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ABSTRACT
In the past few years there has been a growing desire to provide
more built in functionality to protect user communications from
eavesdropping. An example of this is DNS over HTTPS (DoH)
which can be used to protect user privacy, confidentiality and
against spoofing attacks. Since its first popularity in 2018 as used
in browsers, there is much further study to test the effectiveness of
DoH in protection schemes and whether it is possible to detect the
protocol over the web. Detecting DoH traffic among normal web
traffic is also a major challenge for network admins to allow filter-
ing of malicious traffic flows. In this paper, we investigate machine
learning classification to study the detection of DoH traffic and fur-
ther analyze the key feature characteristics in the protocol behavior
to help researchers build credibility in the DoH protocol detection.
Our study reveals key features and statistical relationships among
DoH test runs on the Alexa-recommended 100 most-used websites
using three different DoH servers, showing up to 98% test accuracy
in our built classifier.

CCS CONCEPTS
• Security and privacy → Domain-specific security and privacy
architectures.
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1 INTRODUCTION
DNS has been a core component of the internet since the mid
1980’s [24], making it one of the oldest protocols in use. DNS over
HTTPS (DoH) protects user privacy by providing both confidential-
ity between the client and the first recursive resolver and integrity
protection against query tampering via man-in-the-middle attacks
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(MITM). It does this by encrypting the DNS query from the client
using the HTTPS protocol. DoH was first tested in a few popu-
lar browsers in March 2018, but since then research on the ability
to detect the protocol within regular web traffic traces has been
somewhat limited.

There have been several improvements around protecting the
security and privacy of DNS users. DNSSEC is one example of the
efforts towards preserving the DNS record integrity by using Zone
signing and digital signatures so that lookups can be verify-able by
the end user [6]. DNS over TLS (DoT), DNS over HTTPS (DoH), and,
more recently, DNS over QUIC (DoQ) are newer efforts to tackle
user privacy and confidentiality in DNS data in transit. DoT and
DoH provide data encryption in transit using the TLS and HTTPS
protocols, respectively. In spite of the outward similarities, there
are quite a few fundamental differences between DoT and DoH. For
example, DoT uses dedicated port 853 for application traffic [14],
so can easily be detected based on that. On the other hand, DoH
uses TCP port 443 (the default HTTPS application port) to send
and receive encrypted DNS. For the well-known DoH resolvers,
this traffic can still be identified by looking at the destination IPs
of popular public DoH resolvers. The part where it gets tricky is
when other DNS resolvers start providing DoH service with unique
IPs not popularly known to the public. At this point, the problem
of recognizing DoH data in normal web traffic gets difficult.

There are many reasons why it is important to distinguish DoH
traffic from normal web traffic. Firstly, one characteristic of several
DoH clients is the ability of an application to use its own DoH
instance without alerting the end user of the application. As more
andmore application developers start usingDoH,we could seemore
traffic to dedicated DoH servers rather than well-known public
servers. Hence for an attacker, this is an easy way to hide an attack
among normal web traffic while controlling destination activity of
the application. This is important since most organizations allow
outbound web traffic from their networks. Secondly, for a network
where controlling DNS resolution is critical, firewalls and RPZs
would not be able to monitor activity since DNS traffic would no
longer be controlled using the infrastructure-provided DNS servers.
Furthermore, as seen in DoH being maliciously used to conduct
attack [2], here, the DoH bypasses the OS and is directly operated
at the app layer. Every application can have a different DoH server,
and a user running multiple DoH-enabled applications can have
multiple connections to different DoH servers based on what DoH
server each application is configured to use. Because of this, it is
important to have a technique in place to determine if DoH traffic
is in the network, to know when users start using DoH, and which
servers are being used for name resolution. Ideally organizations
provide their own DoH service from their DNS infrastructure and
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direct users to use their DoH service, blocking/monitoring any DoH
traffic outside their network. Even for this to work, one needs to
be able to determine DoH traffic in the normal web traffic to block
or take any action.

The industry has recognized the importance of advanced intelli-
gent decision-making or machine learning (ML) to help improve
network application performance and management [19]. Machine
learning algorithms can be used to predict network behavior such
as ‘which path selection, capacity or QoS change will cause what
result or event 𝑋 with what probability 𝑃 ’. Detecting anomalies can
cut down costs and time spent finding impaired segments or misbe-
having devices in network infrastructures. Classification techniques
here, supervised and unsupervised classification, can encompass
ML approaches that use labeled data to train algorithms that can
classify data into specific classes. Unsupervised ML, on the other
hand, works with unlabeled data sets to learn underlying patterns,
perform dimensional reduction, or learn latent relationships among
the data. For a specific example, unsupervised classification can
recognize good flow performance or security anomalies [12]. In net-
working, it is often difficult to find labeled data sets, as performance
logs are rarely labeled except in major event scenarios.

In this paper we look at two different ways of identifying DoH
traffic - a light weight statistical method as well as a more full fea-
tured ML schema with the idea that they could be used together.
We see a clear need to identify DoH traffic, given the future land-
scape of DoH use is going to be across a broad range of application
providers, making the well-known DoH server lists non-exhaustive.
Thus relying on the IP-based detection becomes challenging and
will become obsolete. Here we address the challenge of DoH traf-
fic detection using statistical analysis and machine learning based
approaches to identify unseen patterns which help build better
detectors. The primary goal is to detect DoH traffic from normal
traffic and distinguish its behavioral features. The paper is divided
as follows: Section 2 describes the background and related work.
Section 3 describes our analysis techniques, data collection, and
testing of various machine learning techniques to build classifiers.
Sections 4 and 5 present an analysis and discussion of the approach,
and Section 6 concludes the paper.

2 BACKGROUND
2.1 DNS Privacy Concepts
The DNS protocol was designed to carry out IP address resolution
in a fast and reliable way. Performance was a highly motivating
force in using UDP as the primary transport protocol. When more
reliability in some of the DNS operations was needed, like DNS
zone transfers, or when the size of the request/response was greater
than a single UDP packet then TCP was used as transport protocol.
This allowed some assurance that records shouldn’t get lost during
zone transfers between two DNS servers and that both can function
reliably with the resource records in sync. Privacy and security were
not given a high priority while designing the DNS protocol, and
being one of the oldest protocol and being around for a while, it has
attracted various adversaries to abuse DNS for different purposes
[4] [9] [15] [29]. DNS messages and responses were not encrypted
in transit, so anyone observing the wire could see these messages
in clear text and infer a lot of useful information about the client

and what they were doing even if the application protocol was
itself encrypted (like HTTPS). Examples of this metadata include
insights about what type of services, applications, and software the
client is using. This information can then be used by the adversary
to craft attacks on the clients.

Because of concerns associated with user privacy, and the need
to protect against information leakage in form of clear text, sev-
eral different DNS privacy and confidentiality standards have been
proposed and developed. The three main standards that help pro-
tect DNS confidentiality and integrity are DNS Security Extensions
(DNSSEC) protocol standard, DNS over TLS (DoT), and DNS over
HTTPS (DoH).

2.2 DNS Applications and Standards
DNSSEC provides authentication using digital signatures for DNS
records which can be verified by the client to prove the authenticity
and integrity of a DNS resource record. This allows protection
from the records being tampered with in transit. It uses public key
cryptography to digitally sign the DNS resource records that can be
verified by the client. This is grounded in the idea that only the real
owner of the DNS record, i.e. the authoritative DNS server, can hold
the private key used to sign the record that can be verified by the
corresponding public key provided to the client. DNSSEC was first
introduced in 2005, and the RFC 4033 [5] explains the definition and
implementation requirements of the DNSSEC standard. It provides
integrity in the DNS ecosystem.

DNS over TLS, DoT, was introduced as the standard in 2016
when IETF published the DoT RFC 7858 [16]. This RFC defines the
protocol standards for using encrypted DNS queries and responses
between the client and the server, hence protecting the first hop
of the DNS messages, which is from the client to the first DNS
recursive resolver the client connects to. This protects the privacy
of clients and DNS records queried. DoT runs on TCP port 853 for its
own server application port, which makes it uniquely identifiable
over the network. [11].

DNS over HTTPS, DoH is another standard that was proposed
to protect the privacy of the users by encrypting the DNS messages
and responses in transit. Just like DoT, DoH would encrypt the
communication between the DNS client and the first recursive
resolver that it connects to. However, one major difference between
DoT and DoH is, DoH uses HTTPS as the underlining application
to encrypt communication in transit, and hence it runs on the
web port 443. This introduces the challenge of mixed DNS queries
with web traffic, although it provides security through obscurity,
as many would argue. After its standardization by IETF in 2018
in RFC 8484 [13], many public recursive resolvers have already
started experimenting with DoH. Mozilla, the creator of the Firefox
browser, announced in early 2020 [3] that DoHwould be enabled by
default in the firefox browser for all it’s US-based users. Google also
has been experimenting with enabling DoH in its Chrome browser
offering and making it available for all Chrome browser users since
2019 [1].

3 OUR METHODOLOGY
For our work on DoH recognition, we build a testbed to capture
traffic with an enabled browser to several highly used websites. Our
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intent is to model the users of an organization using DoH enabled
web browsers to a number of common web sites. Details follow.
This traffic appears to be normal web traffic, as DoH uses the same
port as HTTPS (port 443). Here we also assume that analysts can
monitor the organization’s perimeter traffic. There is a wide range
of security tools, open-source, free, and vendor offered, used as
NSM tools to monitor their network.

Once the analysts have visibility into the network traffic, the
proposed approaches can be applied in practice to deduce with
high confidence whether a particular traffic stream could be DoH
or not. Since our traffic is encrypted and we do not decrypt it and
use the full pcap captures within the scope of preserving users’ pri-
vacy. Feature selection is detailed in each of the individual analysis
sections.

3.1 Testbed Setup and Data Collection
For the data collection setup, we chose Google Cloud Platform (GCP)
to run our virtual machine instances in three different geographic
locations - west, central, and east zones. This was done so that we
can cover a broader range of traffic and see if the DNS queries and
responses are affected by the geographic locations of the clients. All
three instances ran Ubuntu 20.04 LTS as the operating system. The
website visit was executed by the Firefox browser, and since we had
a list of websites to be visited and packets to be collected from each
visit, we automated the task by using Python scripting language.
Using selenium, the Firefox browser was invoked in the headless
mode with DoH settings pointing to the DoH server of interest.
Regarding the tested DoH resolvers, we chose three well-known
DoH resolvers - Quad9 (9.9.9.9), Google (8.8.8.8), and Cloudflare
(1.1.1.1).

For building a list of websites to test the DNS resolution, we
picked the top 100 websites from the popular Alexa Top Sites list
(https://alexa.amazon.com/). At the time of this research, Alexa
Top Sites service is available online (the website list is available).
The top 1m site list is updated daily. The initial set of websites
was the top 100 sites, but a couple of websites were either moved
permanently or broken. We excluded those from our list, which
explains why the resulting list contains 98 instead of 100 websites.

Our DNS query iterates through the list of websites, invokes
the Firebox browser, and captures the traffic using tcpdump. The
tcpdump process was started before each website was fetched and
stopped after 15 seconds of the website getting request, assuming
this is enough time for a website to load. We used two tcpdump
processes in parallel- the first one using the tcpdump filter for
the DoH server’s IP address to capture DoH-only traffic, and the
second one using tcpdump filter excluding any traffic that has the
DoH server’s IP address in it, we called that pcap set as "other"
traffic, which most likely would be web traffic. So for every website
visit, we ended up with two pcaps - DoH-only (DoH) and non-DoH
(other) pcaps. We used this to label the dataset as DoH and non-
DoH for building the classifiers. The process was repeated for each
DoH server from each VM instance. Hence, for each VM, we had
196 pcaps (98 DoH and 98 non-DoH/Other) from each DoH server,
i.e total of 589 (3x196) pcaps from a run across three DoH servers.
The diagram of the data collection is shown in Figure 1.

Figure 1: Data collection using GCP instances.

The pcap collection for our first run was on 01/27/2022, in which
we only collected pcaps from the Cloudflare server (1.1.1.1). We
ran the second pcap collection on 06/02/2022, and this time, we
collected pcap across all three DoH servers. Similarly, our third
and last pcap collection happened on 07/08/2022, and again we
collected pcaps across all three DoH servers from each VM. The
reason for collecting the pcaps on the spread timeline was to see if
the changes in either the website hosting or the server’s software
upgrade impact the DNS queries and responses. Also, the time
period between the runs was randomly selecting, waiting for few
weeks before we run next round of pcap collection. The details on
the pcap files are shown in Table 1.

3.2 Feature Selection and Padding
We selected features from the pcap file, removing ip addresses
and features that were specific to the traffic. We ended up with 17
features shown in Table 2. Requirements for feature selection are
driven to a large degree by the tool(s) used to do the analysis. We
focus on a small number of variables to create an easy to understand
mental model based on patterns that we see. For the ML analysis
we have the ability to digest a richer variety of inputs without the
same degree of difficulty.

For the statistical analysis we see a stream of packets with fea-
tures described by Figure 4. Here the features are immutable char-
acteristics of the traffic stream. 𝑠𝑖 represents the packet size 𝑖 , and
𝑡𝑖 𝑗 represents the time delay between packets 𝑖 and 𝑗 . Since the
inter-packet delay can be effected by a number of measurement,
environmental, and analysis factors we chose to focus on packet
size in the detection framework.

3.3 Two-way Traffic and Padding
As part of the original design of DoH, there is a discussion about
the use of padding to provide some protections against the pas-
sive monitoring of traffic [13]. There are some suggestions about
padding lengths in [17] as well as suggestions as to what it should
be set in [18].

With this in mind, we can compare the distribution of packet
sizes for DoH and non-DoH traffic for both the client and server
sides of the conversation. Figures 2 and 3 show the distribution of

https://alexa.amazon.com/
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Cloudflare (1.1.1.1) Google (8.8.8.8) Quad9 (9.9.9.9) Total
01-27-2022 DoH-98, other-98 - - 196
06-02-2022 DoH-98, other-98 DoH-98, other-98 DoH-98, other-98 589
07-18-2022 DoH-98, other-98 DoH-98, other-98 DoH-98, other-98 589

Table 1: Total datasets from each VM.

Feature PC-1 PC-2
ip.len 0.000047 -0.000342
ip.flags.df 0.000000 0.000000
ip.flags.mf 0.000000 0.000000
ip.ttl 0.000000 0.000000
ip.proto 0.000000 0.000000
tcp.window size 0.557778 0.821999
tcp.ack 0.826302 -0.536917
tcp.seq 0.078161 -0.189836
tcp.len 0.000057 -0.000346
tcp.stream 0.000000 0.000000
tcp.urgent pointer 0.000000 0.000000
tcp.analysis.ack rtt 0.000000 0.000000
frame.time relative 0.000000 0.000000
frame.time delta 0.000000 0.000000
tcp.time relative 0.000000 0.000000
tcp.time delta 0.000000 0.000000

Table 2: Features and their PCA Importance. Values less than
1e-06 are rounded to zero.

packet sizes. The most critical observation about non-DoH traffic
is that the size distribution is fairly well spread across the span of
values from 0-1500 bytes. Server values are systematically larger
than clients, but this is expected from the asymmetric characteristics
of typical web browsing. Byte values between 0 and 1500 are well
represented in the histogram.

For the server-side DoH traffic, we see two different things. First,
the distribution of packet sizes sits on a small number of points.
How these points are distributed is broken out into two very dif-
ferent shapes. Cloudflare (1.1.1.1) and Google (8.8.8.8) have strong
bimodal distributions, with peaks around 0-30 bytes and 490-530
bytes, suggesting some sort of padding. For Quad9 (9.9.9.9), we see
a peak at zero as well as a (fairly) normal distribution with a mean
of around 170 bytes. In both cases, the distribution of size values
is sufficiently different from ‘typical’ non-DoH traffic that further
examination is warranted. We use the distinction between these
distributions as well as the absence of large packets in the DoH
flows, as a core justification in building the analysis.

4 CLASSIFICATION ALGORITHM
Supervised techniques use some knowledge about data sets (such as
labeled data) to group data into clusters. Unsupervised techniques
start without any knowledge of data sets, identify features, and
cluster similar records into unique sets. Algorithms that use a mix
of techniques fall under semi-supervised area.

Figure 2: Packet size distribution for non-DoH traffic. Y-axis
is 𝑙𝑜𝑔10, and all values are normalized percents and rounded
to the nearest 10-byte value.

Figure 3: Packet size distribution for DoH server-side traffic.
All values are normalized percent and rounded to the nearest
10-byte value. Note Quad9 lack of padding.

4.1 Training and Test Datasets
From the flow data, we filter the data in the direction of source-
destination and acks from destination-source. We use the data from
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𝑡12 𝑡23 𝑡34𝑝1 𝑠1 𝑝2 𝑠2 𝑝3 𝑠3 𝑝4 𝑠4

Figure 4: Packets and their size and inter-arrival times.

06-02-2022 and 07-18-2022 as training data and test it with 01-27-
2022 data set.

4.2 Dimension Reduction for Classification
From this data we need to identify flows into two clusters - DoH
and Other (non-DoH). The aim is to produce two distinct clusters
and to find patterns, relationships, and similarities across them.
Many ML techniques involve digesting large data sets with many
features to produce meaningful results. However, where these may
give good results in some cases, this makes the training extremely
slow and difficult to find a good solution. Reducing the dimension
can help select certain important features compressing the data but
also losing some information along the way. There are many ways
to reduce dimension, we discuss a number of them here:

4.2.1 Principal Component Analysis (PCA). This works by identify-
ing the hyperplanes which lie close to the data sets, explaining the
maximum amount of variations called the principal components.
The axis orthogonal to the first plane becomes the second principal
component, and so on.

4.2.2 T-distributed stochastic neighbor embedding (tSNE). takes
high dimensional data and reduces it to low dimension by retain-
ing as much information as possible. It is often used as a quick
visualization technique.

4.2.3 UMAP (Uniform Manifold Approximation and Projection).
This is a nonlinear dimension reduction method that uses manifold
learning and dimension reduction to find relative proximity in
clusters. Out of all of these, tSNE has the most processing time.

5 RESULTS AND VALIDATION
We conducted all classification techniques PCA, tSNE, and UMAP.
We found that PCA was able to give us optimum classification
results with the explained variation of 73% and 26% in just the first
two principal components accounting for 99% of the data analysis.
Looking into the important features listed in Table 2, we see that
ip.len or duration of the connection, TCP window size, ACK, and
duration are the most important features which is able to classify
the data. This is an important result because we do not depend on
the IP addresses and destinations to find the DNS traffic. Results are
shown in Figure 5. Figure 6 shows the exact tSNE visualization in
3D. Figure 7 shows the UMAP distributions. The graphs show that
PCA is able to distinguish most of the DoH traffic in one class rather
than TSNE and UMAP. This is because even with simple dimension
reduction of certain features, we see distinct DoH behavior. Nearly
identical results were found for the East and West server data so
for reasons of space conservation we will not display these.

5.1 Classification Accuracy
We used PCA to build a classifier for the DoH data and, using the
training and test data tested the accuracy.We calculate classification

Table 3: Consistency Between East/Cent/West Data Centers
Per Provider: Pre Overfit Correction

Location Provider Mean StdDeviation
EAST Cloudflare 0.9168 0.0313
EAST Google 0.9497 0.0193
EAST Quad9 0.8727 0.0492
CENT Cloudflare 0.9328 0.0225
CENT Google 0.9641 0.0142
CENT Quad9 0.8583 0.0539
WEST Cloudflare 0.9141 0.0377
WEST Google 0.9567 0.0190
WEST Quad9 0.8758 0.0531

Table 4: Consistency Between Providers

Cloudflare Google Quad9
Cloudflare 1.0000 0.8711 0.6290
Google 0.8711 1.0000 0.5430
Quad9 0.6290 0.5430 1.0000

accuracy as the number of correct predictions/number of total
predictions. Our results show the PCA was able to achieve 99%
accuracy for correctly predicting whether traffic is DoH or not.

6 DISCUSSION
There are a number of tests we run on the data set to examine
their use in developing useful signatures. Table 3 looks at internal
consistency - location and single providers data, to see if things are
internally consistent.

6.1 Overfitting
Results from Table 3 suggest a reasonably close match for measured
characteristics. This means that individual data sets are sufficiently
consistent that they can be used for signature generation. Note these
numbers were generated before possible overfitting was addressed.

The next thing to examine is how well a model generated for
one provider works against data from the other providers. Results
from this are seen in Table 4. Note that Quad9 is not consistent with
the other two providers and has a much larger Jensen–Shannon
distance.

Assuming that aggregate of each provider is sufficiently similar
to one another, we aggregate the data and compare the providers
against one another in terms of similarity of distribution.

One thing to keep in mind while creating statistical models of
phenomena is that after a critical point it is possible that additional
data begins to stressing small differences more than the main struc-
ture resulting in overfitting. Figure 8 indicates an ideal value around
14. The values shown are for a test network being compared against
itself.

After taking overfitting into consideration, the final results can
be seen in Table 5. From this we see that the two padded service
providers (Cloudflare and Google) have nearly perfect detection for
themselves and one another. Given that Quad9 does not pad their
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(a) PCA on Central VM data. (b) tSNE on Central VM data.

Figure 5: Central VM data.

Figure 6: tSNE in 3d on Central VM data.

server side communications, the poor performance seen by that
model is not surprising.

6.2 Sensitivity Analysis
Figure 9 shows the histogram comparison for different services, data
centers, and sample times. Converting from a 2D 𝑥𝑛 ,𝑦𝑚 coordinate
system of size 𝑛x𝑚 to a simple histogram index requires a simple

Table 5: True Positive Detection Rates for DoH Traffic.

Provider1 Provider2 True Positive Percent Count
Cloudflare Cloudflare 100.00 686
Cloudflare Google 99.66 589
Cloudflare Quad9 97.45 589
Google Cloudflare 100.00 294
Google Google 100.00 589
Google Quad9 97.62 589
Quad9 Cloudflare 00.00 294
Quad9 Google 00.00 294
Quad9 Quad9 47.11 589

translation: ℎ𝑖 =𝑚(𝑥 − 1) + (𝑦 − 1). The downward diagonal of low
values is a value being compared to itself, which is expected. The log
graph here is extremely sensitive to differences, so Cloudflare and
Google are not showing as similar compared to a non-logarithmic
scale but are closer than Quad9, which is almost unrelated to the
other two service providers.

6.3 Limitations and Future Work
The ability to identify DoH traffic based on network traffic char-
acteristics can be seen as a fundamental technique to classify the
traffic efficiently without too much effort and fine-tuning. This
work is a first pass at analyzing encrypted DoH traffic to mimic the
resources available to network analysts/engineers at a given point
and create a near-realistic user environment of work. However,
there are several limitations to this work: 1) Intentional padding of
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(a) Umap 2d. (b) Umap 3d.

Figure 7: Umap on Central VM Data (0-Other, 1-DoH).

Figure 8: Absolute error count for various sample sizes used
in training data.

the queries and responses was not considered. 2) Our experiments
are not conducted in a true open-world scenario. 3) Our experiments
were based on the assumption that the network traffic analysts will
have visibility into their network traffic going in and out of the
network. We discuss these limitations and potential future work in
detail below.

Several studies [8], [25] have explored the effectiveness of DNS
message padding to obfuscate from the encrypted traffic-based
analysis. By itself, padding is not a guaranteed way to protect the
privacy of DNS. To explore a generalized scenario of users accessing
DoH servers without prior knowledge of configured client-side
padding, we used very basic headless browser invocations with
default DoH settings for the browser. This helps us to test the
most common scenario of client queries. However, it seems that by
default, the queries were also padded by the browser. As Firefox
does not provide settings to configure padding, we did not perform
different tests for different padding configurations. We still believe
that even with different padding configurations, it wouldn’t be hard

Figure 9: 𝑙𝑜𝑔2 () results of comparing differing services,
data centers, and times. Key for axis, aNMb: a: server-side,
N:month, M:service provider, b: west/east/central

to apply statistical analysis techniques to detect patterns of DoH
traffic.

We conducted our experiments in a test setup by using a cloud-
based virtual machine running a basic headless browser with DoH
enabled, configured to use major DoH servers. Since in a real world
scenario a lot of other internet activity would be happening, we
should try to mimic this more complex system and see how it
effects detection efficiency. Different web clients might also be
using different DoH servers with their own padding configurations,
which would result in mixed DoH traffic and complicated detection.

For this study, we used headless browser invocations, which
might not be the way clients would be normally using browsers to
surf the web, and we expect the results to be similar to using a nor-
mal browser with a GUI. Furthermore, another advanced technique
to consider would be building the ML classifiers. We may further
improve the results by using other machine learning classifiers and
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using tuning hyper-parameters as an extension of this study and
future work.

7 RELATEDWORK
Even though applying machine learning to the DNS protocol is still
in its infancy, there has been some work on using machine learn-
ing to find DNS traffic characteristics. However, several of these
papers do not analyze encrypted data coming from the network
level. Nguyen et al [22] developed a DoH detection system using
deep learning methods such as attention methods and transformers.
However, the results shown did not discuss which features were
important behavior characteristics that could help understand the
behavior of DoH. Similarly, Vekshin et al. [28] compared different
classifiers together showing upto a 99% prediction accuracy, but
similarly do not show the important features in their data sets.

Encrypted DNS technologies are still considered a novice in the
security industry, specifically, DoH, which peaked the attention of
security practitioners when some of the major browser clients [3]
[1] enabled DoH by default a couple of years ago, which raised the
concerns of adversaries hiding malicious traffic and clients/users by-
passing local security measures employed by the service providers.
Many researchers came up with techniques to analyze and clas-
sify traffic associated with DoH by exploring the data available in
encrypted communication.

For example, Banadaki [7] explored different techniques in ma-
chine learning to detect malicious DNS over HTTPS traffic versus
benign DoH traffic by building classifiers based on six different
ML algorithms. They used data from the CIRA-CIC-DoHBrw-2020
dataset and evaluated the accuracy of various algorithms, con-
cluding that LGBM and XGBoost algorithms outperform other al-
gorithms that were explored. However, they didn’t mention how
practical the solution would be to deploy in practice and how long
it would take to create a baseline for the ML classifiers for produc-
tion traffic. For most of the algorithms, they found source IP and
Destination IP to be key features for classifying DoH traffic from
non-DoH traffic, which we wonder is because the dataset might
not have enough randomization of IPs, as one would wonder how
effective those techniques would be when IPv6 space is explored
or will it hold the same effectiveness in dynamic IP settings of the
real world scenarios.

Another similar study by Singh et al. [26] also explored various
ML-based algorithms to classifymalicious DoH traffic versus benign
and used the sameCIRA-CIC-DoHBrw-2020 dataset to explore these
techniques. The major difference from the previous piece of study
is the use of different algorithms - i) Naive Bayes (NB), ii) Logistic
Regression (LR), iii) Random Forest (RF), (iv) K-Nearest Neighbor
(KNN), and (v) Gradient Boosting (GB), and their results showed RF
and GB classifiers are better choices for the said problem, making
an argument that ML-based techniques would be a way to go in
detecting malicious DoH traffic. Again, the study has the same
limitations as the previously discussed one.

All of these recent studies [23] [20] [21] [27] show how Machine
learning or Deep learning models can be used to detect malicious
DoH traffic using 2 or 3-layer approaches. [20] built a hierarchical
machine learning classification system to identify malicious DNS
tunnel tools used in practice, including dns2tcp, dnscat2, iodine,

dnstt, tcp-over-dns, and tuns using Gradient boosting decision tree
algorithm on CIRA-CIC-DoHBrw-2020 dataset. In [21], authors
focus on the importance of statistical analysis of features that sin-
gularize malicious traffic from benign traffic and conclude that it is
possible to differentiate traffic based on certain statistical parame-
ters, which is close to what we are trying to achieve in our study
to classify DoH in encrypted traffic.

Two studies that are closest to what we are trying to achieve
in this piece of work are [28] [10]. Both of these explore different
ways of identifying DoH traffic in encrypted communication by
using various ML algorithms and selecting a limited set of features.
However, they also have similar limitations as associated with previ-
ously discussed ML-based approaches for identifying DoH tunnels
and malicious DoH traffic vs benign. Our approach to classifying
DoH versus web/non-DoH traffic is based on a statistical analysis
of the network traffic collected as part of passive network traffic
monitoring, which mimics most real-world production networks.
And the fact that we generated our own dataset and collected traces
from different geographic regions over a period of time gives us an
edge on the dataset that would be closer to traffic seen in practice.
Furthermore, our study differs in another unique way as we look
at the statistical pattern of packet data sequences that constitute a
complete DoH transaction.

8 CONCLUSION
In this study, we conducted an investigation to get insights into DoH
traffic by classifying the traffic in an encrypted network using novel
machine learning and statistical analysis method. We were able
to demonstrate that by using simple PCA classification and basic
data visualization techniques, one can get a baseline classification
of DoH traffic which can be further extended to build high-class
classifiers that would be able to detect DoH traffic in real-world
scenarios. Our results achieved up to 99% accuracy. These results
are similar to the results achieved by Vekshin et al. [28] and can
be analyzed further with DoH traffic from other setups as well to
build a universal DoH classifier.

We also found that padding solely doesn’t play a major role in
protecting the privacy of DNS and doesn’t hamper the classification.
Both - DNS requests and responses have very distinct patterns
in encrypted traffic that help them to stand out and are easy to
classify. Based on visibility into the traffic, either request from the
client or responses to the client would be enough to identify if
DoH traffic is seen and whether a client is using an external DoH
server. We expect that our research will represent a baseline for
DoH classification and, more importantly, it will help in the future
to develop lightweight and less intensive effective DoH classifiers
that can be deployed in production networks and will give network
defenders the ability to still get useful traffic insights even when
the internet goes completely dark.

REFERENCES
[1] 2019. Google to run DoH experiment in Chrome. https://www.zdnet.com/article/

google-to-run-dns-over-https-doh-experiment-in-chrome/.
[2] 2019. New Godlua Backdoor Found Abusing DNS Over HTTPS (DoH) Protocol.

https://www.trendmicro.com/vinfo/es/security/news/cybercrime-and-digital-
threats/new-godlua-backdoor-found-abusing-dns-over-https-doh-protocol.

[3] 2020. Mozilla enables DoH by Default. https://www.zdnet.com/article/mozilla-
enables-doh-by-default-for-all-firefox-users-in-the-us/.

https://www.zdnet.com/article/google-to-run-dns-over-https-doh-experiment-in-chrome/
https://www.zdnet.com/article/google-to-run-dns-over-https-doh-experiment-in-chrome/
https://www.trendmicro.com/vinfo/es/security/news/cybercrime-and-digital-threats/new-godlua-backdoor-found-abusing-dns-over-https-doh-protocol
https://www.trendmicro.com/vinfo/es/security/news/cybercrime-and-digital-threats/new-godlua-backdoor-found-abusing-dns-over-https-doh-protocol
https://www.zdnet.com/article/mozilla-enables-doh-by-default-for-all-firefox-users-in-the-us/
https://www.zdnet.com/article/mozilla-enables-doh-by-default-for-all-firefox-users-in-the-us/


Insights into DoH: Traffic Classification for DNS over HTTPS in an Encrypted Network SNTA ’23, June 20, 2023, Orlando, FL, USA

[4] Kamal Alieyan, Mohammed M Kadhum, Mohammed Anbar, Shafiq Ul Rehman,
and Naser KA Alajmi. 2016. An overview of DDoS attacks based on DNS. In
2016 International Conference on Information and Communication Technology
Convergence (ICTC). IEEE, 276–280.

[5] R Arends, R Austein, M Larson, Daniel Massey, Scott W Rose, et al. 2005. DNS
Security Introduction and Requirements, RFC 4033. (2005).

[6] Giuseppe Ateniese and Stefan Mangard. 2001. A new approach to DNS security
(DNSSEC). In Proceedings of the 8th ACM conference on Computer and Communi-
cations Security. 86–95.

[7] Yaser M. Banadaki. 2020. DetectingMalicious DNS over HTTPS Traffic in Domain
Name System using Machine Learning Classifiers. Journal of Computer Sciences
and Applications, 2020, Vol. 8, No. 2, 46-55 (2020). https://doi.org/10.12691/jcsa-8-
2-2

[8] Jonas Bushart and Christian Rossow. 2020. Padding Ain’t Enough: Assessing
the Privacy Guarantees of Encrypted DNS. In 10th USENIX Workshop on Free
and Open Communications on the Internet (FOCI 20). USENIX Association. https:
//www.usenix.org/conference/foci20/presentation/bushart

[9] Nikolaos Chatzis. 2007. Motivation for behaviour-based DNS security: A taxon-
omy of DNS-related internet threats. In The International Conference on Emerging
Security Information, Systems, and Technologies (SECUREWARE 2007). IEEE, 36–
41.

[10] Levente Csikor, Himanshu Singh, Min Suk Kang, and Dinil Mon Divakaran. 2021.
Privacy of DNS-over-HTTPS: Requiem for a Dream?. In 2021 IEEE European
Symposium on Security and Privacy (EuroSP). 252–271. https://doi.org/10.1109/
EuroSP51992.2021.00026

[11] Trinh Viet Doan, Irina Tsareva, and Vaibhav Bajpai. 2021. Measuring DNS over
TLS from the edge: adoption, reliability, and response times. In International
Conference on Passive and Active Network Measurement. Springer, 192–209.

[12] Shuang Hao, Alex Kantchelian, Brad Miller, Vern Paxson, and Nick Feamster.
2016. PREDATOR: Proactive Recognition and Elimination of Domain Abuse
at Time-Of-Registration. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (Vienna, Austria) (CCS ’16). Association
for Computing Machinery, New York, NY, USA, 1568–1579. https://doi.org/10.
1145/2976749.2978317

[13] Paul Hoffman and Patrick McManus. 2018. DNS queries over HTTPS (DoH).
Technical Report.

[14] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul
Hoffman. 2016. Specification for DNS over transport layer security (TLS). Technical
Report.

[15] Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, and Stefanos
Gritzalis. 2007. Detecting DNS amplification attacks. In International workshop
on critical information infrastructures security. Springer, 185–196.

[16] A Mankin, D Wessels, and P Hoffman. 2016. Internet Engineering Task Force
(IETF) Z. Hu Request for Comments: 7858 L. Zhu Category: Standards Track J.

Heidemann. (2016).
[17] A. Mayrhofer. 2016. The EDNS(0) Padding Option. Internet Engineering Task

Force [IETF] (2016).
[18] A. Mayrhofer. 2018. Padding Policies for Extension Mechanisms for DNS

(EDNS(0)). Internet Engineering Task Force [IETF] (2018).
[19] D. Meyer. 2016. Networking Meets Artificial Intelligence: A Glimpse into the

(Very) Near Future. CTO corner. Dated: 08- 19-2016.
[20] Rikima Mitsuhashi, Yong Jin, Katsuyoshi Iida, Takahiro Shinagawa, and Yoshiaki

Takai. 2022. Malicious DNS Tunnel Tool Recognition using Persistent DoH Traffic
Analysis. IEEE Transactions on Network and Service Management (2022), 1–1.
https://doi.org/10.1109/TNSM.2022.3215681

[21] Marta Moure-Garrido, Celeste Campo, and Carlos Garcia-Rubio. 2022. Detecting
Malicious Use of DoH Tunnels Using Statistical Traffic Analysis. In Proceedings
of the 19th ACM International Symposium on Performance Evaluation of Wireless
Ad Hoc, Sensor, Ubiquitous Networks (Montreal, Quebec, Canada) (PE-WASUN
’22). Association for Computing Machinery, New York, NY, USA, 25–32. https:
//doi.org/10.1145/3551663.3558605

[22] Tuan Anh Nguyen and Minho Park. 2022. DoH Tunneling Detection System
for Enterprise Network Using Deep Learning Technique. Applied Sciences 12, 5
(2022). https://doi.org/10.3390/app12052416

[23] Amirreza Niakanlahiji, SoerenOrlowski, Alireza Vahid, and J. Haadi Jafarian. 2023.
Toward practical defense against traffic analysis attacks on encrypted DNS traffic.
Computers Security 124 (2023), 103001. https://doi.org/10.1016/j.cose.2022.103001

[24] Jim Reid and Anton Holleman. 1998. Domain Name System: The Origin Solution.
In Proceedings of the Annual Conference on USENIX Annual Technical Conference
(New Orleans, Louisiana) (ATEC ’98). USENIX Association, USA, 28.

[25] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez, and Carmela
Troncoso. 2020. Encrypted dns- privacy. A Traffic Analysis Perspective (Proc. of
the NDSS) (2020).

[26] Sunil Kumar Singh and Pradeep Kumar Roy. 2020. Detecting Malicious DNS
over HTTPS Traffic Using Machine Learning. In 2020 International Conference on
Innovation and Intelligence for Informatics, Computing and Technologies (3ICT).
1–6. https://doi.org/10.1109/3ICT51146.2020.9312004

[27] David Stalder. 2021. Machine-learning based Detection of Malicious DNS-over-
HTTPS (DoH) Traffic Based on Packet Captures. https://files.ifi.uzh.ch/CSG/staff/
vonderassen/extern/theses/ba-stalder.pdf.

[28] Dmitrii Vekshin, Karel Hynek, and Tomas Cejka. 2020. DoH Insight: Detecting
DNS over HTTPS by Machine Learning. In Proceedings of the 15th International
Conference on Availability, Reliability and Security (Virtual Event, Ireland) (ARES
’20). Association for Computing Machinery, New York, NY, USA, Article 87,
8 pages. https://doi.org/10.1145/3407023.3409192

[29] Fatema Bannat Wala and Chase Cotton. 2022. " Off-Label" use of DNS. Digital
Threats: Research and Practice (2022).

https://doi.org/10.12691/jcsa-8-2-2
https://doi.org/10.12691/jcsa-8-2-2
https://www.usenix.org/conference/foci20/presentation/bushart
https://www.usenix.org/conference/foci20/presentation/bushart
https://doi.org/10.1109/EuroSP51992.2021.00026
https://doi.org/10.1109/EuroSP51992.2021.00026
https://doi.org/10.1145/2976749.2978317
https://doi.org/10.1145/2976749.2978317
https://doi.org/10.1109/TNSM.2022.3215681
https://doi.org/10.1145/3551663.3558605
https://doi.org/10.1145/3551663.3558605
https://doi.org/10.3390/app12052416
https://doi.org/10.1016/j.cose.2022.103001
https://doi.org/10.1109/3ICT51146.2020.9312004
https://files.ifi.uzh.ch/CSG/staff/vonderassen/extern/theses/ba-stalder.pdf
https://files.ifi.uzh.ch/CSG/staff/vonderassen/extern/theses/ba-stalder.pdf
https://doi.org/10.1145/3407023.3409192

	Abstract
	1 Introduction
	2 Background
	2.1 DNS Privacy Concepts
	2.2 DNS Applications and Standards

	3 Our Methodology
	3.1 Testbed Setup and Data Collection
	3.2 Feature Selection and Padding
	3.3 Two-way Traffic and Padding

	4 Classification Algorithm
	4.1 Training and Test Datasets
	4.2 Dimension Reduction for Classification

	5 Results and Validation
	5.1 Classification Accuracy

	6 Discussion
	6.1 Overfitting
	6.2 Sensitivity Analysis
	6.3 Limitations and Future Work

	7 Related Work
	8 Conclusion
	References



