
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Data-driven Approaches And Systems for The Reliability of Mobile Network Services

Permalink
https://escholarship.org/uc/item/35c230tt

Author
Shi, Xiaofeng

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35c230tt
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

DATA-DRIVEN APPROACHES AND SYSTEMS FOR THE
RELIABILITY OF MOBILE NETWORK SERVICES

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Xiaofeng Shi

June 2022

The Dissertation of Xiaofeng Shi
is approved:

Professor Chen Qian, Chair

Professor Roberto Manduchi

Jia Wang, Ph.D.

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Xiaofeng Shi

2022

Contents

List of Figures vi

List of Tables viii

Abstract ix

Acknowledgments xi

1 Introduction 1
1.1 Motivation. 1
1.2 Contributions and Thesis Outline . 3

1.2.1 Part I. Towards Automatic Reactive Troubleshooting and Issue
Root Cause Identification in Cellular Services. 3

1.2.2 Part II. On-device Certificate Revocation Checking for Peer-to-
Peer Mobile Network Applications. 6

1.2.3 Conclusion and Lessons Learned 9
1.2.4 Chapter 8 . 9

I Towards Automatic Reactive Troubleshooting and Issue Root
Cause Identification in Cellular Services. 10

2 Service Issue Troubleshooting in Cellular Networks 11
2.1 Background. 11

2.1.1 Cellular Networks . 11
2.1.2 The Troubleshooting Workflow in Cellular Services 14

2.2 Problem Statement. 17
2.2.1 Key Challenges in Cellular Service Troubleshooting 17
2.2.2 Design Goal: Learning-based Troubleshooting 19
2.2.3 Related Works . 20

2.3 Datasets. 22

iii

3 NeTExp: A Data-Driven Method for Automatic Troubleshooting In-
dividual Customer Issues in Cellular Networks 24
3.1 System Overview. 24
3.2 Case Illustration . 26
3.3 The Cell-level Model Design. 28

3.3.1 Feature Modeling . 28
3.3.2 The Alternative Learning Target 31
3.3.3 Model Design and Training . 34

3.4 The UE-level Model Design. 37
3.5 Evaluation . 40

3.5.1 Datasets . 40
3.5.2 An Example Illustration . 43
3.5.3 Evaluation for The Cell-level Model 46
3.5.4 Evaluation of The UE-level Model 49
3.5.5 Summary of The Evaluation Results 53

3.6 Case Study . 53
3.7 Discussion . 60

3.7.1 Model Updating for Unseen Scenarios 60
3.7.2 Fine-grained Root Cause Identification 61
3.7.3 The “False Positive” Instances 62

3.8 Conclusion . 62

4 NeTExp with PU-learning and Trial System Implementation 63
4.1 NeTExp with PU-learning . 64

4.1.1 Problem Description. 64
4.1.2 Learning from Positive and Unlabeled Examples. 65
4.1.3 Enhanced NeTExp Model Design with PU-learning. 69

4.2 Trial System Design. 80
4.2.1 Overview . 80
4.2.2 The Cell-level Module. 82
4.2.3 The UE-level Module. 85

4.3 Evaluation. 88
4.3.1 Performance of NeTExp with PU-learning. 88
4.3.2 System Efficiency. 96

4.4 Conclusion. 98

II On-device Certificate Revocation Checking for Peer-to-Peer Mo-
bile Network Applications. 100

5 Authentication and Certificate Revocation Checking in Mobile Net-
works. 101
5.1 PKI-based Authentication in IoT Ecosystems. 101
5.2 Related works. 104

5.2.1 Certificate Revocation Checking Approaches 104

iv

5.2.2 Efficient Data Structures for Membership Queries 106
5.3 A Novel Dynamic Asymmetric Set Separator. 106

5.3.1 Preliminaries . 108
5.3.2 DASS Design for Optimized Memory Cost. 114

6 TinyCR: A On-Device Certificate Revocation Checking Protocol for
IoT 118
6.1 Overview of TinyCR. 118

6.1.1 System Model . 118
6.1.2 Threat Model . 120

6.2 TinyCR Design. 122
6.2.1 Updates of Cuckoo Filter and Othello 122
6.2.2 Updating DASS on the Tracker 123
6.2.3 Handling Inconsistency of Updating 125
6.2.4 Updates on Devices . 127
6.2.5 DASS Version Control . 129

6.3 Implementation and Evaluation . 130
6.3.1 System Implementation . 130
6.3.2 Metrics and Dataset . 131
6.3.3 Memory Cost . 132
6.3.4 Updating Efficiency . 133
6.3.5 Query . 140
6.3.6 Bandwidth vs. Dynamics . 143
6.3.7 Mitigate Rebuilds . 145

6.4 Discussion. 147
6.4.1 Application Scenarios for TinyCR 147
6.4.2 Security Analysis . 149

6.5 Conclusion. 152

7 Summary. 153

8 Lessons Learned for Handling Large-Scale Networking Data 156

Bibliography 160

v

List of Figures

2.1 The 4G LTE cellular network architecture. 12
2.2 A summary of the reactive troubleshooting process for cellular service

problems. 16
2.3 Example scenarios of network issues. 18

3.1 Overview of NeTExp . 26
3.2 Top: the cell level RRC KPIs. Bottom: The UE-level service status of a

customer in the area. 28
3.3 The graph modeling of the cell sites. 29
3.4 Top: the distribution of the reported service issues. Bottom: The trans-

ferred learning target. 33
3.5 Model design of the cell-Level model. 34
3.6 Top: The raw and the expected RRC KPIs (scaled). Bottom: The nor-

malized RRC features. 36
3.7 Design of the UE-Level model. 38
3.8 Normalized RRC data examples. 42
3.9 CCE Utilization Ratio data examples. 42
3.10 Cell-level model outputs (top) and UE-level profile examples (bottom). . 44
3.11 The MAE and cost with different ks. 47
3.12 The MAE and cost with different ws. 47
3.13 Root cause classification. 51
3.14 Overall RoC curve. 51
3.15 RoC - easy cases. 53
3.16 RoC - hard cases. 53
3.17 Accuracy for different issue types. 54
3.18 ROC-AUC for different issue types. 54
3.19 Manual: heat map and issue positions. 55
3.20 NeTExp : heat map and issue positions. 55
3.21 Recall of cell-level issue detection. 56
3.22 Example case A. 57
3.23 Example case B. 58
3.24 Example case C. 59

vi

4.1 A summary of the different types of tickets in the ticket datasets. 66
4.2 The teacher-student PU-learning framework. 70
4.3 The self-paced learning steps. 77
4.4 The NeTExp trial system design overview. 81
4.5 The cell-level module system design. 83
4.6 The UE-level module system design. 86
4.7 The training process of the warm-up stage. 89
4.8 The training process of the PU-loss pretraining stage. 90
4.9 The training process of the self-paced learning stage. 90
4.10 The LP-recall, LPP-rate, and LPN-rate of the teacher model. 93
4.11 The ROC-AUC, Accuracy, and F1-Score of the student model. 94
4.12 The accuracy scores for Ntrust, Ptrust, and Plabeled. 95
4.13 The top 18 features with maximum information gains in the XGBoost

model. 95

5.1 A (2,4)-Cuckoo Filter example. 110
5.2 The Othello data structure for binary set query. 111
5.3 DASS Construction . 115
5.4 DASS Query . 115

6.1 System model of TinyCR . 120
6.2 TN-indexing table and FP-indexing table 126
6.3 Structure of a delta message . 128
6.4 Multi-way version control protocol. 129
6.5 (a) to (c): Amortized memory cost when r = |N |/|P | is 4, 16, 128 re-

spectively. (d): Memory cost for 226 keys with respect to r. 132
6.6 ∆-msg size: (a) Insert a revoked certificate. (b) Insert a legitimate cer-

tificate. (c) Unrevoke a revoked certificate. (d) Revoked a certificate. . . 137
6.7 The average, and the 90th, 99th, 99.9th percentiles of the generated

Delta-Msg sizes for long-term insertion (a) and value flipping (b). 140
6.8 Query latency on Raspberry Pi 3. 141
6.9 Query throughput on Raspberry Pi 3. (a) Query revoked certificates,

r = 100. (b) Query legitimate certificates, r = 100. (c) Query revoked
certificates, n = 226. (d) Query legitimate certificates, n = 226. 142

6.10 Total bandwidth cost for insertion. 143
6.11 Total bandwidth cost for revocation. 144
6.12 How many updates can be applied before the first rebuild. 146

vii

List of Tables

2.1 Summary of datasets. 23

4.1 The average, 90th and 95th percentiles of the time costs (in seconds) of
NeTExp components. 97

5.1 Comparison of certificate revocation verification protocols with 100 mil-
lion certificates, assuming 1% revocation rate and 0.02% new revocations
per day. 107

6.1 On-device memory cost and average updating latency on the tracker for
different set sizes. The revocation ratio for synthetic data is 1%. 135

viii

Abstract

Data-driven Approaches And Systems for The Reliability of Mobile Network

Services

by

Xiaofeng Shi

A fundamental goal of mobile network service providers is to guarantee the networking

services’ reliability, which includes two major goals: reliable network access and security

of the communication channels. As today’s mobile network is getting larger and more

complex, traditional protocols and systems for satisfying the above goals, which are

mainly based on rules and experiences, are no longer scalable or effective. On the other

hand, together with the growth of the mobile network scale is the growth of the mobile

service data. The rich context and knowledge behind the large-scale network service data

can provide us with new opportunities to understand the network states and support

the design of reliable network systems. Therefore, this thesis research mainly focuses

on exploring and designing data-driven approaches to enhance mobile network service

reachability and security. Specifically, this paper focuses on two challenging problems

faced by the mobile service providers regarding network service reliability.

The first problem is how to automatically and efficiently recognize the root

cause of a network accessibility problem experienced by the end-device users in cellular

network services. Specifically, we design and implement an automatic troubleshooting

system named NeTExp . NeTExp learns to identify the root causes of a user-side

service problem through deep neural networks (DNNs) that are capable of extracting

ix

the complex spatial-temporal features of the massive cellular network log data. It also

uses advanced weakly-supervised learning methods for training the models and thus

overcomes the data limitation challenges in practice. The system is trained and validated

using an extensive period of network and customer care data from a major US cellular

service provider.

The second problem is how to enable low-cost and fast peer-to-peer authenti-

cation among a large mobile network ecosystem, such that secure mobile channels can

easily be guaranteed for any pair of devices in the network. The critical challenge is that

many mobile devices, especially IoT devices, do not have the capability to maintain the

certificate revocation status for a vast device universe during the authentication pro-

cess. To solve this problem, we design a fast on-device authentication prototype called

TinyCR. TinyCR utilizes super-efficient data structures to maintain the certificate revo-

cation status on each device locally. It also enables fast synchronization in response to

any changes in the certificate universe. Through evaluation, we show TinyCR outper-

forms other state-of-the-art certificate revocation checking protocols regarding memory

cost, checking efficiency, and synchronization cost. Those new features of TinyCR can

well enhance the peer-to-peer channel security in a large mobile network.

x

Acknowledgments

I sincerely thank the tremendous support from my research labs, my thesis reading

committee, my research work collaborators, and my family throughout my phd study

and the writing of this dissertation.

First of all I am extremely grateful to my faculty advisor, Prof. Chen Qian,

for his patient advising and continuous supports throughout my four-year phd study

at UCSC. He is not only a great supervisor on my phd academic research, but also a

mentor for my lifelong career. Under his supervision, I learned how to become a mature

and responsible researcher and how to wisely make plans for my future career.

Then I want to express my special thank to Dr. Jia Wang, who was my project

supervisor while I was collaborating with AT& T Labs. I would like to thank her for

giving me the opportunities to learn about the large-scale real-world operating networks

and the practical research problems concerned by the nationwide network operators. I

also want to thank her for the tremendous support and insightful advice while solving

those challenging problems.

Next, I want to thank every thesis reading committee member and phd quali-

fying exam member, Prof. Chen Qian, Prof. Roberto Manduchi, Prof. Yang Liu, and

Dr. Jia Wang, for their valuable advice on how to improve my phd thesis work and

present my work in the defense. I also want to acknowledge all my lab mates, research

and teaching collaborators, and my friends for their great support and assistance in my

research projects, teaching activities, and daily lives.

Finally, I would like to thank my parents for their great support while I was

xi

studying and living aboard, and my wife Minmei for her continuous company and help

during the whole period of my phd study.

xii

Chapter 1

Introduction

1.1 Motivation.

A fundamental goal of mobile network service providers is to provide reliable

networking services to their mobile device users. The reliability includes two major

goals: reliable network access and security of the communication channels. For exam-

ple, if a mobile device experiences any service accessibility issues, the mobile service

provider should effectively and timely troubleshoot the problem. In addition, the ser-

vice provider should provide security mechanisms through which the end-to-end chan-

nels between the communicating parties cannot be attacked. Traditional protocols and

systems for satisfying the above goads are mainly based on rules, human experiences,

and manual efforts. However, today’s mobile network is getting more extensive and

complex. Hundreds of millions of mobile devices and network devices are connected in

a mobile ecosystem with heterogeneous network functions, protocols, and systems. As

a result, many traditional designs are no longer scalable or effective in today’s giant

1

mobile networks.

Together with the growth of the mobile network scale is the growth of the

mobile service data. The rich context and knowledge behind the large-scale network

service data can provide us new opportunities to understand the network states, design

the networking systems with automation, and enhance the security of the networks.

Meanwhile, how to abstract the massive data for efficient querying is also critical for

time-sensitive services that support network reliability, such as real-time troubleshooting

and one-shot device authentication.

Therefore, this thesis research explores and designs the methods that use data-

driven approaches to improve the robustness and security of state-of-the-practice large-

scale mobile networks. We stand at the perspective of the mobile service providers

who collect and maintain the network status data and provide their users with the

necessary system supports for service reliability. Specifically, this thesis focuses on two

key challenges regarding mobile network reliability:

1. How to efficiently troubleshoot service accessibility problems in commercial cellu-

lar networks?

2. How to guarantee peer-to-peer authenticity in a scalable way for millions to billions

mobile user population?

In order to solve the above two challenges, we use and design data abstraction, analysis,

and learning methods upon the huge datasets maintained by the service providers and

implement automatic systems for practical networks.

2

1.2 Contributions and Thesis Outline

1.2.1 Part I. Towards Automatic Reactive Troubleshooting and Issue

Root Cause Identification in Cellular Services.

Summary of Part I

An essential task of cellular carriers is providing reliable and high-performance

cellular service access for end-device users. In order to guarantee the reliability of access

and improve users’ experience, the carriers need to put tremendous effort into resolv-

ing the service outages or performance degradation issues experienced by customers.

In practice, the issues could be attributed to a variety of reasons, such as network

outages/maintenance, provisioning errors, mobile phone hardware/software bugs, and

external events. Many automated functions have been deployed in the current operating

cellular networks to monitor the network status and proactively detect the on-going or

potential network failures (such as outages or anomalies). Those systems can effectively

detect major network issues that would affect a large population of users in the areas.

Despite the effectiveness of those proactive issue detection system, not all ser-

vice issues experienced by the individual customers can be properly solved through

the proactive systems. There could still be many issues that are case-specific, such as

the problems from the specific user equipment, provisioning issues, and some isolated

network problems that closely impact the quality of the specific user’s experience. In

addition, even if the network issue has been known by the provider, the provider also

needs to respond to customers about those known issues and resolve their concerns. As

a complementary method, upon experiencing those cellular service degradation issues,

3

one traditional way for the customer to inquire about and resolve an issue is to ac-

tively contact the customer care services and report the experienced issues. Then the

service provider can respond accordingly regarding known network issues, or reactively

investigate the root causes and help customers resolve the problems as timely as they

can.

In order to improve the efficiency and accuracy of the reactive troubleshoot-

ing, we explore novel automatic troubleshooting methods for cellular services by uti-

lizing the tremendous network log data owned by the service providers. We pro-

pose a generic and comprehensive data-driven troubleshooting system called NeTExp

(Network Troubleshooting Expert) for recognizing the network-related issues in the

online reactive troubleshooting phase. NeTExp can automatically answer the following

two questions in the customer interaction phase: 1) are there any network anomalies

that may have impacted users in particular serving cells; 2) whether the root cause of a

service issue reported by the customer is a network problem. Note that some network

anomalies may only impact a subset of users in the area.

Our contributions are summarized as follows:

1. We propose a generic framework for automatic service troubleshooting in cellular

networks that significantly improves network problem identification and reduces

troubleshooting costs.

2. We make the first attempt to jointly model the complex correlation of the network

conditions among the neighboring cell sites, as well as their impacts on the user

equipment (UE) of the areas using customized machine learning tools.

4

3. We evaluate the system using massive network log and care data from a large US

cellular provider. We also apply the model to study a real network problem in

2020. The results demonstrate the effectiveness of the system.

4. We further explore the data imbalance problem in the customer care data received

by the cellular providers. We apply state-of-the-art weakly supervised learning

strategies to enhance the system performance. The enhanced model also produces

interpretable cell site state profiles and classification workflows to help the human

care agents understand the decision-making process.

5. We implement a trial system using the real-time data feeds. The trial system can

be deployed online and resolve customers’ issues in a short latency.

Chapter 2

Chapter 2 presents the background of cellular networks and the state-of-the-

practice reactive service issue troubleshooting frameworks used by major cellular providers.

Next, this chapter reviews existing works for automatic troubleshooting in cellular net-

works and explains the major challenges in reactive troubleshooting and the network

log datasets that can be used to tackle those challenges.

Chapter 3

In Chapter 3, we present our prototype system design for data-driven au-

tomatic troubleshooting in cellular networks. The prototype system extracts feature

representations from both the cell site level perspective and user device level perspec-

tive and builds a profile of the reported issue. It uses advanced deep learning tools to

5

model the features and learns to classify the root causes of the issues. We evaluate the

prototype system using large-scale network logs and customer care service data from

a major US cellular provider. In addition, we apply the system to analyze an actual

network problem event in 2020 to show the effectiveness of the prototype model.

Chapter 4

In Chapter 4, we study a practical problem for training the troubleshooting

model, namely, the ground truth imbalance problem due to the limitations of the state-

of-the-practice troubleshooting process. To solve this problem, we improve the proposed

prototype system by introducing a weakly-supervised learning framework that takes only

positive class samples and unlabeled samples. In addition, we show the detailed system

implementation design of the proposed troubleshooting framework, which enables the

system to be deployed in online care contact troubleshooting phases.

1.2.2 Part II. On-device Certificate Revocation Checking for Peer-to-

Peer Mobile Network Applications.

Summary of Part II

Recent years have witnessed the rapid growth of Internet of Things (IoT)

devices widely deployed in various applications [6]. With the growing trend that IoT

services scale from local area domains to wider area domains, there is an increasing

demand for secure peer-to-peer communication protocols in a universe with millions of

IoT devices. Under this context, many security protocols for IoT should be re-designed.

For example, future IoT devices can use any untrusted access point (such as a public 5G

6

AP) to connect to the Internet or use the short-range wireless media such as Bluetooth

and visible lights to communicate with another device directly.

Thus, peer-to-peer device authentication becomes a fundamental security prob-

lem of novel IoT and the building block of many emerging critical IoT security proto-

cols for communication privacy (such as the TLS-style protocols) as well as IoT data

authenticity and integrity (such as the digital signature protocols) [1, 2, 44, 50]. The

key method for automatic device authentication is using the Public Key Infrastructure

(PKI) based authentication protocols, where each device maintains a certificate that is

issued by the certificate authorities (CAs). However, on-device certificate verification

remains a challenging problem mainly due to the high latency and bandwidth cost of

the revocation-checking step. In particular, when a revocation happens, how soon other

parties are aware of the revocation and no longer trust the device becomes a rather

critical metric of the security property in the protocol. However, to our knowledge,

there is no solution for on-device IoT certificate revocation (CR) checking that satisfies

all requirements in real IoT applications.

To fill this gap, this work presents TinyCR [65], the first IoT certificate system

for on-device CR checking, which achieves all the five above requirements. Our key

innovation is a new compact and fast data structure named Dynamic Asymmetric Set

Separator (DASS) to represent the revocation status of all certificates on IoT devices

with zero error. TinyCR also includes a management program running on a server

maintained by the IoT service provider to synchronize the DASS on devices, which can

be easily replicated to avoid a single point of failure. We have implemented both the

management and on-device programs. Based on our analysis and evaluations, TinyCR

7

is the ideal solution for CR in the scenarios that demands: 1) Fast or frequent authen-

tication. TinyCR has a clear advantage in latency compared to OCSP and equivalent

performance compared to CRLite [41] (the state of the art). 2) Small on-device memory

cost. TinyCR costs slightly less memory than CRLite and much less than other CRL

solutions when the revocation ratio is low. 3) Low CRL synchronization latency. The

faster the devices can realize a revocation made by the CA, the lower is the risk for

certificate abuse. To our knowledge, TinyCR is the first on-device CR checking pro-

tocol that supports real-time or high-frequency updating in response to the certificate

set changes. 4) Low bandwidth cost for synchronization. Experiments show that the

bandwidth cost of TinyCR is orders of magnitude lower than that of CRLite for most

practical updating scenarios.

Chapter 5

Chapter 5 illustrates the background and the key challenges for the PKI-based

authentication methods for an IoT ecosystem. Then the chapter introduces and explains

the state-of-the-art works for solving those challenges, as well as their limitations when

being deployed in the IoT scenarios. In addition, this chapter introduces a new compact

data structure named DASS. DASS can precisely maintain the certificate revocation

status using small memory and overhead that can be afforded by the IoT devices.

Chapter 6

Chapter 6 presents a novel peer-to-peer authentication protocol named TinyCR.

In this chapter, we first summarize the threat model that characterizes the adversarial

8

scenarios and the constraints for PKI-based peer-to-peer authentication in IoT. Then

we present the overall design of the TinyCR system for certificate revocation checking

based on DASS. Next, we show the performance evaluation results for TinyCR and

discuss the security and performance properties when TinyCR is deployed in real IoT

systems.

1.2.3 Conclusion and Lessons Learned

Chapter 7

Chapter 7 concludes and compares the two research topics included in this

thesis. Both problems studied in this thesis are related to handling the large-scale mobile

service data and solving a classification problem. However, we adopted two different

data abstraction methods for the two problems. For the troubleshooting problem, we

applied machine learning based methods, while for the security problem, we designed a

set query tool based on hashing and indexing. The discussion of Chapter 7 compares

the two tracks of the solutions for big data and illustrates how to select the methods

for practical problems.

1.2.4 Chapter 8

Processing heterogeneous data at a trillion-byte scale and applying the results

in a practical networking system is not straightforward. In Chapter 8, we summarize

the lessons learned from handling the large-scale data for a nationwide network. We

hope the experiences can help future studies related to the data-driven approaches with

practical big data.

9

Part I

Towards Automatic Reactive

Troubleshooting and Issue Root

Cause Identification in Cellular

Services.

10

Chapter 2

Service Issue Troubleshooting in

Cellular Networks

In this chapter, we briefly review the current cellular network infrastructures

and illustrate the state-of-the-practice reactive service troubleshooting framework used

by the cellular service providers. Then we present the major challenges in service trou-

bleshooting and the limitations of the existing automatic troubleshooting frameworks

for cellular networks. Finally, we show the data sources that can be used to support a

data-driven automatic troubleshooting framework.

2.1 Background.

2.1.1 Cellular Networks

Cellular network ecosystems include four major components: user equipment

(UE), radio access network (RAN) infrastructures, core network (CN), and the external

11

User Equipment

eNodeB

eNodeB

Radio Access Network Evolved Packet Core

The Internet

Serving
Gateway

PDN
Gateway

MME

Figure 2.1: The 4G LTE cellular network architecture.

Internet or Public Switched Telephone Network (PSTN) [54]. Fig. 2.1 takes the 4G

Long-Term Evolution (LTE) as an example to illustrate the four major components [28].

Recent 5G cellular networks use a similar architecture. Specifically, non-standalone 5G

network pairs the 5G RAN with the LTE evolved packet core (EPC) network, while

standalone 5G network has its own core network with similar but more sophisticated

major components as well as additional virtualized network functions and features to

support emerging 5G services such as massive Internet-of-things (IoT), autonomous

vehicles, VR/AR, etc.

The user equipment (UE) usually refers to any end-user’s device (e.g., a mobile

phone, a tablet, a laptop, and various IoT devices) that connects to the base stations

(BSes) of the RAN layer to receive cellular services, such as phone call services and

Internet access, etc. An important feature of UE is mobility, namely, the device is

supposed to have seamless cellular service access as it is mobile, which is supported by

the hand-off mechanism.

12

The UE accesses the cellular service through the radio channel between the UE

to the nearby BS radio nodes (such as the LTE eNodeBs via 4G radio, and the gNodeBs

via 5G radio) in the RAN. We call the BS node that currently serves the device as the

serving node, or the serving cell site. To enable wide coverage of cellular services,

the area is covered by multiple cell sites that are geographically distributed at different

locations. Each cell site’s ratio covers a local area. The radio Reference Signals Received

Power (RSRP) and Reference Signal Received Quality (RSRQ) depends on many factors

such as the distance from the location to the cell site node, blockages, reflection, and

the power of the radio nodes. When a device roams from one location to another and

performs handover, it measures the RSRP and/or RSRQ of different radios at the new

location. The new serving cell site is then selected based on the measures.

The main function of the core network is switching the mobile data (e.g. voice

calls, text messages, and packets). In addition, it is also responsible for logging sub-

scriber profile information and location, performing service authentication, and many

other network functions. For example, in LTE evolved packet core (EPC), the Serv-

ing Gateway (S-GW) is mainly responsible for routing user’s data packets within the

core network or performing inter-eNodeB handovers, while the Packet Data Network

Gateway (P-GW) is mainly used for routing data packets to the external Internet. The

MME (Mobility Management Entity) node is mainly used for tracking and managing

user’s mobility, idle mode UE paging and tagging, bearer activation/deactivation, user

authentication, etc.

In standalone 5G core network, the functionality of the MME is decomposed to

the 5G Core Access and Mobility Management Function (AMF), which is responsible for

13

mobility, authentication, and registration management, and the Session Management

Function (SMF), which is mainly responsible for session management, policy control

functions, charging functions. In the data plane, the User Plane Function (UPF) is

mainly used for switching the traffic between the device and the data network, such

as the Internet, and IMS (IP Multimedia Subsystem). In addition, the Unified Data

Management(UDM) function is used for the storage of subscriber’s profile information,

authentication information, encryption keys, etc.

2.1.2 The Troubleshooting Workflow in Cellular Services

In practical cellular networks, although tremendous automatic systems have

been deployed for the detection, forecasting, and troubleshooting of the major network

issues, it is unavoidable that mobile device users sometimes still experience service acces-

sibility problems that may be attribute to a variety of internal and external issues, such

as temporary congestion, mismatch of network state and device state, network main-

tenance, a misconfigured mobile device, an impaired SIM card, a device software bug,

iCloud server issue, bad weather, etc. For example, in rare cases some users may expe-

rience accessibility issues to phone call services, Internet, Short Message Service (SMS),

etc. Some other impacted users may be able access the services while the performance

of the services are significantly degraded compared with their former experiences.

Upon experiencing a case-specific service degradation problem, customers may

contact the customer care of the service provider to report and resolve their issues. In

some cases if the issue has already been known and is being investigated and resolved by

the service providers, the providers would inform the customer about the issue and the

14

expected resolving time. In other cases if the root cause issue is not known yet, then the

service providers would reactively investigate the root causes and help customers resolve

the problems as timely as they could. One key metric to measure the effectiveness of

customer support is the resolution time for customer reported issues. To reduce the

resolution time, it is critical to (i) minimize the time spent on inspecting the problem

and identifying the root cause during the live conversation between the customers and

the agents, (ii) minimize the number of customer tickets that need to be sent to tier-2

support teams, and (iii) minimize number of tier-2 teams that a ticket is routed through

before it is resolved. For example, if we can quickly determine that a reported issue

is related to a known root cause, then there is no need to create a ticket for further

investigation. If we can determine a reported issue is not related to any known event

and is likely to be network related (instead of device related), then the ticket will be

routed directly to the network support team for resolution. It is important to note that

these decisions need to be made at per user device level.

According to our study on the reactive troubleshooting and resolution process

of a major US cellular provider, the process often consists of two phases: the customer

interaction phase and the ticket resolution phase. A summary of the whole process

workflow is illustrated in Fig. 2.2.

During the customer interaction phase, the customer either speaks to an agent

by calling the toll-free number or chatting with an agent via online chatting tools.

The agent will first collect and verify the information reported by the customer and

then go through a sequence of designated steps to troubleshoot and resolve the service

issue. These troubleshooting steps may involve checking customer account status, veri-

15

Account Health Check

Provisioning Status Check

Online Customer Interaction
Solved

Unsolved

Network Support Team

Tier-2 Ticket Resolution

Network Issue Check

Device Issue Check

Challenging!

Device Support TeamFollow-up
contact

Figure 2.2: A summary of the reactive troubleshooting process for cellular service
problems.

fying provisioning status, determining if the customer is impacted by any known issues

(e.g., network outages, maintenance activities, device hardware/software bugs, exter-

nal events), examining device configuration setting and performing other device-specific

diagnoses. The goals of this phase are to identify the root cause of the service issue,

perform corresponding resolution actions, and verify the effectiveness of resolution ac-

tions as much as possible within a short time duration (e.g., a few minutes) while the

customer is actively engaged with the agent on call or on chat.

While the majority of customer-reported service issues can be successfully

resolved at the end of the customer interaction phase, some service issues may need

in-depth investigation before a root cause can be identified and corresponding resolution

actions are performed. Note that these remaining services issues can be either network-

or device-related. The agents will create customer trouble tickets and dispatch them

to the Tier-2 support teams for in-depth investigation. During the customer ticket

resolution phase, investigation often requires gathering and analyzing measurement data

over a certain time period from the service region of the impacted mobile devices at both

16

cell site level and individual mobile device level. If no network- or device-related issue

is found as the root cause of the reported service issues, the tickets will be returned

to the customer care team and customers may be directed to local stores for further

assistance. Depending on the complexity of the issues, the ticket resolution phase usually

takes hours to days.

2.2 Problem Statement.

2.2.1 Key Challenges in Cellular Service Troubleshooting

While some of the above mentioned tasks (e.g., checking account and provi-

sioning status) can be executed by software in an automated fashion, troubleshooting

network- or device-related issues in both the customer interaction phase and the ticket

resolution phase are largely manual due to the following challenges.

First, the process of troubleshooting a service issue at per UE (user equipment)

level is inherently complex. There are a variety of causes of service degradation includ-

ing different types of network issues and device issues, many of which produce similar

symptoms (such as Internet connection failures, voice call drops, slow data rates, etc).

Therefore, diagnosing based on the UE-side symptom itself is insufficient to identify

the root causes. It is particularly challenging to discover the non-outage-related service

issues that are caused by non-fatal or partial network-side or device-side issues. Each

of these non-outage-related service issues likely impacts only a very small number of

mobile devices at a given time and a given location. Some of these service issues can be

intermittent or chronic. In addition, even the presence of an outage on a cell site does

17

S-GW

P-GW

MME

Internet

UEs

X2

RAN

EPC

𝑪𝟏
𝑪𝟐

𝑪𝟑

𝑪𝟒
𝑪𝟓

RAN network
issue

Service
degradation

Normal

S-GW

P-GW

MME

Internet

X2

RAN

EPC

𝑪𝟏
𝑪𝟐

𝑪𝟑

𝑪𝟒
𝑪𝟓

Service
degradation

Core network
issue

(A) A RAN issue (B) A core network issue

Figure 2.3: Example scenarios of network issues.

not necessarily mean that all customers who experience service issues in the local area

are indeed directly caused by the outage. It is possible that some of these customers

are impacted by impaired firmware or external events. Therefore, precisely determining

the root cause of each individual service issue often requires applying advanced domain

knowledge in analyzing a massive volume of network data.

Second, it may not always straightforward to discover the network problems on

the cell level and estimate the scale of the impacted users and areas. Fig. 2.3 illustrates

two example network issue scenarios in LTE networks. In Fig. 2.3 (A), the cell site C3

is experiencing service degradation due to a radio access network (RAN) problem with

its infrastructure or software. Consequently, a good portion of UEs that were originally

served by C3 are handed over to its neighboring cell sites C2 and C4, which also causes

congestion on C2 and C4 and impacts the experience of the customers who are served

by them at different levels. In the second scenario (B), a network issue happens with

the core network of LTE. The problem may influence the service performance of a large

number of cells. The impact on the service for different UEs could be various. The

18

examples in Fig. 2.3 show that the impact of a network problem on a cell site or a core

gateway may not only influence the corresponding cells but also propagate to further

cells, which make it challenging to correlate user tickets with some known network

issues. In addition, since different types of network issues present diverse anomaly

and propagation patterns, it requires a decent understanding of the event patterns

and their correlation among the neighboring cell sites to figure out the impact of a

network problem regarding the user-level quality of experience (QoE). Moreover, the

diverse physical factors of different regions, such as the geographic features, the distance

between the neighboring cell sites, the density of the cell sites, and the population and

mobility of the users, further complicate the problem.

Third, only a small portion of customers report their service issues. Most

customers never contact care support upon experiencing a service issue. Depending on

type and severity of service issues, some customers wait for a period of time before they

contact customer care. The information provided by customers regarding their service

issues can be ambiguous or inaccurate. As a result, some of these issues need extensive

investigation before they are resolved. In extreme cases, some issues are not resolved due

to insufficient information. The corresponding customer trouble tickets may be routed

among multiple tier-2 support teams and finally returned as ”No Trouble Found”. This

will result in not only longer resolution time for the mis-routed tickets and unhappy

customers, but also preventing agents from working on tickets that they should focus

on.

19

2.2.2 Design Goal: Learning-based Troubleshooting

In this thesis study, we design a machine learning based troubleshooting tool

that aims at helping customer care agents effectively distinguish if a customer reported

service degradation is likely caused by a network related issue or by a device related

issue in the customer interaction stage, and helping tier-2 support teams to identify the

cell site(s) that likely contribute to the service degradation if the service degradation

is network related in the ticket resolution stage. Our machine learning based approach

would greatly reduce the manual investigation involved in the troubleshooting process,

and hence reduce the resolution time. In addition, the automatic troubleshooting tool

can extract interpretable insights about the network status and the decision-making

process, which can assist the care agent in manual inspection and issue resolution.

2.2.3 Related Works

Automatic troubleshooting for customer-level service issues in cellular net-

works.

Along with the tremendous growth of the market for heterogeneous access

networks and end devices in the recent decade, manual troubleshooting strategies for

the issues experienced by customers have become less scalable to the growing device

population. Thus, automatic troubleshooting methods for customer-level service issues

have attracted more attention by the service providers and network research community.

Currently, there are two major branches towards automatic troubleshooting and network

problem detection: the network data based methods and the natural language processing

20

(NLP) based methods.

The network data based methods use the network log and/or the trouble ticket

data to detect the network anomalies [13,16,30,32–34,39,43,58,64]. With this perspec-

tive, the cellular carrier can predict which customers will call in care, and take the

necessary actions to resolve the problems and improve the network quality in advance.

For example, IBM research [16] proposes using a random forest model to predict whether

a user will contact the care. Sheoran, et al. [64] solve a similar problem based on the

UE-level network log data. CableMon [30] is another learning-based system that can

proactively detect network faults in the cable broadband network. Iyer, et al. [32] design

a system that is specialized on detecting the RAN issues in the cellular network. Jin,

et al. [33] propose a network issue detection method by analyzing the distribution and

patterns of care contact logs. NEVERMIND [34] is a system that can predict future

customer tickets in the digital subscriber line (DSL). All the above existing works target

on training a proactive model that can forecast the trend of the emerging network prob-

lems or detect anomalies on the network level. However, they cannot directly resolve

the user-specific issues in the customer interaction phase. ICCA [52] is a framework

that can perform reactive troubleshooting for individual cases. However, it only relies

on the UE-level network logs, while the correlation of cell-to-cell and cell-to-UE network

states is ignored.

Another type of approach focuses on understanding customers’ feedback or

free-text ticket logs using NLP models [56,69,72], and diagnosis based on the described

symptoms of devices. For example, NetSieve [56] is proposed to diagnose the problem

by understanding the network trouble tickets. LOTUS [72] is a system for identifying

21

which customers are impacted by a local network issue based on the care contact log

texts. However, these methods are mainly log-based instead of chatting-based, namely,

the problem could only be resolved after a ticket log is generated, rather than during

the conversation of the care contacts. This type of methods is orthogonal and comple-

mentary to our proposed method.

ML-based cellular network systems.

The state of the practice cellular network is getting ever larger and more com-

plex. As a result, there is an increasing demand for automation in cellular network

system designs. In recent years, DNNs have become popular for learning cellular net-

work data because of their high capacity of representing spatial-temporal features. For

example, DMM [63] uses a recurrent neural network (RNN) model to learn the trav-

eling trace of the UEs based on their cellular data logs. Microscope [86] adopts a 3D

Deformable Convolutional Neural Network for mobile service traffic decomposition and

network slicing. DeepLoc [66] utilizes a multilayer perceptron (MLP) for device local-

ization based on the RSS of cellular signals.

2.3 Datasets.

Table 2.1 lists the data sources that are widely used or generated during the

troubleshooting phases of the state-of-the-practice framework described in section 2.1.2.

The data mainly includes historical customer care contact log and ticket details, and

cell/UE-level network status such as cell site Key Performance Indicators (KPIs) and

user session states. The cell-level KPIs used in this paper include the average number of

22

Dataset Short Description

Care Contact
Log

Logs for the customer interaction phase. The log data is manually

filled by the customer care agents. The data mainly include the care

contact time, issue description and the recommended resolution

provided by the agents, etc.

Trouble Tickets

The ticket data handled by the Tier-2 team in offline. It usually

includes the resolutions provided by experts for the hard cases that

cannot be resolved during the online phase.

Cell-level
Network Log

Real-time KPIs of the cell sites. The data is automatically collected

at the eNodeB or gNodeB. The data includes the timestamp of

the measures and the performance counter values.

UE-level
Network Log

Cellular session log for each UE. The data is automatically collected

at the core network gateways. It mainly includes user ID, timestamp

of the session, duration, the serving cell sites, and session status.

Table 2.1: Summary of datasets.

23

Radio Resource Control (RRC) connections (which reflects the temporary user popula-

tion), and the average utilization ratio of the Control Channel Elements (which reflects

the congestion status). We design the data-driven automatic troubleshooting system

by learning from the above data. In this work, the datasets are obtained from a large

cellular service provider in the US. All datasets are kept anonymous when being used

for privacy reasons.

24

Chapter 3

NeTExp: A Data-Driven Method

for Automatic Troubleshooting

Individual Customer Issues in

Cellular Networks

3.1 System Overview.

We design a machine learning-based troubleshooting framework NeTExp as

shown in Fig 3.1. NeTExp includes two major modules: (i) a proactive cell-level network

state prediction model and (ii) a reactive UE-level troubleshooting inference model. The

proactive cell site level model predicts the likelihood of a cell site to have network issues

that impact customers in the local area (i.e., the covered cells). The UE-level model

25

infers whether a customer-reported service issue is network-related.

During the training phase, the cell-level prediction model is trained using his-

torical usages, user mobility, performance metrics at the cell site level, and customer

care contact and ticket data. The UE-level inference model is trained using the output

of the cell-level prediction model, the historical UE level usages, user mobility, perfor-

mance metrics, and the customer care contact and ticket data. During the inference

phase, the cell-level prediction model proactively predicts the cell sites that are having

customer impacting issues and quantifies the severity of the problem based on the real-

time usages and cell site level performance metrics data. Upon receiving a customer

contact reporting a service issue, the UE level inference model will take the cell site level

prediction on current customer impacting network issues and current UE level usage,

mobility, performance metrics to infer whether the customer reported service issues is

caused by network-related issues or by device-related issues.

Different from prior works, the cell-level model fully considers the interaction

among neighboring cell sites, and the UE-level model is the first reactive network issue

diagnosis method that is based on the perspectives from both the UE side and serving

cell site side, and how their states match each other. This will not only help customer

care agents to create a trouble ticket and dispatch to the corresponding support team

for resolution, but also provide network support team enriched information for them to

prioritize and focus on the right cell site for investigation and resolution.

26

UE-level Model
Cell-level Model

Network
Issue

Device
Issue

Likelihood of
network problems

Network Support Team Device Support Team

UE Info Ticket TicketModel Insight

UE-level
Network Logs

Cell-level
Network Logs

Care Logs Supervised
Training

Weakly-supervised
Training

Historical

Transfer
Learning

Training Phase

Inference Phase
Customer Care agent

Figure 3.1: Overview of NeTExp .

3.2 Case Illustration

Before explaining the models, we first use a real-world example to illustrate

the observations of the network log data when identifying a network problem. In the

top chart of Fig. 3.2, we show the (scaled) average Radio Resource Control (RRC)

connections (one of the cell level KPIs for learning) of two neighboring cell sites A and

B in a local area. We can see the cell site A experienced a network issue from day 3 to

day 4 (no RRC connection could be established with A). In addition, the problem also

caused network congestion on B, as there was a notable increase of the RRC connections

on B during around the same time. Thus, we can infer from the KPI patterns of the

two cell sites that many users were handed-off from A to B when the issue occurred on

A. As a result, the users who were originally served by B were also influenced by the

network outage on A. We call such correlation among the neighboring cell site states

as the cell-to-cell correlation. Note that other types of network issues may present

27

different symptoms on the KPIs of the cell sites in the area. However, manually reading

and understanding the interaction of the anomalies of different cell sites from the raw

KPI data can be difficult.

The bottom chart of Fig. 3.2 presents the example UE-level network logs of a

customer who was served by B. The “CCL TS” represents the time when this customer

contacted the care. The “Time Limit” and “Cellular Data” are two example state

codes that describe the status of the data sessions in the UE-level network log data.

Specifically, “Time Limit” indicates whether the UE can maintain the session longer

than a time threshold, and “Cellular Data” indicates whether there is any down/up-link

traffic generated during the session. On the y-axis, the “N” in the middle represents

a normal service state, while the “Err 1” and “Err 2” represent the abnormal states

of the two UE-level state metrics. This example clearly shows that shortly after the

network problems happened on the cell site A, this device which connected with B

also experienced service issues, i.e., it could not keep a stable data session or produce

any download/upload traffic. Those symptoms motivated the customer to contact the

care afterward. We call the correlation between the cell site states and the UE-side

symptoms as the cell-to-UE correlation. In practice, the cell-to-UE correlation patterns

of different users or different time could be highly diverse as a result of their different

locations, usage patterns, mobility patterns, and device types, etc. For example, a

mobile device may connect to tens different cell sites in one week. And the delays to

contact the customer care after the issue could be various because of different time

zones, issue occurrence time, problem severity, and users’ habits. Therefore, it is rather

time-consuming to track which cell site to inspect from the massive network logs.

28

0

1

RR
C

KP
I RRCA RRCB

Day 1 Day 2 Day 3 Day 4

Err 1

N

Err 2
Time Limit
Cellular data

CCL TS

Figure 3.2: Top: the cell level RRC KPIs. Bottom: The UE-level service status of a
customer in the area.

From the example in Fig. 3.2, we notice the cell-to-cell and cell-to-UE corre-

lation patterns are important to identify a network problem, which is also the major

insight for troubleshooting agents to manually inspect the network. Thus, the automatic

troubleshooting model should be capable of learning those patterns.

3.3 The Cell-level Model Design.

3.3.1 Feature Modeling

Learning the correlation and interaction between the neighboring cell sites

is important for cellular data analysis [61, 62, 78, 86], which is also challenging as it

depends on many real-world factors, such as the local distribution of UEs and cell sites,

the mobility of the customers, geographic features, and channel protocols. To solve this

challenge, we design a graph model to represent the interaction between cell sites and

propose using the graph convolutional neural network (GCN) [26, 59, 77, 79] to jointly

learn the cell site node features and their correlation.

29

…

…

…

…

…

Cell site

Weighted edge

… Time-series

features

Sliding window

for feature

Figure 3.3: The graph modeling of the cell sites.

Specifically, the graph model is shown in Fig.3.3. In the graph G, each node

represents a cell site and each edge represents the proximity (weight) between the two

neighboring cell sites. The proximity can be defined in multiple ways and is discussed

later. On each cell site vertex in the graph, the network condition is represented with a

time-series feature acquired by sliding a feature extraction window through the stream-

ing cell-level network log data.

Assume the pair-wise proximity among the k cell sites can be quantified by a

2-D adjacent matrix Ak×k (where each entry ai,j represents the proximity weight from

node i to node j), let G =< V k×m×w, Ak×k > represent the graph, where V is the k×m

time-series features of the k vertices (i.e., m feature channels for each node, and each

channel has time-window length w). Through a GCN layer, the feature on each cell site

is recomputed by aggregating the features of itself and the other cell sites in the graph.

For example, a typical GCN aggregation rule is defined as:

H(l+1) = σ((In −D−
1
2AD−

1
2)H(l)W (l)), (3.1)

where H(l) is the node-wise feature input to the layer l (H(0) = V), W (l) is a train-

30

able weight matrix that decides how the adjacency matrix Ak×k participates in the

aggregation of the features, σ is a non-linear activation function, Ik −D−
1
2AD−

1
2 is the

normalized graph Laplacian, Ik is an identity matrix, D is the diagonal degree matrix

with Dii =
∑

j Ai,j .

In addition, the temporal feature (i.e., H(l)) of the time-series network log data

for the cell sites can be encoded by the 1D-CNN layers:

h(l+1)
c = σt(h

(l)
c ◦W

(l)
t), (3.2)

where h
(l)
c is the time-series feature input of one cell site c in the graph (h

(0)
c is the raw

input feature), W
(l)
t is the 1-D temporal CNN kernel, ◦ is the 1-D convolution operation,

and σt is the activation function. Through the two types of the convolution operations,

the model is cable of extracting features with the complicated spatial-temporal context.

The detailed DNN architecture is explained in section 3.3.3.

A natural way to quantify the proximity in the adjacent matrix Ak×k is using

the geographic distance of the cell sites [86]. However, the absolute distance is not

representative enough since the base station selection of mobile devices depends on not

only distance but many other factors, such as the geographic features, the density of the

cell sites, mobility, and the UE and sector channel capabilities. Therefore, we propose

a new metric for adjacency matrix quantification: the average number of jointly

served UEs by the two cell sites in unit time. This metric is mainly inspired by

the key observation that abnormal state transition among the cell sites is mainly caused

by the hand-offs when a network problem happens to one cell site. Thus, this metric

can be a good estimation of how much traffic will be handed off to a neighboring cell

31

sites when network problems happen on one cell site, and is a high-level product of all

other unique physical factors in the local area. Most importantly, the metric values are

easy to obtain by grouping the historical UE-level network log data with time intervals,

(anonymous) user IDs, and cell site IDs.

Specifically, to quantify ac1,c2 , we group the vast historical UE-level network

session logs (including all customers in the market regardless of whether they ever

contacted the care) by the anonymous user IDs and record the accessed cell sites ci by

each UE in unit time. Then we measure the frequency of each (c1, c2) tuple that appears

in the grouped logs for all UEs. Since the long-distance mobility of the UEs in unit time

also impacts the measurement, we prune the graph by a distance threshold (e.g., 30,000

meters) and then keep the top k− 1 neighbors with the largest ac,cx values as the “one-

hop” neighbors of c. Note that the graph weight measurement is only performed once

using a large historical interval of data (e.g., one month).

3.3.2 The Alternative Learning Target

In order to match the final goal for automatic troubleshooting for each specific

user’s service problem, it is ideal to use the precise resolution results from the human

experts as the end-to-end learning target. However, since we cannot precisely know

all customers who are impacted by a network problem (including the majority who do

not contact the care upon experiencing an issue) and the cost for decently inspecting

and labeling all reported issues is expensive, we can only obtain limited ground truth

troubleshooting results for a small subset of the users whose tickets were resolved by

the expert human agents. The lack of large-scale ground truth data makes it difficult

32

to train a DNN that learns from the high-dimensional network logs with tremendous

spatial and temporal context.

To solve this challenge, we adopt the ideas from weakly-supervised learning

and transfer learning [53, 82, 91]. Specifically, NeTExp uses an alternative learning

target to pre-train the cell-level model (the heavy part of the overall NeTExp system):

how likely the cell is experiencing a UE-impacting network event at each

timestamp t. Although the model with the alternative target cannot directly answer

whether a reported issue is a network-side issue, it is expected to provide the high-level

representation of the network performance status for the cell sites, which is an essential

insight for case-specific troubleshooting according to experienced ticket troubleshooting

operators.

We take the following steps to build the transferred learning target: for each

customer, we first retrieve a 7-day historical window of the UE network log records right

before the care contact time, and obtain a set of cell sites that are accessed by the users

and their accessing patterns. Then for each UE, we only keep the cell sites that are

frequently or regularly accessed by the UE in recent time, and consider those cell sites as

the “reference” cell sites for this UE. Then we aggregate the total number of customer

contacts within a unit time interval by each reference cell site. The aggregation results

provide an idea of how many service issues are reported for each reference cell site in

each unit time interval. Thus, the intensive gathering of service issues for a reference cell

site usually implies network issues in the corresponding cells. Similarly, we measure the

aggregation numbers of the service issues that are diagnosed as network issues through

the customer interaction phase and the ticket resolution phase using the ground truth

33

0
5

10
Nc(t)
Rc(t)

Sc(t)

Day 1 Day 2 Day 30.0
0.5
1.0

Saturated
Y(t)

Figure 3.4: Top: the distribution of the reported service issues. Bottom: The transferred
learning target.

troubleshooting tickets of the two phases, which provides extra dimensions about the

scale of the influenced users in the area.

Thus, the learning target uses three vectors for each cell site c: Nc(t), the

number of total service issues over time; Rc(t), the number of network issues identified

during customer interaction; and Sc(t), the number of network issues detected through

ticket resolution. If a network issue happened on a cell site (or on its neighbors), a

significant increase of Nc, Rc and Sc can usually be observed shortly after the issue

occurrence time. An example of such case is shown in the top chart of Fig. 3.4 (in day

2 and day 3 compared with day 1). Based on this observation, the new learning target,

i.e., the likelihood of network issues for the cell site c, can be quantified using Nc, Rc,

and Sc. Specifically, we use the 1-D Gaussian Probability Density function G(t, σ) =

1
σ
√

2π
exp (− t2

2σ2) and compute the convolution of density kernel and the measurement

vectors over the time dimension: G(t, σ)◦Nc(t), G(t, σ)◦Rc(t) and G(t, σ)◦Sc(t). Then

the overall transferred learning target is defined as a weighted sum of the three density

34

ST-Conv
Block

FC
𝒎

𝒌

𝒕 − 𝒘 to 𝒕

Network KPI feature

Temporal

Sp
at

ia
l

ST-Conv
Block

FC 𝒀(𝒕𝟎 + 𝒕 + 𝟏)

Transferred
target

𝐴𝑘×𝑘
Adjacency Matrix

Temporal Gated-Conv

Spatial Graph-Conv

ST-Conv Block

UE-Level
Model

Real target

Training

Temporal Gated-Conv

Figure 3.5: Model design of the cell-Level model.

vectors:

Y (t) = αG(t, σ) ◦Nc(t) + βG(t, σ) ◦Rc(t) + γG(t, σ) ◦ Sc(t) (3.3)

We then normalize Y (t) and let Y (t) saturate at 1 to make the likelihood

values are in the range [0, 1] and minimize the differences caused by the UE population

size. An example of the normalized Y (t) is shown in the bottom chart of Fig. 3.4.

α, β, and γ are decided empirically and should be adjusted based on the effectiveness

of the practical troubleshooting phases (Nc, Rc, and Sc) in the wild. Specifically, we

look into the known network problems in the history and check the z-scores of Nc, Rc,

and Sc during the network issue periods. A larger z-score indicates the corresponding

measurement is more important. For example, for our studied cellular provider, we use

β ≥ γ > α, since the network issue tickets (from both online and offline phases) are

always more accurate network issue indicators than the total number of care calls.

35

3.3.3 Model Design and Training

In Fig.3.5, we show the overall design of the cell-level model to encode the

graph-based cell-level features. The neural network is inspired from the STGCN [83]

architecture.

The whole cell-level model is used as feature extractor to learn the cell-level

features for each local area. A local area refers to the cells that are covered by the k

neighboring cell sites. In the input feature matrix of height k, the first m × w feature

slice refers to the features of the cell site that directly carries the target UE, while the

rest k − 1 slices are the features of its nearest neighbors ordered by the edge weights.

Once trained, the whole model parameters are consistent for different areas in a large

market.

In the input layer, the m cell-level time-series network KPIs are used as the

input features. For the real-number KPI features, we first smooth the data with moving

average to denoise the data. Since the traffic loads and capabilities of the cell sites are

highly diverse, the KPI data is normalized before being fed for learning. One evident

feature for the cell-level network KPI data is that the pattern of the KPI time series

repeats every 24 hours because of the similar daily traffic patterns. Therefore, we

normalize the KPI data by: ŝt = st
s̄(t mod T)

, where st is the observed KPI at timestamp t

of the global clock, and s̄i represents the expectation of the KPI of the ith timestamps

of a day based on the historical data, T is the number of total timestamps in a day.

Thus, the normalized KPI ŝt represents that at a particular timestamp (t mod T) of the

day, how the observed KPI compares with the expectation of the KPI for the same time

36

0

1 raw RRC ̄st (3 days)

Day 1 Day 2 Day 30
1
2
3 0.5 ~1.5 ̂St

Figure 3.6: Top: The raw and the expected RRC KPIs (scaled). Bottom: The normal-
ized RRC features.

of the day. We find this normalization method is effective for the KPIs that reflect or

are related to traffic loads. For example, in Fig. 3.6, we show the raw and normalized

average Radio Resource Control (RRC) connections for the same cell site in the case

study of Fig. 3.4. From Fig. 3.6, we can find the normalization makes the abnormal

network KPIs (in day 2) highly distinguishable. The abnormal RRC KPI states in day 2

of Fig. 3.6 can explain the increase of issue reports in day 2 and day 3 of Fig. 3.4.Thus,

this normalization method can also work as an effective outlier detection module to

highlight the abnormal patterns for a given timestamp of the day.

Next to the input layer are the two ST-Conv blocks (as shown in Fig.3.5)

that can encode the spatial-temporal features. In each ST-Conv block, the feature

of each cell site is fed into a 1-D temporal CNN layer (Eq.3.2) with the gated linear

units (GLU) [15] as the activation. Then the processed features of all cell sites in the

local graph are aggregated using a spatial GCN layer (Eq.3.1). The GCN block is then

followed by another temporal CNN layer for each cell site of the graph to generate

37

the feature representation of the network conditions Hk×g×wl
l , where g is the number of

kernels in the last 1-D CNN layer and wl is the resampled window size. After the two ST-

Conv blocks, the model flattens the feature matrix over the time channel and use a fully

connected (FC) layer with kernel size h to compute the (k×h)-D feature representation

Hk×h
FC of the network conditions on the k cell sites for the sampled timestamp. Thus,

Hk×h
FC can be used as the extracted feature for the network conditions of the local area

at a given time.

In the output layer, the model uses a regression loss function to learn the target

Y k of the k cell sites in the local area. The mean-square-error (MSE) loss is used for

training:

L(Hk
o (t), Y k(t+ 1)) =

1

k

∑
i

(hio(t)− yi(t+ 1))2 + λL2, (3.4)

where Hk
o (t) is the output of the model with the input time window that ends at time t,

Y k(t+1) is the transferred learning ground truth of the sampled k cell sites at t+1, hio(t)

and yi(t+ 1) are the ith entry of Hk
o (t) and Y k(t+ 1), and λL2 is the L2 regularization

term of the trainable parameters. The model is trained with Adam optimizer [36].

In our implementation, the four Temporal 1-D Gated-Conv layers of the two

ST-Conv Blocks have 32, 16, 8, 4 CNN kernels respectively. The size of each kernel is

4, namely, the perceptive field length of the first CNN layer is 20 minutes. The number

of neurons h in the feature embedding layer is set as 8. Through validation, we find

larger model size provides limited accuracy improvement but more memory cost and

overhead. Since our model is executed on CPU servers rather than GPU servers (due

to data access restrictions), we do not choose to use a larger model configurations. The

trade-off of the input data sizes, i.e., k and w, and model efficiency is discussed in section

38

Cell-level
KPIs & Logs

…
Sliding Widows

…Cell-level
Model

Cell-level
Features

Top 𝑘′ cell-level profiles

UE-level feature profiles

7-day historical window

…
Top 𝑘′ cells

Temporal
1D-CNN

Soft-max

Network or Device issue?

Figure 3.7: Design of the UE-Level model.

3.5.3.

After training using the transferred target, NeTExp freezes the parameters of

the neural network. Then it feeds the learned Hk×h
FC and Hk

o to the UE-level model as

the high-level feature representation of the cell site performance status.

3.4 The UE-level Model Design.

The UE-level model is the direct interface for the care agents to learn whether

a reported problem is a network-side issue or a device-side issue. Besides the patterns of

the UE network logs [52], another important feature is the temporal correlation of the

UE-level service errors and the cell-level anomaly states. Thus, we design the UE-level

model such that it learns from the features in both aspects.

Based on the historical data session logs for each individual UE, we can create

the UE-level feature profiles for learning. Specifically, for each customer who contacts

the care, we retrieve the data session logs (time/duration of the session, the accessing

39

cell sites, and the session status) for the target UEs. Then we can create a session usage

pattern feature matrix Un×w
′

d for each UE d, where n represents the n feature channels

(e.g. the different session metrics in the log data) and w′ is the historical feature time

window size for UE-level trouble inspection. Some other statistical features (such as

how many times the UE is handed-over between multiple cell sites in unit time, and

the session usage breakdowns on each reference cell site) that can be obtained from

the UE-level log data are also included in Un×td . We also measure how many times the

UE is handed-over between multiple cell sites in one single data session. If the UE is

frequently handed-over between cell sites even when the UE is not traveling at high

speed, it may also imply some software or network problems with the UE. Thus, we also

use it as one feature channel in Un×td .

In addition, based on which cell site the data session is connected with, we use

a detailed break-down of session usage features B
(k
′×n)×w′

d for the top k
′

cell sites that

are most frequently accessed by each device d. In our implementation we use k
′

= 5

. According to our measurement over a large market in 30 days, the top 5 cell sites

totally contribute to 86% of the cellular sessions and 91% of the usage time on average

for each customer. Thus, if a user suffers from a network problem, the cell sites who

are responsible are most likely among these top 5 cell sites.

For effective troubleshooting, NeTExp also correlates the UE-level profile fea-

tures with the network status of the top k
′

reference cell sites. To achieve this goal, Ne-

TExp creates a cell-level profile for the reference cell-sites by using the learned features

from the cell-level model, namely, Hk×h
FC and Hk

o . To obtain the learned cell-level profile

features, NeTExp uses a sliding window that scans the cell site KPI traces and feeds

40

the feature windows to the cell-level model for feature learning (as shown in Fig. 3.7).

For each UE, NeTExp looks back a 1-week historical time window and construct the

corresponding feature profiles. The extracted UE-level and cell-level features are con-

catenated over the time dimension for temporal correlation learning. The UE-level

model is designed as shown in Fig. 3.7. In the left side of Fig. 3.7, NeTExp applies the

pre-trained cell-level model (Fig. 3.5) and use a sliding window to extract the cell-level

profile features over the one week history. The stride of the sliding window is 1 hour.

The final decision-making model is a CNN classifier that contains several 1-D

temporal CNN layers (Eq.3.2), followed by two fully connected layers with a softmax

layer at the end. The learning target is whether the UE’s problem is caused by a

network-side issue or a device-side issue. Then the UE-level model is trained as a binary

classifier using the case-specific manual resolution results from the troubleshooting log

data. Since the UE-level model has a much smaller parameter size and only contains

a few 1-D CNN layers, it is much easier to train than the cell-level model. Thus, the

model can be properly trained using the limited ticket resolution data.

3.5 Evaluation

3.5.1 Datasets

In our experiments, we use nation wide datasets (i.e., network logs and the care

contact logs/tickets, see Table 2.1 for the details) collected over an extensive period from

a major US cellular service provider. In particular, we use the care contact log data

(logs for the customer interaction phase) and the trouble ticket data (logs for the ticket

41

resolution phase) as the learning ground truth. Note that we focus on the service issues

reported to the customer care in our study. The rest user inquiries are not considered.

After filtering the care contact log data by the problem type, we obtain hundreds of

thousands of care contact logs and tens of thousands of customer trouble tickets that

were sent to tier-2 support teams for resolution ∗. Because care contact logs contain

information manually inputted by agents in the format of free text when they engage

with customers, some of these information can be ambiguous. We only use the care

contact logs that can be verified and all trouble tickets from the ticket resolution phase

for evaluation, while all log data is used for the training under the weakly-supervised

learning framework.

We use the cell-level and UE-level network log data as the model inputs. Specif-

ically, we use the average number of Radio Resource Control (RRC) connections, and

the average utilization ratio of the Control Channel Element (CCE) as the cell-level

KPI features. These two KPIs reflect the number of the connected UEs and the traffic

loads (as a ratio of capacity) in real-time for the cell sites. In our dataset, the cell-level

KPIs are measured in every 5-minute interval. In addition, the UE-level log contains

the status of every data session with the UEs. Each log record represents one cellular

session, ending with a termination code that indicates why the session is closed. There

are 12 distinct codes in our dataset, each of which can be used as a categorical feature

that describes the session status. We also extract other statistical features from the

UE-level log data for the model design, including cell site usage frequency/duration of

∗In this paper, we only show the scales rather than the exact sizes of the datasets to hide sensitive

information about the service provider.

42

Figure 3.8: Normalized RRC data examples.

each UE (for finding the reference cell sites), the number of commonly served UEs of

two neighboring cell sites (for quantifying the adjacency matrix), and the session us-

age pattern of the UE (for building the UE-level profiles). In total, the magnitude of

the UE-level log records for the customers who reported a service issue is hundreds of

millions.

Note that as a generic model for troubleshooting, NeTExp can be easily ex-

tended to learn from other cell-level and UE-level features that are available to the

cellular providers.

3.5.2 An Example Illustration

In Fig. 3.8, 3.9, and 3.10, we use a real care call example to illustrate the

behaviors of NeTExp for handling a specific case and how it can help the customer ser-

vice. In this example, a customer contacted the customer care and complained that the

service performance is degraded with his/her phone. The root cause was not identified

43

Figure 3.9: CCE Utilization Ratio data examples.

after a long period interaction between the customer and the agent. Then an offline

troubleshooting ticket was submitted.

We then use NeTExp to analyze the root cause of this case. In Fig. 3.8 and

Fig. 3.9, we illustrate the RRC KPI and CCE Utilization KPI time series of the relevant

cell sites for the past 7 days before the care contact. The raw RRC data series are

normalized to [0, 1] using min-max normalization for visualization. The “D1” to “D7”

on the x axis represent the first to the seventh day of the historical window used for

issue inspection. In the top panels of Fig. 3.8 and Fig. 3.9, “R1” and “R2” represents

the top two cell sites that are most frequently accessed by the user in the past week.

From these panels along, we could observe a noticeable increase of connected users (the

RRC KPI) and traffic load (the CCE KPI) on R1 during day 6 and 7 (i.e., around 0-48

hours before the care contact) compared with the earlier days. There are similar but

less noticeable changes on R2. However, those abnormal patterns themselves cannot

necessarily indicate an anomaly on this cell site, as it could also be observed in many

44

0

1

Ne
t P

ro
b R1 Risk R2 Risk

D1 D2 D3 D4 D5 D6 D7
The 7-day Interval Before The Care Call

R1 Normal
R2 Normal

R1 RAT
R2 RAT

Other / Idle

R1

R2

Figure 3.10: Cell-level model outputs (top) and UE-level profile examples (bottom).

other scenarios such as gathering of people (e.g. concerts, sport matches) in the cells.

Next, the cell-level model also investigates neighboring cell sites. In Fig. 3.8

and Fig. 3.9, we also show the KPIs of the top 4 cell sites in R1’s neighborhood, i.e.,

“1st NB” to “4th NB”, which are ranked by the graph weights (proximity) to R1 (R2 is

the “2nd NB”). We can find cell site “1st NB”, the closest (by graph weights) cell site,

had an long outage during day 6 and 7, while the other further neighbors looks normal.

Clearly the KPI patterns on R1 were affected by the outages in the neighborhood,

although no outage could be identified on R1. Taking those KPI patterns observed

in the surroundings as the input, the cell-level model learns the risk of network issues

for the users associated with the corresponding cell sites. The learned network issue

probabilities for R1 and R2 are shown in the top panel of Fig. 3.10. By using the graph-

based model, the model infers that the users on R1 had an increased risk of network

problem in day 6 to day 7. However, it is still not sufficient to conclude the issue

45

experienced by this customer is indeed impacted by the outage in the neighborhood.

The symptoms on the device side should also be investigated.

To understand what really happened with the customer, we also show the ses-

sion states (i.e., the UE-level profiles) in the past 7 days for this user’s device in the

bottom panel of Fig. 3.10. In this panel, the rectangles represent the intervals of the

cellular sessions of the UE that were carried by each of the two reference cell sites R1

and R2. Specifically, “Other / Idle” means the device was carried by other cell sites

or the device was idle, “R1/R2 Normal” means the sessions with R1/R2 were closed

normally, “R1/R2 RAT” means the radio access technology (RAT) was changed. The

simultaneous session occupations with R1 and R2 (e.g., the overlapped session intervals

in day 6) represent that the device was handed off from one to another cell site. Note

that the session states themselves cannot directly indicate whether the performance is

degraded. For example, the “Normal” state only shows the session is terminated follow-

ing a normal procedure, whereas the performance of the session is unknown. However,

by correlating the top and bottom panel of Fig. 3.10, we can discover that: (1) After

the occurrence of the outages (day 6 and 7), the total session length with R2 was sig-

nificantly reduced and the device was mostly carried by R1. The changes might be due

to the maintenance and network setting changes for resolving the nearby outages. (2)

R1 was significantly impacted by the outages in the neighborhood according to the cell

level model predictions. From the raw KPI data in Fig. 3.8 and Fig. 3.9, we can now

infer similar as this studied user case, many other devices nearby were also moved to R1

from their original carriers, and thus cause the significant increase of RRC connections

and CCE utilization ratio of R1. (3) Along with the carrier changes, the RAT was

46

degraded due to the congestion and resource limitations on R1.

Thus, the strong temporal correlation between the cell-level states and UE-

level states indicates the root cause of the reported issue was indeed a network problem,

which could also be learned by NeTExp using the proposed feature modeling methods.

In this example, the root network failures were on the neighboring cell sites rather than

the major cell sites that served the user. However, the impact of outages propagated,

which affected a larger population in neighboring cells. In fact, the propagation of the

network failure impact is usually triggered by the fault tolerance mechanisms in current

cellular networks. By handing over the customers from the cell site with failures to its

neighboring towers, it can dramatically reduce the customer impact of eNodeB/gNodeB

failures, although it may cause some congestion on the neighboring cell sites. Due to

the complexity of the problem, the root issue was hard to be identified over the live care

call. Note that there are a variety of detailed cell-level and UE-level symptoms when

customers experience a network issue. The case illustrated above is just one common

type of issue. The model’s task is learning all those issue patterns through training.

3.5.3 Evaluation for The Cell-level Model

For the cell-level model, we split the cell-level network log data into two parts:

we used the first consecutive 20 days of data for training and the rest consecutive 10

days of data for validation. The mean-absolute-error (MAE) and the model time costs

are used as the metrics. Then we analyze the model from both the spatial and temporal

dimensions as follows.

47

1 3 5 10 20 30
k

0.15

0.20

0.25

0.30

0.35

M
AE

train MAE
test MAE

Infer latency

0

1

2

3

4

Av
g

La
te

nc
y

(m
s)

Figure 3.11: The MAE and cost with dif-
ferent ks.

1 6 12 24 48 72
w

0.15

0.20

0.25

0.30

0.35

M
AE

train MAE
test MAE

Infer latency

0

1

2

3

Av
g

La
te

nc
y

(m
s)

Figure 3.12: The MAE and cost with dif-
ferent ws.

Analysis on the spatial dimension

In the spatial dimension, we want to find out how many neighboring cell sites

(k−1) should be considered when predicting the likelihood of network issues in the cells

centered by a target cell site. We fix the historical window size w of the KPI data as 12

hours. Then we train the cell-level model with different graph sizes, ranging from k = 1

to k = 30, where k is the total number of cell sites considered for prediction in the area.

For comparison, each model is trained with 10,000 batches and each batch contains 256

samples of the data window samples. The model is trained and executed on a 64-core

CPU cluster. The whole training process on the CPU server takes around 2-10 hours

for different ks.

When training is finished, we use the model to generate a time-series trace of

the predicted likelihood for each cell site using the sliding window method introduced

in Section 3.4. The window sliding stride is 5-minute.

We randomly select 10,000 cell sites, and measure the mean absolute error

48

(MAE) and the average inference delay (the inference cost for a single cell site at a

single timestamp) of the cell-level models. The comparison of different ks are shown

in Fig.3.11. We find the model yields high training errors when k = 1, showing it fails

to learn the target well when only the target cell site is considered. For the k > 1

scenarios, we find that our graph-based models have much smaller training and testing

errors. The results suggest that the interaction of neighboring cell sites is an important

feature when analyzing network issues on the cell level.

In addition, we also notice from Fig. 3.11 that the model does not improve

if more than 5 neighboring cell sites are included in consideration, while the inference

latency grows linearly with k. The observation suggests that the transition of the

abnormal network states indeed exists but only among the nearest neighboring cell sites

that have the largest jointly served population, as the fault tolerance mechanism of

cellular networks can dilute the impact of a single network fault on the distant cells.

Thus, we use k = 5 as a default cell-level model setting for our system.

Analysis on the temporal dimension

We show how the historical window size w impacts the cell-level model. In our

evaluation, we set k = 5 and changes the window size w from 1 hour to 96 hours. We

use the similar training and evaluation strategy as discussed above. The comparison

results are shown in Fig. 3.12.

From Fig. 3.12, we find that the model accuracy improves when longer time

windows are used. The training and validation errors significantly reduce when w = 48

hours. As w grows larger than 48 hours, the errors only reduce marginally. Hence, the

49

historical data beyond 48 hours is less important in inferring network issues. Fig. 3.12

also shows the cost of the model grows significantly with the window size w. Hence, we

choose w = 48 hours instead of a larger w as an optimal setting for the model.

3.5.4 Evaluation of The UE-level Model

Overall classification performance

We evaluate the root cause diagnosing performance of NeTExp using the real

historical care contact data introduced above. Specifically, the system is evaluated by

5-fold cross validation and is compared with 5 other baseline diagnosis models. The

training of NeTExp for each fold takes around 20 minutes. A brief introduction of those

models is as follows:

ICCA (auto) [52]: ICCA is a state-of-the-art diagnosis system for distin-

guishing between user and network faults in real time. It extracts the most discrimina-

tive UE-level event sequential patterns using PrefixSpan [27] and information gain by

creating a model-based search tree [20] on historical data. A Gradient Boosting Decision

Tree (GBDT) [21] model is then applied for classification. In addition, ICCA [52] also

uses manual expert features which are not available to us. Thus, we only implement

and compare the automatic feature extraction and learning modules of ICCA based on

network log data.

Fisher Score + KNN: We compute the fisher scores [24] of the Cell-level

and UE-level features obtained by NeTExp for the 7-day historical window with respect

to the root cause categories and select the top n discriminative features for classifica-

tion. We search the optimal n in range [5, 1000] and use n = 150, which gives optimal

50

performance through validations. Then a k-nearest neighbor (KNN) classifier is used

for case-specific diagnosis using the selected top n features.

Sparse Representation-based Classification (SRC) [76]: SRC creates

an annotated feature library with cell-level and UE-level feature profiles of the training

instances. At the online inference stage, for each customer’s case, the model reconstructs

input feature profile of the customer using a sparse liner combination of the library

profiles by solving an optimization problem with L1-normalization. Then the decision

is made by selecting the root cause category that minimizes the reconstruction error

using the training samples from that category only and the learned sample coefficients.

CNN with only Cell-level or UE-level features: We apply the same

CNN classification model introduced in Section 3.4 while using the extracted features

from only cell-level observations or UE-level observations, in order to illustrate the

importance of the extracted features from both sides for troubleshooting.

The overall 5-fold validation results (Accuracy, F1-score, RoC-AUC) are shown

in Fig. 3.13. We find NeTExp outperforms the other baseline methods for different

classification metrics. In addition, as a simpler and distance-based model, Fisher Score

+ KNN with the features learned by NeTExp also yields good classification results. This

shows the feature engineering methods in NeTExp provide discriminative features for

root cause classification. Meanwhile, we find the UE-level sequential patterns learned by

ICCA are under-representative for describing the user’s historical events that correlate

with the issue root causes. For example, the sequential pattern feature ignores the

timestamps of cell-level and UE-level abnormal events and the temporal correlation

among them.

51

Figure 3.13: Root cause classification. Figure 3.14: Overall RoC curve.

In Fig. 3.14, we present the ROC curve of the compared methods, where

network-side issue is denoted as “positive” and device-side issue is denoted as “neg-

ative”. The “cross” mark in the figure shows the ratio of network problems that could

be identified during the online troubleshooting phase. Since many non-outage network

issues are difficult to be timely recognized, the recall of the manual network identifica-

tion is low (less than 25%). For the rest 75% cases, the issues have to be forwarded

to offline inspection. From the results, we can clearly find NeTExp significantly im-

proves the accuracy of the network identification without introducing a large fraction

of “false positives”. For example, NeTExp can improve the recall to 75% with only

around 10% “false positives” included. Note that the network issues identified in our

ground truth data are only a subset of the all real network-issue-related cases. This is

due to the limitations of obtaining complete ground truth via existing troubleshooting

procedures in practice. Thus, those “false positives” may not be real negatives (i.e.,

non-network-related issues). In Section 3.6, we will show a case study for this type of

52

tickets.

In Fig. 3.15 and 3.16 we show the breakdowns of the performance for different

groups of troubleshooting samples. Specifically, we divide the dataset into two sub-

sets based on whether the ticket (if it is network-related) was eventually resolved in

the customer interaction stage (the “easier” dataset) or in the ticket resolution stage

(the “harder” dataset). Hence, the majority of the network issues included by the

first dataset are the network problems that caused severe service degradation (such as

outages), which are already detected proactively by the service carrier before the care

contacts; while the network-related cases in the second dataset are much harder to be

recognized and require in-depth inspection, which usually are related to intermittent or

chronic experience symptoms. The results shows that the features learned from only

the cell-level data can work well for identifying the “easier” network issue cases, while

they fail to work well for the “harder” cases. On the other hand, the information in-

cluded by the UE-level features can better describe the symptoms on individual user

device regardless types of the root causes. But the symptom of individual service expe-

rience itself is insufficient for locating the problem as different problems may produce

similar symptoms on the UE-side. Therefore, NeTExp , which correlates both the cell-

level and UE-level observations chronologically, provides best network issue detection

performance.

In Fig. 3.17 and Fig. 3.18, we shown the accuracy and the ROC-AUC scores

of the compared models for different categories of service problems. Cellular data prob-

lems (30%) and voice call problems (37%) are the most common reasons that motivate

the customer to call in the care. The “other” category represents all other less com-

53

Figure 3.15: RoC - easy cases. Figure 3.16: RoC - hard cases.

mon types, many of which are experience-specific. The results show that NeTExp is a

comprehensive model that always outperforms the baseline methods for different issue

categories.

3.5.5 Summary of The Evaluation Results

Through evaluation, we find the cell-level model achieves the best performance

when learning the likelihood of network issues by jointly incorporating the KPI features

of the neighboring cell sites. In addition, the UE-level model of NeTExp can more

accurately identify the root causes of the individual tickets for different service-issue

types and different network-issue root causes by correlating the cell-level and UE-level

network profiles.

54

1.0

0.9

�
u

� 0.8
::J
u

u

<(0. 7

0.6

NetExp (CNN)

11 1 1 11 NetExp (Fisher+KNN)

Cel I-Iv + CNN

O.S
Cellular Data

1•1

l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I

Voice Call

UE-lv + CNN

ICCA

■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I

Other

Figure 3.17: Accuracy for different is-
sue types.

1.0
NetExp (CNN)

11 1 1 11 Net Exp (Fisher+ KN N)

0.9
QJ ■-

I■

Cell-Iv + CN

L

0

� 0.8
I■
I■
I■
I■
I■
I■
I■
I■
I■
I■
I■
I■
I■
I■
I■
I■
I■
I■

I

u
:::::,

<(0. 7

0.6

O.S
Cellular Data

l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I
l■I

Voice Call

UE-lv + CNN

ICCA

■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I
■I

Other

Figure 3.18: ROC-AUC for different is-
sue types.

3.6 Case Study

We perform a case study to show how NeTExp can help troubleshoot service

degradation issues in practice for a cellular provider. Specifically, we apply our system

to analyze an external incident that caused network issues in the U.S. in 2020. During

the event period, some areas that were directly affected by the incident experienced

network outages, while other areas were indirectly affected due to network changes and

maintenance works after the incident.

Fig. 3.19 shows the distribution of the network-related care contacts in a

heatmap and the distribution of the cell sites that are considered to experience net-

work problems (the small blue dots) at different levels on Google Map. Specifically, the

intensity of the heatmap reflects the aggregated number of care contacts that are consid-

ered to be network-related in the unit area based on the ground truth troubleshooting

log data.

In Fig. 3.20, we show the heatmap and the impacted cell-sites on Google Map

55

High densityLow density

Figure 3.19: Manual: heat map and issue positions.

High densityLow density

Figure 3.20: NeTExp : heat map and issue positions.

56

0.0 0.5 1.0
Percentage

0.00

0.25

0.50

0.75

1.00

TP
R

Rule-based
baseline
optimal
Threshold

Figure 3.21: Recall of cell-level issue detection.

based on the inference results of the cell-level model and UE-level model of NeTExp .

Specifically, we use NeTExp to troubleshoot all reported service issues of the market in

the same time period and create the heatmap based on the model decisions. And we also

mark the positions (with the blue dots) of the cell sites that are considered to experience

a network issue during those days based on the predictions of the cell-level model.

Namely, for each cell-site c, we consider it as a impacted cell-site if maxtH
c
o(t) > ĥ.

The parameter ĥ used in Fig. 3.20 is determined by our analysis on the recall

of the detection, as shown in Fig. 3.21. In Fig. 3.21, by tuning ĥ, we show the recall

of the cell-level issue detection as a function of the percentage of the detected cell sites

over the whole market (i.e., |Cd|/|C|, where |Cd| is the number of the cell sites that

are considered to have network problems, and |C| is the number of all cell sites). The

optimal curve is the green dotted line, which corresponds to the “optimal” detection

result based on the ground truth positions shown in Fig. 3.19. We then select the ĥ

at the “Threshold” point in Fig. 3.21 as our model policy threshold for the detection.

At the “Threshold” point, the cell-model can achieve around 75% recall with near to

57

0 false positive rate. By comparing the results in Fig.3.20 and the groundtruth data

in Fig.3.19, we find the model automatically learns the impact of the disaster event at

different areas with different root causes, and infers how the impact propagated in a

wide area crossing multiple states.

From the manual and the model troubleshooting results (Fig.3.20 and Fig.3.19),

we find the model tends to recognize more tickets as network-issue related. The extra

tickets that are recognized as network problems become the “false positive” samples in

the classification results. However, we find some “false positives” (FP) are not false but

due to incomplete/incorrect groundtruth data.

To better understand the decisions of NeTExp , we show three classification

examples from different categories (true positive (TP), FP, and false negative (FN)).

In the top charts of Figs. 3.22, 3.23, and 3.24, we visualize a selected representative

UE-level feature for the three cases, as well as the 7-day time-series of the learned cell-

level model feature Hc
o(t) of their top-1 reference cell site. The bottom charts show the

number of care contacts (aggregated for every 3 hours) for the top-5 reference cell sites

in the area. The “Disaster ts” and the “CC ts” represent the time when the external

incident occurred and the time when the customer contacted care.

For customer A, the model infers a network issue, which is a TP case according

to the ground truth. The UE-level KPI shows the device is in abnormal states (the

device cannot maintain a stable session) for a period right before the care contact time.

The temporal consistency of the cell-level and UE-level features clearly demonstrates

how the model makes the correct decision. However, from the troubleshooting logs, we

find the customer’s issue was not immediately resolved during the customer interaction

58

0

1

CS
 P

re
d Hc

o(t)
UE KPI

Disaster ts
CC ts

No Sess

Normal

0

5

of

 C
CL

s Disaster ts
CC ts

of CCs

Figure 3.22: Example case A.

0

1

CS
 P

re
d Hc

o(t)
UE KPI

Disaster ts
CC ts

Normal

Credit
 Drop

0

8

16

of

 C
CL

s Disaster ts
CC ts

of CCs

Figure 3.23: Example case B.

phase and was eventually resolved by the ticket resolution with a longer delay.

Customer B’s case shows a “false positive” example. From the trends of the

cell-level model predictions and the growth of the care contacts in the local cells, and

their close correlation with the UE-level “Credit Drop” failure patterns, we believe the

root cause is indeed a network problem. However, we find the customer’s problem

was not resolved during the customer interaction phase, neither was there an offline

troubleshooting ticket generated. Thus, this case study shows a mislabeling case in the

ground truth data. In fact, we find this case is not unique in our dataset, as the raw

59

0

1

CS
 P

re
d Hc

o(t)
UE KPI

Disaster ts
CC ts

No Sess

Connect

0

2

4

of

 C
CL

s Disaster ts
CC ts

of CCs

Figure 3.24: Example case C.

care contact log data could be incomplete and noisy due to the difficulty to troubleshoot

some cases in the online phase. Still, NeTExp learns to make correct decisions despite

the noise in the training/validation data.

Customer C’s case shows a “false negative” decision. The model fails to detect

a network issue, although we can manually observe a subtle growing trend of the learned

cell-level feature and the number of daily care contacts. We infer the model fail to make

a correct prediction because of the inconsistency between the UE-level features and the

cell-level features. Specifically, the UE was not able to build data sessions for many

days until the past hour before the customer contacted care, which does not match the

expected timeline of the disaster impact. After inspecting the care contact logs, we

learn that the customer just activated a new device, which explains why the UE-level

network log shows no effective data session in the earlier days until the hour before the

care contact. However, NeTExp does not learn this context from the data, and thus

makes an incorrect decision.

From the third case, we find there could be some corner cases when creating

60

the UE-level profiles for the customers. Those corner cases are not fully considered by

NeTExp , since some real-world context is missing from the data source itself. Due to

this limitation, at this stage, we think a reasonable deployment for NeTExp is using it as

a reference knowledge base that provides the insights from the data-driven perspective

for the care agents in the customer interaction stage, rather than a full replacement of

human care agents.

3.7 Discussion

3.7.1 Model Updating for Unseen Scenarios

NeTExp models need to be updated as cellular network configurations and

application scenarios change. We summarize the possible network changes and discuss

how NeTExp need to be updated or retrained.

Permanent changes of traffic pattern. The traffic pattern observed for a

local cell may change permanently because of the following reasons: the upgrading of

network infrastructures, popularity of the trending network applications, or the changes

of user behaviors affected by major events such as COVID-19 pandemic. Thus, it

is necessary to keep monitoring the local network KPI patterns of recent days and

updating the rolling average of the KPIs at each timestamp of the day for effective data

normalization as introduced in Section 3.3.3.

Graph changes. Since the cell-level model is trained as a generalized feature

extractor that can fit for different sub-graphs rather a specialized model for a fixed

graph, the model weights does not need to retrained for minor graph changes (such as

61

adding or removing a cell site node), although the input graph adjacent matrix should

be updated for inference. However, if there are major changes regarding the global

graph feature distribution, for example, the cellular provide decides to shut down all

3G towers and activate more 5G towers in nationwide, both the cell-level and UE-level

models should be retrained using the new graphs and network measurement data.

New KPI counters. Our current model is trained using the cell-level KPI

counters and the UE-level state records that are available to us, while new other counters

or performance metrics might be available in the future. Those new measurements can

be easily added as the additional feature channels for learning using the proposed model

design, whereas the model need to be retrained. The DNN models in NeTExp can

adaptively extract good features from the available data if properly trained.

3.7.2 Fine-grained Root Cause Identification

NeTExp solves a practical problem raised by a real cellular provider: how to

automatically identify the root cause of a service issue experienced by a customer. In

this work, the root cause classification is conducted at a coarse level (i.e., whether is

issue is from network side or device side). This binary classification result which can fit

into the state-of-the-practice troubleshooting workflow (as illustrated in section 2.1.2) is

a fundamental need for the cellular providers to improve the troubleshooting efficiency.

On the other hand, as a highly representative DNN model, NeTExp can learn the

high level feature mapping from the raw network observations and generate insightful

feature profiles, which provides the potential for fine-grained root cause identification,

for example, recognizing whether the issue is on a particular cellular tower or in the

62

core network. Unfortunately, due to the shortage of fine-grained troubleshooting ground

truth data. it is rather challenging to train and validate the ML model.

3.7.3 The “False Positive” Instances

According to our evaluation results, the historical troubleshooting tickets that

were not labeled as “network related” but are identified as “network related” by NeTExp

become the “false positive” instances using the automatic troubleshooting models. In

the next chapter, we will discuss those “false positive” instances into more details.

3.8 Conclusion

We present the NeTExp system prototype for automatic and reactive service

issue troubleshooting in cellular networks. NeTExp is a generic and comprehensive data-

driven approach that considers both the cell site network conditions and UE network

logs, as well as their correlations for troubleshooting. The system can be easily extended

to incorporate different network KPI data depending on the accessible supporting cel-

lular infrastructures, software, and databases. Our evaluation with an extensive period

of real-world data from a major US cellular provider and a case study based on a real

event demonstrates the effectiveness of the system.

63

Chapter 4

NeTExp with PU-learning and

Trial System Implementation

From the evaluation results of the NeTExp prototype, we find some tickets

which were not labeled as “network-related” are recognized as “network-related” by the

machine learning models. We call those tickets “false positive” instances. The case

studies show that not all those “false positive” samples are genuinely false. In fact,

with the current manual troubleshooting workflow, not all network-related cases can be

successfully recognized or correctly labeled in the ticket data.

This chapter will investigate how to understand the “false positive” samples

and improve NeTExp using the limited ground truth data properly. We also provide

an enhanced NeTExp system design that fully considers practical concerns in the real

world.

64

4.1 NeTExp with PU-learning

4.1.1 Problem Description.

The supervision for training NeTExp mainly comes from the online and of-

fline manual troubleshooting tickets in the history. However, the troubleshooting ticket

ground truth could be noisy due to the following possible reasons:

First, the resolution provided by the care agents cannot always be verified.

The whole troubleshooting process requires the intensive engagement of the customers.

When the care agent proposes a possible solution in a remote troubleshooting scenario,

the customer needs to validate whether the solution can solve the problem. However,

the customer may not always be able to effectively validate the resolution or provide

a confident validation result to the care agent. For example, if the customer reports

the network speed is slow, the problem may be mitigated after the care agent performs

some configuration changes, whereas the customer may experience the issue again some-

time later when the network becomes congested. Unfortunately, many customers may

not choose to follow up with the case when the issue occurs again. Therefore, in the

troubleshooting ticket data, the care agents only provide what resolution is used, while

whether the resolution can completely solve the issue is unknown.

Second, the troubleshooting process may not be finished due to some unex-

pected reasons. An online troubleshooting process may take tens of minutes. However,

not all customers can stay on the line until the problem is solved. Sometimes the care

call line is accidentally dropped. This scenario is particularly common if the caller is ex-

periencing some service issue. In those scenarios, the care agent cannot collect sufficient

65

information to troubleshoot the problem effectively.

Third, not all troubleshooting results in the tickets can be trusted. Due to the

limited information that is collected in the online phase, the care agents may choose an

incorrect direction to troubleshoot the issue. For example, as the case shown in section

3.5.2, the care agents may not be aware of the propagation of some network issues and

thus ignore the potential network problem.

Since the model-based troubleshooting framework is trained and evaluated

based on the noisy ground truth troubleshooting data, we post a new concern: how

responsible the model is if it is used in practice. To solve this concern, we propose two

major questions: (1) how should we train the model with partially trusted data? (2)

how should we verify the effectiveness of the model given the limited ground truth data?

In the following sections, we will introduce a weakly-supervised learning framework to

solve the above problems.

4.1.2 Learning from Positive and Unlabeled Examples.

Manual troubleshooting tickets.

To figure out how responsible the ML model could be in practical scenarios,

we first need to understand how responsible the training dataset is. The labels we used

for the training dataset are from the manual troubleshooting tickets that are generated

in the online customer interaction phases and the offline ticket resolution phases (as

shown in Fig. 2.2). Since the offline ticket resolution phase is carried out by the

experienced tier-2 troubleshooting experts who can access the network log data, perform

data analysis, probe the possible treatments, and correlate the case with other reported

66

care agentcustomer

service
problem

Known network issues

Device-side problems?

Forward to offline

Network
issues

Non-network
issues

Verified negative (rare)
~3% of the offline

tickets

Verified positive
~97% of the

offline tickets

Verified positive

Offline

Online

~5% of all
reported issues

Cannot be verified by
the ticket data

could be either network
or non-network issues

Figure 4.1: A summary of the different types of tickets in the ticket datasets.

issues nearby in the offline, we think this troubleshooting phase can provide accurate

issue identification labels. On the other hand, due to the time constraints and the

information constraints in the live phone call, we do not think all resolution results

in the online care log data are accurate. Specifically, we can only trust the care log

tickets where the agents specify that a known network problem (e.g., network outages,

scheduled maintenance) can be identified. For those issues, the care agents can find

the associated cell site with evident network failure using the current outage detection

software. However, for the rest tickets, since the detailed troubleshooting process and

customer’s responses are not logged (for user privacy reasons), we cannot verify the

correctness of the manual troubleshooting results based on the data.

Hence, a summary of the troubleshooting log data types based on the confi-

dence of the proposed resolution in the tickets is shown in Fig. 4.1. From the figure, we

can find that only the offline troubleshooting tickets and the online network-issue-related

67

tickets can be trusted. In addition, based on our observation of the offline troubleshoot-

ing tickets that were collected for one month, we find that over 97% of the offline tickets

were recognized as network issue related. This observation further demonstrates that

the current manual troubleshooting framework can yield high precision for network

issue detection, while the recall is unknown. Namely, based on the ticket data, we can

think of the detected network issue cases as the correctly labeled tickets, while we can-

not know how many network issue cases are not detected in the manual troubleshooting

process.

Learning from positive and unlabeled data.

According to the nature of the manual troubleshooting ticket data, we can

formulate the automatic network issue detection task as follows.

Let P be the universe of tickets where the root cause is a network side problem,

and N be the universe of tickets where the root cause is not a network problem. After

being classified by the manual troubleshooting process, P can be divided into two parts:

Plabeled, which is the set of network issue related cases whose root cause can be identified

through manual troubleshooting, and Punlabeled, which is the remaining set, i.e., the

network issue is not successfully found. In addition, we use N to represent the non-

network-related tickets. The goal is training a ML model f that can distinguish between

P and N . However, the training data can only give Plabeled. We call the rest of the

unlabeled tickets in the training dataset U , where U = Punlabeled +N .

The above learning problem is a PU-learning task, i.e., learning from positive

and unlabeled data [42]. Unlike binary classification problems, only partial supervision

68

can be obtained from the ground truth data in PU-learning. Thus, to solve the PU-

learning problem, we usually need to train a binary classifier using weakly-supervised

learning strategies, which is more challenging than supervised learning. There are three

major types of methods for solving the PU-learning problem [7]: two-step techniques,

biased learning, and class prior incorporation. Different techniques hold different as-

sumptions regarding the training data distribution.

Two-step techniques [22, 45] assumes that all positive data samples (P) are

similar to the labeled positive samples (Plabeled), while negative samples (N) hold a

very different distribution. Thus, the key idea of two-step learning is first to find some

trusted negative samples from the unlabeled data (U) based on the dissimilarity to the

positive samples, and then to use semi-supervised learning methods [92] to train the

classifier using the labeled positive data and trusted negative data.

Biased learning is based on the SCAR (selected completely at random) as-

sumption, namely, the labeled positive samples are selected completely at random for

the positive data sample universe, i.e., Plabeled and Punlabeled have identical distribu-

tion. In biased learning, all the unlabeled data U is considered as the negative class,

while Punlabeled is considered as the noise in U . Then a classifier is trained based on

this assumption, while the different weights are given for different training penalty

sets [14, 60, 88]. However, the SCAR assumption may not always be realistic [35]. For

example, in the troubleshooting ticket data, the positive class samples mainly come from

the network outage cases that could be easily identified during the online phase and the

complicated network issue cases that are resolved through offline troubleshooting. The

experience and knowledge of the online care agents may affect which cases should be

69

forwarded to ticket resolution in practice.

Class prior incorporation [18] assumes the positive class prior, i.e., |P |/(|P |+

|N |), is known. Based on the class prior, a probabilistic classifier is trained using Plabeled

and the positive class and U as the negative class. Then the model is adjusted based on

the output sample class probabilities such that the learned positive class frequency is

similar to the class prior. The class prior can be decided by experiences or validation.

In our system design, we use a combination of the above PU-learning ap-

proaches to solve our problem. We also incorporate side-channel knowledge from his-

torical data to help train the model in a weakly-supervised way.

4.1.3 Enhanced NeTExp Model Design with PU-learning.

A teacher-student model framework.

In actual application scenarios, NeTExp should provide root cause classifica-

tion result during the customer interaction phase, which means the knowledge about

the network performance and UE-level symptoms should be obtained from the histori-

cal data before the users contact the customer care. However, we also notice that the

“future” network log data that is generated after the care contact can also include rich

information to support the classification. In particular, by comparing the network per-

formance or states before and after the care contact on both the cell-level and UE-level,

we could infer (1) when the network problem (if any) begins and ends, (2) whether

the UE-side performance is improved or the symptom disappears after the care agents

handle the issue, and (3) whether the correlation between the UE-level performance

states and the cell-level network states has been changed after manual troubleshooting.

70

PU-learning with future
unseen data

UE-lv UE-lv

cell-lv cell-lv

care contact time

historical future

ML model

Trusted
network

side issues

Trusted
device

side issues

Teacher Model

Student Model

UE-lv

cell-lv

historical

care contact time

Model calibration

Online Results

An interpretable model
(e.g., decision trees)

Labeled network
side issues

Unverified tickets

Self-learning

𝑷𝒍𝒂𝒃𝒆𝒍𝒆𝒅 𝑼

Training data

𝑷𝑻𝒓𝒖𝒔𝒕 𝑵𝑻𝒓𝒖𝒔𝒕

𝑷𝒍𝒂𝒃𝒆𝒍𝒆𝒅 𝑷𝑻𝒓𝒖𝒔𝒕 𝑵𝑻𝒓𝒖𝒔𝒕

Training data

7-day window

7-day window

7-day window

Figure 4.2: The teacher-student PU-learning framework.

Thus, the comparison between the data observations before and after the care contact

can provide an idea of whether the troubleshooting actions executed by the care agents

effectively solve the issue. If the UE-level performance gets improved immediately after

the care contact, the issue is more likely a device-side or configuration problem. On the

contrary, if the UE-level performance cannot get improved immediately after the care

contact but is correlated with the changes of cell-level network status, the issue is more

likely a network side problem. In summary, although we cannot verify the effectiveness

of most troubleshooting actions based on the ticket data, we could utilize the historical

and future network log data to infer the effectiveness. The “future” network log data

that cannot be obtained during the real-time troubleshooting phases can be used as

side-channel supervision for training the PU-learning models.

71

Based on the above insight, we propose a teacher-student model training frame-

work to solve the PU-learning problem. The framework overview is shown in Fig. 4.2.

The overall teacher-student model design follows the two-step PU-learning framework,

where the teacher model is responsible for augmenting the training data set using ad-

vanced self-training strategies, while the student model is used as a classifier that can

answer user’s queries in real-time.

Specifically, the teacher model is a PU-learning classifier that is trained based

on historical ticket data in offline. The purpose of the teacher model is to pre-classify

the tickets and generate a trusted and automatically-labeled dataset that includes both

the positive and negative instances. This dataset is then used as the training dataset for

training the student model, which is used for real-time troubleshooting in practice. To

obtain such a dataset, we use two primary techniques in the teacher model design: (1)

advanced self-training strategies and (2) feature profiling with side-channel supervision.

The student model is a binary classifier. It can also be considered as the

second classifier that is trained using the trusted data samples generated by the teacher

model in the two-step PU-learning framework. Since the student model is used for

real-scenario troubleshooting, it can only use the historical network data for learning.

In addition, to be responsible for the real customers, the decision-making process of

the student model should be interpretable by human care agents. Thus, the human

care agents can understand why the model thinks the problem is a network-side issue

or a device-side issue, explain the root causes to the customers, and perform further

investigations regarding the key observations if necessary.

72

Teacher model feature profiles.

We use a similar CNN model design as illustrated in Fig. 3.4 for the teacher

model. However, we redesign the feature profiling method such that the model can learn

with the side-channel supervision from the future data. Specifically, the new feature pro-

file includes the cell-level network state features that are learned by the cell-level model

and the raw KPIs of the top 5 reference cell sites. Let tcare represent the timestamp

of the care contact and w be the length of the historical or future feature window size,

the cell-level feature covers the duration between tstart to tend, where tstart = tcare − w

and tend = tcare + w. In addition, the feature profile also includes the UE-level states

from the UE-level network log data for the same period. Each UE-level state is a fea-

ture vector of length tend − tstart, and each entry of the vector represents whether the

UE is in a session at the corresponding timestamp with a particular termination code.

The cell-level and UE-level feature profiles are concatenated along the time channel so

that the temporal correlation of the two-side features are preserved. Using this feature

profiling method, the model can learn to automatically compare the data before and

after the care contact and use this knowledge as additional potential high-level features

through training.

In addition, we also augment the CNN feature map before the last fully-

connected layer with a collection of manual features based on the raw KPI data. The

manual features include the statistics and high-level observations from both the cell-level

data and the UE-level data.

In the cell-level, for every KPI, we think the KPI values on each cell site as a

73

time-series signal, and compute the following features based the KPI data for each each

site:

• The statistical features, such as average, standard deviation, maximum, and min-

imal values.

• The signal shape features, such as shape factor, impulse factor, crest factor [4].

• The signal-to-noise ratio (SNR).

Each of the above features is computed for the overall 7-day historical and future time

windows before and after the care contact time, and every 24-hour interval in the two

large time windows. Meanwhile, in the UE-level, we measure the occupation pattern of

the each type of the cellular sessions (classified based on the session termination codes)

and compute the following features:

• The occupation ratio, i.e., the total time while the UE is with the corresponding

session divided by the window size.

• The longest occupation time, i.e., the longest period of time while the UE is with

the corresponding session in the time window.

• The number of intervals in which the user is not with the corresponding session.

In addition, we also measure the number of handoffs in the sessions and compute the

same time-series features for the handoff pattern. Similar to the cell-level manual fea-

tures, the UE-level features are also computed for the overall 7-day windows and every

24-hour interval.

74

Those manual features are found closely related to the network side anomalies

and device-side symptoms and can be used to explain which key observations are used

for making a decision in a human-readable way. For the teacher model, we extract

the manual features based on both the historical and future raw features, in order to

profiling the differences of the KPI statistics in the two contrasting time windows.

Self-training for the teacher model.

We use a self-paced training strategy [12] to train the teacher model in a

weakly-supervised manner. Specifically, given the labeled positive tickets Plabeled and

the unlabeled tickets U , the goal of the teacher model learning is to generate a trusted

positive ticket set Plabeled + Ptrust and a trusted negative ticket set Ntrust through PU-

learning, where Ptrust ⊆ U , and Ntrust ⊆ U . There could be some instances that are

hard to be classified with a high confidence using the given conditions, for example, the

instances that are near to the decision boundary. We call those instances as Uuntrust,

i.e., Uuntrust = U − Ptrust −Ntrust. The key objective of learning is to find the subsets

Ptrust and Ntrust from U , such that instances in Ptrust are similar to the instances in

Plabeled, while instances in Ntrust have a completely different distribution. In the whole

learning process, the Ptrust and Ntrust are initialized as empty and grow incrementally

until the model gets converged.

Let f(x) be the probabilistic output of the binary classifier f for instance x,

where 0 ≤ f(x) ≤ 1. If f(x) is closer to 1, x is more likely from a positive class;

otherwise, x is more likely to be negative. Let L(ypred, ytrue) be the loss function, such

as the cross-entropy loss. To formally characterize the above PU-learning goal, we can

75

use the following loss components:

• EPL = 1
|Plabeled|

∑
i L(f(xPLi), 1), where xPLi ∈ Plabeled. EPL can represent the

cross-entropy loss for classifying a labeled positive instance to the positive class.

• EPPL = 1
|Plabeled|

∑
i L(f(xPLi), 0), where xPLi ∈ Plabeled. EPPL can represent the

penalty for classifying a labeled positive instance to the negative class.

• EPT = 1
|Ptrust|

∑
i L(f(xPTi), 1), where xPTi ∈ Ptrust. This is the cross-entropy loss

for the artificial Ptrust set.

• ENT = 1
|Ntrust|

∑
i L(f(xNTi), 0), where xNTi ∈ Ntrust. This is the cross-entropy

loss for the artificial Ntrust set.

• EUU = 1
|Uuntrust|

∑
i L(f(xUUi), 0), where xUUi ∈ Uuntrust. This is the cross-entropy

loss for the untrusted samples in the unlabeled data. Here we assume those un-

trusted samples are a noisy negative dataset, i.e., the similar assumption in the

Biased Learning methods.

The training process includes three stages: (1) the warm-up stage, (2) the PU-

loss pretraining stage, (3) the self-paced learning stage. Initially, Ptrust = ∅, Ntrust = ∅,

Uuntrust = U .

In the warm-up stage, we only consider Plabeled as the whole positive data and

all U as the negative class. The model is trained as a standard binary classifier using

the cross-entropy loss:

Lwarmup = EPL + EUU , (4.1)

The goal of the warm-up stage is to initialize the model weights so that the model can

76

find the unlabeled samples that are most similar to the labeled class (i.e., those “false

positives”) and the samples that are most dissimilar to the labeled class (i.e., those “true

negatives”). After a few rounds of training in the warm-up stage, the model switches

to the PU-loss pretraining stage.

In the PU-loss pretraining stage, the model is trained using Plabeled as the

positive class and U as the negative class. The optimization goal is to minimize the

unbiased PU-loss [37,80,81]:

Lwarmup = πpEPL + EUU − πpEPPL, (4.2)

where πp is the prior probability of the positive class. Different from traditional binary

cross entropy loss, in the unbiased PU-loss, πpEPL is the direct estimation of the posi-

tive class loss, while πnEN = EUU − πpEPPL is the indirect estimation of the negative

class loss using the labeled positive data and the class prior, where πn = 1 − πp. This

biased reweighting method prevents the model from too aggressively thinking all un-

labeled data samples are negative in the training process, and produces a reasonable

PU-classifier. However, the reweighting method estimates the loss at the statistic level

based on the SCAR assumption, while, as explained before, the SCAR assumption may

not be realistic for the troubleshooting problem. Therefore, we still need to consider

individual sample-level errors in the next self-paced learning stage.

The key idea of the self-paced learning stage is that in each training round, we

select a subset of the unlabeled samples as the “trusted” negative samples based on the

current model output probabilities and add those samples to the trusted negative set

Ntrust. Similarly, we also augment Ptrust based on the sample probabilities. Then we

77

Step 0: Initialization

𝑷𝒍𝒂𝒃𝒆𝒍𝒆𝒅

𝑼

𝑷𝒕𝒓𝒖𝒔𝒕 = ∅

𝑵𝒕𝒓𝒖𝒔𝒕 = ∅

𝒇𝒘𝟎
= 𝒇𝒘𝒂𝒓𝒎𝒖𝒑

𝑼𝒖𝒏𝒕𝒓𝒖𝒔𝒕 = 𝑼

Step 1: Use the current model 𝒇𝒘𝒊
to

predict sample probabilities

𝑼

𝒇𝒘𝒊

𝒇𝒘𝒊
(𝑼𝒖𝒏𝒕𝒓𝒖𝒔𝒕) 𝒇𝒘𝒊

(𝑵𝒕𝒓𝒖𝒔𝒕) 𝒇𝒘𝒊
(𝑷𝒕𝒓𝒖𝒔𝒕)

Step 2: Augment 𝑷𝒕𝒓𝒖𝒔𝒕 and 𝑵𝒕𝒓𝒖𝒔𝒕

𝒇𝒘𝒊
(𝑼𝒖𝒏𝒕𝒓𝒖𝒔𝒕)

sort

𝒕𝒑

𝒕𝒏

𝑼𝒖𝒏𝒕𝒓𝒖𝒔𝒕

𝑵𝒕𝒓𝒖𝒔𝒕
add to

𝑷𝒕𝒓𝒖𝒔𝒕add to

Step 3: Denoise 𝑷𝒕𝒓𝒖𝒔𝒕 and 𝑵𝒕𝒓𝒖𝒔𝒕

sort

𝒇𝒘𝒊
(𝑷𝒕𝒓𝒖𝒔𝒕 +𝑵𝒕𝒓𝒖𝒔𝒕)

𝒕𝒏

𝒕𝒑

move to

𝑵𝒕𝒓𝒖𝒔𝒕

𝑷𝒕𝒓𝒖𝒔𝒕

𝑼𝒖𝒏𝒕𝒓𝒖𝒔𝒕

Step 4: Update the model weights

𝒇𝒘𝒊

𝑵𝒕𝒓𝒖𝒔𝒕

𝑷𝒕𝒓𝒖𝒔𝒕

𝑼𝒖𝒏𝒕𝒓𝒖𝒔𝒕

𝑷𝒍𝒂𝒃𝒆𝒍𝒆𝒅

𝑳𝒔𝒆𝒍𝒇𝒑𝒂𝒄𝒆𝒅

𝒇𝒘𝒊+𝟏

Figure 4.3: The self-paced learning steps.

update the model parameters again based on the new Ntrust and Ptrust, Uuntrust, and

Plabel. The process is repeated until the model get converged.

Fig. 4.3 shows the key steps of one round in the self-paced learning stage. In

step 1, for the ith round, we use the current model to predict the probability fwi(x) of

each sample x in U being classified as the positive class. In the first round, the current

model fw0 is the obtained model after the warm-up stage fwarmup.

In step 2, we select the top rp×|U | samples with largest predicted probabilities

as the positive sample candidates, and the top rn × |U | samples with the smallest

probabilities as the negative sample candidates, where rp and rn are the learning pace

for trusted sample augmentation. In addition, we also use two probability thresholds tp

and tn to decide whether the sample candidates could be trusted. For a selected positive

sample candidate xp, if fwi(xp) > tp, we move xp from Uuntrust to the trusted positive

set Ptrust. Similarly, for a selected negative sample candidate xn, if fwi(xn) < tn, we

move xn to the trusted negative set Ntrust. The goal of step 2 is to augment the set

78

of the trusted samples based on the current model and enhance the learning by using

those samples and the labeled samples as the target to compute the loss.

In step 3, we also want to eliminate the noise in the trusted data. As the

learning proceeds, some samples that are trusted in the first few rounds may become

untrusted in the later rounds. Therefore, we move those samples from Ptrust or Uuntrust

back to Uuntrust if the current probability fwi(x) ≤ tp or fwi(x) ≥ tn. This “in-and-out”

self-correction mechanism [12] makes sure that the model does not get over-fitted to the

noisy samples that are added to the trusted sets in early learning stages.

In step 4, the model parameters are updated using the current trusted/untrusted

sets and the following loss function:

Lselfpaced = EPT + ENT + πpEPL + EUU − πpEPPL, (4.3)

where EPT +ENT is the cross-entropy loss for the trusted samples, and πpEPL+EUU −

πpEPPL is the PU-loss of the rest data.

The model get converged when (1) the changing rate of Ptrust and Ntrsut is

smaller than a small value δ, where the changing rate is defined as 1 − |Xi∩Xi−1|
|Xi∪Xi−1| , |Xi|

and |Xi−1| are the current and the previous trusted set size; (2) the Lselfpaced value

get converged. After training, we can obtain four final data sets: Plabled (unchanged),

Ptrust, Ntrust, and Uuntrust. Ptrust and Ntrust are the augmented labeled data sets

through PU-learning with the historical and future data observations. Those data sets

can also provide meaningful supervision for the online troubleshooting phase model

where limited observation of the massive data is available.

79

The student model design.

The student model is the inference model used in the customer interaction

stage. The function of the student model is to predict the root cause of a reported

service issue in short latency. Therefore, only historical network status data can be

used in the student model for online inference. To incorporate the knowledge from the

future data with additional supervision information, we train the student model using

the raw labeled data Plabled as well as the augmented ground truth data Ptrust and

Ntrust that are obtained by PU-learning with the teacher model.

In addition, as a model that intends to resolve real customers’ concerns, the

student model should provide insightful and interpretable troubleshooting logic to the

customers and care agents. Motivated by previous research in model interpretability for

networking systems [47], we choose to use decision-tree-based models rather than the

deep neural networks for the student model.

Specifically, we use the manual statistical features (introduced above) of the

cell-level and UE-level network measurement data as the feature profiles for the student

model. The purpose of using those features instead of the raw time-series data is that

the care agents can understand how those features contribute to the model’s decision-

making process. Note that for the student model, only the historical 7-day window

features can be used.

To decide which machine learning model should be used, we tested the per-

formance of the following interpretable models: decision trees, random forest, XG-

Boost [11], logistic regression, and fisher score [24]. The models are trained using

80

Plabled + Ptrust as the positive class and Ntrust as the negative class. Among the tested

methods, XGBoost provides the best classification result and good interpretability. De-

tailed comparison and model interpretation results are shown in section 4.3.

4.2 Trial System Design.

4.2.1 Overview

In this section, we mainly illustrate how to implement a trial troubleshooting

system for real deployment. Different from the system prototype, there are a few key

practical challenges and concerns that need to be addressed for real system implemen-

tation:

• Data synchronization and delay: different data sources used for troubleshooting

are fed with different granularity and have different delays. In the trial system,

different data sources should be properly synchronized. In addition, the feature

profile generating delay should be evaluated.

• Model efficiency: we also need to consider the model efficiency at different config-

urations such that the care agent can timely utilize the model output results and

perform troubleshooting during the care calls.

• Model updating: whenever a newly trained model is available, the model should

be able to be easily replaced in the whole system pipeline.

• Distributed troubleshooting agents: since the volume of care contacts could be

large in the peak hours, the system should be able to work in a distributed way

81

Learned Cell-
profile database

(streaming)

The UE-level module

Offline

Graph
generator

Model
Training

Online

Real-time KPI
computing

Feature
engineering

Profile
learning

The cell-level module

Offline

Model
Training

Online

UE-profile
pre-fetching

Online client

UE-level
feature

engineering

Root cause
prediction

Root
cause

Figure 4.4: The NeTExp trial system design overview.

such that it is scalable to the market size.

In Fig. 4.4, we show the design overview of the NeTExp trial system. Similar

to the NeTExp prototype, the real system design also includes the two major mod-

ules: the cell-level module and the UE-level module. The cell-level module can operate

independently from the UE-level module. Namely, the cell-level model generates the

cell-level feature profiles that describe the running status of each cell site in real-time,

regardless of whether there is any care call coming in. In addition, the cell-level model

archives the extracted cell-level feature profiles in a streaming database for lookups re-

quested by the UE-level model. Then for the UE-level module, the inference functions

are triggered when the care agent inputs the user’s information (phone number, care

contact time, etc.). The UE-level module looks up the most frequently accessed cell

sites for the customer based on that information and then retrieves the corresponding

cell-level feature profiles from the profile database created by the cell-level module. The

82

UE-level module also queries the UE-level network log database and creates the UE-

level feature profiles. Finally, the feature profiles are sent to the UE-level ML model for

troubleshooting inference. From this design overview, we can find the UE-level modules

can work in parallel with the cell-level module, which greatly reduces the end-to-end

responding delay for a case query in the online troubleshooting. In addition, multiple

UE-level modules can work in parallel using the same cell-level feature profile database

so that the system can handle multiple queries simultaneously or in a distributed man-

ner.

The detailed system implementation of each module is shown in the following

sections.

4.2.2 The Cell-level Module.

Graph generator.

One important input to the cell-level module is the adjacency graph of the cell

sites. To obtain this graph, we implement a graph generator that runs in the offline

phase. Specifically, the graph generator reads all UE-level session logs over a long period

(e.g., one month) and analyzes the handover patterns of the users in a global market.

Specifically, for each UE, if the UE builds sessions with cell site A and B simultaneously

within a unit time (e.g., 1 hour), we add the proximity counter for the edge (A,B) by

one. After measuring the graph edge weights using the whole database, we can obtain

a vast and dense graph representation for all cell sites in the market. Then the graph

weights are pruned by only selecting the top k − 1 cell site nodes in the neighborhood.

The pruning can effectively reduce the input graph size and eliminate the noisy measures

83

Online

Cell-level KPI data

• Streaming data
• 5-min granularity
• 5-10 mins of delay

workers

Feature Engineering

• Compute KPIs
• Padding
• Normalization

…

…

…
…

old new future

Offline

UE-level session logs

preprocessing
&

measurement

Cell-level
model

Network states
of each cell site

• Streaming data
• ~ 20 mins of total delay
• 20-min granularity

Can replace with
other ML models

FIFO

Figure 4.5: The cell-level module system design.

that are caused by the user’s long-distance mobility. The k is set as 5, according to our

analysis in section 3.5.3.

The graph generator runs in the offline (as shown in Fig. 4.5). For a large

market with hundreds of millions of users and tens of thousands of cell sites, the graph

measurement could be very time-consuming (around three days to finish). Fortunately,

the graph weights do not change significantly over time for a stable network, and the

overall graph only needs to be computed once assuming the network is not updated.

If the network is updated in a local area, such as adding or removing a cell site, we

only need to recompute the graph for the small area where the configuration change is

deployed.

The online feature generation pipeline.

In the online phase, the cell-level module reads the streaming measurement

data, compute the KPIs, engineer the features, and feeds the features to the model for

84

learning. Specifically, some of the available raw KPI counters are fed at 5-minute gran-

ularity while others are fed at 1-hour granularity. The counters fed at 5-min granularity

have less than 10 minutes of delay, while the other counters have around 30 minutes of

delay. For the counters that measure the average KPI in every hour and have around 30

minutes of delay, the total delay for being aware of a network issue is around one and

half hour in worst case. To minimize the possible delay of the available streaming data

for NeTExp , we synchronize all the data feeds to the counters with 5-min granularity.

Specifically, for the data counters with larger granularity and longer delay, we interpo-

late the data to finer granularity and pad the data using the latest counter values for

the delayed time slots. Although the data filled by interpolation and padding may not

be accurate if that network KPI changes significantly, we can still use the other KPIs

with finer granularity to learn the network status as timely as possible.

The online feature engineering component runs in real-time, namely, it pro-

cesses the data every 5 minutes when a new counter value is available. For each KPI,

we use a thread (i.e., the “worker”) to compute the KPI value based on the counters,

pad and interpolate the value if necessary, and normalize the current value data based

on the historical KPI statistics for the same cell site at the exact timestamp of the

day (the detailed normalization method is shown in section 3.3.3). Then the normal-

ized KPI values are inserted into a FIFO (first-in-first-out) queue with fixed length (48

hours according to our evaluation in section 3.5.3). When the queue is updated (i.e.,

new counter values are inputted), we can scan over all the cell sites in the market and

generate the feature profiles of each cell site and its nearest neighbors using the feature

vectors of those corresponding cell sites in the queue. Next, the feature profiles of each

85

cell site are fed to the machine learning model for inference. The model output repre-

sents the current estimated network issue risk of each cell site. We save the outputs in

a new cell-level network state database using the cell site ID as the key for future usage

in the UE-level module. When a new machine learning model is available, for example,

if the model parameters are fine-tuned based on recent data, we can replace the old

model with the new model without changing other parts of the pipeline.

For a large market with tens of thousands of cell sites, the cell-level ML model

inference delay for all cell sites could be as long as a few minutes (detailed evaluation

results are shown in 3.5.3). Therefore, we degrade the inference frequency to once every

20 minutes (i.e., after four counter inputs) in our CPU servers for a global market.

The degradation will cause a longer delay for tracking a network problem on the cell

level. Compared with the UE-level data feed delay (which is one hour), this delay is

acceptable. For more effective network problem detection on the cell level, we can also

use distributed cell level modules for a large market, where each module only monitors

and learns the network status of a small number of cell sites locally.

4.2.3 The UE-level Module.

The system design of the UE-level module is shown in Fig. 4.6. The UE-level

module mainly includes two components: the data retrieving phase and the decision-

making client phase.

86

UE-level
network logs

Time CTN Session Info
𝑡1 𝑐𝑡𝑛1 … …
𝑡2 𝑐𝑡𝑛2 … …
… … … …

Pre-fetching
&

pre-processing

Pre-fetching
&

pre-processing

Pre-fetching
&

pre-processing

Pre-fetching
&

pre-processing

𝒉(𝒊𝒅)

UE-level Profile

…
…

…
…

Profile

𝑖𝑑1

𝑖𝑑2

7 days

On Hadoop

Pre-fetching and Indexing

𝒊𝒅, time

Inputs

Live phone call

UE-level
feature

retriever

UE-level
Profile

Top 𝒌′
cell sites Learned

network states

(the cell level module)

Cell-level
Profile

UE-level
student
model

Root cause

The online client

Figure 4.6: The UE-level module system design.

Fast UE-level data retrieval.

When the care agent inputs the UE’s information to the NeTExp system, the

first step of the UE-level module is retrieving the corresponding network log data for

the UE from the backend database. However, the raw UE-level log database is vast for a

large market. For example, the data block size for a market with around 3 million users

over a 7-day historical window is hundreds of Gigabytes. In addition, for efficient session

record logging, the raw database streams the real-time session records in a chronological

way. Namely, the records are ordered by the timestamps instead of being indexed by

user IDs. Hence, it is costly to load the whole database to memory and search for the

required records during the online query phase.

To solve this problem, we implement a pre-fetching and indexing component

for fast UE-level data retrieval. Specifically, we use independent threads to preprocess

87

the raw database, group the database records by the UE IDs, parse the raw data, and

save the preprocessed data blocks to disk using the hash of the UE IDs as the indexes.

The preprocessing module is implemented on Hadoop with Apache Pig. This module

is triggered each hour whenever the new streaming UE-level raw data block is available

(the raw data streaming granularity is 1 hour). Moreover, the generated new database

indexed by the UE IDs can be shared by multiple troubleshooting clients in the online

phase. By using the hash of the UE IDs as the key, the inference client only needs

to read a small data block to memory for a given ID, which significantly reduces the

I/O and data searching time cost. In fact, based on our evaluation, this part of I/O

and data searching cost is the dominating latency in the end-to-end online inference

latency, even with the proposed preprocessing module. Still, the preprocessing module

successfully reduces the I/O and data searching cost to an acceptable level for practical

online inference (detailed analysis is shown in Section 4.3).

Online client for root cause classification.

Finally, we implement the online client for root cause classification in the

customer interaction phase. Specifically, the client first retrieves the corresponding UE-

level historical network log data from the pre-fetched database. Then it computes the

statistic of the user sessions associated with each of the cell sites the user accessed

and finds the top k′ cell sites that are most frequently used by the user. Through

analysis, we find the top k′ = 5 cell sites can cover 91% of usages for the customers on

average and would be sufficient to locate the network problem that greatly impacts the

user’s experience. Based on the top k′ cell sites, the troubleshooting client retrieves the

88

learned network status of the corresponding cell sites from the network status database

created by the cell-level module. Finally, the client computes the cell-level and UE-level

feature profiles for the UE and feeds the feature to the machine learning model for

inference. The machine learning model is an XGBoost model that can also output the

key features and value thresholds in each step of the decision trees for the final decision.

The explanation of those key features can enable the human care agents understand

why the problem is more likely a network-side or device-side problem over the other

one.

In addition, the XGBoost model can be easily replaced by other fine-tuned

models or interpretable models. For example, if the current manual troubleshooting

framework is improved and more supervision knowledge could be obtained from the

manual tickets, we can retrain the teacher and student model with advanced ground

truth knowledge and new data using PU-learning or standard supervised machine learn-

ing.

4.3 Evaluation.

4.3.1 Performance of NeTExp with PU-learning.

The teacher model training process.

We collect the care contact log and ticket resolution log data for one month in

2021 to evaluate the system. Around 10% of tickets can be verified to be network-issue

cases, while the root cause of the rest tickets cannot be verified. We use 70% of data

for training and 30% of data for validation. The KPI feature data sources are similar

89

to the datasets illustrated in section 3.5.1. Since all current manual troubleshooting

tickets are obtained from the existing troubleshooting framework, there is no confident

labeling method to label a uniformly random set of the reported service issues and create

a trustful benchmark for the PU-learning evaluation. To measure how well the model

performs, we compute the following metrics:

• The recall of the labeled network issue samples (LP-recall): |TP |
|Plabeled| , where TP

is the true positive data that can be verified by the known labels, i.e., the tickets

that are labeled as network issues and are successfully recognized by the model.

• The labeled positive rates in the predicted positive class (LPP-rate) and predicted

negative class (LPN-rate), i.e., LPP-rate = |TP |
|Ppredicted| and LPN-rate = |FN |

|Npredicted| ,

where Ppredicted and Npredicted are the data that are classified as positive and

negative respectively, |FN | is the false negative data that can be verified by the

known labels, i.e., the tickets that are labeled as network issues and are mistakenly

recognized by the model. For an effective PU-learning model, LPP-rate > LPN-

rate.

In Fig. 4.7, Fig. 4.8, and Fig. 4.9, we show the learned probability histograms

during the warm-up stage, the PU-loss pretraining stage, and the self-paced learning

stage of the teacher model. In the histograms, the X-axis is the probabilistic output

of the teacher model for the input instances, and the Y-axis is the count of how many

samples are classified to the specific probability range. In addition, we separate the

labeled network issue cases and the unlabeled cases with different colors in the figure.

The “All” bars in the figures represent the distribution of the predicted probability of

90

(1) Epoch 0 (2) Epoch 5 (3) Epoch 10

(4) Epoch 15 (5) Epoch 20 (6) Epoch 25

Figure 4.7: The training process of the warm-up stage.

(1) Epoch 0 (2) Epoch 5 (3) Epoch 10

(4) Epoch 15 (5) Epoch 20 (6) Epoch 25

Figure 4.8: The training process of the PU-loss pretraining stage.

91

(1) Epoch 0 (2) Epoch 5 (3) Epoch 10

(4) Epoch 15 (5) Epoch 20 (6) Epoch 25

Figure 4.9: The training process of the self-paced learning stage.

network-side issue for all received service issue reports, while the “LP” bars represent

the learned distribution of the labeled network issue reports only. The histograms are

normalized by dividing the bar heights by the total number of all received service issue

reports. In the ideal case, if the model can perfectly classify every case, we could obtain

a histogram where all labeled network issue cases are concentrated to the right side of

the probability distribution (i.e., f(x) > 0.5), showing those cases are more likely to be

network issues; while a good proportion of the unlabeled cases are distributed in the left

side of the distribution (i.e., f(x) < 0.5), since it is evident that a large number of the

reported problems are indeed device-side problems according to the experiences of the

network operators, although those tickets cannot be verified by the ground truth tickets.

However, since troubleshooting the individual service issue is inherently challenging and

limited ground truth data is available, the real model we can obtain cannot perfectly

92

classify all cases.

From Fig. 4.7, we can find that the warm-up training stage with the cross-

entropy loss function can learn to push the labeled positive samples towards the posi-

tive class side in the probability distribution histograms. However, since the “negative”

class in the training stage includes many “real positive” samples, which are considered

as noises in the “negative” class, the warm-up stage with the standard binary classifi-

cation method cannot correctly figure out a clear boundary between the real positive

and negative classes. In fact, many samples in the unlabeled data are still network-

issue-related samples that are not detected by the ground truth ticket data. Since those

instances have similar feature patterns as the labeled network issue samples, the stan-

dard binary classification loss function that ignores this fact would generate incorrect

gradient directions for adjusting the decision boundary.

In Fig. 4.8, we notice that training with the PU-learning loss function can

make the probability distribution of the training samples spread out over the range space

[0, 1]. The pre-training stage with PU-loss does not aggressively think all unlabeled data

are negative and can classify those unlabeled samples based on their similarity to the

positive classes. As the learning proceeds, the model can push the label positive samples

towards the positive class side and push the samples that are not similar to the positive

class towards the negative class side. However, it is still hard to decide a proper decision

boundary based on the results of the warm-up learning stage, as most data samples are

distributed to the “ambiguous” zones based on their probabilities.

The self-paced learning stage, as shown in Fig. 4.9, can make the decision

boundary clear by pushing most samples towards the “0” or “1” sides of the X-axis.

93

Figure 4.10: The LP-recall, LPP-rate, and LPN-rate of the teacher model.

The key mechanism is that the model gradually considers more samples with high

classification confidence as the trusted positive and negative data. Thus, the model

can become more and more confident for most samples while avoiding overfitting by

eliminating the samples with less-confidence from the trusted sets in each training round.

In Fig. 4.10, we show the LP-recall, LPP-rate, and LPN-rate of the teacher

model for the training and validation data respectively, where we use 0.5 as the prob-

abilistic decision boundary for the positive and negative class. The results show that

the model successfully recognizes 75% of the labeled network issues (LP-recall) for the

validation dataset. In addition, the LPP-rate is more than twice the LPN-rate, showing

that the model is effective for the PU-learning objective.

The student model performance.

The student model is trained to mimic the behavior of the teacher model

using only the historical observations for the service issue cases. Specifically, we use the

94

Figure 4.11: The ROC-AUC, Accuracy, and F1-Score of the student model.

Ntrust as the negative class and Ptrust + Plabeled as the positive class when training and

evaluating the student model. The performance (RoC-AUC, Accuracy, and F1-score)

of the different interpretable student models on the validation dataset are shown in Fig

4.11. From the results, we find the XGBoost outperforms the other machine learning

models because of its powerful capability of representing complex features.

In addition, the detailed accuracy breakdowns for Plabeled, Ptrust, and Ntrust

of the models on the validation dataset are shown in Fig. 4.12. For the Plabeled set,

the XGBoost and Random Forest model can achieve more than 80% of recall, which is

even higher than the LP-recall of the teacher model, which takes more knowledge for its

input. The key reason is that the student model can obtain more supervision knowledge

from the training data (namely, the confident labels), which is provided by the teacher

models. Besides, XGBoost can also achieve more than 80% accuracy on the other two

groups with artificial labels, i.e., Ptrust and Ntrust.

In Fig. 4.13 we show the top 18 features ranked by the information gains in

95

Figure 4.12: The accuracy scores for Ntrust, Ptrust, and Plabeled.

The connected ratio of the
UE-level sessions

#1. The connected ratio of code
``Normal’’ of the 7 days.

#3. The connected ratio of code
``Maximum Change’’ of the 7 days.

#4. The connected ratio of code
``Maximum Change’’ in day 7.

#5. The connected ratio of code
``RAT Change’’ of the 7 days.

#12. The connected ratio of code
``Volume Limit’’ in day 4.

#13. The connected ratio of code ``
Maximum Change’’ of the 7 days.

Number of Handoffs

#2. The maximum of the 7 days.

#7. The standard deviation in day 7.

#8. The crest factor of the 7 days.

#15. The standard deviation of the 7
days.

The unconnected intervals
of the UE-level sessions

#6. The number of unconnected
intervals of code ``Time Limit’’ of the
7 days.

Cell-level features

#9. The SNR of the CCE Utilization ratio of the Top #1 cell-site in day 4.

#10. The shape factor of the RRC Counts of the Top #2 cell-site in day 2.

#11. The minimal throughput of the Top #1 cell-site in day 7.

#14. The standard deviation of the RRC Counts of the Top #2 cell-site in the 7
days.

#16. The minimum of the RRC Counts of the Top #1 cell-site of the 7 days.

#17. The minimum of the RRC Counts of the Top #1 cell-site in day 7.

#18. The minimum of the throughput of the Top #1 cell-site in day 7.

Figure 4.13: The top 18 features with maximum information gains in the XGBoost
model.

96

XGBoost trees. We highlight the time period and the cell site for which the feature is

computed. For example, “day 7” means the last day of the 7-day historical window,

i.e., the closet 24-hour interval before the care contact time. The “top # 1” cell site

means the cell site that is most frequently accessed by the user in the past week. For

the UE-level session codes, “Maximum Change” is related to the frequency of hand-

offs, “RAT Change” reflects the change of radio access technologies, “Volume Limit”

is related to the volume of the data used in the session, and “Time Limit” is related

to the duration length of the session. The feature names are grouped based on the

categories. From the results, we can find: (1) Those automatically learned features

are generally consistent with the experiences of the expert human network operators.

Specifically, the overall connected ratio of the normal sessions and handoff behaviors

can characterize the key symptoms on the UE-side, and the abnormal cell site KPIs

can characterize the network states on the network-side. (2) The features on the most

frequently access cell sites in the nearest 24-hour interval before the care contact (i.e.,

day 7) can most properly characterize the issues, which are also thought as the more

important features by the model. (3) The XGBoost model can automatically decide

the splitting thresholds on those features, while those thresholds are hard to be decided

precisely by human experts.

In summary, with the tree-based student models, the care agents can under-

stand how a decision is made in the automatic troubleshooting process. Therefore, they

can properly evaluate the correctness of the model’s decision and perform appropriate

future steps if necessary.

97

Log query UE-feature Cell-feature ML-model

Average 11.45 0.073 0.061 0.408

90th percentile 15.29 0.13 0.080 0.431

95th percentile 17.46 0.15 0.086 0.456

Table 4.1: The average, 90th and 95th percentiles of the time costs (in seconds) of
NeTExp components.

4.3.2 System Efficiency.

To understand the feasibility of deploying NeTExp into the existing online cus-

tomer service framework, we evaluate the end-to-end responding time cost of NeTExp

to individual queries. According to Fig. 3.11 and 3.12, the cell-level module of NeT-

Exp takes millisecond-level delay for cell site state learning on CPU servers, and thus

can support real-time (i.e., in 5-minute granularity) state feature representation for a

market with tens of thousands cell sites. Since the cell-level module can work in paral-

lel regardless whether there is any care contact, we only take account of the following

delays for online customer query responding. (1) Log query delay: the cost to read

the 7-day historical UE-level logs from database on disk. (2) UE-feature delay: The

cost to parse the UE-level logs, extract the top k relevant cell site IDs, and create the

UE-level feature profiles. (3) cell-feature delay: The cost to read the cell-level model

features for the corresponding cell sites and time windows. (4) ML-model delay: The

cost for the execution of the UE-level XGBoost model for inference.

We simulate the online query process using 1000 historical care contacts from

a market with more than 2 million users and measure the delays of each components

98

for this market. The average, 90th and 95th percentiles of the time costs of different

components are shown in Table 4.1.

From the results, we notice the longest delay is the UE-level network log query

delay. The reason is that the UE-level network log data for a million-scale user pop-

ulation market is rather massive and cannot by loaded entirely to memory. Thus, the

record searching and disk I/O cost for reading the corresponding log data for one partic-

ular user dominates the end-to-end online process. This part of cost can be effectively

optimized by using faster storage, finer-grained key-value pointers for data localization,

or a memory cache that prefetches the profiles of the users who are likely to contact the

care based on learning and forecasting [64]. One practical solution to further reduce

this cost is dividing the large market data into smaller data blocks by user locations

and use finer-grained key-value pointers to localize the corresponding user profile blocks.

Another possible optimization method is adding a memory cache that prefetches the

profiles of the users who are likely to contact the care based on learning [64].

In addition to the data I/O cost, the feature engineering and model execution

costs are small enough (less than 1 second in total) to be neglected in a live phone call

conversation. Taking account of the large I/O cost, the average end-to-end delay is

still less than 20 seconds, while a customer care contact usually takes a few minutes or

longer. Thus, the inference results generated by NeTExp can well assist the care agent

at early stages of the care calls.

99

4.4 Conclusion.

In this chapter, we study how to address the label insufficiency problem of

the ground truth data in the cellular network troubleshooting task. Specifically, we

applied a teacher-student model design to address the problem under a PU-learning

framework. The evaluation results show that the PU-learning approaches can indeed

improve the model accuracy for many challenging reported issues that cannot simply be

characterized by the rules. In addition, we use interpretable machine learning models

in the decision-making client phase, so that the troubleshooting clients can provide

the route map of how the conclusion is made based on the available human-readable

features. We implement a trial system of the enhanced NeTExp prototype design and

show that the system can well support fast root cause identification during the online

customer interaction phase.

100

Part II

On-device Certificate Revocation

Checking for Peer-to-Peer Mobile

Network Applications.

101

Chapter 5

Authentication and Certificate

Revocation Checking in Mobile

Networks.

5.1 PKI-based Authentication in IoT Ecosystems.

With the rapid growth of IoT service market in recent decades, there is an

increasing demand for secure peer-to-peer communication protocols in a universe with

millions of IoT devices. Therefore, peer-to-peer device authentication becomes a funda-

mental security problem of novel IoT and the building block of many emerging critical

IoT security protocols for communication privacy (such as the TLS-style protocols)

as well as IoT data authenticity and integrity (such as the digital signature proto-

cols) [1, 2, 44,50]. The state-of-the-art solution of device authentication is to use device

102

certificates based on the Public Key Infrastructure (PKI) [1,2]: each device is assigned a

device certificate by a Certification Authority (CA). For example, the IoT architecture

of Symantec enterprise security (now Broadcom) allows assigning certificates to millions

of devices [1] and verifying the device certificates by the device management servers [2].

Note that the “CAs” for IoT devices refers to not only general public SSL certificate

authorities, but private certificate issuers in a service managed by the service provider.

Therefore, on-device certificate verification [70,74], i.e., allowing one IoT device

to verify the certificate of another device, becomes an emerging and vital component

for IoT security. For example, many emerging and future IoT applications require

secure peer-to-peer communication directly or via the global mobile network, such as

autonomous robotic systems, vehicular communication, wearable healthcare systems,

smart industrial control, and IoT-based post-disaster management. A device should use

its own data and power to verify the certificate of another communicating device, to

further build a secure channel using protocols such as DTLS [57]. In addition, an IoT

device may need to process the sensing data collected from other devices, which carries

the digital signatures from the sensing sources [44]. Verifying the public-key certificates

is essential in validating digital signatures to ensure data authenticity and integrity. For

example, in a smart city, an IoT sensor has to authenticate the mobile devices of the

authorized users so that it can only provide the sensing data to the users who have the

authority. Meanwhile, user devices also need to verify the signatures of sensing data to

ensure the data are not tempered by an attacker.

However, on-device certificate verification remains a challenging problem mainly

due to the high latency and bandwidth cost of the revocation-checking step. Verifying

103

a digital certificate takes three main steps: 1) check its validity period; 2) validate the

CA’s digital signature using CA’s public key; 3) verify the certificate revocation (CR)

status. Step 1 is simple. Step 2, although involving public key cryptography, takes

bounded time and memory that can be afforded by most IoT devices. Step 3 is consid-

ered an expensive process even for a desktop machine [41, 67, 87]. Some issued digital

certificates may have been revoked by the CAs [38,87,89] due to a number of reasons: 1)

the device is stolen; 2) the private key of a device could be compromised by attackers; 3)

the CA may find that a certificate is a mis-issuance; 4) a device may unsubscribe from

an IoT service while its certificate is still within its valid time period; 5) the database

of an IoT service provider or device manufacturer might be hacked and the private key

information could be leaked. Upon being notified with these situations, the CA should

immediately labeling these certificates as “revoked”.

For SSL certificates, a certificate revocation list (CRL) [29] containing all re-

voked certificates is prepared by the CA and sent to end-users for revocation check-

ing [67, 87, 89]. The CRL introduces substantial overhead even if it runs on a desktop

machine, because the CRL size is proportional to the number of revoked certificates,

which can be in millions [67, 87, 89]. For IoT, the overhead problem is more severe,

because: 1) the number of IoT devices could be more than that of web servers; 2) the

memory, CPU, and network resource of an IoT device is much more limited than those

of a desktop. In addition, unlike web servers, IoT devices are small in size, have better

mobility and are usually maintained by individual users, which also means the devices

are much easier to be hacked or stolen. Hence, revocations for IoT certificates happen

more frequently and have to be properly and timely handled. When a revocation hap-

104

pens, how soon other parties are aware of the revocation and no longer trust the device

becomes a rather critical metric of the security property in the protocol. The main

requirements of practical on-device IoT CR checking are summarized as follows:

1. Accuracy: A device should determine a certificate revocation status without

error.

2. Efficiency: The protocol should cost small memory, computation, and network

resource on IoT devices.

3. Low latency: Two types of latencies are essential, namely the synchronization

latency and query latency (defined in Sec. 6.1.1). Both latencies should be low.

4. User privacy: The protocol should not leak the identities of the accessing devices,

locations, and/or communication pattern/frequency of users.

5. Compatibility: The protocol is required to be compatible with current certificate

standards and existing certificates.

5.2 Related works.

5.2.1 Certificate Revocation Checking Approaches

Existing approaches for checking CR status are mainly based on either remote

or local queries [17, 23, 40, 41, 49, 67]. A typical remote querying protocol is the Online

Certificate Status Protocol (OCSP) [17, 49]. In OCSP, an authorized OCSP server re-

turns the signed revocation status at the request of the client. However, the remote

queries also reveal the clients’ footprints of their SSL sessions to the OCSP server. In

105

addition to the privacy leakage threat, OCSP also suffers from the long network latency

problem, which makes it unfeasible for time-sensitive applications. To mitigate the

above problems, recent OCSP-based methods, such as OCSP Stapling [17,25], Revoca-

tion in the Middle (RITM) [68] and Certificate Revocation Guard (CRG) [31], choose to

offload the CR checking to the certificate provider or a middle-box intercepting TLS traf-

fic. However, those approaches would increase the overhead on the certificate provider

side, and thus is not scalable for device-to-device authenticate scenarios.

On-device CR checking preserves user privacy by allowing them to check CR

status locally through a compact data structure model, such as CRLSets [40], OneCRL

[23], CRLite [41] and CRV [67], which is periodically synchronized from the CAs or

device management servers. These methods are also known as the push-based models.

Since the raw CRLs can be very large, there is a clear trade-off among the on-device

memory cost, the overhead to query or update the on-device data structure, and the

checking accuracy. For example, CRLSets [40] and OneCRL [23] trade checking accuracy

for efficiency by maintaining a subset of the CRLs. CRLite [41] and Let’s Revoke [67] can

provide 100% checking accuracy with a rather compact data structure, while updating

the data model is expensive.

A comparison of the existing CR checking methods and our work TinyCR is

shown in Table 5.1, where the results of Let’s Revoke [67], CRL [29] and OCSP [49] are

from the original papers or a measurement paper [46]. Note that all those compared

methods are required to provide zero error assuming the on-device data models are

properly synchronized. Compared with the state-of-the-arts, TinyCR achieves the best

trade-offs for the IoT device authentication scenarios: (1) it costs close-to-optimal on-

106

device memory and computational overhead for checking the CR status, (2) it uses

magnitudes-less time and bandwidth for CRL state synchronization with the CAs, (3)

as a push-based model, it protects users’ privacy, (4) it does not require any field changes

in the certificates and it is back-compatible for all X.509 certificates.

5.2.2 Efficient Data Structures for Membership Queries

On-device certificate revocation checking requires implementing compact data

structures on IoT devices for maintaining the global CRL states and performing efficient

membership query. To fulfill the low-memory-cost needs, standard membership query

methods, such as bloom filters [8], cuckoo filters [19] and their variants [48, 75, 84], use

probabilistic key-value store models that trade efficiency for accuracy, namely, they can

allow a small fraction of false positives at a controlled rate. Clearly, those methods are

not suitable for adversarial scenarios, since those false positives can be easily abused by

the adversaries to compromise the system. Other methods that can provide zero error

for querying, such as Filter cascades [41], Othello hashing [85], SetSep [90], and Coloring

Embedder [71], are also not ideal, either due to the high memory or computational costs

for storing and updating the CRL states.

5.3 A Novel Dynamic Asymmetric Set Separator.

CR checking can be modeled as a binary set query problem.

Definition 1 (Binary set query problem). Let U be a finite set of keys that can be

divided into two disjoint subsets P and N , and U = P ∪ N . The binary set query

107

M
e
th

o
d

M
em

or
y

co
st

Q
u

er
y

ti
m

e

∆
-m

sg
si

ze

p
er

u
p

d
at

e

∆
-m

sg
si

ze

p
er

d
ay

S
y
n

c.

la
te

n
cy

P
u

sh

m
o
d

el

C
A

co
m

p
at

.

C
R

L
[2

9
,4

6
]

∼
3
8

M
B

�
25

0
m

s
-

-
�

25
0

m
s

5
X

O
C

S
P

[4
6
,4

9
]
∼

1
K

B
/r

eq
.
≤

25
0

m
s

-
-

-
5

X

O
th

e
ll
o

[8
5
]

2
9
.1

M
B

<
1
µ

s
0
∼

1
0
0

B
0
∼

2
0

K
B

<
1

m
s

X
X

C
R

L
it

e
[4

1
]

1
.7

M
B

<
1
µ

s
-

0
.5

3
M

B
1

d
ay
∗

X
X

L
e
t’

s
R

e
v
.

[6
7
]

1
.3

M
B

∼
10

m
s

-
62
.6

K
B

1
d

ay
X

5

T
in

y
C

R
(o

u
rs

)
1
.7

M
B

<
1
µ

s
0
∼

1
0
8

B
2
.8
∼

2
1
.6

K
B

<
1

m
s

X
X

T
ab

le
5
.1

:
C

om
p

ar
is

o
n

o
f

ce
rt

ifi
ca

te
re

vo
ca

ti
on

ve
ri

fi
ca

ti
on

p
ro

to
co

ls
w

it
h

10
0

m
il
li

on
ce

rt
ifi

ca
te

s,
as

su
m

in
g

1%
re

vo
ca

ti
on

ra
te

a
n

d
0
.0

2%
n

ew
re

vo
ca

ti
on

s
p

er
d

ay
.

108

problem is that given k ∈ U , determine if k ∈ P or k ∈ N .

All certificates that are checked for CR status are both time-valid and signature-

valid, otherwise they will be rejected in expiration and signature checks. The IDM server

knows all time- and signature-valid certificates (U) and they can be classified into to

two finite sets: one for the legitimate certificates (‘negatives’ N) and the other for the

revoked ones (‘positives’ P). Hence the CR checking result can be either 0 (not revoked)

or 1 (revoked).

In this work, we design a data structure named Dynamic Asymmetric Set

Separator (DASS) to solve the binary set query problem. We design DASS using an

innovative combination of existing algorithmic tools. We first briefly introduce these

tools.

5.3.1 Preliminaries

Filter tools and Cuckoo Filter.

A filter data structure is used for approximate membership queries [8,19]. For

a given set S of keys, a filter F answers each query of key k and returns F.Query(k) = 1

if k ∈ S. However, filters introduce a small number of false positives at a controlled

probability. Although those filters cannot meet the requirements of zero-error CR check-

ing, we can use the filter tools to preprocess the queries and significantly reduce the

certificate space that should be further investigated with extra overhead.

To satisfy the practical requirements of CR checking, the filer tool that is used

for on-device certificates preprocessing should have the following properties: (1) low

109

memory cost, (2) easy to lookup, and most importantly (3) easy to update (adding and

removing keys). We find Cuckoo Filter and its variants [19,75] can well meet the above

demands as it achieves optimal memory-accuracy tradeoffs and it is easy to be queried

and updated. Cuckoo Filter is inspired by Cuckoo Hashing Table [51], in which a key

can be stored in two candidate buckets of a hash table, whose positions are calculated

with two hash functions. We take a (2, 4)-Cuckoo Filter as an example to illustrate the

algorithm. As shown in Fig. 5.1, the Cuckoo Filter maintains a cuckoo hashing table

with two hash functions h1 (x) and h2 (x). Each bucket of the table has four slots.

Insert(k): To insert a key k into the Cuckoo Filter, the operation can be

accomplished by inserting the fingerprint of k, i.e., fp (k), into either one of the two

candidate buckets of cuckoo hashing table. Specifically, the two candidate positions,

i.e., h1 (k) and h2 (k), can be calculated using a single uniform hash function h (x) by:

h1 (k) = h (k) mod m,

h2 (k) = h1 (k)⊕ (h (fp (k)) mod m) ,

(5.1)

where ⊕ is the bit-wise xor operation, m is the size of buckets. Since it is easy to show

h1 (k) = h2 (k) ⊕ (h (fp (k)) mod m), the cuckoo filter can find the alternate bucket

position of k by simply calculating the xor of one bucket position and the hash of the

fingerprint, i.e.,

hj (k) = hi (k)⊕ (h (fp (k)) mod m) , {i, j} = {1, 2} . (5.2)

If either of the two candidate buckets contains an empty entry, then the fingerprint

fp (k) is safely inserted to the empty entry. Otherwise, the insertion algorithm chooses

a random entry of the two buckets and reallocate the stored fingerprint FP ′ into its

110

Figure 5.1: A (2,4)-Cuckoo Filter example.

alternate buckets in the hashing table, then insert fp (k) to that entry. When reallocat-

ing FP ′, if the alternate bucket of FP ′ is also full, the algorithm will repeat randomly

kicking off another fingerprint from the table and reallocate the other fingerprint until

an empty entry is found, or until the maximal number kicking-off operations is reached,

which implies the filter is too full to insert the new key k.

Query(k): To lookup whether a key k is a member, we only need to visit

the two candidate buckets of the cuckoo filter using Eq. 5.1. If either of the buckets

contains fp (k), then we conclude that k is in the set; otherwise it is not.

Delete(k): Similarly, the deletion of a key k from the membership set can be

accomplished by simply removing one copy of fp (k) from the found bucket entry.

Set query tools and Othello Hashing.

A set query tool [9, 10, 71, 85, 90] can do exactly what we demand for binary

set queries of CR checking. It returns 1 if k ∈ P and 0 if k ∈ N for any k ∈ P ∪ N .

111

Figure 5.2: The Othello data structure for binary set query.

However, the space cost of set query data structures is proportional to |U | = |P |+ |N |,

i.e., they still introduce non-trivial memory cost for CR checking because |N | is usually

extremely large. On the other hand, although set query tools are too expensive for

on-device CR checking over the entire certificate space, we could use those tools to only

precisely identify the CR status of a small certificate subset that should be carefully

investigated. Similar to the filter tools, we also concerns about the memory cost, query

and updating overhead of those candidate set query models for the CR checking task.

We find Othello hashing [85] is an ideal choice as it uses minimized memory cost for

balanced key sets and is easy to be queried and updated with low overhead.

The structure of a one-bit Othello for binary classification is illustrated as

Fig. 5.2, in which each bucket of the hashing tables contains a one-bit slot. Othello

maintains two hashing tables, with each bucket of the hashing tables containing L bits,

where L = dlog2 ne and n is the number of distinct sets. For example, L = 1 for binary

set query (i.e., n = 2). Suppose the lengths of the two hashing tables Ta and Tb are ma

and mb, and the corresponding uniform hash functions are ha (x) and hb (x). Othello is

112

built by finding an undirected acyclic G = (Va, Vb, E), where E is the edge set, Va, Vb

are the vertex sets with each node via ∈ Va (0 ≤ i < ma) and vjb ∈ Vb (0 ≤ j < mb)

representing the ith and jth bucket of Ta and Tb. Initially, E = ∅. For any key-value

pair (k, v) with k ∈ U and v ∈ {0, 1}, v can be stored in graph G by inserting a new

edge
(
via, v

j
b

)
in E, where i = ha (k) and j = hb (k) (as shown by the red or the green

edges in Fig. 5.2). The query function f : U → V for the key-value mapping is

defined as: Query(k) = ta[i]⊕ tb[j], where ta[i] and tb[j] represent the entry in the ith

and jth bucket of Ta and Tb respectively. If the graph G remains acyclic after inserting

all keys in U , then it can be proved that there exists a solution to fill the buckets in

Ta and Tb with either “1” or “0”, such that for any k ∈ U and its corresponding value

v ∈ {0, 1}, f(k) = v. However, when a circle is found while building the graph G, the

graph should be rebuilt by using different hash functions ha (x) and hb (x). Given all

key-value pairs, Othello first finds the two valid hash functions ha (x) and hb (x) that

do not create any circle in the graph, and then uses the depth-first-search (DFS) order

of the resulting acyclic to insert all keys.

Construct(P,N): Let P and N are the two sets used to construct an Othello

table. Suppose list (e1, e2, ..., em) be the edge set E sorted in its DFS order. Then for

any edge e in the sorted list, we find the corresponding key k which is represented by e,

i.e., the indexes i, j of the two vertices are ha (k) and hb (k) respectively. Let v be the

mapping value of k, namely, v = 1 if k ∈ P (as shown by the green edge in Fig. 5.2),

and v = 0 if k ∈ N (as shown by the red edge in Fig. 5.2). Then v can be inserted to

the table by the following steps. If both ta[i] and tb[j] are empty, we set ta[i] = 0 and

tb[j] = v. Otherwise, one bucket of ta[i] and tb[j] must be empty since G is acylic and

113

e is visited according to the DFS order of E. In this case, we set the empty bucket to

be the “xor” result of the value in the other non-empty bucket and v.

It can be proved that if ma ≥ 1.33n and mb ≥ n (n is the number of all keys),

the memory is sufficient for finding the appropriate hash function pairs that avoid cycles

for the inserting all keys with small rebuilding probability [85]. In addition, with this

memory setting, Othello can also support value flipping (change the value of a key k from

“0” to “1” or from “1” to “0”) Flip(k), deletion Delete(k) and, insertion Insert(k, v)

functions using O(1) time [85].

Insert(k, v): Let G = (Va, Vb, E) be the maintained graph in Othello and ta,

tb are the hash table arrays. Inserting a key-value pair (k, v) into Othello is equivalent

to adding an edge e in G, where e = (Va(ha(k)), Vb(hb(k))), and ha and hb are the

selected hash functions that map the key k to the graph vertices. If the resulting graph

G = (Va, Vb, E + {e}) creates a cycle, showing the table is too full to insert the key,

then the Othello hash table should be rebuilt by selecting a new pair of hash functions

ha and hb. Otherwise, the insertion is successful and we need to assign v as the value

of this edge e. If the value (“0” or “1”) of e equals to ta[ha(k)] ⊕ tb[hb(k)], then the

insertion is done. Otherwise, we need to flip the value of e by tweaking the values of

vertices stored in ta and tb, namely conduct the value flipping operation (see below).

Flip(k): Let T be the tree that contains the edge e whose value should be

flipped. Assume T is separated into two sub-trees T1 and T2 by e. The method to

change the value flag of e is to flip all values stored in the vertices of either T1 or T2

(whichever is smaller).

Delete(k): Deletion of a stored key k from the othello table can be accom-

114

plished by removing the corresponding edge e = (Va(ha(k)), Vb(hb(k))) from G. After

deletion, the actual hashing tables Ta and Tb are not changed. Thus, the Delete(k)

function is only a logical deletion process: it will not change the inference behavior of

Othello. Instead, it only remove redundant edges to provide space for future new keys.

5.3.2 DASS Design for Optimized Memory Cost.

DASS data structure

The idea of DASS for efficient and accurate CR checking is simple: we con-

catenate a filter tool (a Cuckoo filter) with a set query tool (a Othello hash table).

Practical measurements show that the revoked certificates only contribute to 1% of all

certificates [41,73], hence |N | � |P |. DASS is particularly designed based on this fact.

Recall P is the set of revoked certificates and N is the set of legitimate certifi-

cates, and |N | � |P |. We construct DASS as shown in Fig. 5.3. DASS has two levels.

The first level is a Cuckoo filter [19] with P being the membership set. Specifically, the

Cuckoo filter F inserts the fingerprints of all certificates in P (Step 1). In Step 2, we

test set N against the filter F . Most certificates of N will be tested ‘negative’ and they

are all true negatives (set TN). However a few certificates of N are tested ‘positive’

due to the fundamental limitation of a filter, and they are false positives (set FP). In

Step 3, we construct an Othello data structure O for binary set classification and use

FP as set 0 and P as set 1. Note both FP and P are very small sets compared to N ,

hence DASS saves the majority memory cost.

The query of DASS about a certificate k is executed as shown in Fig. 5.4. In

Step 1, k is tested by the filter F . If F.Query(k) = 0, we must have k ∈ N and k is

115

FilterFilter

PP

N0

1

OthelloOthello

TN

PP
Set 0

Insert1

Search2

Insert3
Set 1

FP

Figure 5.3: DASS Construction

FilterFilter
0

1

OthelloOthello

F.Query1

O.Query2

Not
revoked

Not
revoked

0

Revoked!
Do not trust

1

Figure 5.4: DASS Query

legitimate. If F.Query(k) = 1 then k is either revoked or false positive. Then it is tested

by Othello O. If O.Query(k) = 0, k is legitimate. If O.Query(k) = 1, k is revoked.

Memory cost analysis of DASS

Despite its simplicity, DASS is rather memory-efficient to memorize the binary

values of keys, especially when the sizes of the negative key set and positive key set are

highly imbalanced (namely, set ratio r = |N |/|P | is large). Here we show how to

optimize DASS so that the total memory cost is minimized for the given two key sets

P and N .

In DASS, there exists a trade-off between the sizes of the filter F and that of

the Othello O. The false positives will be fewer if F uses more space, and hence O needs

less space. Let ε be the false positive rate of the F in the first layer, then the expectation

116

of the number of false positives of F is ε |N |. Since Othello costs 2.33 bits per key, O

needs 2.33 (ε |N |+ |P |). Meanwhile, let the memory cost of the first filter layer F be

Mf , such that the expected false positive rate of F is no greater than ε. According to

the recent implementation of Cuckoo filters [75],F produces a false positive result when

the fingerprint of a negative key collides with at least one stored fingerprint in the two

candidate buckets, with each bucket containing b entries. Therefore, the upper bound

of the probability of a false positive fingerprint collision is 1 − (1 − 1/2f)2b ≈ 2b/2f ,

where f is the number of bits of the fingerprint. Hence, ε ≥ 2b/2f , and we get

f ≥ dlog2(2b/ε)e = dlog2(1/ε) + log2(b) + 1e . (5.3)

Then, the amortized space for each positive key stored in the filter is f/α, where α is the

load factor of the Cuckoo hashing table. Thus, if we use the (2,4)-Cuckoo hashing table

in F , and the expected load factor rate of 0.95 to initialize the Cuckoo Filter (which is

a common setting for the filters to guarantee the success rate of insertion and efficiency

of query), the amortized space for each positive key in F is (log2(1/ε) + 3)/0.95 [19,75].

In addition, the Cuckoo Filter implemented with the semi-sorting trick [19] can further

save one bit per fingerprint. Hence, the total cost of F with semi-sorting implementation

is |P | (log2(1/ε) + 2)/0.95.

Let r = |N |/|P |. In total, DASS uses M bits where

M = ((log2 (1/ε) + 2) /0.95 + 2.33εr + 2.33) |P | (5.4)

Since |P | and r are constant, we can minimize the total memory cost by let-

ting ∂M
∂ε = 0. Hence, M is minimized when ε ≈ 0.652

r and Mmin = (1.05 log2 r +

117

6.604) |P |. The result further instructs us to set the fingerprints of the Cuckoo filter to

be d3.6 + log2 re bits according to Eq. 5.3.

Compared to the memory cost of Othello, 2.33(|N | + |P |) = Θ(r|P |), DASS

significantly reduces the memory cost to Θ(|P | log r). The optimal filter cascade used

in CRLite [41] costs |P |(1.44 log2 r + 4.2) bits, which is similar to DASS. But CRLite

is a static structure, while DASS can support in-place incremental updates, as will be

shown in the next section.

118

Chapter 6

TinyCR: A On-Device Certificate

Revocation Checking Protocol for

IoT

6.1 Overview of TinyCR.

6.1.1 System Model

Secure communication in an IoT network requires that devices can easily and

automatically authenticate each other, which is nowadays achieved by digital certifi-

cates based on the Public Key Infrastructure (PKI). The most expensive step of the

PKI-based authentication is verifying the revocation status of a certificate. TinyCR

enables on-device efficient certificate revocation (CR) checking with 100% query accu-

racy through the novel binary set query data structure DASS. Fig. 6.1 illustrates the

119

system model of TinyCR. The CR checking protocol is designed on top of the current

IoT/Mobile device management system (MDM) [2], where an IoT device management

(IDM) server requests the certificates from CAs for users and delivers the certificates

(usually through a patch file for installation) to the end devices when the devices are

registered to the service. Note that the CA could be the world-wide ceritificate issuers

or the PKI service that is managed by the service provider (such as Symantec Managed

PKI Service [2]). The CA issues new certificates at the request of IDM and actively

sends updated CRLs to the IDM server when a new revoke happens (Operation 1). The

IDM server constructs and updates DASS based on the global certificate database and

the newest CRLs (Operation 2). For each device, the IDM server will install DASS on it

(Operation 3) when the device is enrolled to the service. The DASS installation process

could be conducted together with the certificate installation on the device. Whenever

the CRLs have changed, the IDM server would send update messages if necessary in a

pushing way (Operation 4). In the system, each device can check the CR status of any

certificate completely based on its local DASS copy and perform real-time updates to

DASS (Operation 5). The model fits or can be easily extended to most IoT management

systems.

We define two types of latencies in the whole process: 1) synchronization

latency is defined as from the time of the CA revoking a certificate to that of a de-

vice being able to find this revocation event from its local state; 2) query latency is

defined as the time used to get the CR status on a device. While query latency can

be effectively optimized using existing on-device checking methods [23, 40, 41, 67], syn-

chronization latency is usually ignored. However, synchronization latency is also crucial

120

Figure 6.1: System model of TinyCR

for the security of the whole system. For example, an attacker can easily utilize the

synchronization latency window to perform attacks with the revoked certificate. Hence,

reducing the synchronization latency can effectively minimize or eliminate such security

risk. Therefore, in this work, TinyCR aims to minimize both two latencies. There is

another type: revoking latency, defined as from the time a certificate being hacked to

that of the CA revoking the certificate, which is out of scope of this work.

6.1.2 Threat Model

Since the certificates issued by the CA might be revoked, an attacker can ef-

fectively abuse the revoked certificates. The security vulnerability in this process is

apparent: the revoked certificate are still valid if a device only verifies the expiration

dates and CA signatures (called time- and signature-valid). Hence the on-device main-

tenance of all revoked certificates is necessary. We are mainly concerned about the

attacker who can obtain a set of time- and signature- valid but revoked certificates and

121

the corresponding private keys, such that the attacker can masquerade as legitimate

users in the IoT to perform Man-in-the-Middle (MITM) attacks during TLS setups or

tamper with the sensing data.

We summarize the threat model and assumptions in this paper:

1. The IDM server and the CAs are trusted and they communicate via a

secure channel with integrity. Each device also maintains a channel from/to the IDM

server with integrity.

2. The attacker can acquire a set of time- and signature-valid certificates. But

this behavior could be detected by the CA and those certificates are revoked.

3. The attacker can obtain all information of the shared DASS, but is not able

to tamper it.

4. The size of the certificate universe in IoT is large. Note that the current

number of web server certificates is on a scale of 100 million [41, 67]. It is a reasonable

estimate that the future IoT devices should be much more than the number of web

servers.

5. The number of revoked certificates is smaller than that of legitimate ones in

an IoT network by at least an order of magnitude. Otherwise, the CA who issues many

revoked certificates will not be trusted. This assumption is validated by measurements

[73].

6. IoT devices have limited memory and computing resources, while the IDM

server and attackers can be powerful. The IDM server knows all time- and signature-

valid certificates.

7. We do not consider deny-of-service attacks.

122

6.2 TinyCR Design.

We present the detailed design considerations of TinyCR. The TinyCR system

contains two programs: the tracker running on the IDM server and the verifier running

on the devices. The tracker is responsible for receiving new certificates and revocations

from the CAs, constructing DASS, and sending the DASS update messages to devices.

The verifier is the compact DASS data structure running on the IoT devices to support

CR checking. This section discusses how the tracker and verifier should execute and

communicate.

6.2.1 Updates of Cuckoo Filter and Othello

As introduced in 5.3.1, Cuckoo filter supports key addition and deletion by

calling F.Insert(k) and F.Delete(k) respectively. Othello supports key addition, dele-

tion, and value flipping. Adding a key k to set 1 is by calling O.Insert(k, 1), indicating

the value of k is 1. Adding a key k to set 0 is by calling O.Insert(k, 0). Deletion and

value flipping is by O.Delete(k) and O.Flip(k). All these functions cost constant time

on average [19,85].

However, it is important to note that insertion and deletion of keys in Cuckoo

Filters would impact the distribution of the potential false positive keys in the whole

key space. Specifically, inserting a new fingerprint into the Cuckoo hash table would

create a set of new potential false positive keys that match the fingerprint stored in the

corresponding bucket. Similarly, deleting a fingerprint from the table would eliminate a

fraction of potential false positive keys. Thus, updating DASS is non-trivial, since this

123

issue may cause incorrect inference results if not properly addressed, leading to security

holes or accessibility issues of the IoT service. For simplicity of the design description,

we temporarily ignore this issue in Sec. 6.2.2. We then look back and explain the solution

to address this issue in Sec. 6.2.3.

6.2.2 Updating DASS on the Tracker

On-device DASS needs to be updated when 1) a new certificate is issued by

CAs, 2) a certificate is revoked by CAs, 3) a certificate is expired, or 4) in rare cases CA

un-revokes a revoked certificate. All these situations can be addressed by the following

three update functions on the tracker.

• Insertion : adding a certificate to N or P (very rare cases).

• Value Flipping : moving a certificate from P to N (very rare cases) or from N

to P .

• Deletion : removing a certificate from P or N .

For each update, the tracker will compute the delta message, including only the

bit positions that need to change for on-device DASS. Using the delta message instead

of the complete DASS significantly saves bandwidth cost.

Insertion

When a device joins the network with a new certificate, this information should

be immediately reflected in DASS. Otherwise other devices may reject this certificate if

DASS returns 1. In rare cases, the CA may also revoke a certificate before it is actually

124

installed on any device. Let k be the new certificate. If k is added to the positive set

P , according to the design, k should first be inserted to the filter F and then inserted

to the Othello O in the second layer with its corresponding value O.Query(k′) == 1.

On the contrary, if k is inserted to the negative set N , we can check whether F tests

it as positive. If F.Query(k) == 0, then the original DASS classifies k correctly and no

updating is required. Otherwise, k′ is a false positive and should be inserted to O with

O.query(k) == 0. Both F.Insert(k) and O.Insert(k, v) take O(1) time to complete

in average.

Value Flipping

When a valid certificate is revoked by the CA if, for example, the device is

compromised by an attacker, the revocation status of this key should be updated from

0 to 1 in DASS. In another case, the CA may also want to un-revoke a revoked certificate,

implying the revocation status should be updated from 1 to 0. In both cases, all devices

in the network should be noticed with the updating information to avoid abuse of the

revoked certificates or mistakenly rejecting a legitimate one. Suppose a key k is moved

from N to P . The tracker first checks whether k is considered as a (false) positive key

by the filter, then inserts k to the filter F . If k is a false positive, k has already been

stored in the second layer O. In this case, the tracker needs to execute O.Flip(k) to

change the stored value of k. Otherwise, the tracker inserts k to O with corresponding

value 1 by O.Insert(k, 1).

In another value flipping case, k is moved from P to N . In such case, k should

have been already inserted in both F and O. Therefore, to update the DASS, the first

125

layer filter F first removes k’s fingerprint from its cuckoo hashing table and then check

whether k would be recognized as a false positive key after removal. If k is not a false

positive, it should be deleted from O. Otherwise, O flips the value of k using O.Flip(k).

Deletion

Certificates may expire. Although the removal of these certificates from DASS

is not necessary – the expired certificates are rejected in early steps – it helps to maintain

the DASS compact. DASS has to be rebuilt when it is too full to insert new certificates,

which would cost considerable computation resources and network bandwidth. Hence,

removing expired certificates can avoid unnecessary rebuilds. Let k be the key that

should be removed from either P or N . If k ∈ P , both of the two layers need to remove

k by calling their delete functions. Otherwise if k ∈ N , we need check whether k is a

false positive for the first layer F . If it is, then the second layer O needs to delete it.

Otherwise, neither F nor O store the information k, thus no operation is required.

6.2.3 Handling Inconsistency of Updating

The above updating algorithms assume the false positive universe of the first

layer filter for the given certificate set remains stable. However, after inserting or delet-

ing a key from the filter, the assumption may no longer hold, because the fingerprint

added to or removed from the cuckoo filter would change the distribution of the poten-

tial false positive keys. If a former TN (true negative) key becomes a FP (false positive)

key after an insertion, the key should be recorded in the second layer O, such that the

key can be correctly queried. Similarly, if a former FP key becomes a TN key after

126

𝒇𝒑𝒚

ଵ

ଶ

cuckoo filter

⋯
𝒚⋯
⋯
⋯
⋯
⋯

FP‐Indexing

ଵ

ଶ
⋯
𝒛⋯
⋯
⋯
⋯
𝒛⋯

TN‐Indexing

: a FP key

a TN key

Figure 6.2: TN-indexing table and FP-indexing table

a deletion, then the key should be removed from O. Although the correction process

is simple, finding these impacted keys from the negative key set is expensive. A naive

solution is thoroughly checking the negative key set with the updated cuckoo filter to

find the influenced keys. However, this solution is time-consuming as the negative key

set is big, causing O(|N |) rather than O(1) updating cost in the worst case.

In TinyCR tracker, we propose to solve the problem by using two additional

indexing tables that have similar number of buckets as the cuckoo filter to index the sets

of the potentially influenced keys for every fingerprint in the cuckoo filter. Specifically,

at the construction time of DASS, when we iterate through the entire negative set N

to find the FP sets by querying F , we insert the TN keys into the “TN-indexing” hash

table and FP keys into the “FP-indexing” hash table at the exact two bucket positions

that are queried in F to lookup the fingerprint (as shown in Fig. 6.2). Therefore, when

a fingerprint is inserted into a particular bucket in F at the updating time, only the TN

keys stored at the same bucket positions of the TN-indexing table would be potentially

influenced by the insertion. Hence, only these TN keys need to be queried with F again

127

to check whether they become FP keys after the insertion. Then those new FP keys are

inserted to the O in the second Othello layer. Similarly, when a fingerprint is deleted,

only the FP keys at the corresponding buckets in the FP-indexing table need to be

checked again. Then the keys that become TN keys after the deletion are removed from

O.

Since |N | = r|P | and the number of buckets in F is O(|P |), the amortized

length of each bucket in FP-indexing and NP-indexing is O(r). Thus, the updating cost

decrease from O(|N |) to O(r) in worst case with this indexing strategy. Meanwhile, the

total size of the indexing tables is O(|N |). Since these tables are maintained by

the server and not related to the devices, the cost is affordable. By properly

handling the inconsistency issues, the tracker is able to create a perfect DASS that

yields zero query error.

6.2.4 Updates on Devices

Though the TinyCR tracker requires O(|N | + |P |) extra space to maintain

the certificates, each on-device verifier requires much less memory and computational

resources to support updating. In the verifier, only the cuckoo filter and Othello are

stored in memory, costing approximately (1.05 log2 r + 6.604) |P | bits. The inference

of DASS in verifier can be simply accomplished by at most four hashing and memory

read operations. In addition, the DASS verifier can also be synchronized with delta

messages. When an update is necessary, the tracker sends a delta message patch to all

devices. The delta message includes the certificate digest and the indexes of the bits

that need to be changed in O’s hash tables, and is small in size (9 to 150 bytes on

128

Figure 6.3: Structure of a delta message

average for 100 million certificates). Note that the indexes of the flipped bits in O are

tracked as an intermediate result while updating Othello. Thus, there is no extra cost

to compute the indexes after the update is done. Our experiment also shows the raw

delta message does not scale with the size of the certificate sets. Then the tracker signs

the delta message and attach the signature to the updating patch data to guarantee

the integrity. This updating strategy differs from other CR checking synchronization

methods that use static data structures, such as CRLite [41], which needs to rebuild

the entire data structure for every update (if correctness of verifier is obligatory at any

time) and sends it to all clients. The raw delta message of CRLite is much larger than

that of DASS.

In our design, the raw delta-msg is encoded as Fig 6.3. Specifically, the updat-

ing instruction for F uses only 9 bytes, including 1 byte for the operation type (insert,

delete or do nothing) and 8 bytes for the 64-bits digest of the certificate. Then the

F in the verifier DASS can insert or delete the certificate through the corresponding

operations of the local Cuckoo filter. Meanwhile, the updating instruction for the O is a

129

Figure 6.4: Multi-way version control protocol.

list of 32-bit integers representing the bucket positions at which the stored value should

be flipped. For every position index pos, if pos ≤ |Ta|, we flip the entry at bucket pos

of Ta; otherwise, we flip the entry at bucket pos − |Tb| of Tb, where Ta and Tb are the

two maintained hash tables in Othello [85]. In our evaluation, we will show on average

only a small number of buckets in O (if any) need to be flipped.

6.2.5 DASS Version Control

Since TinyCR uses delta messages to update the on-device checker, the new

state of DASS relies on the previous state. Thus, DASS correctness may suffer from

network failures or packet loss when sending delta messages. To solve this problem,

we introduce a DASS version control protocol as an optional design choice (as shown

in Fig. 6.4). In Fig. 6.4, the IDM server initiate a PUSH-SYN packet when a new

tracker DASSt is generated. Then the device sends back the digest vd of its local

verifier DASSd. Meanwhile, the IDM server maintains a mapping table to keep track

of a history of t recent verifier DASS version IDs and the corresponding delta-msg

increments. According to our evaluation in Sec. 6.3.4, the average delta-msg increment

130

size is fewer than 100 bytes. Then the IDM server simply retrieves all the missed delta-

message increments and concatenates them to generate the cross-version delta message

∆MSGt−d that denotes the differences between DASSd and DASSt. In the ∆MSGt−d

that skips over multiple versions, we could include multiple Cuckoo Filter Msg fields

and one single Othello Msg field using the similar encoding format as shown by Fig.

6.3. If vd is not maintained by the version table, that means the device has missed a

large amount of updates. Then the server directly send the DASSt instead of the delta

message to the device. Optionally, the device returns an ACK when the local DASS

updating is accomplished.

If the updating frequency of certificate sets is too high in some scenarios, it

is not practical for the IDM server to send a signed delta message after each update

and track every DASS version. In such case, we can use the version control design to

batch the updates with a bounded time granularity. For example, the IDM server can

only send one single aggregated delta message in per-hour, and maintain only 24 delta

message increment versions in each day.

6.3 Implementation and Evaluation

6.3.1 System Implementation

We implement the TinyCR tracker on a Google Cloud VM instance with 64

vCPUs and 624 GB memory using C++. The on-device DASS verifier is implemented

on a Raspberry Pi 3 with one single 1.4 GHz processor and 1 GB RAM. Note the device

used in the experiments is just an example of a wide spectrum of devices that can

131

use TinyCR. TinyCR can be easily deployed on more powerful devices like mobile

phones and less powerful IoT devices. In addition to TinyCR, we also implemented

the CRLite filter cascades [41] and Othello hashing [85] data structures with similar

synchronization settings as the TinyCR protocol for performance comparison. The

parameters for CRLite and Othello are set according to the authors’ suggestions [41,85].

Both TinyCR and Othello can support dynamic updating of the revocation checking

list, while CRLite has to be rebuilt for most updates.

6.3.2 Metrics and Dataset

We evaluate the CR methods by the following metrics:

• On-device memory cost: the overall memory cost of the data structures on a

device.

• Update time and synchronization latency: the time for each update on the IDM

server.

• Bandwidth: the message cost caused by updates.

• Query cost: the delay to get a CR checking result.

We use both real and synthetic certificate datasets for the evaluation. Since

there is no IoT certificate dataset available, we use the Censys web certificate dataset

[3, 41] to evaluate how those protocols perform in real-world CR verification scenarios.

We downloaded 30 millions items of historical NSS trusted certificates over 3 months

from Censys using Google BigQuery. After removing the duplicated certificates, there

are totally 28,593,752 items in the dataset. Then we use the CRLs or OCSP to obtain

132

the revocation status of all downloaded certificates. Among the 28.6 million certificates,

274,926 were revoked, i.e., the ratio between the legitimate and revoked certificates is

103 : 1. To evaluate the scalability, we create synthetic datasets containing up to 1

billion certificates with different revocation ratios.

6.3.3 Memory Cost

We construct the on-device data structures of TinyCR (DASS), CRLite (fil-

ter cascade), and Othello respectively using the entire Censys certificate data. We

find TinyCR, CRLite, and Othello requires 430 KB, 439 KB, and 8,328 KB memory

respectively to maintaining the CR status of the 28.6 million certificates.

Then we conduct experiments on the synthetic dataset to investigate how the

memory sizes scale with the sizes and the distribution of the keys. In Fig. 6.5, we

show the amortized memory cost (i.e. bits per certificate) with respect to the total

size |N | + |P | of the certificates by setting r = |N |/|P | as 4 (Fig. 6.5 a), 16 (Fig. 6.5

b) and 128 (Fig. 6.5(c)) respectively. Meanwhile, in Fig. 6.5(d), we present the total

memory cost (in bytes) for storing the revocation status of 226 certificates, by varying

the ratio r. The vertical dash line in Fig. 6.5(d) represents the ratio r of the Censys

dataset in real-world scenario. Fig. 6.5 shows that the memory cost per certificate of all

three data structures keeps stable when r is fixed. For example, the amortized memory

sizes for TinyCR, CRLite, and Othello are around 0.108 bits, 0.111 bits, and 2.333 bits

per certificate respectively for arbitrarily large key sets when r = 128. The amortized

memory for Othello is independent with r (it is controlled by a hyper-parameter and is

set as 2.33 bits), whereas both TinyCR and CRLite use much less memory as r grows.

133

(a) r = 4 (b) r = 16

(c) r = 128 (d) |P |+ |N | = 226

Figure 6.5: (a) to (c): Amortized memory cost when r = |N |/|P | is 4, 16, 128 respec-
tively. (d): Memory cost for 226 keys with respect to r.

134

It can also be seen from the graph that both TinyCR and CRLite use less than 1 MB

to store the around 64 million certificates when r = 100 (which is close to the ratio for

real-world CR lists) and use less than 8 MB when r = 10, while Othello always requires

around 20 MB.

6.3.4 Updating Efficiency

In this section, we evaluate the synchronization overhead of the data structures

regarding any change of the global CRL. Specifically, we utilize the Censys certificates

and synthetic data sets to simulate the following updating scenarios.

Short-term insertion/value flipping: We use a certificate dataset to ini-

tialize the CR checking data structures in a static way, then evaluate the latency of the

inserting/value flipping on the initial data structures without reconstructing the data

structures (except for filter cascades).

Long-term insertion: We use 100 million certificates to initialize the data

structures, then insert another 100 million certificates item by item to them. In the

simulation, we assume the revocation ratio of the initial and the inserted certificate sets

are consistent.

Long-term value flipping: We use 100 million certificates to initialize TinyCR.

Then we randomly sample |P | validate certificates and revoke those certificates, where

|P | is the number of revoked certificates in the initial set. We simulate the scenario

where the number of revoked certificates is doubled during the usage period before ex-

piration. Note that the revocation of the sampled set is a gradual process, i.e., one

certificate is revoked each time. The maintained value of a newly revoked certificate

135

of Certs Method Mem Add P Add N P → N N → P

Censys

28.6M

CRLite

Othello

TinyCR

458 KB

8.3 MB

448 KB

3.2 s

11.4 µs

349.9 µs

3.2 s

9.9 µs

1.6 µs

3.2 s

10.1 µs

27.0 µs

3.2 s

9.2 µs

345.3 µs

10M

CRLite

Othello

TinyCR

172 KB

2.9 MB

169 KB

1.0 s

4.6 µs

280.9 µs

1.0 s

5.0 µs

1.2 µs

1.0 s

4.6 µs

16.6 µs

1.0 s

4.4 µs

289.9 µs

100M

CRLite

Othello

TinyCR

1.7 MB

29.2 MB

1.7 MB

10.1 s

8.5 µs

304.9 µs

10.1 s

7.5 µs

1.6 µs

10.1 s

7.1 µs

21.6 µs

10.1 s

7.0 µs

311.5 µs

1B

CRLite

Othello

TinyCR

17.2 MB

291.7 MB

16.9 MB

153.9 s

10.0 µs

296.0 µs

153.9 s

10.2 µs

2.7 µs

153.9 s

8.2 µs

27.3 µs

153.9 s

7.0 µs

319.5 µs

Table 6.1: On-device memory cost and average updating latency on the tracker for
different set sizes. The revocation ratio for synthetic data is 1%.

should be changed from 0 to 1.

Overhead on the IDM server (tracker).

The tracker on the IDM server is required to react quickly for every update

(insertion and value flipping) of the CRLs. In Table 6.1, we show the on-device memory

cost and the average computational latency of the tracker to update the data summaries

and generate the delta message in short-term updating scenarios. Specifically, we simu-

136

late the scenarios with the Censys dataset and the synthetic data sets of different sizes

to evaluate the scalability of the methods in an IoT network with up to billions of de-

vices. In our synthetic data, we set the certificate revocation ratio to be 1%, which is

close to the ratio of the Censys dataset. We discuss the insertion of revoked certificates

and legitimate certificates (the more common case) separately in the fourth and fifth

columns, as they will cause different updating overhead based on the algorithms. Sim-

ilarly, we also evaluate the value flipping case where a revoked certificate is moved to

the legitimate list, and the case where an legitimate one is moved to the revoked list

(the more common case) in sixth and seventh columns respectively.

Table 6.1 shows that the updating time of CRLite significantly increases with

the size of the sets. As a static data structure, filter cascade has to be reconstructed

using the entire certificate sets for any updates, which would cause tremendous overhead

to the server and large bandwidth overhead. Meanwhile, the long latency of updating

can also cause memory concurrency issues for the tracker when the updating pace is

high. Therefore, in practice, CRLite is only updated in a batching way, for example,

the tracker and verifier are recommended to update once every day [41]. Consequently,

this strategy would introduce a synchronization latency of one day – a big security

vulnerability. On the other hand, the update latency of TinyCR and Othello is sig-

nificantly lower than CRLite and scales much better with the size of certificate sets.

Overall, Othello achieves the highest updating throughput for most cases, at the cost

of around 16x more memory than TinyCR and CRLite. We also notice TinyCR is most

computational-efficient for inserting legitimate certificates to the CR status list, which

is the most common type of updating. Even in its worst case, the corresponding up-

137

dating latency is smaller than 1 millisecond for up to 1 billion keys, which is usually

overwhelmed by the network latency in practice, showing TinyCR can sufficiently sup-

port the real-time synchronization with neglectable extra processing overhead. Thus,

TinyCR is a more efficient and secure choice for the IoT CR verification task where the

certificate universe is large. The theoretical synchronization latency of TinyCR could

be just the update time plus network latency in a real-time updating manner.

Due to the connection maintenance and signing cost in practice, real-time

updating is not always practical when the updating frequency is too high. The recom-

mended practical deployment settings and analysis are presented in Sec. 6.3.6.

Delta Message Size

The IDM server of TinyCR requires to send updating messages to all devices,

so that the devices can update their own CR status classifier locally. Therefore, the delta

message size is a critical metric, as a large message size would significantly increase the

network traffic overhead and transmission latency.

In Fig. 6.6, we show the average raw delta message size for each type of up-

dating operations of TinyCR, Othello and CRLite in the short-term updating scenarios

using Censys certificate data. Note that in short-term updating scenarios, we conduct

limited numbers of updates such that the data structures (except CRLite) are not re-

constructed. For inserting legitimate certificates, TinyCR and CRLite usually do not

need to be updated as the certificate key is highly likely to be rejected by the first filter

layer. For other cases, we notice the delta message sizes of TinyCR and Othello do

not scale with the growth of key sizes for all types of the insertion and value flipping

138

(a) Insert (P) (b) Insert (N)

(c) Flip (P → N) (d) Flip (N → P)

Figure 6.6: ∆-msg size: (a) Insert a revoked certificate. (b) Insert a legitimate certifi-
cate. (c) Unrevoke a revoked certificate. (d) Revoked a certificate.

139

operations. Specifically, both TinyCR and Othello requires around 0 to 100 bytes of

the delta message for all different types of updates (though Othello requires 16x more

total memory), whereas CRLite requires to push a significantly larger message to all

IoT devices. In addition, for the most common certificate insertion operation shown in

Fig. 6.6 (b), TinyCR do not need to send any delta message to devices for most of the

insertions (the average delta message size is around 0.1 bytes), whereas Othello has to

synchronize a delta message for most of the cases.

In Fig. 6.7, we show the distribution of the raw delta message size (without the

signature) in long-term insertion and value flipping scenarios. In these scenarios, when

DASS is too full to support the desired update, it has to be reconstructed In the figure,

the top of each bar in the figure represents the 90th, 99th, 99.9th percentile of the delta

messages sizes. For the long-term insertion scenario in Fig. 6.7 (a), the result shows

more than 90% and 99% of the delta messages are equal to 0 bytes when the ratios

of the legitimate and revoked certificate sizes (|N |/|P |) are 100 and 1000 respectively.

Namely, for most insertions, the verifier DASS do not need to be updated.

In some rare cases, TinyCR can no longer accommodate a space for the new

key. Then the DASS need to be reconstructed on the server and then be pushed and

reinstalled on the IoT devices. Therefore, a reconstruction of the data structure would

cost much higher overhead on both devices’ computing resources and network band-

width. In the experiments, we notice the total times of DASS reconstruction are 44, 31,

28 respectively to insert the 100 million new certificates, when |N |/|P | equals 10, 100

and 1000. On average∗, the bandwidth costs of raw delta messages (not including the

∗the cost of reconstruction is amortized to every insertion

140

signatures) for each insertion are only 12.2, 1.25 and 0.13 bytes when |N |/|P | equals 10,

100 and 1000.

The long-term value flipping result in Fig. 6.7 (b) shows that revoking an

existing certificate costs more bandwidth in TinyCR compared with the insertions.

Specifically, most revocation events will trigger an updating of the verifier DASS and

more than 90% of the updates need a delta message smaller than 65 bytes for all three

scenarios with different revocation ratios. In addition, less than 1% revocations will cost

more than 385 bytes and less than 0.1% revocations (including reconstruction cases) will

cost more than 1 KB for the delta messages. In total, DASS is reconstructed for 64, 31,

and 29 times in order to randomly revoke another around 10M, 1M and 0.1M legitimate

certificates in the three 100M sets with different initial revocation ratios. The average

delta message size† for the tree scenarios are 150.58, 108.08 and 119.87 bytes in the

three value flipping scenarios.

In summary, TinyCR only needs 0 to 150 bytes on average for any CRL up-

date. Since nearly all current IoT data links (including LANs, LPWANs and Cellular

Networks, etc.) can provide larger than 1KBps bandwidth in practice, the TinyCR syn-

chronization process introduces a neglectable extra data transmission cost to the overall

network latency.

6.3.5 Query

The IoT devices that have installed the DASS verifier would be able to check

the CR status of a particular certificate after validating the integrity and expiration

†the cost of reconstruction is amortized to every revocation event

141

(a) Insert (b) Flip

Figure 6.7: The average, and the 90th, 99th, 99.9th percentiles of the generated Delta-
Msg sizes for long-term insertion (a) and value flipping (b).

0.1M 0.3M 1M 3M 10M 30M
of Certificates

10 4

10 3

10 2

10 1

100

101

102

103

CR
 L

at
en

cy
 (m

s)

TinyCR CRLite OCSP

0.1M 0.3M 1M 3M 10M 30M
of Certificates

10 4

10 3

10 2

10 1

100

101

102

103

CR
 L

at
en

cy
 (m

s)

TinyCR CRLite OCSP

(a) Revoked certificates (b) Legitimate certificates

Figure 6.8: Query latency on Raspberry Pi 3.

142

(a) r = 100, P (b) r = 100, N

(c) n = 226, P (d) n = 226, N

Figure 6.9: Query throughput on Raspberry Pi 3. (a) Query revoked certificates, r =
100. (b) Query legitimate certificates, r = 100. (c) Query revoked certificates, n = 226.
(d) Query legitimate certificates, n = 226.

date of the certificate. Standard certificate integrity validation requires cryptography

computation. Recent works introduce delegated or distributed reference protocols based

on the chain of trust [5], which still requires at least millisecond-level latency. Compared

with the validation process, the latency for the revocation status checking process using

the TinyCR verifiers is neglectable (usually in sub-microseconds).

In Fig. 6.8, we test the average query latency to get a revocation status using

the CenSys dataset on the Raspberry Pi 3 testbed and compare the result with CRLite

and OCSP. For OCSP, we use a local 8-core CPU server deployed in the local town as the

143

OCSP server. In addition, on the server side, we use DASS instead of the whole CRL to

maintain the CR status. As the on-device CR verifiers, TinyCR and CRLite can verify

a CR status in sub-microsecond level, which is a few magnitudes faster than OCSP,

as both of them only require O(1) hash operations and memory loads for checking. In

particular, the query delay of TinyCR is slightly shorter for the revoked certificates,

while the delay of CRLite is slightly shorter for the legitimate certificates. The major

query cost for OCSP is the network delays when inquiring the CR status through a

remote server. Thus, OCSP is not an ideal method for the scenarios where the device

available bandwidth is limited and the latency is sensitive.

In addition, we test the query throughput (measured by millions of operations

per second, MOPS) of the on-device checking tools using the CenSys dataset on the

Raspberry Pi 3 testbed and present the results in Fig. 6.9. The throughput reflects

the performance of the checking tools when checking the CR status in batch for a large

certificate set. From Fig. 6.9, the query throughput for TinyCR can be as high as a few

millions per second for both revoked and legitimate certificate lookups on IoT devices,

which can well support most batched CR checking applications in an efficient way.

6.3.6 Bandwidth vs. Dynamics

In Figs. 6.10 and 6.11, we show the delta message cost (each patch includes

a 256-byte RSA signature) for keeping the verifier DASS synchronized under different

updating scenarios and settings. Specifically in our experiments, we initialize DASS

with 100 million certificates, with 1% revoked keys. Then we test two updating scenarios

with different daily workloads: (1) 1 to 108 new certificates are added to the certificate

144

102 103 104 105 106 107 108

of new certificates
102

103

104

105

106

107

108

109

To
ta

l
-m

sg
 si

ze
 (B

yt
es

) TinyCR (RT)
TinyCR (1)

TinyCR (4)
TinyCR (24)

CRLite (1)
CRLite (4)
CRLite (24)
DASS/CRLite size

1

10

100

1K

10K

100K

1M

Es
tim

at
ed

 #
 o

f O
CS

P
qu

ire
s

Figure 6.10: Total bandwidth cost for insertion.

universe; (2) 1 to 107 existing certificates are revoked. In the experiments, we assume the

updates happen uniformly over the day. We deploy four different settings for TinyCR:

TinyCR-(RT) sends the delta message immediately after each update happens; TinyCR-

(1, 4, 24) means we only maintain 1, 4, 24 versions of TinyCR per day and use batching

as in Sec. 6.2.5. Hence, the synchronization latency for TinyCR-(1) is up to one day and

for TinyCR-(24) is up to one hour. Similarly, we implement the corresponding versions

of CRLite as comparisons. The CRLite is updated for 1, 4, 24 times per day using a

bsdiff [55] delta update message. The initial on-device memory costs of TinyCR and

CRLite under this setting are both 1.7 MB. We also compare the protocols with OCSP,

which has zero update cost on bandwidth and the device side but generates relatively

constant traffic load (around 1KB according to prior measurement studies [41, 46]) for

each query. Thus, on the y-axis in the right, we show the estimated number of OCSP

queries that can be made using around the same amount of traffic load needed by the

daily updating of TinyCR and CRLite.

145

100 101 102 103 104 105 106 107

of revoked certificates

102

103

104

105

106

107

108

109

1010

To
ta

l
-m

sg
 si

ze
 (B

yt
es

)

CRLite (1)
CRLite (4)
CRLite (24)
DASS/CRLite size

TinyCR (RT)
TinyCR (1)

TinyCR (4)
TinyCR (24)

1
10
100
1K
10K
100K
1M
10M
100M

Es
tim

at
ed

 #
 o

f O
CS

P
qu

ire
s

Figure 6.11: Total bandwidth cost for revocation.

From Figs. 6.10 and 6.11, we can clearly observe that TinyCR costs less band-

width by a few orders of magnitudes compared to CRLite, when the daily updating

amount is moderate (for example, less than 1 million inserts or less than 1 thousand

revocations per day). On the other hand, when the amount of daily updates is huge,

TinyCR has similar total bandwidth cost as CRLite. More specifically, all versions of

TinyCR have a similar raw delta message cost if DASS is not reconstructed, while the

real-time TinyCR always causes more real-world traffic load due to the high cost of

signing the delta messages. When the number of updates is large and DASS has to be

reconstructed multiple times, the batching protocol with fewer batches has less band-

width cost, since at most only one reconstructed and signed data structure needs to be

sent in one batch. On the other hand, CRLite always needs a large delta message for

synchronization whenever a false positive is found in its first layer of the filter cascades.

The total message size of CRLite is in proportional to the updating frequency. When

the daily update amount is huge, for example, the certificate universe is doubled or

146

more than 10,000 certificates are revoked per day, CRLite has a similar performance

as batching TinyCR. In particular, with higher batching frequency, TinyCR is more

efficient; while with lower frequency, CRLite is a better choice.

In addition, from Figs. 6.10 and 6.11, we find that the TinyCR cost is propor-

tional to the number of updates while the cost of OCSP is proportional to the number

of queries. Note that the TinyCR mainly consumes the downlink bandwidth while

the OCSP mainly consumes the uplink bandwidth. Thus, it is easy to conclude that

TinyCR is more bandwidth cost-efficient when the certificate universe and daily updat-

ing amount is small and querying is frequent, while OCSP is more cost-efficient in the

opposite scenarios.

6.3.7 Mitigate Rebuilds

When TinyCR has to rebuild, the delta message and server resource cost is

significantly higher. Therefore, if the CRL is rather dynamic, we could further opti-

mize DASS to make it less likely to be rebuilt. If the certificate universe is smaller than

what the devices can maintain with their memory capability, we could choose to slightly

increase the DASS size to reserve spaces for future new certificates and revoked certifi-

cates. In particular, the two most important parameters that impact the probability

of rebuild is the load factor α of the Cuckoo Filter and the table size coefficient β of

Othello. The two parameters are set as α = 0.95 and β = 2.33 recommended by the

original studies [19,85] to optimize memory. Thus, if memory allows, a smaller α and a

larger β can be used to reduce the probability of rebuild.

In Fig. 6.12, we show how many updates can be handled by DASS without

147

1.0× 1.2× 1.4× 1.6× 1.8× 2.0× 2.2×
DASS Size (n ×)

1×
5×

10×

15×

20×

25×

30×

of

 fa
st

 re
vo

ca
tio

n
(n

×
) Revoke

Insert

1×

20×

40×

60×

80×

100×

of

 fa
st

 in
se

rts
 (n

×
)

Figure 6.12: How many updates can be applied before the first rebuild.

rebuilding under different memory cost settings. The initialization setting is similar

to the setting in Sec. 6.3.4. In the x-axis, n× means the memory cost of DASS under

different settings compared with that of the memory-optimal setting, while in the y-axis,

the n× means how many updates (insertion or revocation) can be processed without

rebuilding, compared with that of the memory-optimal setting. For the memory-optimal

setting, a rebuild will be triggered after 22 million insertions or 23 thousand revocations

in average. From Fig. 6.12, we can find the capability of accommodating the updates

can be significantly improved by increasing the memory cost slightly. For example, by

using 1.5× memory, DASS can process more than 13× new revocations or 30× new

insertions without reconstructions. This memory allocating strategy is rather effective

for keeping the O(1) updating cost in real deployment.

148

6.4 Discussion.

6.4.1 Application Scenarios for TinyCR

Based on evaluation results, TinyCR is ideal and optimal for the application

scenarios where 1) users need fast or frequent on-device authentication, and low syn-

chronization latency for security; 2) each user device has a limited size of memory, such

as several MBs; 3) the dynamics of certificates are moderate. In addition, for other

scenarios, TinyCR can be used as an alternative with proper configurations or as a

complementary of other protocols.

Batching v.s. Real-time Updating.

Based on our analysis in Fig. 6.10 and 6.11, the real-time TinyCR updating

policy is the optimal choice when CR updates are infrequent. This policy can mini-

mize the synchronization delay and protect devices at any time with limited bandwidth

cost. However, due to the high overhead of signing for the delta message, real-time

TinyCR yields a high cost when the updating frequency is too high. Thus, we could

choose the batching policy for TinyCR and keeping the updating frequency high enough

(such as per hour or per 5 minutes) to trade between bandwidth cost and the worst

synchronization latency. According to our results using batching, higher but bounded

updating frequency does not introduce more bandwidth overhead other than the extra

O(1) signing cost. The batching policies are also friendly to the IDM servers if most

IoT devices are sporadically connected, as it only needs to maintain a bounded number

of DASS versions. In addition, DASS can use a slightly higher memory cost to reduce

the reconstruction probability in practice.

149

When the certificate universe changes significantly every after a short period,

TinyCR as well as all other push-based methods will have unacceptable bandwidth cost

to keep the synchronization latency low. In such a scenario, we have to sacrifice security

for efficiency by reducing the updating frequency, and CRLite is more efficient for one

update per day. The on-demand-based methods (such as OCSP) are the other optional

choice under this scenario despite its higher verification cost.

Moreover, if the CRL updates are non-uniformly distributed over the data and

are predictable by the service providers, we can use a hybrid policy with the batching

protocols and real-time protocol. For example, we can batch the updates in the peak

hours when updating is frequent, and use the real-time protocol for the rest of the hours

when the updating is sporadic.

TinyCR v.s. OCSP/OCSP-stapling.

TinyCR outperforms OCSP in that it is much faster for CR verification. In

some IoT scenarios, the verification delay is critical since IoT devices usually have

limited data (such as sensing data) to transmitted and the requirement for end-to-end

data transmission delay is tight. For example, a smart vehicle is required to read the IoT

sensors on streets for decision-making in a short delay while driving fast. In addition,

OCSP is not suitable for many IoT applications as it leaks user privacy. This drawback

becomes more severe as the IoT data access pattern may include not only the temporal

context but also the location information of the user, such as when and where a user

reads a static street sensor. Besides, many peer-to-peer communication patterns for IoT

usually do not need access to the Internet, for example, IoT devices can be accessed

using short-distance communication media, such as WLAN, Bluetooth, and visible light.

150

Hence, on-device CR checking protocols are more suitable for those scenarios. Still, for

the rare cases when a new certificate cannot be verified by an outdated DASS, we can

choose to fall back to OSCP.

OCSP-stapling is another practical design for CR checking in IoT scenarios

as it does not rely on server access upon verification and can protect user’s privacy.

The major difference between TinyCR and OCSP-stapling is that TinyCR requires the

device who verifies the other device to maintain DASS, while OCSP-stapling requires the

device who is under verification to provide the time-stamped OCSP response extension.

These OCSP-stapling devices have high bandwidth overhead. Thus, in IoT scenarios,

if the device who needs to authenticate the other device has more memory/network

resource (for example, a smartphone is required to authenticate a sensor), TinyCR is a

better choice as it only requires the inquiring device to maintain an up-to-date DASS.

On the contrary, if devices to be authenticated are more powerful (for example, a sensor

needs to authenticate a smartphone), then OCSP-stapling can be used. If bi-directional

authentications are necessary, we can use a hybrid method of DASS and OCSP-stapling

to optimize the resource-security trade-off.

6.4.2 Security Analysis

We discuss the following attacking behaviors for TinyCR.

(1) The attacker attempts to masquerade as a legitimate IoT client by using a

revoked certificate. Since the synchronization latency of TinyCR is only on the millisec-

ond level plus the network latency, the attacker has very limited time to conduct such

attacks. Compared to prior work that synchronize the devices on daily basis [41, 67],

151

TinyCR significantly reduces the chance of this attack. Note that it is also important

for a CA to detect a comprised certificate as early as possible, although this topic is not

the focus of this paper.

(2) The attacker performs the MitM attacks between the IDM server and the

IoT devices. The current methods are sufficient to defend against MitM attacks between

the IDM servers and the IoT devices. Each device can get the public keys of the IDM

servers and CAs using offline methods during manufacturing or installation. With the

public keys, the device can build trusted TLS sessions to IDM servers. Hacking an

IDM server or a CA requires much more attacking power than hacking a device. In this

paper, we do not consider the scenario where the IDM server is hacked.

(3) The attacker attempts to manipulate the CRL, DASS or a delta message.

Since the CA-IDM channel can use trust TLS sessions, the integrity of the CRL can be

protected. In addition, since the DASS messages are signed by the IDM servers, the

attacker cannot manipulate the DASS installation or updating patches.

(4) The attacker wants to infer private information of other devices, servers,

or CAs from the TinyCR install and update messages. An attacker can easily obtain

the TinyCR install and update messages by compromising just one device. However,

knowing these messages give the attacker no advantage because the CR information

is public. DASS is not constructed for each particular device hence there is no device

private information in the DASS messages.

(5) The attacker can block the update messages between an IoT device and the

IDM server, then use a revoked certificate to attack that device. TinyCR has no specific

design to prevent the attacks of blocking the communication to a device – and no other

152

CR method does. However, it is possible to detect such attacks. For example, the IDM

server can send heartbeat packets to the devices periodically with the digest of the up-

to-date DASS verifier and the current time. If the device does not hear the heartbeat

after a period of time, it may detect such communication-blocking attack.

(6) A compromised IDM server sends wrong DASS information and update

messages. All DASS install and update messages can be easily audited by another IDM

server that knows all certificates and the revoked ones. “Auditable” means any party

who knows the entire CRL can verify if another DASS version is maliciously modified.

The device can forward the DASS messages with signatures to other IDM servers for

auditing. The IDM servers can use their maintained certificate universe and the CRL

to test the integrity of the DASS. If the DASS information is tempered, the other IDM

servers can easily find the malicious IDM server by the signature.

(7) The adversary acquires and causes a revocation with a strategy to trigger

frequent rebuilds of DASS. An attacker could learn which certificate revocation will

trigger a rebuild of DASS (by running a simulation experiment) and then attacks that

particular certificate and causes it to be revoked by the CA. To defend against such

an attack, we can preallocate extra space in DASS to make it capable of learning more

updates without rebuilding and reduce the probability to find a certificate that triggers

a rebuild. From our analysis in Fig.6.12, we find this strategy is effective to defend

the attacker with limited power. For example, by doubling the size of DASS upon

initialization, it becomes more than 20 times harder to find a certificate that will trigger

a rebuild.

153

6.5 Conclusion.

TinyCR is a new system and protocol to allow on-device CR checking for IoT.

We develop DASS, a compact and dynamic data structure, to maintain the CR status of

the entire IoT network, which costs each device very small memory. We also implement

the two communication components of TinyCR: the tracker that run on an IDM server

to construct and update DASS and sends the update messages to devices, and the

verifier that can synchronize with the tracker and be queried for the CR status on IoT

devices. The experiments show that TinyCR costs small memory, short CR checking

time, low network bandwidth, and low synchronization latency.

154

Chapter 7

Summary.

This thesis studies two challenging problems regarding enhancing the reliabil-

ity of large-scale mobile networks: (1) how to automatically and efficiently troubleshoot

a individual customer service problem in cellular networks, and (2) how to perform low-

cost and on-device certificate revocation checking for mobile and IoT network ecosys-

tems. Both challenges require us to study the mobile network data and design effective

data abstraction tools to properly represent the key knowledge from the vast data owned

by the service providers. Specifically, we design two types of data abstraction approach

for the two problems.

In the cellular customer-level service troubleshooting challenge, the key de-

mand is how to automatically understand the network status and user experiences from

the network data. The supervision for “understanding” the knowledge is the historical

manual troubleshooting experiences recorded in the troubleshooting ticket data. There-

fore, we design machine learning tools, such as deep neural networks and decision trees,

to extract and abstract the valid and interpretable information from the network data.

155

The learning process is guided by the supervision from historical data and our domain

knowledge. Although the ML-based data abstraction methods perform well according

to our evaluation results based on real case studies, one most significant drawback of

the ML-based methods is that it provides no theoretical lower-bound guarantee for the

specific problem. In our automatic troubleshooting problem, there are currently no good

ways to precisely estimate how bad the model might be in the worst cases. For example,

we cannot precisely estimate how the model would perform if the network configura-

tion is changed significantly in the future. Neither could we precisely tell whether the

model can provide accurate troubleshooting results for a specific case, although we can

estimate the global troubleshooting accuracy given a large historical dataset. Since no

worst-case guarantee can be given while the cellular service providers have to be respon-

sible for their customers, the ML-based troubleshooting systems cannot fully replace the

current troubleshooting human agents. Instead, the best application scenario is using

them as a “troubleshooting assistant” in the current manual troubleshooting framework.

Therefore, the application scenario requires the ML model to provide not only the final

troubleshooting results but also the interpretable data-driven insights about why the

decision is made in the process.

For the on-device certificate revocation checking challenge, the goal is to tell

the validity of a device certificate precisely. To solve the problem, we abstract the device

certificate universe data by using the combination of probabilistic data filters and hash

tables. Unlike the ML-based data abstraction methods, the hash-based methods can

provide a theoretical worst-case guarantee for the data structure under different appli-

cation scenarios. Therefore, those methods can be potentially used in the applications

156

with high responsibility demand, such as network security applications. On the other

hand, current hash-based data abstraction methods cannot effectively model the high-

level knowledge from the data, such as the network status and user experience analysis

problem in the first challenge.

From the two major problems studied by this paper, we can learn that im-

proving the reliability of mobile networks from the data-driven perspective requires not

only the powerful but less verifiable data abstraction tools (such as the ML models) but

also the verifiable but less representative tools (such as the hash-based methods). In

addition to the data abstraction models, a comprehensive system design that considers

real-world limitations and challenges is also necessary for real mobile networks.

157

Chapter 8

Lessons Learned for Handling

Large-Scale Networking Data

Recent decades have witnessed a vast growing of Networking Data including

the service-level data, network measurement data, and network log data. For example,

in a nationwide network database, the data for describing user-level network logs in each

single day can be at trillion bytes scale. In addition, for a state-of-the-practice large-

scale networking system, there can be variety of network functions that measure different

aspects of the network at multiple levels. Those network functions provide us with

heterogeneous networking data for the comprehensive understanding network operating

status. However, handling the trillion-scale heterogeneous data is not a straightforward

work although the algorithms themselves are theoretically efficient and scalable for the

data, especially when the data processing modules are supposed to be deployed for a

real-time system on resource-limited devices. In this chapter, I would like to share

158

some of my experiences I gained from the above projects for using and processing the

large-scale network data in real-time systems.

Understanding the data first. Before designing the algorithms or applying

the machine learning models for data processing, the very first step is understanding the

data. Domain knowledge is always required for understanding the data. For example,

how network measurements are performed, what are the key metrics to indicate network

performance, and what are the key features of the studied network system architecture,

etc. In addition to the domain knowledge, we also need to have a comprehensive under-

standing of the knowledge of the specific data sets. For example, we need to understand

how the data is collected, what information we could learn from each individual at-

tribute, how the values of the attributes make an impact and relate to the topic of the

study, etc. It is particularly important to maintain and study from a detailed meta-data

document for the data sets. After combining the domain knowledge and the dataset

knowledge, we could learn what information set we can obtain from the data and how

the information set can be helpful for the studied topic. Since processing the large-scale

data is rather time-consuming, finding the correct directions for handling the data can

minimize the time and computational resources wasted on “useless efforts”.

Start with a subset of the data. After the direction of how to process

the data is decided, we can move on to process the data with our algorithms. We can

always start with a tiny subset of the database rather than the whole database to test

our programs or algorithms. Processing the data can be extremely time-consuming.

Thus, we do not hope to find that our programs or algorithms have some flaws after

we finish processing the whole dataset. By preprocessing a small subset, we could find

159

and eliminate those flaws at the early stage and avoid those issues when handling the

large data set. To examine the correctness of our data processing, we can visualize

the attributes for the small data set and manually validate the feature values using our

domain knowledge. If everything looks like what we expect, then we can work on the

whole data.

Streaming data processing. Many types of network data are time-series

data generated in a streaming manner. When processing the streaming time-series data

in a real-time system, if the algorithms are not dependent on the information of the far

history, it might be wise to schedule the data processing programs (for example, read

and process a period of the real-time data in every time interval using Crontab in Linux)

rather than to use one single program that runs for forever and always process the data

when new data is available. The data feeding sources may not always be reliable. For

example, the data feeds may suffer from power outages. By using the chunked feature

processing programs, we can automatically recover the processing as soon as the data

feeds are back online. In addition, the chunked programs can be more robust to the

out-of-memory issues by recycling the memory in a timely way.

Real-time systems. For real-time systems, it is important to understand

whether the data delay and processing delay can satisfy the requirements of the sys-

tem. The data delay is naturally bounded by the delay and the granularity of the

data feeds, while the processing delay is decided by the cost of the algorithms and the

capabilities of the hardware. Sometimes, there is a trade-off between the data delay

and the processing delay. For example, if we want the processing delay smaller, we

may have to use more coarse-grind data feeds, which will increase the data delay and

160

scarifies the model accuracy. For heterogeneous networking data, different sources may

have different data delays and granularity. Therefore, we may also have to synchronize

the data (by padding, sampling, interpolation, etc.) and choose an optimal data delay

and granularity that satisfy the system requirements while providing the optimal model

performance.

161

Bibliography

[1] An Internet of Things Reference Architecture. White Paper, Symantec, 2016.

[2] Why Digital Certificates Are Essential for Managing Mobile Devices. White Paper,

DigiCert, Symantec’s Website Security business, 2019.

[3] Censys. https://censys.io/certificates, 2021. Accessed: 2019.

[4] Signal Features - MATLAB. https://www.mathworks.com/help/predmaint/ug/

signal-features.html, 2022. Accessed: 2022.

[5] Arwa Alrawais, Abdulrahman Alhothaily, Xiuzhen Cheng, Chunqiang Hu, and

Jiguo Yu. Secureguard: A Certificate Validation System in Public Key Infrastruc-

ture. IEEE Transactions on Vehicular Technology, 67(6):5399–5408, 2018.

[6] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A

Survey. Computer Networks, 54(15):2787–2805, 2010.

[7] Jessa Bekker and Jesse Davis. Learning from Positive and Unlabeled Data: A

Survey. Machine Learning, 109(4):719–760, 2020.

162

https://censys.io/certificates
https://www.mathworks.com/help/predmaint/ug/signal-features.html
https://www.mathworks.com/help/predmaint/ug/signal-features.html

[8] Burton H Bloom. Space/Time Trade-offs in Hash Coding With Allowable Errors.

Communications of the ACM, 13(7):422–426, 1970.

[9] Denis Charles and Kumar Chellapilla. Bloomier Filters: A Second Look. In In

Proceedings of the European Symposium on Algorithms (ESA), 2008.

[10] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The Bloomier

Filter: An Efficient Data Structure for Static Support Lookup Tables. In In Pro-

ceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

30–39, 2004.

[11] Tianqi Chen and Carlos Guestrin. Xgboost: A Scalable Tree Boosting System. In

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining, pages 785–794, 2016.

[12] Xuxi Chen, Wuyang Chen, Tianlong Chen, Ye Yuan, Chen Gong, Kewei Chen,

and Zhangyang Wang. Self-PU: Self Boosted and Calibrated Positive-Unlabeled

Training. In International Conference on Machine Learning, pages 1510–1519.

PMLR, 2020.

[13] Yi-Chao Chen, Gene Moo Lee, Nick Duffield, Lili Qiu, and Jia Wang. Event

Detection Using Customer Care Calls. In Proceedings of IEEE INFOCOM, pages

1690–1698. IEEE, 2013.

[14] Marc Claesen, Frank De Smet, Johan AK Suykens, and Bart De Moor. A Robust

Ensemble Approach to Learn From Positive and Unlabeled Data Using SVM Base

Models. Neurocomputing, 160:73–84, 2015.

163

[15] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language Mod-

eling with Gated Convolutional Networks. In Proceedings of ICML, pages 933–941.

PMLR, 2017.

[16] Ernesto Diaz-Aviles, Fabio Pinelli, Karol Lynch, Zubair Nabi, Yiannis Gkoufas,

Eric Bouillet, Francesco Calabrese, Eoin Coughlan, Peter Holland, and Jason

Salzwedel. Towards Real-time Customer Experience Prediction for Telecommu-

nication Operators. In Proceedings of IEEE BigData, pages 1063–1072, 2015.

[17] Donald Eastlake et al. Transport Layer Security (TLS) Extensions: Extension

Definitions. Technical report, RFC 6066, January, 2011.

[18] Charles Elkan and Keith Noto. Learning Classifiers from Only Positive and Unla-

beled Data. In Proceedings of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 213–220, 2008.

[19] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.

Cuckoo Filter: Practically Better Than Bloom. In In Proceedings of the 10th ACM

International on Conference on Emerging Networking Experiments and Technolo-

gies (CoNEXT), 2014.

[20] Wei Fan, Kun Zhang, Hong Cheng, Jing Gao, Xifeng Yan, Jiawei Han, Philip Yu,

and Olivier Verscheure. Direct Mining of Discriminative and Essential Frequent

Patterns via Model-based Search Tree. In Proceedings of ACM SIGKDD, pages

230–238, 2008.

164

[21] Jerome H Friedman. Greedy Function Approximation: A Gradient Boosting Ma-

chine. Annals of statistics, pages 1189–1232, 2001.

[22] Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Hongjun Lu, and Philip S Yu. Text Clas-

sification Without Negative Examples Revisit. IEEE transactions on Knowledge

and Data Engineering, 18(1):6–20, 2005.

[23] Mark Goodwin. Revoking Intermediate Certificates: Introducing Onecrl. Mozilla

Security Blog, 2015.

[24] Quanquan Gu, Zhenhui Li, and Jiawei Han. Generalized Fisher Score for Feature

Selection. In Proceedings of Uncertainty in Artificial Intelligence, 2011.

[25] Phillip Hallam-Baker. X. 509v3 Transport Layer Security (TLS) Feature Extension.

RFC 7633, 2015.

[26] William L Hamilton, Rex Ying, and Jure Leskovec. Representation Learning on

Graphs: Methods and Applications. IEEE Data Engineering Bulletin, 40(3):52–74,

2017.

[27] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar

Dayal, and Meichun Hsu. Prefixspan: Mining Sequential Patterns Efficiently by

Prefix-projected Pattern Growth. In Proceedings of ICDE, pages 215–224. IEEE,

2001.

[28] Harri Holma and Antti Toskala. LTE for UMTS: Evolution to LTE-advanced. John

Wiley & Sons, 2011.

165

[29] Russell Housley, Warwick Ford, William Polk, and David Solo. Internet X. 509

Public Key Infrastructure Certificate and CRL Profile. Technical report, RFC

2459, January, 1999.

[30] Jiyao Hu, Zhenyu Zhou, Xiaowei Yang, Jacob Malone, and Jonathan W Williams.

CableMon: Improving the Reliability of Cable Broadband Networks via Proactive

Network Maintenance. In Proceedings of USENIX NSDI, pages 619–632, 2020.

[31] Qinwen Hu, Muhammad Rizwan Asghar, and Nevil Brownlee. Certificate Revoca-

tion Guard (CRG): An Efficient Mechanism for Checking Certificate Revocation.

In 2016 IEEE 41st Conference on Local Computer Networks (LCN).

[32] Anand Padmanabha Iyer, Li Erran Li, and Ion Stoica. Automating Diagnosis of

Cellular Radio Access Network Problems. In Proceedings of ACM MobiCom, pages

79–87, 2017.

[33] Yu Jin, Nick Duffield, Alexandre Gerber, Patrick Haffner, Wen-Ling Hsu, Guy Ja-

cobson, Subhabrata Sen, Shobha Venkataraman, and Zhi-Li Zhang. Making Sense

of Customer Tickets in Cellular Networks. In Proceedings of IEEE INFOCOM,

pages 101–105, 2011.

[34] Yu Jin, Nick Duffield, Alexandre Gerber, Patrick Haffner, Subhabrata Sen, and

Zhi-Li Zhang. Nevermind, The Problem Is Already Fixed: Proactively Detecting

and Troubleshooting Customer DSL Problems. In Proceedings of ACM CoNEXT,

pages 1–12, 2010.

[35] Masahiro Kato, Takeshi Teshima, and Junya Honda. Learning from Positive and

166

Unlabeled Data with A Selection Bias. In International conference on learning

representations, 2018.

[36] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

Proceedings of ICLR, 2015.

[37] Ryuichi Kiryo, Gang Niu, Marthinus C Du Plessis, and Masashi Sugiyama.

Positive-Unlabeled Learning with Non-negative Risk Estimator. Advances in neural

information processing systems, 30, 2017.

[38] D. Kumar, M. Bailey, Z. Wang, M. Hyder, J. Dickinson, G. Beck, D. Adrian,

J. Mason, Z. Durumeric, and J. A. Halderman. Tracking certificate misissuance in

the wild. In In Proceedings of the IEEE Symposium on Security and Privacy (SP),

2018.

[39] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing Network-Wide

Traffic Anomalies. Proceedings of ACM SIGCOMM, pages 219–230, 2004.

[40] Adam Langley. Revocation Checking and Chrome’s CRL. ImperialViolet (blog),

2012.

[41] James Larisch, David Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove, and

Christo Wilson. CRLite: A Scalable System for Pushing All TLS Revocations to

All Browsers. In In Proceedings of the IEEE Symposium on Security and Privacy

(SP), pages 539–556. IEEE, 2017.

[42] Xiao-Li Li and Bing Liu. Learning from Positive and Unlabeled Examples with

167

Different Data Distributions. In European conference on machine learning, pages

218–229. Springer, 2005.

[43] Xin Li, Fang Bian, Mark Crovella, Christophe Diot, Ramesh Govindan, Gian-

luca Iannaccone, and Anukool Lakhina. Detection and Identification of Network

Anomalies Using Sketch Subspaces. In Proceedings of ACM IMC, pages 147–152,

2006.

[44] Xin Li, Minmei Wang, Huazhe Wang, Ye Yu, and Chen Qian. Toward Secure and

Efficient Communication for the Internet of Things. IEEE/ACM Transactions on

Networking, 2019.

[45] Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip S Yu. Building Text

Classifiers Using Positive and Unlabeled Examples. In Third IEEE international

conference on data mining, pages 179–186. IEEE, 2003.

[46] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce Maggs,

Alan Mislove, Aaron Schulman, and Christo Wilson. An End-to-end Measurement

of Certificate Revocation in the Web’s PKI. In In Proceedings of the Internet

Measurement Conference (IMC), pages 183–196. ACM, 2015.

[47] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu, Hongzi Mao, and Hongxin Hu.

Interpreting Deep Learning-based Networking Systems. In Proceedings of the An-

nual conference of the ACM Special Interest Group on Data Communication on

the applications, technologies, architectures, and protocols for computer communi-

cation, pages 154–171, 2020.

168

[48] Michael Mitzenmacher. Compressed Bloom Filters. IEEE/ACM transactions on

networking, 10(5):604–612, 2002.

[49] Michael Myers, Rich Ankney, Ambarish Malpani, Slava Galperin, and Carlisle

Adams. X. 509 Internet Public Key Infrastructure Online Certificate Status

Protocol-OCSP. Technical report, RFC 2560, 1999.

[50] Alma Oracevic, Selma Dilek, and Suat Ozdemir. Security in Internet of Things: A

Survey. In In Proceedings of the International Symposium on Networks, Computers

and Communications (ISNCC), pages 1–6. IEEE, 2017.

[51] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. In In Proceedings of

the European Symposium on Algorithms (ESA), pages 121–133. Springer, 2001.

[52] Lujia Pan, Jianfeng Zhang, Patrick PC Lee, Hong Cheng, Cheng He, Caifeng He,

and Keli Zhang. An Intelligent Customer Care Assistant System for Large-Scale

Cellular Network Diagnosis. In Proceedings of ACM SIGKDD, pages 1951–1959,

2017.

[53] Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Trans-

actions on knowledge and data engineering, 22(10):1345–1359, 2009.

[54] Chunyi Peng. Cellular Network for Mobile Devices and Applications: Infrastructure

Limitations and Solutions. University of California, Los Angeles, 2013.

[55] Colin Percival. Binary Diff/Patch Utility. URL: http://www. daemonology.

net/bsdiff, 2003.

169

[56] Rahul Potharaju, Navendu Jain, and Cristina Nita-Rotaru. Juggling the JigSaw:

Towards Automated Problem Inference from Network Trouble Tickets. In Proceed-

ings of USENIX NSDI, pages 127–141, 2013.

[57] Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer Security Ver-

sion 1.2. 2012.

[58] Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot. Sensitiv-

ity of PCA for Traffic Anomaly Detection. In Proceedings of ACM SIGMETRICS,

pages 109–120, 2007.

[59] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. The Graph Neural Network Model. IEEE transactions on neural

networks, 20(1):61–80, 2008.

[60] Sundararajan Sellamanickam, Priyanka Garg, and Sathiya Keerthi Selvaraj. A

Pairwise Ranking Based Approach to Learning with Positive and Unlabeled Ex-

amples. In Proceedings of the 20th ACM international conference on Information

and knowledge management, pages 663–672, 2011.

[61] M Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, and Jia Wang. Charac-

terizing geospatial dynamics of application usage in a 3g cellular data network. In

Proceedings of IEEE INFOCOM, pages 1341–1349. IEEE, 2012.

[62] M Zubair Shafiq, Lusheng Ji, Alex X Liu, and Jia Wang. Characterizing and model-

ing internet traffic dynamics of cellular devices. ACM SIGMETRICS Performance

Evaluation Review, 39(1):265–276, 2011.

170

[63] Zhihao Shen, Wan Du, Xi Zhao, and Jianhua Zou. Dmm: Fast map matching for

cellular data. In Proceedings of ACM MobiCom, pages 1–14, 2020.

[64] Amit Sheoran, Sonia Fahmy, Matthew Osinski, Chunyi Peng, Bruno Ribeiro, and

Jia Wang. Experience: Towards Automated Customer Issue Resolution in Cellular

Networks. In Proceedings of ACM MobiCom, pages 1–13, 2020.

[65] Xiaofeng Shi, Shouqian Shi, Minmei Wang, Jonne Kaunisto, and Chen Qian. On-

device IoT Certificate Revocation Checking with Small Memory and Low Latency.

In Proceedings of ACM CCS, 2021.

[66] Ahmed Shokry, Marwan Torki, and Moustafa Youssef. DeepLoc: A Ubiquitous

Accurate and Low-overhead Outdoor Cellular Localization System. In Proceedings

of ACM SIGSPATIAL, pages 339–348, 2018.

[67] Trevor Smith, Luke Dickinson, and Kent Seamons. Let’s Revoke: Scalable Global

Certificate Revocation. In In Proceedings of the Network and Distributed System

Security Symposium (NDSS), 2020.

[68] Pawel Szalachowski, Laurent Chuat, Taeho Lee, and Adrian Perrig. RITM: Revo-

cation in the Middle. In 2016 IEEE 36th International Conference on Distributed

Computing Systems (ICDCS), 2016.

[69] Pang-Ning Tan, Hannah Blau, Steve Harp, and Robert Goldman. Textual Data

Mining of Service Center Call Records. In Proceedings of ACM SIGKDD, pages

417–423, 2000.

171

[70] Samuel Tanner Lindemer. Digital certificate revocation for the internet of things.

Master’s thesis, KTH Royal Institute of Technology, 2019.

[71] Yang Tong, Dongsheng Yang, Jie Jiang, Siang Gao, Bin Cui, Lei Shi, and Xiaoming

Li. Coloring Embedder: a Memory Efficient Data Structure for Answering Multi-

set Query. In In Proceedings of the IEEE 35th International Conference on Data

Engineering (ICDE), pages 1142–1153. IEEE, 2019.

[72] Shobha Venkataraman and Jia Wang. Towards Identifying Impacted Users in Cel-

lular Services. In Proceedings of ACM SIGKDD, pages 3029–3039, 2019.

[73] Daryl Walleck, Yingjiu Li, and Shouhuai Xu. Empirical Analysis of Certificate

Revocation Lists. In In Proceedings of the IFIP Annual Conference on Data and

Applications Security and Privacy, pages 159–174. Springer, 2008.

[74] Minmei Wang, Chen Qian, Xin Li, and Shouqian Shi. Collaborative Validation

of Public-key Certificates for IoT by Distributed Caching. In In Proceedings of

the IEEE International Conference on Computer Communications (INFOCOM),

pages 847–855. IEEE, 2019.

[75] Minmei Wang, Mingxun Zhou, Shouqian Shi, and Qian Chen. Vacuum Filters:

More Space-Efficient and Faster Replacement for Bloom and Cuckoo Filters. In In

Proceedings of International Conference on Very Large Databases (PVLDB), 2020.

[76] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar Sastry, and Yi Ma. Robust

Face Recognition via Sparse Representation. IEEE transactions on pattern analysis

and machine intelligence, 31(2):210–227, 2008.

172

[77] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu

Philip. A Comprehensive Survey on Graph Neural Networks. IEEE transactions

on neural networks and learning systems, 2020.

[78] Fengli Xu, Yong Li, Huandong Wang, Pengyu Zhang, and Depeng Jin. Understand-

ing Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment.

IEEE/ACM transactions on networking, 25(2):1147–1161, 2016.

[79] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful Are

Graph Neural Networks? 2019.

[80] Yixing Xu, Yunhe Wang, Hanting Chen, Kai Han, Chunjing Xu, Dacheng Tao, and

Chang Xu. Positive-Unlabeled Compression on The Cloud. Advances in Neural

Information Processing Systems, 32, 2019.

[81] Yixing Xu, Chang Xu, Chao Xu, and Dacheng Tao. Multi-Positive and Unlabeled

Learning. In IJCAI, pages 3182–3188, 2017.

[82] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How Transferable Are

Features in Deep Neural Networks? Proceedings of NIPS, 2014.

[83] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-Temporal Graph Convolutional

Networks: A Deep Learning Framework for Traffic Forecasting. Proceedings of

IJCAI, pages 3634–3640, 2018.

[84] Minlan Yu, Alex Fabrikant, and Jennifer Rexford. BUFFALO: Bloom Filter For-

warding Architecture for Large Organizations. In In Proceedings of the ACM 5th

173

International Conference on Emerging Networking Experiments and Technologies

(CoNEXT), pages 313–324, 2009.

[85] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. Memory-Efficient and

Ultra-fast Network Lookup and Forwarding using Othello Hashing. IEEE/ACM

Transactions on Networking, 26(3):1151–1164, 2018.

[86] Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras. Microscope:

Mobile service traffic decomposition for network slicing as a service. In Proceedings

of ACM MobiCom, pages 1–14, 2020.

[87] Liang Zhang, David Choffnes, Dave Levin, Tudor Dumitraş, Alan Mislove, Aaron

Schulman, and Christo Wilson. Analysis of SSL Certificate Reissues and Revoca-

tions in The Wake of Heartbleed. In In Proceedings of the Conference on Internet

Measurement Conference (IMC), pages 489–502, 2014.

[88] Ying Zhang, XuChan Ju, and YingJie Tian. Nonparallel Hyperplane Support

Vector Machine for PU Learning. In 2014 10th International conference on natural

computation (ICNC), pages 703–708. IEEE, 2014.

[89] Peifang Zheng. Tradeoffs in Certificate Revocation Schemes. ACM SIGCOMM

Computer Communication Review, 2003.

[90] Dong Zhou, Bin Fan, Hyeontaek Lim, David G Andersen, Michael Kaminsky,

Michael Mitzenmacher, Ren Wang, and Ajaypal Singh. Scaling Up Clustered Net-

work Appliances with ScaleBricks. In Proceedings of the 2015 ACM Conference on

Special Interest Group on Data Communication, 2015.

174

[91] Zhi-Hua Zhou. A Brief Introduction to Weakly Supervised Learning. National

science review, 5(1):44–53, 2018.

[92] Xiaojin Jerry Zhu. Semi-supervised Learning Literature Survey. 2005.

175

