we divided the neurons into three groups (data in Fig. 3) or six groups (data in Fig. 5) 

based on their feature vectors. For visualization purposes, we combined the positive and 

negative feature vectors into a single vector for each neuron with values from −1 (all pixels 

significantly deactivated) to 1 (all pixels significantly activated), which we label the “activity 

index.”

Analysis of cellular response to whisking—We calculated the Pearson’s correlation 

of each cell’s ΔF/F trace with simultaneously acquired whisker motion energy traces. We 

determined the significance of this correlation by performing 1000 random circular shifts of 

the timing of whisking relative to cell activity and setting significance as less than the 1st 

percentile or greater than the 99th percentile.

Statistical tests—Statistical analyses were performed using Matlab (v2016b) and Prism 

(v7). Data are presented as mean with standard error of the mean, unless otherwise specified. 

All values of n are provided; no data were excluded. Comparisons between datasets were 

performed using two-sided Student’s t-tests, unless otherwise specified. P values are 

specified whenever possible but values less than 0.001 are reported as p < 0.001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Design of a dual-axis microscope for simultaneous mesoscopic and two-photon imaging.
a, Schematic overview of the dual-axis microscope. Left insets show the position of the two-

photon objective relative to an implanted glass microprism and titanium headpost. Upper 

right inset shows timing of the widefield LED illumination, widefield sCMOS detector, two-

photon excitation laser, and two-photon galvanometric Y-scan mirror. b, Example frames 

showing two-photon imaging (left) and mesoscopic imaging under blue (middle) and violet 

(right) illumination. Scale bar is 20 μm (left) and 2 mm (middle). c, Example cellular 

(orange) and mesoscopic (blue, violet) activity traces from the color-coded regions/cells 

shown in (b).

Barson et al. Page 20

Nat Methods. Author manuscript; available in PMC 2020 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Analysis of simultaneously acquired micro- and meso-scale calcium imaging data.
a, Top: Mesoscopic images of the same animal acquired before and after microprism 

implantation over right S1. Colored stars correspond to regions-of-interest for traces in (b). 

Scale bar is 2 mm. Bottom left, middle: Expanded images corresponding to colored boxes in 

top images. Colored arrowheads highlight matching blood vessels on the surface of the brain 

before and after microprism implantation. Scale bar is 1 mm. Bottom right: two-photon 

field-of-view corresponding to dashed box in middle image. Scale bar is 50 μm. b, 

Mesoscopic calcium imaging traces (ΔF/F) corresponding to regions-of-interest indicated in 

(a). Neuropil and cellular data are for two-photon calcium imaging. Prism, neuropil, and cell 

traces were acquired simultaneously, whereas pre-prism traces were acquired during a 

previous imaging session. R values between mesoscopic traces are Pearson’s correlations. c, 

Pearson’s correlations between bilateral S1 mesoscopic pixels pre- and post-prism 

implantation. p = 0.87, n = 6 sessions across 6 animals, paired two-tailed t test. d, Pearson’s 

correlations between mean fluorescence of mesoscopic pixels corresponding to the two-

photon field-of-view and mean fluorescence of all neuropil pixels (N), all cell pixels (C), or 

individual cell pixels in the two-photon field-of-view. P = 0.05, n = 7 trials across 6 animals, 

paired two-tailed t test. Box-and-whisker plots of cell correlations show median, 

interquartile, and 5th-95th percentile values.
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Fig. 3. Simultaneous imaging reveals functional connectivity of single neurons with large-scale 
cortical networks.
a, Example average two-photon field-of-view showing pyramidal neurons in a P17 mouse 

during simultaneous imaging. Colored circles highlight cells for panels (b-f). Scale bar is 20 

μm. b, Example mesoscopic ΔF/F images with simultaneous ΔF/F trace and deconvolved 

spike probability for cell 3 from (a). c, Schematized procedure for calculating cell-centered 

networks (CCNs) and significance maps. d, Left: example CCNs for the three cells indicated 

in (a). Middle left: corresponding significance maps. Middle right: significance maps 

overlaid with an anatomical parcellation based on the Allen CCFv3. Right: significance 

maps overlaid with a functional parcellation calculated for that mouse. e, Illustration of the 

functional parcellation with regions labelled based on correspondence with the anatomical 

parcellation. Plot below shows the conditional entropy of significance maps given the 

anatomical or functional parcellation for three mice. Lower values indicate better fit. Mean

±SEM: Allen CCFv3: H=0.54±0.01, 0.56±0.01, 0.53±0.02; functional: H=0.41±0.01, 

0.39±0.01, 0.42±0.02; p < 0.001, paired two-tailed t-test for each mouse, n = 238, 64, 41 

significance maps. f, Activity index calculated from all significance maps for a single animal 

using the functional parcellation. Higher values indicate a large number of pixels that are 

significantly co-active with each cell. Cells are clustered into three groups (see Methods). 

Arrows on the left indicate rows corresponding to the cells in (a). g, Averages of the three 

clusters in (f) with parcels colored by their activity index. h, Schematized two-photon field-

of-view, same as in (a), with pixels colored to indicate membership of individual cells in the 

three clusters shown in (g). Scale bar is 20 μm.
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Fig. 4. Systemic AAV9 produces robust GCaMP expression in the brain.
a, Schematic showing sites of viral injection in a neonatal mouse. b, Example sagittal 

section of a P21 mouse brain showing widespread expression of GCaMP6s across the cortex 

and other brain regions. Scale bar is 2 mm. c, Example coronal section. Scale bar is 2 mm. 

d, Confocal images showing GCaMP6s expression in mouse cortex at P14. Left: GCaMP6s, 

middle left: NeuN, middle right: DAPI, right: merge. Scale bar is 40 μm. Images are 

representative across 6 mice. e, Quantification of cortical neuron labeling at either P14 or 

P21 following AAV injection (black) or transgenic (Slc17a7-cre;CaMK2a-tTA;TITL-

GCaMP6f) expression (gray). Mean±SEM: P14 AAV: 48.3±2.4, P21 AAV: 46.4±9.1, P21 
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transgenic: 59.3±7.0; n = 3 mice per group. f, As in (d), but for thalamus. Images are 

representative across 6 mice. g, As in (e), but for thalamus. Mean±SEM: P14 AAV: 

65.3±5.5, P21 AAV: 31.5±10.3; n = 3 mice per group. h, Mean fluorescence images from 

simultaneously acquired mesoscopic (left, scale bar is 2 mm) and two-photon (right, scale 

bar is 20 μm) imaging following AAV9 sinus injection. i, Example simultaneously acquired 

mesoscopic ΔF/F images and cellular ΔF/F traces from cells indicated in (h).

Barson et al. Page 24

Nat Methods. Author manuscript; available in PMC 2020 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Cell-centered networks vary by neuronal class and sensitivity to arousal.
a, Schematic of experimental timeline and setup, including whisker tracking videography. 

Image shows example facial videography frame overlaid with whisker motion energy heat 

map. Warmer colors indicate higher mean pixel motion energy. b, Mean two-photon image 

from data acquired during dual-imaging showing GCaMP6s expression in tdTomato-positive 

(VIP-INs, examples circled in red) and -negative (presumptive pyramidal neurons, examples 

circled in white) cells. Scale bar is 20 μm. Image is representative of 15 fields-of-view 

across 4 mice. c, ΔF/F traces from VIP cells (red) and putative pyramidal cells (black) 

aligned with whisker motion energy (purple). Pearson’s correlation of ΔF/F with whisking is 

listed above each trace, with asterisks indicating significant values (p < 0.01, shuffle test, 

1000 shuffles). d, Relative numbers of VIP-INs and pyramidal cells that are positively-, 

negatively-, or not significantly (ns) correlated with whisking (p < 0.01, shuffle test). e, 

Activity index calculated from all significance maps for all cells recorded in a single animal. 

Cells are clustered into six groups. Columns to the right indicate cell type (red indicates 

VIP-IN, black indicates pyramidal cell) and whether cells are correlated with whisking 

(colors as in d). f, Averages of the six clusters in (e) with parcels colored by their activity 
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index. g, Fractional distribution of cells into each cluster, separated by type or modulation by 

whisking.
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Fig. 6. Behavioral state is linked to CCN reorganization for a subset of neurons.
a, Distribution of Pearson’s correlation coefficients for CCNs derived during whisking 

versus quiescence, for whisking-positive, whisking-negative, and non-modulated neurons. P 

< 0.001 for indicated comparisons, Kolmogorov-Smirnov test, n = 97, 48, and 247 neurons 

for each group, respectively. b, Example CCNs for two neurons from each group showing 

either weak (upper images) or strong (lower images) correlation across whisking versus 

quiescent states. Pearson’s correlation coefficients are indicated.
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