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Abstract

We propose that retinal-based phototrophy arose early in the evolution of life on Earth, pro-
foundly impacting the development of photosynthesis and creating implications for the search
for life beyond our planet. While the early evolutionary history of phototrophy is largely in the
realm of the unknown, the onset of oxygenic photosynthesis in primitive cyanobacteria sig-
nificantly altered the Earth’s atmosphere by contributing to the rise of oxygen ∼2.3 billion
years ago. However, photosynthetic chlorophyll and bacterio chlorophyll pigments lack appre-
ciable absorption at wavelengths about 500–600 nm, an energy-rich region of the solar spec-
trum. By contrast, simpler retinal-based light-harvesting systems such as the haloarchaeal
purple membrane protein bacteriorhodopsin show a strong well-defined peak of absorbance
centred at 568 nm, which is complementary to that of chlorophyll pigments. We propose a
scenario where simple retinal-based light-harvesting systems like that of the purple chromo-
protein bacteriorhodopsin, originally discovered in halophilic Archaea, may have dominated
prior to the development of photosynthesis. We explore this hypothesis, termed the ‘Purple
Earth,’ and discuss how retinal photopigments may serve as remote biosignatures for exo-
planet research.

Background

The major events sparking life on Earth on our 4.6-billion-year-old planet remain enigmatic,
although there is general agreement that first life likely arose about 3.7–4.1 billion years ago,
during the early Archean or late Hadean eons (Abramov and Mojzsis, 2009; Deamer, 2011;
Bell et al., 2015; Knoll, 2015). Evidence for the presence of isoprenoid compounds has been
reported in ancient sediments not long after, suggesting the early rise of Archaea (Hahn
and Haug, 1986; Ventura et al., 2007). The early rise of Archaea is also suggested by phylo-
genic studies, although lateral gene transfers have complicated their interpretation (Lange
et al., 2000; Kennedy et al., 2001; Brochier-Armanet et al., 2011; Hoshino and Gaucher,
2018). Stromatolites representing fossilized microbial mats have been estimated to be up to
3.7 billion-years-old (Walter et al., 1980; Vankranendonk et al., 2008; Nutman et al., 2016)
and radiocarbon dating has shown 12C enrichment from this early period, consistent with
the development of photosynthetic microorganisms (Ohtomo et al., 2014). There is wide
agreement that anoxygenic photosynthesis preceded oxygenic photosynthesis, though the
length of the interval for this transition is uncertain (Olson, 2006; Buick, 2008; Rothschild,
2008). Some geochemical proxy records suggest that the earliest oxygenic photosynthesizers
may have appeared by ∼2.9–3 Ga with geochemical sinks arresting oxygen’s accumulation
for a time (Nisbet et al., 2007; Planavsky et al., 2014). Ultimately, because of oxygenic photo-
synthesis and additional, poorly understood factors, the Earth experienced a Great Oxidation
Event about 2.3 billion years ago, which indelibly altered the prevailing chemical conditions of
our planet’s atmosphere (Kump, 2008; Lyons et al., 2014; Luo et al., 2016).

What were the important evolutionary events predating the rise of photosynthesis during
the early history of life on Earth? Although the events during this very early time are not clear,
in this paper, we discuss a speculative hypothesis for early evolution, called the ‘Purple Earth,’
which posits the rise of retinal pigment-based phototrophic life forms on Earth’s surface prior
to anoxygenic and oxygenic photosynthesis. In this view, retinal pigments may have competed
with and affected the evolution of photosynthetic pigments and indeed still complements them
today in Earth’s oceans and other environments. Early microorganisms employing retinal pig-
ments for generating metabolic energy may have dominated, as halophilic Archaea do today in
hypersaline environments, providing a scenario which may serve to guide our search for
detectable biosignatures on other worlds.
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Early evolution on Earth

During the first half of Earth’s history, stretching over 2 billion
years, dramatic and long-lasting evolutionary inventions occurred
through processes that we are only beginning to understand
(Fig. 1; Deamer, 2011; Knoll, 2015). They include prebiotic evolu-
tion and the development of cellularity, the foundation of the last
universal common ancestor (LUCA) and evolution of the univer-
sal genetic code (Fenchel, 2002). Other factors critical for the suc-
cess of early life were the evolution of transmembrane potential
and chemiosmotic coupling for creating and storing bioenergy,
pigments for the capture of light energy for phototrophy and
photosynthesis and respiratory chains for anaerobic and aerobic
respiration (Zannoni, 2004). In addition, a ‘frozen accident’ has
been proposed to establish the genetic code as a universal feature
in all extant life on Earth (Crick, 1968; Söll and RajBhandary,
2006). During the earliest period in evolutionary history, well-
defined phylogenetic lineages may not yet have been established;
instead extensive lateral gene transfers allowed for ready sharing
of new innovations until such time when the last common ances-
tor experienced competitive selective forces and diverged into the
three primary ‘Domains of Life’ (Woese, 2002).

Even prior to the evolution of the three Domains, the develop-
ment of a protocell must have been facilitated by the evolution of
a water-tight cell membrane as a permeability barrier, preventing
the free diffusion of chemicals into and out of cells, critical for
generating and storing cellular energy (Gunner et al., 2013).
The intracellular milieu provided a microenvironment in which
biomolecular functions, such as the biosynthesis of macromole-
cules and the genetic code could be established. Transmembrane
ion pumps acting as energy transduction and storage systems
must have been among the earliest inventions. In one scenario pro-
posed here, a simple light-harvesting system incorporating a retinal
pigment allowed light-driven proton pumping and led to a
proton-motive gradient. Based on its ubiquity, the transmembrane
electrochemical potential (i.e. proton-motive gradient) as well as
phosphoric anhydride bonds, such as in adenosine triphosphate
(ATP), became established and universal due to their kinetic stabil-
ity and bioenergetic capabilities in the aqueous environment.
Subsequently, retinal as well as a variety of more complex anaerobic
and oxygenic light-harvesting systems were invented and resulted
in the evolution of diverse phototrophic and photosynthetic
microorganisms.

Appearance of purple retinal pigments

The earliest life-forms probably arose in the early Archean or pos-
sibly late Hadean Eons, with some molecular clock estimates
putting life’s origin as early as 4 Ga (Hedges, 2002). While the
exact timing of appearance of retinal pigments is not clear, it
may have been a very early metabolic invention coincident with
or occurring soon after the development of cellular life. A retinal
chromophore bound to a single polypeptide allows a system for
phototrophy by forming a chromoprotein, like bacteriorhodopsin
in halophilic Archaea dominant in hypersaline environments and
proteorhodopsin in pelagic bacteria distributed throughout the
oceans (Béjà et al., 2001; Stoeckenius et al., 1979). The absorption
of light by this chromoprotein in the 490–600 nm region, a highly
energy-rich region of the solar spectrum (Fig. 2), is directly
coupled to pumping of protons and the resulting electrochemical
gradient chemiosmotically drives ATP synthesis. This type of
retinal-dependent phototrophy is considerably simpler albeit

less efficient than photosynthesis and it neither results in fixation
of carbon nor production of oxygen (Pinhassi et al., 2016).
Nevertheless, the widespread distribution of retinal chromopro-
teins in nature and their unique utilization of the energy-rich,
yellow-green region of the spectrum for production of cellular
energy suggest their early appearance on Earth.

Evidence for the existence of isoprenoid compounds that are
part of the biosynthetic pathway to retinal as well as archaeal lipids
in the early history of the Earth has also been provided (Hahn and
Haug, 1986; Ventura et al., 2007). It is likely that the evolutionary
invention of retinal pigments was coincident with other membrane
lipids, which together established the molecular basis for chemios-
motic coupling and phototrophic capabilities (Boucher and
Doolittle, 2000). Retinal is produced by a branch of the isoprenoid
metabolic pathway leading to carotenoids and branched-chain
lipids, which are found in cell membranes (Fig. 3). Retinal pig-
ments occur in both major prokaryotic phylogenetic groups,
Archaea and Bacteria, as well as in eukaryotes, where they are
essential components of the visual system (Ernst et al., 2014).
Among the pigments prevalent in nature, retinal has a simple
structure compared with many others that are used for photosyn-
thesis and respiration, e.g. chlorophyll and other porphyrins,
which may be produced by a branch of the tricarboxylic acid
(TCA) cycle, a pathway used by all aerobic organisms (Mailloux
et al., 2007). These findings, together with the central position
of retinal at the intersection of lipid metabolism and bioenergetics,
as well as its widespread distribution suggest that retinal played an
important role in the early evolution of life on Earth.

The light-driven proton pumping activity of retinal pigments
such as the chromoprotein bacteriorhodopsin in the membrane
of an early cell would have allowed the development of chemios-
motic coupling, linking of membrane potential to other trans-
membrane transport processes and ATP synthesis (Stoeckenius

Fig. 1. Evolutionary timeline and events. The arrow at the left roughly indicates time
from the formation of the Earth to the present, about 4.6 billion years. Geochemical
and fossil evidence indicate that life arose soon after the Earth formed, with many
key evolutionary inventions following: cellularity, chemiosmotic coupling, genetic
code, phototrophy, respiration and photosynthesis. Light-driven proton pumping
by retinal proteins are hypothesized to have evolved during this early stage in evolu-
tion. The last universal common ancestor (LUCA) predated the divergence of life into
three Domains: Archaea, Bacteria and Eukarya. The rise of anoxygenic and then oxy-
genic photosynthesis allowed the productivity of Earth’s microbial biosphere to
increase immensely (Des Marais, 2000). The Great Oxidation Event followed, about
2.3 billion years ago and led to the development of multicellularity and evolution
of higher life forms.
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et al., 1979). A retinal-based phototrophic system clearly repre-
sents one of the simplest bioenergetic mechanisms conceivable,
requiring only a single opsin inserted in a membrane vesicle
and membrane-potential coupled ATP synthase (Fig. 4). Indeed,
such a model phototrophic system, inside out, was established
in vitro in the 1970s using haloarchaeal bacteriorhodopsin and
mitochondrial ATP synthase in artificial lipid vesicles (Racker
and Stoeckenius, 1974). This seminal work was credited with
helping to establish the validity of Mitchell’s chemiosmotic coup-
ling hypothesis (Mitchell, 1961) and also forms the foundation of
one of the simplest and as proposed, earliest metabolic capabilities
in evolution, retinal-based phototrophy.

Early Earth environments would have lacked abundant free O2

in contrast to highly oxic modern environments and required the
production of retinal using a terminal oxidative step in a likely
strictly anaerobic environment. A number of potential mechan-
isms have been proposed for generating such an oxidative poten-
tial, such as pyrite-induced aqueous hydrogen peroxide and
hydroxide radical formation (Borda et al., 2001; Cohn et al.,
2006). Other anaerobic oxidation reactions are also known, such
as anaerobic oxidation of methane and ammonium and trans-
formation of isoprenoids by anaerobic microorganisms (Hallam
et al., 2004; Hylemon and Harder, 1998; Strous and Jetten, 2004).

Also notable is that modern halophilic Archaea are facultative,
rather than obligate aerobes and can respire nitrate and TMAO/
DMSO (Mancinelli and Hochstein, 1986; Müller and DasSarma,
2005). Indeed, Haloarchaea have been shown to engage in phototro-
phy in microaerobic or anoxic laboratory conditions (Sumper et al.,
1976; DasSarma et al., 2012; Laye et al., 2017). Additionally, a con-
siderable amount of evidence suggests that the genes for aerobic res-
piration were laterally transferred to halophilic Archaea (Kennedy
et al., 2001) and their ultimate origin may have been as an anaerobic
chemolithoautotrophic methanogen (Nelson-Sathi et al., 2012;
Aouad et al., 2018). Hence, haloarchaeal phototrophic metabolism
was probably developed well before genes for aerobic respiration
were acquired, possibly in Archaea inhabiting hypersaline environ-
ments (Stevenson et al., 2015). While these modern haloarchaeal
organisms have certainly changed over the eons from the original
retinal-based phototrophs, the available evidence illustrates the
potential capacity of Haloarchaea to have survived the anaerobic
conditions that prevailed on ancient Earth.

In modern halophilic Archaea, the retinal protein bacteriorho-
dopsin trimers form a hexagonal latticewhich can cover a large frac-
tion of the cell surface (Stoeckenius et al., 1979), imparting a bright
purple colour to some salt ponds where they dominate (Fig. 5). The
resulting purple membrane can be easily isolated using sucrose

Fig. 2. Phototrophic pigment absorption and stellar radiation as a function of wavelength. (a) Absorbance spectra of phototrophic pigments including chlorophyll
a, b, c, d and f (Chen et al., 2010; Chen and Blankenship, 2011; Jeffrey, 1963); bacteriochlorophyll a and b (Frigaard et al., 1996); and bacteriorhodopsin (BR; credit:
Victoria Laye and Priya DasSarma). Note the strong BR absorption where (bacterio)chlorophylls are least absorptive. (b) Normalized spectral energy distributions at
the top of the atmosphere for FGKM-type stars, including the Sun (G-type), from the Virtual Planetary Laboratory (Meadows et al., 2018; Segura et al., 2003).

Fig. 3. Biosynthetic pathways for photopigments.
Pathways leading to retinal (purple) and chlorophyll
(green) branching from central metabolism (red) are
shown. Glycolysis and the TCA cycle are depicted as
are structures of the simpler retinal chromophore
and the more complex chlorophyll a.
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density gradients and has been the subject of extensive structural
and functional analysis of transmembrane ion translocation
(Henderson and Unwin, 1975; Stoeckenius et al., 1979; Krebs and
Khorana, 1993; Hirai et al., 2009). Bacteriorhodopsin is a prototype
of integral membrane proteins with seven-transmembrane α-helical
segments where the retinal chromophore is bound by a Schiff’s base
linkage to the ϵ-amino group of a lysine residue (Bayley et al., 1981).
The photobiology of bacteriorhodopsin has been intensively stud-
ied, including characterization of the molecular dynamics and
role of retinal during photocycling (Hirai et al., 2009). The bacter-
iorhodopsin resting state is notable for the characteristic colour pur-
ple resulting from the strong absorption peak maximum at 568 nm
in the yellow-green region of the spectrum.

Spectral complementarity of photopigments

Comparison of the spectrum of bacteriorhodopsin with the major
photosynthetic pigments containing chlorophyll and bacterio-
chlorophylls shows them to be complementary, i.e. the purple

pigment absorption peaks in the region with a trough for the
green pigments (Fig. 2a). If the evolution of the simpler retinal
pigments predated chlorophyll pigments in the evolutionary his-
tory, as proposed, it is conceivable that they may have affected the
development of the spectral characteristics of evolving chlorophyll
pigments (Goldsworthy, 1987; DasSarma, 2006). This may have
been the consequence of filtering of light by retinal chromopro-
teins, resulting in a deficit of wavelengths of light centred around
the peak of bacteriorhodopsin absorption in the yellow-green
region of the spectrum. The resulting deficit, particularly in a
stratified community of microorganisms such as those observed
in stromatolites, may explain why chlorophylls and bacteriochlor-
ophylls evolved to absorb relatively little light in the yellow-green
energy-rich portion of the electromagnetic spectrum, instead
absorbing light primarily in the flanking blue and red regions
of the solar spectrum.

Modern stromatolites represent microbial communities with
on-going spectral competition and spectral tuning of chromopro-
teins (Croce and van Amerongen, 2014). Phototrophic and

Fig. 4. Bacteriorhodopsin and chemiosmotic
coupling. (a) Light-driven (hν) proton pumping
by bacteriorhodopsin (BR) results in ATP synthesis
by chemiosmotically coupling to the proton-
motive force. (b) Bacteriorhodopsin structure
showing seven-transmembrane α-helical seg-
ments (ribbons) and bound retinal chromophore
(purple wire structure), with proton pumping
(dashed arrow, H+).

Fig. 5. Purple microorganisms and purple membrane.
(a) Australian salt pond with a bloom of purple micro-
organisms (Courtesy Cheetham Salt Co.). (b) Sucrose
gradient separating Halobacterium sp. cell lysate,
including both red (upper) and purple (lower) pig-
ments (Credit: Victoria Laye and Priya DasSarma).
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photosynthetic microorganisms in microbial mats are commonly
stratified based on predictable photosystem characteristics as well
as oxygen requirements. In such communities, oxygenic cyano-
bacteria are found near the surface oxic zone while anaerobic
phototrophic and photosynthetic microbes are buried at lower
anoxic regions. If these modern stratified microbial communities
are like those present in ancient stromatolites, filtering of wave-
lengths of light would have been an important and pervasive
characteristic of microbial communities. Modern microbial com-
munities all over the world support planktonic retinal-containing
halophilic Archaea and Bacteria inhabiting brines above photo-
synthetic mats (Cohen and Rosenberg, 1989). If co-evolution of
retinal and chlorophyll photopigments occurred in deep evolu-
tionary history, stratification within such niches may have played
an important role in the evolution of spectral properties.

Importantly, modern rhodopsin-based phototrophy is present
throughout the oceanic and terrestrial biosphere, including non-
hypersaline conditions and environments that may have been
common in the distant geologic past. While originally discovered
in halophilic Archaea, microbial rhodopsins are common in
oceanic planktonic Bacteria (Kandori, 2015). For example,
Pelagibacter ubique is a widely distributed marine bacterium
that produces the retinal chromoprotein, proteorhodopsin, with
the ability to use its light-driven proton pumping activity for
energy generation. Moreover, the absorption characteristics of
proteorhodopsins show spectral variations in oceanic planktonic
bacteria isolated from different depths, consistent with spectral
tuning (Rangarajan et al., 2007). Rhodopsin-based phototrophy
in the ocean may be so widespread as to rival the total light cap-
ture of photosynthesizers (Brown, 2014; Gómez-Consarnau et al.,
2017). Furthermore, metagenomic analyses have recently uncov-
ered evidence for the widespread presence of rhodopsins in the
terrestrial biosphere including in the phyllosphere (leaf surfaces)
and even edaphic systems and hypolithic communities in the
Antarctic Dry Valley (Atamna-Ismaeel et al., 2012; Guerrero
et al., 2017). These findings are consistent with the notion that
microorganisms evolve specialized photosystems that make use
of any available spectral region with sufficient energy. The wide-
spread presence of microbial rhodopsins in modern environ-
ments, along with inefficient chlorophyll absorption in the
middle of the visible spectrum where rhodopsin light capture is
most efficient, suggests a co-evolution that is consistent with the
earlier appearance of retinal-based phototrophy (PBS Eons 2018).

Rise of photosynthesis

The rise of anaerobic and oxygenic photosynthesis and retreat of
retinal-based life must have occurred in discrete stages, which are
not fully understood. For example, the time of appearance of a
wide diversity of bacteria with anoxygenic photosynthetic systems
is not precisely known (Jeffrey, 1963; Frigaard et al., 1996;
Rothschild, 2008; Chen et al., 2010; Chen and Blankenship,
2011; Croce and van Amerongen, 2014). The purple and green
bacteria possessing bacteriochlorophyll may have been an early
evolutionary development with photosynthetic reaction centres
evolving from electron transport chain components such as cyto-
chromes (Williamson et al., 2011; Mazor et al., 2012).
Alternatively, a simplified photosystem may have evolved previ-
ously, like those in some heliobacteria (Xiong et al., 1998). In
either case, evolution likely first led to the evolution of anoxygenic
photosynthesis with the development of more complex oxygenic
photosynthetic membrane systems like those in modern

cyanobacteria, including two photosynthetic reaction centres
and a host of membrane components, developing later.

With multiple evolutionary steps leading to progressively
higher efficiency chlorophyll pigments along with the invention
of accessory pigments, photosynthetic microorganisms out-
competed retinal-based phototrophic microorganisms in most
environments. Evolution of anoxygenic photosynthesizers was
followed by oxygenic photosynthesizing cyanobacteria and ultim-
ately eukaryotic algae and plants. Interestingly, a distinct hypoth-
esis that purple sulphur bacteria may have dominated euxinic
oceans during the mid-Proterozoic eon has also been proposed,
resulting in a second Purple Earth (Brocks et al., 2005; Sanromá
et al., 2014), which would have been long after the retreat of
retinal-based life dominating the first Purple Earth to ecological
niches resembling those of today. The development of eukaryotic
algae and complex plants and their spread throughout the terres-
trial environment allowed the evolution of land animals and
ultimately intelligent life (Catling et al., 2005; Reinhard et al.,
2016). At every step of this progression, it is not clear to what
degree evolutionary contingency has played a role and which
developments would be inevitable given sufficient time and the
appropriate environmental conditions. As a result, the capacity
for evolution to generate diverse phototrophic and photosynthetic
systems on Earth, even those that do not dominate today, may
have considerable implications for the development of novel pig-
ments on other habitable worlds (Johnson et al., 2013).

Retinal-based phototrophy as an astronomical biosignature

Regardless of the evolutionary sequence of events leading to ret-
inal phototrophy on Earth, analog photopigments may have
arisen independently in other habitable environments in the uni-
verse. For example, exoplanets within the habitable zones of most
stars would receive ample photon fluxes to power significant
levels of (bacterio)chlorophyll or rhodopsin analog phototrophy
with some differences in total capacity based on the photospheric
temperature and consequent spectral energy distribution of those
stars (Kiang et al., 2007b; 2007a; Komatsu et al., 2015; Ritchie
et al., 2018). One exception may be the dimmest and reddest
M-stars, which produce the least flux in the 400–700 nm wave-
length range (Fig. 2b). For these stellar systems, total global prod-
uctivity may be photon-limited rather than reductant or nutrient
limited as it is on Earth (Lehmer et al., 2018). However, FGK stel-
lar systems are the more likely targets for future space-based
direct-imaging missions capable of detecting astronomical bio-
signatures. This is due to the wider angular separation of star
and planet in the habitable zone (Stark et al., 2015; 2014) and
the productivity of biospheres on planets orbiting these stars
would not be photon-limited. It is, therefore, worthwhile to exam-
ine what the remote signatures of rhodopsin-like phototrophy
would be on exoplanets and how they would compare to those
produced by analogs to chlorophyll-based photosynthesis.

The most commonly referenced surface signature of life is the
vegetation red edge (VRE), the steep increase in reflectivity of
vegetation (primarily green vascular plants) at ∼700 nm (Gates
et al., 1965; Knipling, 1970). This increase is due to the contrast
between the absorption of chlorophyll at red wavelengths and
its high albedo at infrared wavelengths due to intracellular scatter-
ing. The VRE effect is commonly used to map vegetation by
employing broadband observations from Earth-observing satel-
lites (Huete et al., 1994; Tucker et al., 2005). While the VRE
has been extensively examined as a possible exoplanet
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biosignature (Sagan et al., 1993; Arnold et al., 2002; Des Marais
et al., 2002; Seager et al., 2005; Brandt and Spiegel, 2014), its
applicability is limited to those planets that have, like Earth,
evolved chlorophyll-analog (i.e., red-absorbing, infrared reflect-
ing) powered vegetation with significant continental surface cov-
ering fractions.

Even on Earth, green vascular planets have only existed for just
the last ∼10% of the planet’s history, about 470 million years out
of 4.6-billion years (Kenrick and Crane, 1997). In order to address
the limited time of presence of the VRE, astrobiologists interested
in remote biosignatures have begun to consider and catalog surface
reflectance signatures from a diverse array of known pigmented
organisms including oxygenic and anoxygenic photosynthesizers,
rhodopsin-based phototrophs and non-photosynthetic microbes
that use pigments as a UV screen or antioxidant, or for other pur-
poses (DasSarma, 2006; Kiang et al., 2007b, 2007a; Cockell, 2014;
Hegde et al., 2015; Poch et al., 2017; Schwieterman, 2018;
Schwieterman et al., 2018; 2015). The possible existence of a
Purple Earth extends and expands the possible biological history
of a planet when alternate biosignatures may be detectable, and

it also enhances the number of possible evolutionary trajectories
for which surface biosignatures may be found.

The photochemical properties of known prokaryotic rhodop-
sins on Earth are particularly worthy of study as a potential
remote biosignature because of their capacity to generate chemical
energy using an energy-rich portion of the electromagnetic spec-
trum. The most consequential difference between rhodopsin
and chlorophyll-based phototrophy is the wavelength of max-
imum absorption. While the absorption peak of chlorophyll a is
near 700 nm, bacteriorhodopsin absorption peaks near 570 nm.
However, the expression of this signal would differ depending
on whether the phototrophic organisms were on dry land or sus-
pended in aquatic environments.

A true bacteriorhodopsin-based analog to terrestrial vegetation
would possess a ‘green-edge’ comparable with the vegetation
‘red-edge.’ Fig. 6a illustrates the differences between the reflective
spectra of a red-edge producing conifer forest (Baldridge et al.,
2009) and the green-edge producing Haloarchaea (Schwieterman
et al., 2015). While the green colour of the conifer forest results
from inefficient absorption in a broad wavelength region centred

Fig. 6. Surface signatures of retinal and chlorophyll-
based phototrophy. (a) Reflectance spectrum of a conifer
forest (Baldridge et al., 2009) and a culture of the photo-
trophic archaeon Halobacterium sp. (Schwieterman
et al., 2015). (b) Environmental spectrum of a halophile-
dominated saltern pond in San Francisco Bay (Dalton
et al., 2009). (c) Simulated spectra of planets consisting
of 100% sterile ocean, conifer forest, or a halophile-
dominated saltern pond under an Earth-like atmosphere
generated with a radiative transfer model (Schwieterman
et al., 2015).
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near 550 nm, the pink colour of halophiles results from their high
reflectivity at orange and red wavelengths due both to bacteriorho-
dopsin and carotenoid pigments such as bacterioruberins
(Kushwaha and Kates, 1979; Oren et al., 1992; Oren and
Dubinsky, 1994). Green plants are similarly bright in the infrared
due to their high reflectivity on the non-visible, long-wavelength
side of the VRE. Notably, a wide variety of other organisms
have spectral ‘edges’ at various visible wavelengths. Hegde et al.
(2015) conducted an extensive series of reflectance measurements
of plated cultures of extremophiles from 350 to 2500 nm showing
a distribution of ‘edge’ features for various phototrophic and non-
phototrophic species throughout the UV-visible spectrum. The
radiotolerant species Deinococcus radiodurans also possess a
‘green-edge’ in plated cultures due to its primary pigment deinox-
anthin (Cockell, 2014; Schwieterman et al., 2015), which likely
functions as an antioxidant. Depending on the environmental
context, some of these pigments may also serve as alternative bio-
signatures. Rhodopsin-based (and other) phototrophs may have
both biological and detectability advantage, however, in that they
can harvest light energy for growth and accumulate at the surface
of aquatic environments. Consequently, it is also important to
consider the spectral differences between plated and suspended
cultures, which would map to different planetary environments
(e.g., land versus ocean).

The spectral signature of pigmented organisms like Haloarchea
suspended in a lake or ocean would also be affected by the low
reflectivity and strong absorption properties of aquatic environ-
ments. For example, halophilic communities present in saltern
ponds possess a peak in brightness near ∼680 nm due to increas-
ing reflectivity of bacteriorhodopsin and carotenoid pigments from
the green to the red combined with strong water absorption at
the reddest wavelengths (Fig. 6b; also see Dalton et al., (2009)).
Importantly, the brightness of halophilic pigments at orange and
red wavelengths confers a detectability advantage over chloro-
phyll-containing cyanobacteria and algae suspended in water,
because chlorophyll’s high infrared reflectivity is counteracted by
water vapour absorption, while chlorophyll is most absorptive at
wavelengths where water is relatively transparent.

The remote signatures of these phototrophic organisms would
further change from the spectral impact (i.e., absorption and scat-
tering) of the overlying atmosphere (Fig. 6c). The spectral signa-
tures of halophilic organisms are again somewhat favoured in this
case because of the impact of overlying water vapour absorption
nearly coincident with the VRE. Of course, the detectability of
these signatures on an exoplanet will also be strongly sensitive to
the land covering fraction, cell densities if suspended in water or
brine and cloud cover effects (Sanromá et al., 2014; Schwieterman
et al., 2015). The detectability potential of retinal photopigments
and other halophilic pigment-analogs should be considered when
anticipating the variety of potential surface biosignatures of
exoplanets.

The capacity to detect surface biosignatures is an ongoing con-
sideration in the design mandate of large, space-based telescopes
(Fujii et al., 2018; Schwieterman et al., 2018) such as the con-
ceived HabEx and LUVOIR/HDST missions (Dalcanton et al.,
2015; Mennesson et al., 2016; Rauscher et al., 2016; Bolcar
et al., 2017). Direct imaging spectra and spectrophotometry will
allow characterization of the surfaces of terrestrial planets in the
habitable zone, producing constraints on surface types, including
surface biosignatures, providing the cloud covering fraction is suf-
ficiently low (Sanromá et al., 2014, 2013). The detectability poten-
tial of retinal photopigments and halophile-analogs suggests

wavelengths shortward of the traditional VRE (λ< 700 nm) will
be important to observe and analyse for ‘edge’ features suggestive
of diverse phototrophic pigments and should be considered in the
search for life outside the solar system.

Concluding remarks

Although of enormous scientific interest, our understanding of the
early evolutionary history of phototrophic life on Earth has
remained limited. We propose here that the biochemical simplicity
of retinal-based phototrophy, the spectral complementarity of bac-
teriorhodopsin pigments with chlorophylls and the newly uncov-
ered widespread diversity of microbial rhodopsins throughout
aquatic and terrestrial ecosystems are suggestive of the fundamental
role retinal may have played in the early history of life on Earth. We
posit here that domination by retinal-based phototrophs in the early
history of life may have created the first ‘Purple Earth’ that at some
point gave way to modern photosynthesizers before the rise of
atmospheric oxygen. If correct, this early phototrophic metabolism
would have greatly shaped the evolution of photosynthesis and
indeed much of life on Earth. In fact, we know it continues to
play a significant role in many environments today.

To test this Purple Earth hypothesis, future work should fur-
ther explore natural communities of retinal-based phototrophs
in diverse environments (e.g. arid, high altitude and polar loca-
tions). Additional studies are needed to explore the diversity
and light capture capacity of retinal-based phototrophy in mod-
ern environments as they may continue to reveal unexpected
roles and niches for this metabolism and inform its evolutionary
origin. Additionally, future genomic analyses should be designed
to consider the importance of the timing of the introduction of
aerobic respiration in Haloarchaea in relation to the development
of phototrophy during their metamorphosis from anaerobic che-
molithoautotrophic methanogens to aerobic photoheterotrophs.

Considering an even broader view, the quest to understand the
origin of life and early evolutionary events on our planet has gained
increasing urgency with the discovery of thousands of new extra-
solar planets, many of which are within the habitable zones of
their host stars. Consequently, wemay soon have the ability to char-
acterize other potentially living worlds and finally answer the
age-old question ‘Are we alone in the universe?’ To realize this
goal, however, we need to improve our understanding of major
events sparking life on Earth and determine what biosignatures
early life produced, especially those which may be detectable by
remote sensing.

Simple retinal-based light-harvesting systems like that of the
purple chromoprotein bacteriorhodopsin, may potentially serve
as remote biosignatures for exoplanet research through the search
for brightness peaks about 680 nm like that seen in hypersaline
environments on Earth or by spectral ‘edges’ at green-yellow
wavelengths (∼550 nm) analogous to the traditional vegetation
‘red-edge’ seen at 700 nm. These features are within the wave-
length sensitivity window of planned next-generation space-based
telescopes capable of directly imaging exoplanets and should be
considered in the search for life in the universe.
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