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Abstract

We consider the problem of estimating the variance of the partial sums of a stationary time

series that has either long memory, short memory, negative/intermediate memory, or is the first-

difference of such a process. The rate of growth of this variance depends crucially on the type of

memory, and we present results on the behavior of tapered sums of sample autocovariances in

this context when the bandwidth vanishes asymptotically. We also present asymptotic results

for the case that the bandwidth is a fixed proportion of sample size, extending known results

to the case of flat-top tapers. We adopt the fixed proportion bandwidth perspective in our

empirical section, presenting two methods for estimating the limiting critical values – both the

subsampling method and a plug-in approach. Extensive simulation studies compare the size and

power of both approaches as applied to hypothesis testing for the mean. Both methods perform

well – although the subsampling method appears to be better sized – and provide a viable

framework for conducting inference for the mean. In summary, we supply a unified asymptotic

theory that covers all different types of memory under a single umbrella.

Keywords. Kernel, Lag-windows, Overdifferencing, Spectral estimation, Subsampling, Tapers,

Unit-root problem.
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1 Introduction

Consider a sample Y = {Y1, Y2, · · · , Yn} from a strictly stationary time series with mean EYt = µ,

autocovariance function (acf) γh = Cov(Yt, Yt+h), and integrable spectral density function f(w) =
∑

h γhe−ihw. We are interested in studying the distribution of the studentized sample mean where

the normalization involves the summation of sample autocovariances weighted by an arbitrary taper,

and when the stochastic process exhibits either short or long memory or even when the process

is overdifferenced. The latter case is especially tricky – and not well-studied in the literature –

because in this case the studentization is achieved by dividing with a quantity that tends to zero.

The objective in studentizing/self-normalizing the mean is the generation of a pivotal asymptotic

distribution that can serve as the basis for the construction of confidence intervals and hypothesis

tests for the unknown mean µ.

In the case that the autocovariances γh are (absolutely) summable with
∑

h γh > 0, it is well-

known – under regularity conditions – that the sample mean Y = n−1
∑n

t=1 Yt is asymptotically

normal with variance f(0) =
∑

h γh, i.e.,
√

n(Y − µ) L=⇒ N(0, f(0)). A consistent estimate of f(0)

is given by

WΛ,M =
∑

|h|≤M

ΛM (h)γ̃h, (1)

where ΛM is an arbitrary taper (described in Section 4), and γ̃h are the sample autocovariance

estimators defined by

γ̃k =
1
n

n−|k|∑

t=1

(Yt+|k| − Y )(Yt − Y ) for |k| < n. (2)

As usual, M = M(n) is a bandwidth parameter tending to ∞ as n → ∞ but in such a way that

M << n. Define the bandwidth-fraction to be b = b(n) = M(n)/n. The literature on such taper-

based, “lag-window” spectral estimators is extensive, going back over fifty years; see e.g. Hannan

(1970), Brillinger (1981), Priestley (1981), Rosenblatt (1985), Brockwell and Davis (1991), and the

references therein. Also see Grenander and Rosenblatt (1957), Blackman and Tukey (1959), and

Percival and Walden (1993). Much is already known about the classical case where f(0) is bounded

above and bounded away from zero, but also about the long memory case where f(0) is infinite –

see, e.g., Beran (1994), Robinson (1994), and Palma (2007). Other recent literature includes Sun

(2004) and Robinson (2005). However, little is yet known in the case that f(0) = 0, although this

possibility was brought to the forefront early on by Rosenblatt (1961). We attempt to remedy this

situation in the paper at hand. The case f(0) = 0 will be referred to henceforth as the superefficient

(SE) case, since it implies Y = µ + oP (n−1/2), i.e., superefficient estimation of the mean.

The SE case has received little attention in the literature despite the fact that it is of some

importance in applied econometrics. We illustrate this through a brief discussion of the unit root

problem that arises from over-differencing. Although most economic time series exhibit obvious
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trends, much debate rages over whether processes are stationary or I(1); witness the extensive

literature on unit-root testing, starting with Dickey and Fuller (1979, 1981). Hamilton (1994) gives

an overview; also see Phillips and Perron (1988) and Parker, Paparoditis, and Politis (2006) and

the references therein. It is commonly felt that an economic time series is rarely I(2), and yet many

such I(2) models are selected by automatic model identification software, such as X-12-ARIMA

and TRAMO-SEATS (both of which often select the Box-Jenkins airline model, which is I(2));

see the discussion in Findley, Monsell, Bell, Otto, and Chen (1998), and Maravall and Caparello

(2004).

Over-differencing relates to over-specification of the order of differencing, i.e., modeling a process

as I(1) when it is stationary, or as I(2) when it is only I(1). Naturally, estimation of parameters

(such as the mean and other regression effects, but also maximum likelihood estimation of ARMA

parameters) is performed on the differenced series, where the nonstationarity has been removed. But

if the differencing order has been over-specified, then there will be over-differencing; this results in

the spectrum of the differenced data being zero at frequency zero. For example, if {Yt} is stationary

with spectral density f but is viewed as I(1), then the spectrum of the data’s first difference is

|1− e−iλ|2f(λ). We mention in passing that similar issues exist, at least in theory, for seasonal

frequencies, i.e., taking a seasonal difference when the seasonal component of the time series is

actually stationary. In this case, the zero in the spectrum takes place at the seasonal frequencies

corresponding to the angular portions of the zeroes of the seasonal differencing operator. Such

zeroes offer no impediment to the estimation of the sample mean, but may generate other problems

in model estimation; we do not pursue this point further here.

One approach to this problem is to do a pre-test of a possible unit root before differencing the

data (Dickey and Fuller, 1979). Also see the treatment in Tanaka (1990, 1996). However, given

that Type II errors will occur some of the time (the power of the Dickey-Fuller statistic is explored

in many articles, including Lopez (1997)), we advocate in this paper the use of robust studentized

sample mean estimates, where the robustness is with respect to the three basic cases for f(0):

infinite (long memory), finite and positive (short memory), or zero (the SE case, distinguished

in what follows as either negative memory or differential memory). To that end, we study the

finite-sample and asymptotic distributional properties of studentized sample means, where the

normalization is of the form (1) and the stochastic process satisfies some very general conditions.

Note that WΛ,M must mirror the properties of the variance of the sample mean under the three

scenarios: for long memory, it must diverge at the appropriate rate; for short memory it should

converge to the same constant; and for negative/differential memory it should tend to zero at the

same rate. Our work determines what conditions on a taper are needed in order to ensure such a

robustness against different alternative memory scenarios.

We first provide a common context in econometrics for the problems at hand, which is intended

as a motivation for our work (Section 2). Our main goal is to understand the joint distribu-
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tional properties of Y and WΛ,M for various stochastic processes and various tapers, distinguishing

between the case that the bandwidth-fraction b is vanishing and the case that it is a constant

proportion. In the former case, we obtain central limit theorems for the sample mean, while the

variance estimate tends in probability to a constant when appropriately normalized (Section 4).

But in the latter case, the variance estimate tends to a random limit (Section 5). In Section 3

we give precise definitions of the four types of memory (LM, SM, NM, and DM), and also dis-

cuss some basic properties. Given the limit results, it is not obvious how to proceed with testing

for the mean. This is addressed in Section 6 through two proposed methods, one for the van-

ishing bandwidth-fraction case and one for the fixed bandwidth-fraction case. These procedures

are extensively evaluated through size and power simulations, covering many stochastic processes,

tapers, and bandwidth-fractions. Section 7 summarizes our findings, and proofs are gathered in an

Appendix.

2 A Context for Anti-Persistence in Applied Econometrics

A primal modeling assumption for many economic time series of interest is that they arise from

sampling an I(d) process, where d is integer. One can associate a dth degree polynomial (in time) to

the process as well, as this only affects the differenced process by a mean shift. This older paradigm,

discussed in Box and Jenkins (1976), has in recent decades been altered to accommodate long

memory. Whereas previously the differenced process was modeled via some short memory device,

such as an ARMA model, now more complex covariance structures can be entertained – see Palma

(2007) for an overview.

So we might now conceive that the underlying process is I(D) plus a degree d polynomial, where

D ∈ [d − 1/2, d + 1/2). That is, suppose the observed data process {Xt} satisfies Xt = p(t) + Zt,

where p is a degree d polynomial and {Zt} is I(D). Then

Yt = (1−B)dXt = d!pd + (1−B)dZt,

where B is the backshift operator and pd is the leading coefficient of the polynomial p. Now

{(1−B)dZt} is a mean zero I(D − d) process; because D − d ∈ [−1/2, 1/2), the process {Yt} is

stationary with mean µ = d!pd.

If D − d = 0, then {Yt} is short memory – this corresponds to the classical case alluded to

above. If D − d > 0, we have a stationary long memory process. Note that if we differenced only

b times instead – for integer b < d – so that D − b ≥ 1/2, then {Yt} would be non-stationary, and

this might be detected by inspection of the sample autocorrelations. Then b could be incremented

through higher integers until D − b falls into the range corresponding to stationarity. One could

also proceed more rigorously by using unit root tests.

Over-differencing, whereby D− b < −1/2, would be harder to guard against. This is because in
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practice both the appropriately differenced series and the over-differenced series often have sample

autocorrelations consistent with a stationary hypothesis. One way this could happen is when we

believe b differencings are needed to reduce the data to stationarity, but really the polynomial p is

order b and the process {Zt} only requires d = b− 1 differencings. It may not be readily apparent

that this is the case, rather than {Zt} requiring the full b differences instead. So differencing b

times produces a constant plus an over-differenced series. Again, unit root testing techniques can

be employed to guard against this error, but there is some evidence that they have lower power

in the presence of long memory (Diebold and Rudebusch, 1991). When b is correctly identified as

b = d, then the differenced series is integrated with order between −1/2 and 1/2, implying that

super-efficiency (SE) has an equal a priori chance of arising as long range dependence.

This discussion, which applies to many time series being examined for the purposes of fore-

casting, signal extraction, or other analysis, indicates how long memory, short memory, negative

memory, and differential memory may arise. When the order of differencing b is selected correctly

(i.e., it equals b), then D ∈ (d, d + 1/2) implies that {Yt} will have (stationary) long memory; if

D = d then {Yt} will have short memory. But if D ∈ [d − 1/2, d), then {Yt} will have negative

memory (this is part of the SE case). Finally, if the data is over-differenced by mistakenly taking

b > d, then (1−B)bXt = (1−B)bZt is I(D − b) with mean zero, and D − b < −1/2. This case

corresponds to differential memory (the other part of the SE case), and the sample mean has a

radically different behavior. If the underlying polynomial actually has order b rather than d, then

the over-differenced data will have a non-zero mean effect.

So in any of these scenarios, the differenced data {Yt} is stationary with mean µ and has one

of four types of memory. The natural estimate for µ is the sample mean Y , essentially being

an ordinary least squares estimate. A generalized least squares estimate could be contrived, but

knowledge of the autocovariances would be required, and this is not possible without modeling or

extensive estimation. The practitioner may desire to know µ, because it is important for forecasting

or filtering the original series {Xt}; forecast functions will have different formulas when µ = 0, so it

is also of interest to test this hypothesis. If we estimate µ via Y , we must also assess the statistical

uncertainty in order to know whether it is safe to assume µ = 0 in our applications. It is adequate

to measure the second-order structure of Y through the variance Vn of Sn = nY (where n is the

sample size of the differenced data); knowledge of the sampling distribution of (Sn − nµ)/
√

Vn

will permit inference for µ. As the sampling distribution is typically not available, the asymptotic

distribution is utilized instead. The key to this is to estimate Vn in such a way that the studentized

statistic still converges, no matter what type of memory pertains. This is the topic of the remainder

of the paper.
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3 Types of Memory

We now discuss in detail the different memory scenarios. Throughout this paper we use the notation

An ∼ Bn to denote An/Bn → 1 as n → ∞. By Short Memory (SM), we refer to the condition

that the autocovariances – recall that γh = Cov(Yt, Yt+h) – are absolutely summable and their sum

f(0) is a nonzero constant. By Long Memory (LM), we mean that the autocovariances are not

summable, and the partial sums of them, denoted by Wn, satisfy

Wn =
∑

|k|≤n

γk = L(n)nβ. (3)

In (3) L is slowly varying at infinity (Embrechts, Klüppelberg, and Mikosch, 1997), with a limit

that can be zero, C, or infinity, where C is a positive constant. Most importantly, β > 0 (and is

less than 1). In the SM case (3) applies with β = 0 and L tending to C =
∑

k γk = f(0). The case

that β = 0 but L tends to infinity is also LM (e.g., say γk = k−1 for k ≥ 1).

We will denote by Negative Memory (NM) the case of an absolutely summable autocovariance

sequence such that (3) holds, but with β < 0 (though the case that β = 0 and L tends to zero

is also considered to be NM). Some authors have used the term “intermediate memory” for this

concept (Brockwell and Davis, 1991). Our nomenclature is due to the negative memory exponent,

and also the result that most of the autocovariances are negative in this case (see Remark 2 below);

the same conditions on L apply here. When the autocovariances are zero past a certain threshold,

we obtain an example of Differential Memory (DM). For example, consider an MA(q) data process

that is over-differenced; the resulting autocovariances are identically zero for lags exceeding q, and
∑
|k|<n γk = 0 for n > q+1. These definitions encompass ARFIMA models (Hosking, 1981), FEXP

models (Beran (1993, 1994)), and fractional Gaussian Noise models, as well as the case of over-

differenced processes. Some authors prefer to parametrize memory in terms of the rate of explosion

of f or 1/f at frequency zero, but it is more convenient for us to work in the time domain; see

Palma (2007) for an overview.

To distinguish between the LM, SM, NM, and DM memory cases, the key determinant in the

limit theorems for Sn = nY is the rate of growth of Vn = V ar(Sn), which in turn is related to
∑
|k|≤n γk. In the rest of this paper we study Sn/

√
V̂n, where V̂n is some estimate of the variance Vn

such that
√

V̂n = OP (Sn). Recall that Wn =
∑
|k|≤n γk by definition, which in turn has asymptotic

behavior given by (3) by assumption; then we have the following identity:

Vn =
n−1∑

k=0

Wk (4)

that is proved using summation by parts. Now for LM proceses, Wn diverges, whereas in the SM

case Wn tends to a nonzero constant. The superefficient case (SE) where f(0) = 0 is characterized
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by Wn tending to zero; however, we distinguish the case that Wn is summable (DM case) versus

the case that it is not (NM case).

Definition 1 Define the four types of memory as follows:

• (i) LM: Wn has asymptotics given by (3) with either β ∈ (0, 1) or β = 0 and L is tending to

infinity.

• (ii) SM: Wn → C with C > 0.

• (iii) NM: Wn has asymptotics given by (3) with either β < 0 or β = 0 and L is tending to

zero. When β = −1, suppose that Wn is not summable.

• (iv) DM: Wn is summable.

The condition (3) on Wn in case (i) is denoted LM(β), and the same condition on Wn in case (iii)

is denoted NM(β).

Remark 1 Note that cases (i), (ii), and (iii) are mutually exclusive, since case (ii) essentially

corresponds to β = 0 in (3) with L tending to a nonzero constant. When β = −1 in (3), it is

possible for Wn to be either summable or not summable; the former case belongs to case (iv).

If β < −1 in (3), then necessarily this is case (iv). Proposition 1 below shows that most of the

autocovariances are negative in case (iii), and this justifies the nomenclature of “negative memory.”

In case (iv) {Yt} can be represented as the difference of another stationary process (Proposition 2),

and hence the appellation “differential memory.” The case of an over-differenced series, as discussed

in Section 1, is always included in case (iv). Both NM and DM have f(0) = 0, so both are part of

the SE case.

Remark 2 These four cases are mutually exclusive but do not cover all possibilities, since we can

consider a function L in (3) that is not slowly-varying (e.g., L(n) = 1 + sin(n)). However, the four

cases are exhaustive for processes satisfying (3) with L slowly-varying and β < 1.

The following representation for slowly-varying functions (Theorem A3.3 of Embrechts, Klüppelberg,

and Mikosch, 1997) will be used below: we can write L in the form

L(n) = c(n) exp
∫ n

z
η(u)/u du, (5)

with c(n) → c a positive constant, z some fixed positive constant, and η(u) tending to zero as

u → ∞. Note that in (5) we can take the variable argument of L to be a continuous variable x.

The following result gives the behavior of Vn in each of the four cases described in Definition 1,

and also discusses the implied asymptotic behavior of γk.
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Proposition 1 With Wn and Vn given by (3) and (4) respectively,

Vn ∼ 1
β + 1

nWn =
L(n)nβ+1

β + 1
(6)

for cases (i) and (ii), and for β > −1 in case (iii). When β = −1 we have Vn/(nWn) →∞ (so in

a sense (6) holds true). In case (ii), we let β = 0 in the formula and L(n) ∼ f(0). In case (iv),

Vn →
∑

k≥0 Wk. If β 6= 0 in cases (i) and (iii), we also have

γn ∼ β

2
L(n)nβ−1. (7)

In cases (i) and (iii) with β = 0 we have γn ∼ −.5
∫ n
n−1[η(u)/u] du = o(n−1).

This result shows that Vn →∞ in cases (i), (ii), and (iii), as long as β > −1. This will facilitate

a fairly standard limit theorem for Y under some additional conditions. Case (iv) produces a very

different sort of limit theorem; these results are discussed in Section 3 below.

Remark 3 Note that L(n) must be non-negative for all n larger than some n0, say; this follows

from (6) and the fact that Vn > 0 for all n. Hence, for large n all the γn are negative in the NM

case and positive in the LM case by (7). Essentially, NM is due to heavy negative correlation and

LM to heavy positive correlation; this justifies the name “negative memory” for the NM case.

Example 1 Let β > 0 with γh = h−β for h ≥ 1 and γ0 chosen suitably large to guarantee the

sequence is positive definite; then this is the acf of a LM process. If we (temporally) difference the

process, then the resulting acf is 2γh − γh+1 − γh−1, which equals

2h−β − (h + 1)−β − (h− 1)−β = −β(β + 1)h−(β+2) + o(1)

when h ≥ 2. Although this appears at first to be NM (comparing to (7)), in fact it can be shown

that Wn is summable so that the differenced process is DM (see Proposition 2 below).

Example 2 Let β < 0 and γh = −hβ−1 for h > 0, and γ0 = 2
∑

h≥1 hβ−1. Then the discrete

fourier transform of {γh} is 2
∑

h≥1 hβ−1(1− cosλh) for λ ∈ [−π, π], which is always non-negative.

Hence {γh} is the acf of a time series process; by (7) it seems to have the form of a NM acf, but

we must check the summability of Wn. Direct calculation shows that

Wn = 2
∑

h>n

hβ−1 = O(nβ).

Thus if β ≥ −1 the process is NM, but otherwise is DM.

In case (ii) there is no result of the form (7), but in case (iv) the autocovariances have a particular

structure if we suppose in addition that {Yt} is purely nondeterministic. This is discussed in the

proposition below, whose result is similar to Theorem 8.6 of Bradley (2007).
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Proposition 2 Suppose that Wk is summable and {Yt} is purely nondeterministic with mean µ

and acf {γh}. Then there exists a strictly stationary process {Zt} with autocovariance sequence rk

such that Yt = Zt − Zt−1 + µ and γk = 2rk − rk+1 − rk−1. This decomposition is not unique. Also

Wk = 2(rk − rk+1) and r0 =
∑

k≥0 Wk/2. Conversely, given any stationary process {Zt} with acf

rk tending to zero, the differenced process Zt − Zt−1 is DM.

We note that the process {Zt} might be LM, SM or NM, and might even be DM.

Example 3 Let {Zt} be iid and let Yt = Zt−Zt−1. Then clearly {Yt} is DM with autocorrelation

of −.5 at lag one and zero at higher lags. If the innovation variance is unity, then W0 = 2 and

Wk = 0 for k ≥ 1; this is clearly a summable sequence.

Example 4 A more interesting example is given as follows: let Yt =
∑∞

j=0 ψjεt−j where {εt} is

white noise and ψj = (−1)j/jp for p > 0 and j ≥ 1, with ψ0 = −∑∞
j=1 ψj (which clearly exists

by the alternating series test). Hence
∑

j ψj = 0, which implies that
∑

k γk = 0. Notice that the

variance of Yt only exists if p > 1/2, since

∞∑

j=0

ψ2
j = ψ2

0 +
∞∑

j=1

j−2p = F 2(1/2, p) + F (1, 2p),

where F (x, s) is the periodic-zeta function given by F (x, s) =
∑

n≥1 e2πixnn−s. The variance of
∑n

j=0 ψjεt−j is
∑n

j=1 j−2p + ψ2
0 ∼ n1−2p, which diverges unless p > 1/2; we assume this hence-

forth, as we are not concerned with infinite variance time series in this paper. As in the proof of

Proposition 2, define

θj =
j∑

k=0

ψk = −
∞∑

k=j+1

(−1)k

kp
.

The sum of any two consecutive terms of this series, up to a minus sign, can be written as k−p −
(k + 1)−p = ((1 + 1/k)p − 1)/(k + 1)−p, which by Taylor series expansion about zero yields an

approximation of p k−1(k + 1)−p plus terms that decay at order k−2−p. Thus asymptotically, the

sum of consecutive terms in θj is p k−p−1, plus other terms that decay even faster. So such a

sequence is summable, and we find that θj = O(j−p) as j → ∞. Since p > 1/2, this sequence is

square summable. This implies that the time series Zt =
∑

j≥0 θjεt−j is well-defined, i.e., is finite

almost surely, since it has finite variance. Clearly Yt = Zt − Zt−1, and the other assertions of

Proposition 2 apply; in particular, {Yt} is DM.

Example 5 Suppose that an observed time series {Xt} is an ARFIMA (0, D, 0), so that (1−B)DXt =

εt is white noise, where D ∈ [0, 1]. If D = 1 this is just a random walk, and if D ∈ [.5, 1) the pro-

cess is said to have nonstationary long memory. If D < .5 the process is stationary, but with long

memory if D > 0. Of course D = 0 corresponds to short memory (white noise). If the observed

process is differenced once to produce Yt = Xt−Xt−1, it is easy to see that the result is stationary
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with memory parameter β = 2D − 2. That is, if D = 1 we obtain short memory (white noise);

if D ∈ [.5, 1) we obtain a negative memory process of parameter β ∈ [−1, 0); if D < .5 then we

obtain a process with differential memory. The borderline case D = .5 is interesting: we don’t get a

differential memory process, since the original process is nonstationary – instead we get a negative

memory process with β = −1 and nonsummable Wk sequence.

4 Limit Theory for the Case of Vanishing Bandwidth-Fraction

In the case that b(n) → 0 as n →∞, we can treat the asymptotics of Sn and WΛ,M separately (recall

that WΛ,M was defined in (1)), because the variance estimate, when appropriately normalized,

always converges to a constant. Let us then consider the partial sums first; it is necessary to impose

some additional assumptions. Typical assumptions for limit theorems involve either moment and

mixing conditions, or linearity of the process involved. Limit theorems have also been derived under

the assumption that the given process is a direct function of an underlying Gaussian process. It

turns out (see discussion below) that mixing assumptions are not helpful when (3) holds. Instead,

one can make fairly strong assumptions on the higher order cumulants of the time series. The kth

order cumulant of {Yt} is defined by ck(u1, u2, · · · , uk−1) = cum(Yt+u1 , Yt+u2 , · · · , Yt+uk−1
, Yt) for

any t and integers u1, · · · , uk−1, where k ≥ 1 (Taniguchi and Kakizawa, 2000). Letting u denote

the k− 1-vector of indices, we write ck(u) for short. Also let ‖ · ‖ denote the sup-norm of a vector,

so that
∑
‖u‖<n ck(u) is a short-hand for summing the cumulant over all indices such that |uj | < n

for each j. We also require the concept of Hermite rank (Taqqu, 1975): if g ∈ L2(R, e−x2/2), then it

can be expanded in terms of the Hermite polynomials Hk, with coefficients < g,Hk > (the bracket

denotes the inner product of the Hilbert space) for k ≥ 0. The Hermite rank is the index of the

first nonzero coefficient. Given these notations, the assumptions on our process {Yt} that we will

consider are given below:

• Process P1. {Yt} is a linear process: Yt =
∑

j ψjεt−j with {ψj} square summable and {εt}
iid with finite variance. Also, {Yt} is either (i) LM(β) with β ∈ [0, 1); (ii) SM; or (iii) NM(β)

with β ∈ [−1, 0].

• Process P2. Yt = g(Xt) for each t, where g is a function in L2(R, e−x2/2) of Hermite rank

τ , and {Xt} is a Gaussian process with autocovariance rk. Assume that {Xt} is either (i)

LM(β) with β ∈ [0, 1); (ii) SM; or (iii) is NM(β) with β ∈ (−1, 0). In case (i) we also assume

that (1− β)τ < 1, but in cases (ii) and (iii) there is no restriction on τ .

• Process P3. {Yt} is a process that is either (i) LM(β) with β ∈ [0, 1); (ii) SM; or (iii) NM(β)

with β ∈ (−1, 0]. Also assume the kth order cumulants exist and are summable over its k

indices, for all k ≥ 1. Moreover, when β < 0 we also assume that
∑
‖u‖<n ck(u) = O(nβ).
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Remark 4 Yet another type of assumption would require 2 + δ moments (for some δ > 0) and

a mixing assumption. It is known that the strong mixing condition of Rosenblatt (1956)1 is not

satisfied by long memory Gaussian processes – Gaussian processes are strongly mixing iff their

spectrum is bounded away from zero and infinity (Kolmogorov and Rozanov, 1960). If the process

is not Gaussian, it is conceivable that a strong mixing condition could be satisfied, although no

examples of this have been published. The weak dependence condition of Doukhan and Louhichi

(1999) might be used instead, because in Bardet, Doukhan, Land, and Ragache (2008) it is shown to

be compatible with long range dependence. Along with a Lindeberg condition on higher moments

of the partial sum, a central limit theorem can be established utilizing the Bernstein blocks method

described in Rosenblatt (1956) and Doukhan and Louhichi (1999). Unfortunately, such a result is

not compatible with (3) when β 6= 0: examination of Theorem 1 of Rosenblatt (1984) indicates that

the rate of convergence in this type of CLT must be knVpn , where kn is the number of big blocks

and pn is the size of the big blocks, and moreover n ∼ knpn. This is not a paradox: in order to

prove a CLT, fairly strong assumptions must be placed upon the mixing coefficients – either they

must be strong mixing, or must have rapid decay rate if they are weak dependence coefficients, etc.

– which then actually precludes the possibility of (3). For this reason, we don’t formulate limit

theorems under mixing conditions in this paper.

Each of the above assumptions P1, P2, and P3 provide sufficient conditions for a limit theorem

for Sn, as shown below. Note that these cover only cases of LM, SM, and NM; the DM case

must be handled separately in what follows. The β = −1 case is only handled under P1. It is

clear that P1 and P2 cover distinct cases, because in the latter the process can be nonlinear. The

restriction on τ in the LM case of P2 is for convenience – limit results are also available for the case

that (1 − β)τ > 1, though the boundary case (1 − β)τ = 1 cannot be handled without additional

knowledge about the acf. Note that in the case of P3 with a Gaussian process, all the cumulant

assumptions are automatically satisfied. In any of these scenarios, the assumptions are typically

unverifiable, or difficult to verify from the data; these should be viewed as working assumptions.

The following result covers the cases of LM, SM, and NM under the three different conditions P1,

P2, and P3. We also establish a result for the DM process, restricting to purely non-deterministic

processes so that Proposition 2 can be applied.

Theorem 1 Suppose that {Yt} is a strictly stationary process with finite variance that satisfies (3).

If the process satisfies one of P1, P2, or P3, then Sn−nµ√
Vn

L=⇒ B as n →∞, where B is an absolutely

continuous random variable that is standard normal except when τ > 1 in the LM case of P2. If

{Yt} is purely non-deterministic with summable Wk, and if the process {Zt} of Proposition 2 is
1A stationary process {Yt} is strongly mixing (Rosenblatt, 1956) if αk → 0 as k → ∞ where αk =

supA∈F0
−∞,B∈F∞

k
|P(A ∩B)− P(A)P(B)| , and Fm

j is the σ-algebra generated by {Yk, j ≤ k ≤ m}.
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either linear or strong mixing, then Sn−nµ√
Vn

L=⇒ (Z∗ − Z0)/
√

2r0 as n → ∞, where Z∗ is a random

variable equal in distribution to Z0, but independent of it.

To utilize Theorem 1 it is important to know Vn, or to estimate it. In view of (3), the taper-

based estimate given by WΛ,M in (1) is a nonparametric estimate, and can be related to estimation

of Vn via (4) and (6). For example, with an SM process V̂n = nWΛ,M is often used as an estimator.

The asymptotic behavior of WΛ,M depends on the type of taper as well as the type of memory of

the process. The tapers that we consider are very general: ΛM is a piecewise smooth (i.e., piecewise

differentiable), even function on the integers such that ΛM (h) = 0 for |h| ≥ M . Letting UM denote

the maximum value of ΛM (h) for all h, we suppose that UM does not grow too fast as M → ∞.

Classical tapers are bounded, in which case UM can be taken constant. The triangular (Bartlett)

kernel, the trapezoidal (Politis and Romano, 1995), and the more general flat-top kernels (Politis

2001, 2005) all satisfy these conditions.

Our next main result is that under some conditions the estimator WΛ,M is asymptotic to the

deterministic sequence W̃M as M →∞ (recall that M/n → 0, though), which is defined via

W̃M =
∑

h

ΛM (h)
(

1− |h|
n

)
γh. (8)

We require the following condition, which parallels Assumption A of Andrews (1991), to establish

our result:

Assumption B: E|Y 4
t | < ∞ and the fourth order cumulant c4 is absolutely summable.

The above assumption is compatible with the process conditions P1, P2, and P3 for the LM,

SM, and NM cases. Assumption B is also compatible with the DM case. As discussed in Andrews

(1991), linear processes with absolutely summable coefficients and finite fourth moments satisfy

Assumption B, even if the process is LM. As Lemma 1 of Andrews (1991) shows, Assumption B

is also implied by a strong mixing plus moments condition. Of course, a long memory Gaussian

process trivially satisfies Assumption B, because its fourth order cumulants are zero.

Proposition 3 Suppose that {Yt} is a strictly stationary process satisfying Assumption B, which

is either LM, SM, NM, or DM. Also suppose that b(n) + 1/M(n) → 0 as n → ∞. Then WΛ,M =

W̃M (1 + oP (1)).

Next we consider the asymptotics of the deterministic sequence W̃M (8), which depends upon

the memory assumptions. Together with Proposition 3, this will show that WΛ,M is asymptotic to

a constant times WM . This constant will be denoted by ζ, and depends upon β and the taper used.

We consider tapers of the form ΛM (h) = Λ(h/M) for a fixed function Λ(x). We assume Λ is an

even, piecewise smooth function, that is real-analytic on every such interval; by Λ̇+(x) for x ≥ 0,

we denote the derivative from the right (and Λ(j)
+ (x) for higher order derivatives). An example is
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a “flat-top” taper where there exists an interval [0, c] (with c > 0) for which Λ equals unity – see

Politis (2001). Then define ζ = 1 when Λ is the truncation taper (i.e., Λ = 1[−1,1]), and otherwise

ζ = −
∫ 1

0
Λ̇+(x)xβ dx. (9)

Then we have the following result.

Theorem 2 Let Λ(x) be an even, piecewise differentiable function supported on [−1, 1], with

ΛM (h) = Λ(h/M). Suppose that {Yt} is a strictly stationary process satisfying Assumption B,

which is either LM, SM, NM, or DM. Also suppose that b(n) + 1/M(n) → 0 as n → ∞. Then if

the process is LM, SM, or NM with β ∈ (−1, 1),

W̃M

WM
→ ζ as M →∞. (10)

If the process is DM, then

W̃M ∼ −2 r0 Λ̇+(0)M−1
(
1{c=0} + o(1)

)
.

In the SM case recall that C ∼ ∑
k γk, so that (9) with β = 0 yields ζ = Λ(0); this equals unity

as long as Λ(0) = 1, which is commonly assumed. Thus WΛ,M ∼ CΛ(0) and Vn ∼ nC can be

estimated by nWΛ,M when Λ(0) = 1. In the DM case for non-flat-top kernels, the overall error

is controlled by the first derivative Λ̇+(0). This is because c = 0; but when c > 0, the rate of

decay is even faster, and is hard to describe in a general result. For example, with the Bartlett

taper Λ̇+(0) = −1, and W̃M ∼ 2r0M
−1. The quantity ζ is asymptotic to one plus the relative bias

(W̃M−WM )/WM , measuring the asymptotic discrepancy between our variance estimate WΛ,M and

the sequence WM . We refer to ζ as the quotient bias hereafter. Note that ζ is well-defined, since

the derivative of Λ exists almost everywhere.

Remark 5 It follows from Proposition 3, Theorem 2, and Proposition 1 – when their respective

conditions are satisfied – that in probability

MWΛ,M ∼ (β + 1)ζ VM (11)

MWΛ,M ∼ −2 r0 Λ̇+(0)
(
1{c=0} + o(1)

)

for the cases of LM/SM/NM and DM respectively. Although VM = V ar(SM ) is of some interest,

we really need to obtain a quantity asymptotic to Vn. Unfortunately, since b(n) = M(n)/n → 0,

we have VM/Vn → 0 except in the DM case. So we cannot normalize Sn by
√

MWΛ,M in the

LM/SM/NM case, since the normalization rate is not correct (also there is the matter of the

unknown (β + 1)ζ factor). In the DM case, if we use a non-flat-top taper, we can indeed utilize

Sn (−MWΛ,M/Λ̇+(0))
−1/2

since 2r0 =
∑

k≥0 Wk = V∞; by Theorem 1, this studentized statistic

converges to Z∗ − Z0.
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Now if β > 0, then ζ can be rewritten as β
∫ 1
0 Λ(x)xβ−1 dx using integration by parts piecewise.

In this case, we proceed to calculate ζ for some commonly used tapers. The simplest flat-top taper

is the trapezoidal taper of Politis and Romano (1995) given by

ΛT,c(x) =





1 if |x| ≤ c

|x|−1
c−1 if c < |x| ≤ 1

0 else

with c ∈ (0, 1]. Then it follows that

ζT,c = −
∫ 1

0
Λ̇T,c(x)xβ dx =

1− cβ+1

(1− c)(1 + β)
.

Also in the DM case, it can be shown rather easily that MW̃M ∼ 2
1−c(r[cM ]−rM ), which tends to zero

at a rate that depends upon the autocovariance sequence {rk} and the truncation c. The triangular

(Bartlett’s) taper is obtained as the limiting case of ΛT,c as c → 0; in this case, ζBar = 1/(β + 1).

Interestingly, the factor (1 + β)ζ appearing in (11) is then unity for any β ∈ (−1, 1). Also since

Λ̇+(0) = −1 for the Bartlett, we have MWΛ,M ∼ VM for all cases, including DM.

The asymptotic quotient bias ζ is also easily computed for the Parzen taper, given by

ΛPar(x) =





1− 6|x|2 + 6|x|3 if |x| ≤ 1/2

2(1− |x|)2 if 1/2 < |x| ≤ 1

0 if |x| > 1

.

Then ζPar = (2− (1/2)β)(3/(β + 3)− 6/(β + 2) + 3/(β + 1)).

5 Limit Theory for the Case of Fixed Bandwidth-Fraction

The vanishing bandwidth-fraction results of Theorem 2 and Remark 5 indicate a difficulty with

using tapers when LM or NM is present, because it is difficult to capture the correct rate for all

types of memory. In fact, there is an asymptotic distortion equal to the quotient bias ζ that depends

on the unknown β parameter. In addition, there is the presence of the slowly-varying function L.

These problems can be resolved – except in the DM case – by using a fixed bandwidth-fraction

approach, which is described in this section.

As in Kiefer and Vogelsang (2005), let the bandwidth M be proportional to sample size n, i.e.,

M = bn with b ∈ (0, 1]. We stress that in this section b is a fixed number, and does not grow with

n as in the previous Section. Let Ŝi =
∑i

t=1(Yt − Y ) (so that Ŝn = 0). A derivative of Λ from the

left is denoted Λ̇−, whereas the second derivative is Λ̈. The greatest integer function is denoted by
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[·]. We consider tapers from the following family:

{Λ is even and equals unity for |x| ≤ c, c ∈ [0, 1). Furthermore, Λ is supported on [−1, 1],

is continuous, and is twice continuously differentiable on (c, 1) ∪ (−1,−c).} (12)

This assumption is slightly less restrictive than the conditions of Theorem 2, because we only

require two continuous derivatives. This family of tapers includes the family of “flat-top” kernels

of Politis (2005) where c > 0, as well as the Bartlett kernel (letting c = 0 and a linear decay of Λ),

and other kernels considered in Kiefer and Vogelsang (2005). The following result was proved in

McElroy and Politis (2009), and is restated here for convenience.

Proposition 4 (McElroy and Politis, 2009) Let Λ be a kernel from family (12), and let the band-

width be M = bn. Let b ∈ (0, 1] be a constant bandwidth-fraction. Then

nWΛ,M =
n∑

i,j=1

ŜiŜj

(
2Λ

(
i− j

M

)
− Λ

(
i− j + 1

M

)
− Λ

(
i− j − 1

M

))

= − 2
bn

n−[cbn]∑

i=1

ŜiŜi+[cbn]

(
Λ̇+(c) +

1
2bn

Λ̈(c) + O(n−2)
)

− 1
b2n2

∑

[cbn]<|i−j|<[bn]

ŜiŜj

(
Λ̈

( |i− j|
bn

)
+ O(n−1)

)
+

2
bn

n−[bn]∑

i=1

ŜiŜi+[bn]

(
Λ̇−(1) + O(n−1)

)
.

Remark 6 In case the taper is continuously differentiable at c, Λ̇+(c) = 0 and the second derivative

becomes dominant in the first term, which can then be recombined with the second term to yield

− 1
b2n2

∑

[cbn]≤|i−j|<[bn]

ŜiŜj

(
Λ̈

( |i− j|
bn

)
+ O(n−1)

)
.

Likewise, if there is no kink at |x| = 1, then Λ̇−(1) = 0 and the third term vanishes completely.

In order to apply this result, we need functional limit theorems for the partial sums, since

Ŝi = Si− i/nSn. For the LM, SM, and NM cases such limit theorems can be proved which extend

Theorem 1 under more restrictive conditions; the DM case is treated separately.

Functional limit theorems are often formulated in the Skorohod space, denoted D[0, 1] – see

Karatzas and Shreve (1991). Because it is more convenient to prove tightness in C[0, 1], the space

of continuous functions, we will construct a linearly-interpolated process for the partial sums, and

prove its convergence to Fractional Brownian Motion (FBM), which is defined in Samorodnitsky

and Taqqu (1994). This provides a result of independent interest (Marinucci and Robinson (2000)

work in D[0, 1]), and also facilitates our main application, given in Theorem 4 below, under fairly

simple conditions. One additional stricture, which seems unavoidable, is the requirement for higher

moments in the NM case; this is because the sample paths are less smooth in the NM case than
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the LM case, so that the tightness criterion is satisfied only by requiring higher moments. (The

same problem affects results in the Skorohod space, as shown in Marinucci and Robinson (2000).)

So we consider the step function sum process Sn(t) = S[nt], and its linear interpolant ξn(t) =

S[nt] + (nt − [nt])Y[nt]+1. The step function process is mean-centered at [nt]µ, while the latter

is mean-centered by ntµ; both will be normalized by the sequence
√

Vn. It is immediate that

Sn ∈ D[0, 1] and ξ ∈ C[0, 1].

Theorem 3 Let κ = 2∧ [2/(1+β)] and suppose that {Yt} is a strictly stationary process satisfying

(3), and with moments of order κ + δ for some δ > 0. Moreover, suppose that E[|Sn − nµ|κ+δ] =

O(V (κ+δ)/2
n ). Furthermore, assume that the process satisfies one of P1, P2, or P3, with β ∈ (−1, 1),

and that in the case of a P2 process with β > 0, the Hermite rank is unity. Then as n →∞

V −1/2
n

(
ξ[n·] − nµ·) L=⇒ B (13)

in the sense that the corresponding probability measures on C[0, 1] converge weakly. B is a FBM

process of parameter β.

Letting Ŝn(t) = Sn(t) − [tn]
n Sn and ξ̂n(t) = ξn(t) − [tn]

n ξn(1), it follows from Theorem 3 that

Ŝ[rn]/
√

Vn converges weakly to the process B̃(r) = B(r) − rB(1), which is a Fractional Brownian

Bridge (FBB). Then putting Proposition 4 and Theorem 3 together – with the fact that Ŝn and ξ̂n

are equivalent stochastic processes – yields the following result.

Theorem 4 Let Λ be a kernel from family (12), and let the bandwidth M = bn. Let b ∈ (0, 1] be a

constant bandwidth-fraction. Let κ = 2 ∧ [2/(1 + β)] and suppose that {Yt} is a strictly stationary

process satisfying (3), and with moments of order κ + δ for some δ > 0. Moreover, suppose that

E[|Sn − nµ|κ+δ] = O(V (κ+δ)/2
n ). Furthermore, assume that the process satisfies one of P1, P2, or

P3, with β ∈ (−1, 1), and that in the case of a P2 process with β > 0, the Hermite rank is unity.

Then as n →∞
Sn − nµ√

nWΛ,M

L=⇒ B(1)√
Q(b)

, (14)

where (recall that c is defined in (12))

Q(b) = −2
b
Λ̇+(c)

∫ 1−cb

0
B̃(r)B̃(r + cb) dr − 1

b2

∫

cb<|r−s|<b
B̃(r)B̃(s)Λ̈

( |r − s|
b

)
drds (15)

+
2
b
Λ̇−(1)

∫ 1−b

0
B̃(r)B̃(r + b) dr.

The case of a DM process is treated separately below, because the requisite conditions are fairly

different.

Theorem 5 Let Λ be a kernel from family (12), and let the bandwidth M = bn. Let b ∈ (0, 1] be

a constant bandwidth-fraction. Suppose that {Yt} is a strictly stationary purely nondeterministic
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process with finite variance and summable Wk. Also suppose that the process {Zt} of Proposition 2

is either linear or strong mixing. Let C̃(r) = (rZ∗ + (1− r)Z0)/
√

r0; here Z∗ is a random variable

equal in distribution to Z0, but independent of it, and recall that r0 is the variance of the {Zt}
process. Then as n →∞

Sn − nµ√
nWΛ,M

L=⇒ C̃(1)− C̃(0)√
P (b)

, (16)

where P (b) is defined as the sum of −2b−1Λ̇+(0)1{c=0} and Q(b) given by

Q(b) = −2
b
Λ̇+(c)

∫ 1−cb

0
C̃(r)C̃(r + cb) dr − 1

b2

∫

cb<|r−s|<b
C̃(r)C̃(s)Λ̈

( |r − s|
b

)
drds

+
2
b
Λ̇−(1)

∫ 1−b

0
C̃(r)C̃(r + b) dr.

Remark 7 The first result (14) was derived in a preliminary calculation in McElroy and Politis

(2009), and the distribution (15) has been tabulated. The joint distribution of B(1) and Q(b)

was also explored in McElroy and Politis (2011) through the device of the joint Fourier-Laplace

Transform. The DM case (16) is novel here. Note that the first term of P (b) in the c = 0 case, i.e.,

−2b−1Λ̇+(0) agrees with the first term in the expansion of W̃M in the DM case of Theorem 2, since

in the vanishing bandwidth-fraction case we have nWΛ,M ∼ −2r0
n
M Λ̇+(0) plus higher order terms.

Remark 8 The expression for P (b) in the DM case really reduces to a quadratic in Z∗/
√

r0 and

Z0/
√

r0, the coefficients of which can be calculated in terms of the taper’s derivatives. However,

knowing these quantities is not helpful towards understanding the distribution of P (b), since the

distribution of Z∗ is unknown.

Unlike the special case studied by Kiefer, Vogelsang, and Bunzel (2000), the numerator B(1)

of (14) is not independent of the denominator Q(b) if β 6= 0. To elaborate, Kiefer et al. (2000)

considered the case b = 1 and c = 0, the kernel is the Bartlett, and β = 0 (although later work

by Kiefer and Vogelsang (2002, 2005) generalizes to b < 1). Then Q(1) = 2
∫ 1
0 B̃2(r) dr, and the

authors note that B(1) is independent of B̃(r). As shown in McElroy and Politis (2011), this is

true for other kernels as long as β = 0; however, if β 6= 0, then B(1) and Q(b) are dependent.

Fortunately, it is a simple matter to determine the limiting distribution numerically for any given

value of β, and any choice of taper and bandwidth fraction b.

6 Applications and Numerical Studies

The preceding two sections give two different perspectives on the asymptotic behavior of taper-

normalized sample means. If we normalize Sn−nµ by
√

nWΛ,M or by
√

MWΛ,M , the studentized

statistic does not converge – except in the SM and DM cases, respectively for the two normalizations
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– when adopting the vanishing bandwidth-fraction perspective (see Remark 5). However, (Sn −
nµ)/

√
nWΛ,M converges to a nondegenerate distribution by Theorem 4 when adopting the fixed

bandwidth-fraction approach. Since bandwidth choice is up to the practitioner, it appears that the

fixed bandwidth-fraction viewpoint might be preferable in our attempt towards a unified treatment

of inference for the mean that is valid in all kinds of scenarios.

However, the limit distribution of the studentized sample mean will generally depend on β.

Either one must estimate the nuisance parameters – including β – or a nonparametric technique

such as the bootstrap or subsampling (Politis, Romano, and Wolf (1999)) must be utilized to get

the limit quantiles. The parametric bootstrap is not feasible here (since no model is specified for

the data in our context) and the block bootstrap tends to perform badly when autocorrelation dies

gradually (Lahiri, 2003). However, given that the limit distribution has been tabulated for some

values of β ∈ (−1, 1) and some popular tapers (cf. McElroy and Politis, 2009), one can utilize

a plug-in estimator of β instead; this is similar in spirit to the approach advocated in Robinson

(2005).

These two techniques are described in more detail below, along with statistical justification.

A new estimator of β, based on the rate estimation ideas of McElroy and Politis (2007), is also

discussed. Then in the following subsection, both methods are applied to the study of size and

power for testing the null hypothesis that µ = 0. We look at Gaussian processes exhibiting LM,

SM, NM, or DM, at a variety of sample sizes and choices of taper.

6.1 Subsampling Methodology for Obtaining Critical Values

Firstly, we consider the subsampling method applied to the statistic Sn/
√

nWΛ,M , or equivalently,

Y /
√

WΛ,M/n. Letting M = bn as usual with b fixed and constant, under the assumptions of

Theorem 4 we obtain the nondegenerate limit distribution B(1)/
√

Q(b) for the LM/SM/NM case,

and [C̃(1) − C̃(0)]/
√

P (b) in the DM case. The subsampling distribution estimator (sde) will

be consistent for this limit distribution under a mixing condition, such as weak dependence (see

discussion in Section 4). In Jach, McElroy, and Politis (2011) the weak dependence condition is

shown to be sufficient to establish consistency of subsampling distribution estimators for studentized

statistics; Ango-Nze et al. (2003) was an earlier work on subsampling under weak dependence.

As for the sde itself, we first select a subsampling blocksize an, where a is the subsampling-

fraction; as usual, this is assumed to be vanishing, i.e., a = a(n) → 0, though an → ∞. Then

n− an + 1 = (1− a)n + 1 contiguous overlapping blocks of the time series are constructed, and the

statistics Y and WΛ,bn are evaluated on each block. This means a sample mean over an random

variables, and the corresponding tapered variance estimate based on this subsample, so that the

bandwidth is actually abn rather than bn. As a practical matter, unless b and a are taken fairly

large, the bandwidth abn becomes unmanageably small. The subsampled statistics can be collected
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into a set: {
Y an,i − Y n√
WΛ,abn,i/(an)

for i = 1, . . . , n− an + 1.

}

Now taking the order statistics on this collection produces the quantiles of the sde. Further details

of the construction can be found in Politis, Romano, and Wolf (1999), but we here sketch the

remaining theoretical details. First we note a general result that follows from Theorem 2 and

Remark 5: if M/n → 0 as n →∞, then

Vn/n2

W̃M/M
→ 0. (17)

This is true for the LM/SM/NM case, since by Proposition 1 the limit is O([M/n]1−β). The

convergence in (17) is also true for the DM case if a non-flat-top taper (i.e., c = 0) is used, since the

above limit will be asymptotic to −M/Λ̇+(0)n. (The result is not guaranteed for flat-top tapers;

this will depend on the rate that M/n → 0, versus the rate of decay of {rk}.)
Therefore, the probability that the ith subsample statistic exceeds a given x is

P

[
√

an
Y an,i − Y n√

WΛ,abn,i

> x

]
= P

[
San − anµ√

anWΛ,abn

− b−1/2 Sn − nµ√
Vn

√
Vn/n2

WΛ,abn/(abn)
> x

]
.

Using Theorems 1, 4, and 5, as well as Proposition 3 and (17), the second term in the probability

will tend to zero. Hence (in the LM/SM/NM case)

P

[
San − anµ√

anWΛ,abn

> x

]
→ P

[
B(1)√
Q(b)

> x

]

as n → ∞, noting that an → ∞ by assumption (and b is fixed). In the DM case the limit is

[C̃(1)− C̃(0)]/
√

P (b). Now, as long as the ith subsample statistic is approximately independent to

the jth one when |i− j| is large – which is implied by the weak dependence condition – the sde is

consistent for the target limit distribution, and subsampling is valid. Note that we assume the fixed

bandwidth-fraction condition for this result, but end up utilizing some of the vanishing bandwidth-

fraction results, since the actual bandwidth-fraction for the subsampled tapered variance estimate

is the vanishing quantity ab.

6.2 Plug-in Methodology for Obtaining Critical Values

Alternatively, one can use a plug-in approach as in McElroy and Politis (2011). Adopting the

fixed bandwidth-fraction asymptotics (so assume b is constant throughout), and assuming that

β ∈ (−1, 1) (so that the DM case is explicitly excluded), we proceed to estimate the quantiles of

the limit distribution B(1)/
√

Q(b) via first estimating β from the data, and then utilizing xα(β̂),

where xα(β) is the upper right α quantile of B(1)/
√

Q(b). That is,

P

[
B(1)√
Q(b)

> xα(β)

]
= α.
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These quantiles have been tabulated for β ∈ B = {−.8,−.6,−.4,−.2, 0, .2, .4, .6, .8}, three values of

α, several commonly used tapers, and all values of b (via regression) – see the tables in McElroy

and Politis (2009). Since the distribution is continuous in β, any consistent estimate β̂ can be

utilized. Then one finds the member of B closest to the given β̂ – call this β̃ – and utilizes xα(β̃).

This will be called the empirical plug-in method. Clearly, a finer mesh of simulation values for

B would improve the procedure, but we may yet expect to obtain results superior to just using

β = 0 in ignorance of the true memory. This latter approach, which essentially assumes that only

short memory is present, will be referred to as the default plug-in method, and will be utilized as

a benchmark for the empirical plug-in method.

Now many nonparametric estimators of β can be utilized. Here we consider the simple estimator

proposed in McElroy and Politis (2011), namely:

β̂ =
log WΛ,bn

log n
. (18)

This is consistent for β under the assumptions common to this paper.

Proposition 5 Assume that b ∈ (0, 1] is fixed, as well as the hypotheses of Theorem 4. Then β̂

defined by (18) converges in probability to β.

This estimator is similar in spirit to the tail index estimator of Meerschaert and Scheffler (1998),

since it is based upon a convergence rate. The performance of β̂ can be poor in finite sample when

long memory is present, but it is quite versatile and simple to implement. Note that it is easy

to show that β̂
P−→ −1 in the DM case, but since xα(−1) does not correspond to the quantile

of [C̃(1) − C̃(0)]/
√

P (b), we must exclude the DM case by assumption to avoid an inconsistent

procedure.

6.3 Size and Power of Methods

We next evaluate the two methodologies – subsampling and empirical plug-in – through simulations.

We adopt the perspective of testing a null hypothesis of µ = µ0, since it is easier to evaluate the

finite-sample properties through size and power, as opposed to the confidence interval perspective.

In the simulations we take µ0 = 0. For each method, we consider values of µ between 0 and 1,

with µ = 0 corresponding to the null hypothesis. We compute the statistic Sn/
√

nWΛ,bn for a few

different values of b, and five different tapers. The critical values of the limit distribution can be

approximated using either of the two methods described above (though the plug-in method cannot

be used with DM processes, and we cannot justify the use of flat-top tapers in the DM case). Then

we record the proportion of times that the statistic exceeds these critical values, using a two-sided

test. Note that when µ > 0, this assessment is interpreted as empirical power, but when µ = 0 we

obtain the empirical size.
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The size of the plug-in approach has been partially addressed in McElroy and Politis (2009,

2011). However, the subsampling method’s performance has not been previously studied, so we

provide some additional material regarding its size. Tables 1 through 10 display size results for

various Type I error rates, for a two-sided test with α = .10, .05, .01. The sampling fraction for

the subsampling method was selected at values a = .2, .1, .04. Also we have the five tapers –

Bartlett, Trapezoid with c = .25, Trapezoid with c = .5, Parzen, and Daniell – with three choices

of bandwidth fraction b = .1, .5, 1. The sample size is varied from n = 250, 500, 1000. Results are

for the empirical coverage, and so the target for the columns are the values .90, .95, .99.

For data generation processes we focus on the Gaussian distribution, and consider simple white

noise for the SM case (since serially correlated processes have been considered in previous lit-

erature, it suffices to take the simple white noise case); we consider four NM processes with

β = −.2,−.4,−.6,−.8, where the autocovariance function is determined from Example 2 of Section

2. Also there are four LM processes, with β = .2, .4, .6, .8 and autocovariance function given in

Example 1 of Section 2. Finally, our tenth process is DM, generated by the first difference of a

white noise process. Informally, we will refer to this via β = −1, by an abuse of notation. We

generated 1000 simulations of each specification.

The power surfaces are organized a bit differently. We focus on one sample size n = 250 and

one Type I error rate α = .05 (for a two-sided test for the mean, so we use the upper one-sided

critical value at .975 from the subsampling distributions and the tabulated values). Restricting to

this α value gives the general behavior, and a reasonable sense of the power can be gleaned from

the n = 250 case – higher sample sizes tend to shift the contours upwards (not dramatically for

high β), but the overall shape is the same. We consider the same tapers (Bartlett, Trapezoid (.25),

Trapezoid (.5), Parzen, and Daniell), but with bandwidth fractions b = .2, .5, 1. The sampling

fractions are a = .04, .12, .2. These choices are convenient, as it is always guaranteed that abn is

an integer. The range of µ was chosen so as to capture the main qualitative features of the power

surface across all data processes: µ ∈ {j/20}19
j=0 proved to yield power close to 50 percent for the

long memory processes, while being small enough to allow visual discrimination of cases.

The six methods are placed in each figure as sub-panels. Moving from top left to bottom right,

the first three methods correspond to subsampling with various sampling fractions. Then we have

the empirical plug-in method, followed by the default plug-in (which uses β = 0 critical values

throughout) method. Note that these methods are greatly flawed when the true process is DM, but

we present the results anyways for thoroughness. The final panel is an omniscient plug-in, based

on knowing the true value of β (so it is not a practicable method, but is helpful for understanding

power). The discrepancy in power between this and the empirical plug-in method (middle right

panels) is mainly due to error in our estimator of β.

Now we discuss these numerical results. The size results for the SM case are fairly standard,

being adequate at sample size n = 500 and greater; the higher bandwidth fractions gave slightly
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better results. At n = 1000 all the tapers were roughly comparable in performance. For NM the

coverage improved for higher values of β; the flat-top tapers and other tapers perform similarly. The

results for the LM case were much worse, with poor coverage at β = .2; higher bandwidths seemed

to improve performance slightly. At β = .4 the results are best with the b = .5 bandwidth, but for

β = .6, .8 the coverage deteriorates. Finally, for the DM case it seems that a smaller bandwidth is

preferable. The Bartlett taper performs badly, but the Trapezoidal (.5) and Truncated tapers are

adequate (except for b = .1). In summary, if there is DM, NM, or SM, then one can use a flat-top

(with higher value of c) or other taper with a low or middle bandwidth fraction, such as b = .1 or

b = .5, and obtain adequate coverage for larger samples. If LM is present, a larger bandwidth is

preferable.

If a statistic rejects too often under the null hypothesis – as is seen to happen in the tables

for the subsampling methods – then it is liable to have higher power than otherwise. The fact

that all methods tend to be mis-sized is evident in the surface plots in Figures 1 through 15 by

examination of the µ = 0 cross-sectional curve towards the right side of the surface. But as µ

increases, the DM and NM processes generate high power relatively quickly, giving a mesa shape

to the surfaces. For SM and weaker LM, the rise to full power is slower. An ironic feature is that

when µ is quite low, the power for strong LM is better than for weaker LM, essentially due to

the methods being over-sized. This is seen in the “ruffle” feature of the curves along the β = .8

cross-section.2 Since power approaches 50 percent for all processes as µ increases to unity, there is

the question of how this is meaningful relative to the variation in the process. All were constructed

with γ0 = 1 (an alternative way to normalize is to set the innovation variances equal, by in each

case dividing through by the square root of the integral of the log spectrum), so the coefficient of

variation is 1/µ for all processes. Primarily, we view these figures as a way to contrast the power

of methods and tapers.

For a given taper, there is moreover the issue of selecting the best possible bandwidth fraction.

If there is only a minor discrepancy between the true mean and the null mean, then higher power

will be associated with smaller (upper one-sided) critical values. Leaving aside the issue of size, we

can maximize power in the worst possible scenario (i.e., where the true mean µ is approximately

equal to the null mean) by finding b such that the quantile is minimized. Table 11 provides such

bandwidth fractions for each given taper, as a function of the true β, for a variety of α values (.10,

.05, .025, and .01). For NM and SM a small bandwidth is best, but larger bandwidths – between

.02 and .28 – provide better asymptotic power. This result also tends to parallel the size results, in

that large bandwidths should be avoided in the NM and SM cases, while being more appropriate

for the LM case.
2Some authors prefer to investigate what the power would be were these statistics to be adjusted to be correctly

sized; however, in practice such a procedure is impossible to implement on real data. We have chosen to display the

power that would occur were a practitioner to utilize any of the methods on real data.
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7 Discussion

This paper sets out a thorough study of self-normalized mean estimation when long memory or

negative memory is present. The main statistic of interest is the sample mean of a stationary time

series (appropriately differenced beforehand), normalized by a tapered sum of sample autocovari-

ances. The behavior of autocovariances changes greatly depending on whether a time series has

long range dependence, anti-persistence, or short memory. This in turn has a large impact on the

convergence rates of sample mean and tapered autocovariances. We provide a unified treatment of

the various types of memory, including the important Super-Efficient (SE) case, wherein the partial

sums are oP (
√

n). The SE scenario is important, since it can easily arise from over-differencing of

a time series suspected of having trend nonstationarity.

Several novel results on the memory of a time series are presented, which – together with

examples – furnish some intuition for the qualitative behavior. The properties of Differential

Memory (DM) processes are elucidated, and shown to be distinct from the behavior of Negative

Memory (NM) processes – together, the DM and NM cases partition the important SE case.

But our main interest is in the asymptotics of sample mean and tapered autocovariances, and

we treat these topics through several theorems. For the asymptotic results we consider both the

vanishing bandwidth-fraction case (a more classical approach, going back to Parzen (1957)) and the

fixed bandwidth-fraction case (a more recent approach espoused in Kiefer, Vogelsang, and Bunzel

(2000)). We both summarize known results, and prove new ones, examining three broad classes of

data process that exhibit the various types of memory described herein.

In order to make use of the asymptotic results, it is still necessary to get the critical values of the

limiting distributions, which in the fixed bandwidth-fraction case are functionals of the Fractional

Brownian Bridge. We propose two methodologies: subsampling, which avoids explicit estimation of

the memory parameter β but requires selection of a sampling fraction a; and the plug-in approach,

which requires an estimate of β and a look-up table of critical values (computed ahead of time via

simulation) for the limiting distributions. These methods are compared through extensive finite-

sample size and power simulations, which are succinctly summarized here.3 While power tends to

deteriorate with greater memory, Type II error is comparatively quite small with anti-persistent

processes. There are size problems with the plug-in method, whereas in contrast the subsampling

method tends to have superior coverage (i.e., empirical size is closer to the nominal level).

One outstanding problem in the literature on this topic is the question of bandwidth selection.

If one seeks an optimal bandwidth, it must be selected to minimize a pertinent criterion. Recent

work by Sun, Phillips, and Jin (2008) provides an attractive approach based on examining both

type I and type II errors. However, their paper is focused on the SM case; any attempt to mimic

their procedure makes the bandwidth dependent on β, which then must be estimated. Also, higher-
3All code and results are available from the first author.
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level assumptions are typically required for such an analysis, which is at war with the fairly generic

assumptions of this paper.

What is really needed in practice is a prescription for applied statisticians. Choice of taper,

bandwidth, and subsampling fraction are all to be determined by the user, and the optimal com-

bination of such depends on the unknown data process. Moreover, any such optimality is typically

derived using asymptotic criteria, whose impact on finite samples is less clear; also see Table 11.

However, some of the lessons from our simulations can be repeated here: critical values vary more

widely with respect to β when b is low; flat-top tapers and smooth tapers (e.g., the Parzen taper)

perform adequately in terms of size and power, except in the LM case; size and power can depend

substantially on the subsampling fraction. Note that the subsampling fraction might be selected

using the technique of Bickel and Sakov (2008), as described in Jach, McElroy, and Politis (2011).

Or one might utilize the plug-in approach described in Section 6, which requires simulation of

quantiles ahead of time.

For any of the methods discussed, neither computer programming nor computation time is bur-

densome (unless quantiles are being simulated). Therefore, one can generate results for a multitude

of tapers and bandwidths, and include all outcomes as alternative explanations of the data. If it

is paramount to produce a single confidence interval or p-value, the practitioner might just retain

the narrowest interval, as this corresponds to the lowest type II error (apart from approximation

error). However, if for some reason the practitioner is unable to produce a spectrum of results, we

recommend utilizing a small bandwidth (say b close to .02) when it is judged that only NM or SM is

present, but a bandwidth fraction closer to .1 or .2 if LM is suspected. To obtain decent performance

over a range of data processes, either the Parzen or a trapezoidal taper is recommended.

In summary, we provide a viable framework for conducting inference for the mean, supplying a

unified asymptotic theory that covers all different types of memory under a single umbrella. This

framework is robust against different memory specifications, obviating the need to do extensive

modeling. Future work should examine the bandwidth selection problem, using these theoretical

results as groundwork.

Acknowledgements: We thank the associate editor and two anonymous referees for helpful

comments.

Appendix

Proof of Proposition 1. First consider cases (i), (ii), and (iii) with β ∈ (−1, 1). By Bingham,

Goldie, and Teugels (1987), a slowly varying function satisfies, for any δ > 0, |L(k)/L(n)| ≤
C̃(|k/n|δ + |n/k|δ) for 1 ≤ k ≤ n and some constant C̃ > 0. Then by the Dominated Convergence
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Theorem
Vn

nWn
= n−1

n−1∑

k=0

Wk

Wn
= n−1

n−1∑

k=0

L(k)
L(n)

(k/n)β →
∫ 1

0
xβ dx =

1
β + 1

.

In case (iii) when β = −1, we have Vn/(nWn) ∼ ∑
h<n h−1L(h)/L(n) → ∞ by Theorem A3.6 of

Embrechts, Klüppelberg, and Mikosch (1997). Case (iv) is immediate from its definition. For (7),

in cases (i) and (iii) with β ∈ [−1, 1) \ {0} we have

γk =
1
2

(Wk −Wk−1) =
1
2

[
(L(k)− L(k − 1))kβ

]
+

1
2

[
L(k − 1)(kβ − (k − 1)β)

]
.

Dividing through by L(k)kβ−1/2 yields

2
γk

L(k)kβ−1
= [(1− L(k − 1)/L(k))k] +

[
kL(k − 1)

L(k)
(1− (1− 1/k)β)

]
.

The second expression on the right hand side is asymptotic to β via Taylor series. The first expres-

sion on the right hand side is asymptotic to −kg(k), where g(x) =
∫ x
x−1 η(u)/u du by expanding the

exponential term in the slowly-varying function L. But kg(k) = o(1) as k → ∞. So when β 6= 0,

the acf is asymptotic to βL(k)kβ−1/2. But when β = 0 we have instead

γk

L(k)
=

1
2

(1− L(k − 1)/L(k)) ∼ −gk/2

by the previous analysis, which is o(k−1). 2

Proof of Proposition 2. Without loss of generality, suppose that µ = 0. By the Wold decom-

position (see Brockwell and Davis, 1991) there exists an uncorrelated sequence {εt} and square

summable coefficients {ψj} such that Yt =
∑

j≥0 ψjεt−j . Let σ2 = V ar(εt) be equal to one for

simplicity. We have 0 = limk→∞Wk =
∑

h γh = (
∑

j ψj)
2σ2, so

∑
j ψj = 0. It follows that 1 − z

should divide Ψ(z) =
∑

j≥0 ψjz
j , though we must establish that Θ(z) = Ψ(z)/(1 − z) converges.

Extending ψj to be zero if j < 0, we define θj =
∑j

k=−∞ ψk for any integer j. Note that θj → 0

as j → ∞ and is zero if j < 0. We will show that the θj sequence is square summable, so that
∑

j θjεt−j is finite with probability one; then this will define Zt, from which Yt = Zt−Zt−1 follows at

once. Note that θj =
∑

k≥0 ψj−k; let θj,m =
∑m

k=0 ψj−k. Then
∑

j θ2
j,m =

∑m
i,k=0 γi−k =

∑m
k=0 Wk

for each m. Then by Fatou’s Lemma

∑

j

θ2
j ≤ limn→∞

∑

j

θ2
j,m =

∑

k≥0

Wk < ∞.

This establishes the existence of a series {Zt} with the required properties. However, the series given

by
∑

j θjεt−j + A, where A is uncorrelated with the series {εt}, also has the requisite properties,

as the temporal difference will be the same as that of Zt − Zt−1. Although an additional term of

V ar(A) is added on to the acf, this will cancel out in γk = 2rk − rk+1 − rk−1. So the series {Zt}
cannot be determined uniquely.
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Next, we note that the formula for Wk follows from summing the γk via (3); the formula for

r0 is obtained by summing the formula for Wk, and using the property of telescoping sums. The

assertions of the converse are now immediate. 2

Proof of Theorem 1. From Proposition 1 we can utilize (6). Also without loss of generality we

can take µ = 0 in the proof. Let us first consider that the process satisfies P1, so that Yt =
∑

j ψjεt−j

for an iid sequence {εt}, and by assumption γ0 ∝
∑

j ψ2
j exists. So Theorem 5.2.3 of Taniguchi

and Kakizawa (2000) (which is due to Ibragimov and Linnik (1971, p. 359)) gives the result. Note

that by Hosoya (1996), we could relax the independence assumption on {εt} to a type of mixing

condition when β = 0.

Under P2 first consider the LM case. Since β > 0, we have rk ∼ β
2 L(k)kβ−1 by Proposition

1. Then we apply Theorem 5.2.2 of Taniguchi and Kakizawa (2000) (which is due to Taqqu,

1975) when (1 − β)τ < 1, obtaining a non-central limit theorem if τ > 1. In this case {Yt} is

LM(1− (1− β)τ). The distribution of B is described in the above references, and is non-Gaussian

if τ > 1. Note that the LM behavior of {Yt} is inherited from that of {Xt}, as shown by Theorem

5.2.1 of Taniguchi and Kakizawa (2000). If the {Xt} process is SM, then a central limit theorem

holds by applying Breuer and Major (1983).

Under P2 and NM, write g(x) =
∑

q≥0 Hq(x)Jq/q!, with Hq the qth Hermite polynomial and

Jq = E[g(Z)Hq(Z)] where Z is standard normal. Then we have γk = E[YtYt+k] =
∑

q rq
kJ

2
q /q!

(see 5.2.10 of Taniguchi and Kakizawa (2000)). Since {Yt} is NM(β), we have 0 =
∑

k γk =
∑

q J2
q

∑
k rq

k/q!. The sum of autocovariances Wn is related to the rk sequence via

Wn =
∑

q≥0

J2
q

q!

∑

|k|≤n

rq
k. (A.1)

Now Wn satisfies (3) by assumption, and moreover
∑
|k|≤n k(β−1)q ∼ O(n(β−1)q+1); hence the limit

of
∑
|k|≤n rq

kW
−1
n exists, and will be denoted by Dq. Also Dq = O(n(β−1)(q−1)), which is zero when

q > 1. Then dividing (A.1) by Wn and applying the Dominated Convergence Theorem yields

1 = J2
1D1. Thus

n∑

t=1

Yt = J1

n∑

t=1

Xt +
∑

q>1

Jq

q!

n∑

t=1

Hq(Xt)

and n−1V ar(
∑n

t=1 Hq(Xt)) = o(Wn) if q > 1 by equation 5.2.9 of Taniguchi and Kakizawa (2000)

and Theorem A3.6 of Embrechts et al. (1997). Hence

V −1/2
n

n∑

t=1

Yt = oP (1) + J1

n∑

t=1

Xt/
√

Vn. (A.2)

This latter term is Gaussian with asymptotic variance J2
1D1 = 1, i.e., the partial sum is asymptotic

to the first (Gaussian) term of the Hermite expansion in the NM case, the higher order terms being

negligible.
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Next, consider P3. The k-fold cumulant of Sn is

cum (Sn, · · · , Sn) =
n∑

tk=1

n∑

t1=1

· · ·
n∑

tk−1=1

ck(t1 − tk, t2 − tk, · · · , tk−1 − tk),

which is O(n · nβ∧0) when k > 2. Letting κk,n denote the kth order cumulant of SnV
−1/2
n , we

obtain κk,n = O(n(β+1)∧1 · V −k/2
n ), which tends to zero as n →∞ if k > 2. Of course κ1,n = 0 and

κ2,n = 1, and the limit theorem is proved by expanding the characteristic function of SnV
−1/2
n as

in equation (2.19) of Hall (1992).

Finally, we turn to the DM case. Applying Proposition 2, we have Sn = Zn − Z0. If {Zt} is

strongly mixing, let Z̃n be equal in distribution to Zn for every n, but independent of Z0. Then
∣∣∣E exp{iν(Zn − Z0)} − E exp{iν(Z̃n − Z0)}

∣∣∣ ≤ 16 αn

by Lemma B.0.6 of Politis, Romano, and Wolf (1999), which is due to Ibragimov (1962). Now

φZ̃n−Z0
(ν) = φZ(ν) · φZ(−ν) where φ denotes the characteristic function, and Z has the common

distribution of the {Zt} process.

If {Zt} is linear, then {εt} are iid in the representation Zt =
∑

j≥0 θjεt−j , with the convention

that θj = 0 if j < 0. Then

Sn =
∑

j

(θn−j − θ−j)εj =
n∑

j=1

θn−jεj +
∑

j≤0

(θn−j − θ−j)εj .

These two terms are independent, and the first is equal in distribution to
∑n−1

j=0 θjεj , which tends in

probability (and thus weakly) to
∑

j≥0 θjεj by Theorem 22.6 of Billingsley (1995). This limit is equal

in distribution to Z, so
∑n

j=1 θn−jεj
L=⇒ Z. For the second term, we have

∑
j≤0 θn−jεj

P−→ 0, since

its variance is equal to
∑

j≥n θ2
j σ

2. What’s left is−∑
j≤0 θ−jεj , which is equal to−Z in distribution.

Since the two terms are independent, we have that Sn converges weakly to the difference of two

independent random variables, each with the distribution of Z. 2

Proof of Proposition 3. The expression γ̃h − γh is unchanged if we replace Yt by Yt − µ, so

without loss of generality suppose that µ = 0. We begin by decomposing WΛ,M :

WΛ,M = W̃M + E
(1)
M + E

(2)
M (A.3)

E
(1)
M =

∑

h

ΛM (h) (γ̃h − γh)

E
(2)
M =

∑

h

ΛM (h) (γh − γh) ,

where γk = 1
n

∑n−|k|
t=1 (Yt − µ)(Yt+k − µ) for k ≥ 0, and recall γ̃k is given by (2). The terms E

(1)
M

and E
(2)
M are stochastic errors, whereas W̃M is deterministic and serves as an approximation to
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WM . We will show that the error terms E
(1)
M and E

(2)
M of (A.3) satisfy E

(1)
M = OP (UM MVnn−2)

and E
(2)
M = OP (UM Mn−ηK(n)) as n →∞, where K is slowly-varying and η = 1/2 if β < 1/2 and

η = 1 − β if β ≥ 1/2 (in the LM case); then the statement of the proposition follows. For each

h ≥ 0

γ̃h = γh + (γh − γh) + (γ̃h − γh)

=
(

1− h

n

)
γh +

1
n

n−h∑

t=1

(YtYt+h − γh) + Y
(
Y − Y 1:n−h − Y h+1:n

)
,

where Y 1:n−h =
∑n−h

t=1 Yt/n and Y h+1:n =
∑n

t=h+1 Yt/n. Let cn = Vnn−2. Then Y = OP (n−1V
−1/2
n ),

so the third term above is OP (cn) uniformly in h (this is true since |h| ≤ M = o(n)). Now

cn = nβ−1L(n) in the LM and NM cases, with β ∈ [−1, 1), but cn = n−1 for the SM case and

cn = n−2 for the DM case. Using the UM bound on ΛM (h), we obtain E
(1)
M = OP (UM Mcn) as

claimed. For the error term E
(2)
M , we compute

V ar(E(2)
M ) ≤ n−2

∑

h,k

ΛM (h)ΛM (k)
n∑

t,s=1

Cov(YtYt+h, YsYs+k)

≤ n−2
∑

h,k

ΛM (h)ΛM (k)
n∑

t,s=1

(cum(Yt, Yt+h, Ys, Ys+k) + γt−sγt−s+h−k + γt−s−kγt+h−s)

≤ n−1
∑

h,k

ΛM (h)ΛM (k)
∑

|l|≤n

(1− |l|/n) (cum(Y0, Yh, Yl, Yl+k) + γlγl−h+k + γl+kγh−l) .

The inequality used here only concerns |h| terms, which is negligible with respect to n. The

sum of the cumulant function is bounded using Assumption B, resulting in an overall bounds of

U2
M/n. For the sum over γlγl−h+k, we can use the Cauchy-Schwarz inequality to obtain the bound

O(M2U2
Mnξ−1K(n)), where K is a slowly-varying function and nξK(n) represents the order of

∑
|l|≤n γ2

l ; using Proposition 1 we have ξ = 0 if β < 1/2 (as this results in a square summable

sequence) or ξ = 2β − 1 if β > 1/2. When β = 1/2 and L(n) ≡ 1, we take ξ = 0 and K(n) = log n.

The analysis of the sum over γl+kγh−l yields a similar order. Taking square roots, we learn that

E
(2)
M = OP (MUMn−ηK1/2(n)) as asserted. 2

Proof of Theorem 2. First note that we can remove the term (1− |h|/n) since M/n → 0. The

case of the truncation filter is trivial. Case (iv) is treated differently, so we first consider cases (i),

(ii), and (iii). We proceed to break the sum over h up according to the intervals of smoothness

for Λ. The first such interval is [−c, c], which corresponds to the flat-top interval; if there is no

flat-top region, then c = 0. In general, consider an interval (r, s] such that the restriction of Λ is

continuously differentiable there. Then

∑

[rM ]<|h|≤[sM ]

Λ
(

h

M

)
γh = Λ

(
[sM ]
M

)
W[sM ]−Λ

(
[rM ]
M

)
W[rM ]+

[sM ]−1∑

h=[rM ]

[
Λ

(
h

M

)
− Λ

(
h + 1
M

)]
Wh

(A.4)
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via summation by parts. The first two terms on the right hand side will cancel with other like

terms for the other intervals, leaving the last term on the right hand side. The terms in the square

brackets consist of values of Λ restricted to (r, s], excepting only the first term h = [rM ]; however,

since Λ([rM ]/M)− Λ(([rM ] + 1)/M) u −M−1Λ̇+(r) by continuity, the first term’s analysis is the

same as the others. In general, Λ(h/M) − Λ(h + 1/M) = −Λ̇(h/M)M−1 + O(M−2). The case of

r > 0 for an interval (r, s] has a different analysis from the r = 0 case, which we consider later. So

long as r > 0, we have h →∞ as M →∞ in the above summation. Thus in case (ii), Wh → W∞
and this convergence occurs uniformly in h ∈ (rM, sM) as M → ∞. Using the boundedness of

Λ̇(x) and the limit of a Cesaro sum, we obtain a limit of −W∞
∫ s
r Λ̇(x) dx. The argument can be

extended to cases (i) and (iii) as follows:

∑[sM ]−1
h=[rM ]

[
Λ

(
h
M

)− Λ
(

h+1
M

)]
Wh

CMβL(M)
=

[sM ]−1∑

h=[rM ]

{
Λ

(
h

M

)
− Λ

(
h + 1
M

)}
(h/M)β

[
Whh−β/CL(M)

]
,

and the expression in square brackets equals one plus error tending to zero as M →∞, uniformly

in h ∈ ([rM ], [sM ]]. This is because
∣∣∣∣

Wh

ChβL(M)
− 1

∣∣∣∣ ≤
∣∣∣∣

Wh

ChβL(h)
− 1

∣∣∣∣ +
∣∣∣∣

Wh

ChβL(h)

(
L(h)
L(M)

− 1
)∣∣∣∣ .

The first term tends to zero uniformly in h as M →∞. For the second, we have L(h)/L(M) → 1

uniformly in h as M → ∞ as well, which is seen by using the representation (5). Note that these

arguments hold for β = 0. Using the boundedness of xβ for x ∈ (r, s] and r > 0, we obtain a limit

of − ∫ s
r Λ̇(x)xβ dx as M →∞. This argument works for any β ∈ (−1, 1).

The first interval must be treated differently – unless it is flat-top, i.e., c > 0, in which case it is

trivially given by W[cM ], which cancels with boundary term in the next intervals. More generally, the

first interval has the form
∑

0≤|h|≤[sM ] Λ(h/M)γh, which tends to Λ(0)W∞ in case (ii). Otherwise

in cases (i) and (iii) we have

[sM ]∑

|h|=0

Λ
(

h

M

)
γh = Λ(0)W[sM ] + 2

[sM ]∑

h=1

[
Λ

(
h

M

)
− Λ(0)

]
γh.

Note that β > −1 by assumption. The expression in brackets can be expanded in the Taylor series
∑

j≥1 Λ(j)(0)hjM−j/j!. Noting that
∑M

h=1 hjγh is divergent and asymptotic to βM jWM/2(β + j)

(proved by L’Hopital’s rule and (7)) for any j ≥ 1, we can interchange summations to obtain

W[sM ] + β W[sM ]

∑

j≥1

Λ(j)(0)
sj

β + j
∼ WM

(
sβ + β

∫ s

0
(Λ(x)− 1)xβ−1 dx

)

after some algebra. Now piecing all intervals together, taking into account cancelations and inte-

gration by parts, we arrive at (10).
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Now we turn to case (iv). Letting the partition 0 = s0 < s1 < · · · sT < sT+1 = 1 denote the

points of non-differentiability in Λ, we can write

[sM ]∑

|h|=0

Λ
(

h

M

)
γh =

T∑

j=0

[sj+1M ]−1∑

h=[sjM ]

[
Λ

(
h

M

)
− Λ

(
h + 1
M

)]
Wh.

The first term is identically zero for a flat-top kernel; otherwise when c = 0, we can use a Taylor

series expansion at h/M again. Since {Wh} is a summable sequence, we can apply the Dominated

Convergence Theorem and obtain 2r0 times the Taylor series at zero, as stated in the theorem.

As for the other intervals, note that
∑[sj+1M ]−1

h=[sjM ] Wh = 2(r[sjM ] − r[sj+1M ]) is tending to zero as

M → ∞, since j ≥ 1. Thus these other terms decay even faster than the first term. Hence for

flat-top tapers, the rate of convergence is o(M−1). 2

Proof of Theorem 3. The proof proceeds by first showing that the finite-dimensional distribu-

tions of ξn converge to those of FBM. Then we show tightness. We will now show that Sn and ξn

are asymptotically equivalent processes, i.e., any linear combination over any set of times of their

difference tends to zero in probability. Because ξn(t)− Sn(t) = (nt− [nt])Y[nt]+1, clearly for every

ε > 0 and any collection of times t1, · · · , tk and constants α1, · · · , αk (for any k ≥ 1),

P


|

k∑

j=1

αj (ξn(tj)− Sn(tj))V −1/2
n | > ε


 → 0

as n →∞. This follows from (6). Hence it suffices to show that the finite-dimensional distributions

of Sn converge to those of FBM. We may as well assume µ = 0 henceforth. We proceed to show

this for the three cases of P1, P2, and P3 in turn.

For the linear case P1, we note that historically Davydov (1970) and Gorodetskii (1977) provide

a proof of the result requiring higher moments. Marinucci and Robinson (2000) relax the require-

ment to 2 + δ moments for some δ > 0. We will adapt the argument used in Theorem 5.2.3 of

Taniguchi and Kakizawa (2000). The linear representation allows us to write Yt =
∑

j εjψt−j as in

the proof of Theorem 1. We have
∑m

j=1 αjS[rjn] =
∑

j εjbj,n, with bj,n =
∑m

i=1 αi
∑[rin]

t=1 ψt−j . Since

m < ∞, the same types of bounds used in the proof of Theorem 5.2.3 of Taniguchi and Kakizawa

(2000) still apply. Hence
∑m

j=1 αjS[rjn] is asymptotically standard normal when normalized by the

square root of
∑

j b2
j,nσ2, which by algebra equals the variance of

∑m
j=1 αjS[rjn]. Expanding this

expression yields

m∑

i1,i2=1

αi1αi2

[ri1
n]∑

t1=1

[ri2
n]∑

t2=1

γt1−t2 =
m∑

i1=1

α2
i1

[ri1
n]∑

t1,t2=1

γt1−t2 + 2
∑

i1<i2

αi1αi2

[ri1
n]∑

t1=1

[ri2
n]∑

t2=1

γt1−t2

=
m∑

i1=1

α2
i1V[ri1

n] +
∑

i1<i2

αi1αi2

(
V[ri1

n] + V[ri2
n] − V[(ri2

−ri1
)n]

)
. (A.5)
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This final breakdown of the variance is true for any variance of a sum, and is generic. Dividing

(A.5) through by Vn gives the asymptotic expression

∼
m∑

i1=1

α2
i1r

β+1
i1

+
∑

i1<i2

αi1αi2

(
rβ+1
i1

+ rβ+1
i2

− (ri2 − ri1)
β+1

)
,

which is the same as the variance of
∑m

i=1 αiB(ri). In other words the limit of V
−1/2
n

∑m
j=1 αjS[rjn]

has the same distribution as
∑m

i=1 αiB(ri).

The P2 case is handled as follows. If LM and β > 0, we apply Theorem 5.2.2 of Taniguchi

and Kakizawa (2000); note that we only obtain a FBM limit if τ = 1. In the SM case a FBM

limit is also obtained by the same arguments (but things are easier since all powers of the acf are

summable). For the NM case, as in the proof of Theorem 1 we have (A.2), and we can substitute

[nr] for n in the summation. Clearly
∑[nr]

t=1 Xt/
√

Vn is Gaussian, and its asymptotic variance is

D1r
β+1. It is easy to see that this has the finite-dimensional distribution of FBM using (A.5).

For the P3 case the kth order cumulant of
∑m

i=1 αiS[rin] can be expanded into a k-fold sum

m∑

i1=1

m∑

i2=1

· · ·
m∑

ik=1

αi1αi2 · · ·αikcum (Zi1 , Zi2 , · · · , Zik) ,

where Zij =
∑[rij+1

n]

t=[rij
n]+1 Yt. The same overall bounds can then be obtained as in the proof of

Theorem 1, showing that all higher order cumulants with k > 2 of the normalized sum will tend

to zero. Again (A.5) shows that the variance converges to the variance of FBM, and so the result

follows.

Finally, we establish tightness. The criterion we use is given by Problem 4.11 of Karatzas and

Shreve (1991), which is appropriate for C[0, 1]. Letting γ = (κ + δ)/2, and taking any times s < t

and any n,

E
[
| (ξn(t)− ntµ)− (ξn(s)− nsµ) |2γV −γ

n

]

= V −γ
n E




∣∣∣∣∣∣

[nt]∑

j=[ns]+1

Yj + (nt− [nt])Y[nt]+1 − (ns− [ns])Y[ns]+1 − nµ(t− s)

∣∣∣∣∣∣

2γ


∼ V −γ
n E

[
|S[nt]−[ns] − ([nt]− [ns])µ|2γ

]

= V −γ
n O(V γ

[n(t−s)]) = O((t− s)(β+1)γ)

by Proposition 1. Because γ > 1/(β + 1), tightness is assured. This completes the proof. 2

Proof of Theorem 4. We wish to apply Theorem 3, which is in terms of ξn(t), to the result of

Proposition 4, which is in terms of Sn(t). We can do this because ξ̂n(t) = Ŝn(t)+ (nt− [nt])Y[nt]+1,

so that (ξ̂n(t) − ntµ)/
√

Vn is asymptotically equivalent to (Ŝn(t) − [nt]µ)/
√

Vn. Then all linear

or quadratic integral expressions of such processes will also be asymptotically the same. So note
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that Ŝi = S[rn] − rSn with r = i/n, and recognize the summations in the expression for WΛ,M in

Proposition 4 as Riemann sums; the result now follows at from Theorem 3. 2

Proof of Theorem 5. As in the proof of Theorem 4, it suffices to work with Sn(t) rather than

ξn(t). We have Ŝi = Zi − i
nZn −

(
1− i

n

)
Z0, and hence without loss of generality suppose that Zi

is mean zero. Using the abbreviation ∆n(i− j) = 2Λn(i− j)− Λn(i− j + 1)− Λn(i− j − 1),

nWΛ,M =
n∑

i,j=1

ŜiŜj∆n(i− j) (A.6)

=
n∑

i,j=1

ZiZj∆n(i− j)− 2Zn

n∑

i,j=1

i

n
Zj∆n(i− j)− 2Z0

n∑

i,j=1

(
1− i

n

)
Zj∆n(i− j)

+ 2Z0Zn

n∑

i,j=1

(
1− i

n

)
j

n
∆n(i− j) + Z2

n

n∑

i,j=1

ij

n2
∆n(i− j) + Z2

0

n∑

i,j=1

(
1− i

n

)(
1− j

n

)
∆n(i− j).

Using the Taylor series approximations for ∆n(h) derived in the proof of Proposition 4, we can

compute each of the six terms above. Each of these is of the form (up to multiplication by other

random variables)
∑n

i,j=1 XiXj∆n(i− j) for some random variables Xi, which is approximately

− 2b−2 1
n

[bn]−1∑

h=[cbn]+1

Λ̈
(

h

bn

)
1
n

n−h∑

i=1

XiXi+h

− 2b−1Λ̇+(c)
1
n

n−[cbn]∑

i=1

XiXi+[cbn]

+ 2b−1Λ̇−(1)
1
n

n−[bn]∑

i=1

XiXi+[bn],

up to oP (1) terms. Now in the first term in (A.6), we have Xi = Zi and 1
n

∑n−h
i=1 ZiZi+h

P−→
(1 − h/n)rh. Now if c = 0 we obtain 1

n

∑n−[cbn]
i=1 WiWi+[cbn]

P−→ r0; all other portions of the first

term tend to zero in probability, whether or not c = 0. For the second and third terms of (A.6),

we have Xj = Zj and Xi deterministic; then these terms tends to zero since Zj is mean zero. For

the fourth term of (A.6), the limit is 2Z0Z∗ times

−b−2

∫

cb<|r−s|<b
(1−r)s Λ̈

( |r − s|
b

)
drds−2b−1Λ̇+(c)

∫ 1−cb

0
(1−r)(r+cb) dr+2b−1Λ̇−(1)

∫ 1−b

0
(1−r)(r+b) dr.

The fifth term of (A.6) is asymptotic to Z2∗ times

−b−2

∫

cb<|r−s|<b
rs Λ̈

( |r − s|
b

)
drds− 2b−1Λ̇+(c)

∫ 1−cb

0
r(r + cb) dr + 2b−1Λ̇−(1)

∫ 1−b

0
r(r + b) dr,
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while the sixth term of (A.6) tends to Z2
0 times

− b−2

∫

cb<|r−s|<b
(1− r)(1− s)Λ̈(

|r − s|
b

) drds− 2b−1Λ̇+(c)
∫ 1−cb

0
(1− r)(1− r − cb) dr

+ 2b−1Λ̇−(1)
∫ 1−b

0
(1− r)(1− r − b) dr.

Combining the fourth, fifth, and sixth terms together yields Q(b) with C̃(r) = Z0 + r(Z∗ − Z0),

which interpolates between Z0 and Z∗. This establishes the convergence of nWΛ,M ; for the joint

convergence, note that we can rework the same proof for α(Sn − nµ) + γnWΛ,M for any α and γ,

since Sn − nµ = Zn − Z0. Hence up to terms oP (1), α(Sn − nµ) + γnWΛ,M can be expressed as

a bilinear combination of Z0 and Zn, which converges to α(Z∗ − Z0) + γP (b) after gathering like

terms. 2

Proof of Proposition 5. By Theorem 4 we know that Qn := nWΛ,bn/Vn
L=⇒ Q(b), and by

Proposition 1 we have Vn/n ∼ nβCL(n)/(β +1) in the LM/SM/NM case. Thus it follows that (18)

satisfies

β̂ ∼ β +
log Qn

log n
+

log (CL(n)/(β + 1))
log n

.

Since Qn = OP (1) and log L(n)/ log n → 0 for slowly-varying functions L, the estimator will be

consistent. Note that if the process is DM, we obtain

β̂ = −1 +
log Qn

log n
+

log Vn

log n

since Qn = nWΛ,bn/Vn. Now Vn → 2r0 in the DM case, so β̂
P−→ −1. 2
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[19] Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modeling Extremal Events for Insur-

ance and Finance. Berlin: Springer-Verlag.

[20] Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C. and Chen, B. C. (1998) New capabilities

and methods of the X-12-ARIMA seasonal adjustment program. Journal of Business and

Economic Statistics 16, 127–177 (with discussion).

[21] Gorodetskii, V. (1977) On convergence to semi-stable Gaussian processes. Theory Prob. Appl.

22, 498–508.

34



[22] Grenander, U. and Rosenblatt, M. (1957) Statistical Analysis of Stationary Time Series. New

York: Wiley.

[23] Hall, P. (1992) The Bootstrap and Edgeworth Expansion. Spinger-Verlag: New York.

[24] Hamilton, J.D. (1994) Time Series Analysis. Princeton: Princeton University Press.

[25] Hannan, E.J. (1970) Multiple Time Series. New York: John Wiley.

[26] Hosking, J.R.M. (1981) Fractional differencing. Biometrika, 68, 165-176.

[27] Hosoya, Y. (1996) Some limit theorems on stationary processes with long-range dependence.

Athens conference on applied probability and time series 2, 233–245. eds. P.M. Robinson and

R. Rosenblatt, Springer.

[28] Ibragimov, I. (1962) Some limit theorems for stationary processes. Theory of Probability and

its Applications 7, 349–382.

[29] Ibragimov, I. and Linnik, Y. (1971) Independent and Stationary Sequences of Random Vari-

ables. Wolters-Noordhof Publishing Groningen.

[30] Jach, A., McElroy, T., and Politis, D. (2011) Subsampling Inference for the Mean of Heavy-

tailed Long Memory Time Series. Journal of Time Series Analysis 33, 96–111.

[31] Kiefer, N., Vogelsang, T. and Bunzel, H. (2000) Simple robust testing of regression hypotheses.

Econometrica 68, 695–714.

[32] Kiefer, N. and Vogelsang, T. (2002) Heteroscedastic-autocorrelation robust standard errors

using the Bartlett kernel without truncation. Econometrica 70, 2093–2095.

[33] Kiefer, N. and Vogelsang, T. (2005) A new asymptotic theory for heteroskedasticity-

autocorrelation robust tests. Econometric Theory 21, 1130–1164.

[34] Kolmogorov, A. and Rozanov, J. (1960) On a strong mixing condition for a stationary Gaussian

process. Theory of Probability and its Applications 5, 204–208.

[35] Lahiri, S. (2003) Resampling Methods for Dependent Data. New York: Springer-Verlag.

[36] Lopez, J. (1997) The power of the ADF test. Economics Letters 57, 5–10.

[37] Maravall, A. and Caporello, G. (2004) Program TSW: Revised Reference Manual. Working

Paper 2004, Research Department, Bank of Spain. http://www.bde.es

[38] Marinucci, D. and Robinson, P. (2000) Weak convergence of multivariate fractional processes.

Stochastic Processes and their Applications 86, 103–120.

35



[39] McElroy, T. and Politis, D. (2007) Computer-intensive rate estimation, diverging statistics,

and scanning. Annals of Statistics 35, 1827–1848.

[40] McElroy, T. and Politis, D. (2009) Fixed-b asymptotics for the studentized mean from time

series with short, long or negative memory. UC San Diego: Department of Economics, UCSD.

[41] McElroy, T. and Politis, D. (2011) Fixed-b asymptotics for the studentized mean for long and

negative memory time series. Econometric Theory 28, 1–11.

[42] Palma, W. (2007) Long-Memory Time Series. New York: John Wiley and Sons.

[43] Parker, C., Paparoditis, E., and Politis, D. (2006) Unit root testing via the stationary boot-

strap. Journal of Econometrics 133, 601–638.

[44] Parzen, E. (1957) On consistent estimates of the spectrum of a stationary time series. Annals

of Mathematical Statistics 28, 329–348.

[45] Percival, D.B. and Walden, A.T.(1993). Spectral analysis for physical applications. Multitaper

and conventional univariate techniques. Cambridge: Cambridge University Press.

[46] Phillips, P. and Perron, P. (1998) Testing for a unit root in time series regression. Biometrika

75, 335–346.

[47] Politis, D. (2001) On nonparametric function estimation with infinite-order flat-top kernels, in

Probability and Statistical Models with applications, Ch. Charalambides et al. (Eds.), Chapman

and Hall/CRC: Boca Raton, pp/ 469–483.

[48] Politis, D. (2005) Higher-order accurate, positive semi-definite estimation of large-sample co-

variance and spectral density matrices, UCSD Dept. of Economics Discussion Paper 2005-03.

[49] Politis, D. and Romano, J. (1995) Bias-corrected nonparametric spectral estimation. Journal

of Time Series Analysis 16, 67–103.

[50] Politis, D., Romano, J., and Wolf, M. (1999) Subsampling. New York: Springer-Verlag.

[51] Priestley, M.B. (1981) Spectral Analysis and Time Series. New York: Adademic Press.

[52] Robinson, P. (1994) Semiparametric analysis of long memory time series. Annals of Statistics

22, 515–539.

[53] Robinson, P. (2005) Robust covariance matrix estimation: HAC estimates with long memory/

antipersistence correction. Econometric Theory 21, 171–180.

[54] Rosenblatt, M. (1956) A central limit theorem and a strong mixing condition. Proceedings of

the National Academy of Sciences 42, 43–47.

36



[55] Rosenblatt, M. (1961) Independence and dependence. Proc. Fourth Berkeley Symp. on Math.

Statist. and Prob., Vol.2, University of California Press, 431–443.

[56] Rosenblatt, M. (1984) Stochastic processes with short-range and long-range dependence. In

Statistics: An Appraisal, Proceedings of the 50th Anniversary Conference (David, H.A. and

David, H.T., Eds.), The Iowa State University Press, Ames, IA, pp. 509520.

[57] Rosenblatt, M. (1985) Stationary Sequences and Random Fields. Boston: Birkhäuser.
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Differential Memory

Sample Size Tapers

n= 250 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 82.3 88.9 95.5 75.9 85.5 94.5 75.3 85.3 94.7 58.5 65.3 75.4 58.9 67.6 81.7

86.2 91.7 97.6 40.1 48.7 61.9 69.5 82.7 93.8 45.0 54.6 67.3 41.0 50.3 63.9

100 100 100 100 100 100 89.4 92.9 95.3 100 100 100 100 100 100

b = .5 81.8 88.4 95.0 78.8 89.3 98.1 78.5 90.0 98.1 66.2 74.4 86.7 74.1 85.2 95.6

88.1 93.4 97.9 87.9 95.5 99.0 81.0 92.8 97.7 62.3 74.7 90.8 84.8 97.0 99.3

99.6 100 100 55.4 63.9 74.3 60.1 68.9 80.8 92.2 97.2 99.7 67.4 77.4 89.4

b = 1 82.8 88.9 94.3 83.8 91.4 97.8 75.3 85.9 94.8 72.0 82.3 92.4 77.9 86.4 95.6

88.2 94.6 98.2 87.6 96.0 99.2 81.5 91.1 97.3 81.3 92.6 98.8 86.9 96.9 99.4

93.9 98.0 99.8 91.7 97.3 99.4 79.2 89.2 96.6 86.9 97.1 99.6 93.5 98.9 100

n = 500 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 82.1 88.8 95.6 78.0 88.9 97.5 73.7 85.0 95.4 54.4 64.0 76.3 64.6 73.7 86.1

86.7 92.7 98.0 79.4 90.7 98.5 79.8 89.6 97.4 50.6 58.5 71.6 56.0 68.2 86.8

91.4 96.7 99.7 43.0 52.6 77.4 69.5 85.2 97.2 40.3 49.3 63.5 44.8 52.7 73.8

b = .5 80.2 87.4 94.3 78.5 88.6 98.1 78.8 89.4 98.0 67.3 75.7 87.6 74.2 84.4 95.3

86.1 91.6 97.6 89.4 97.3 99.0 88.9 95.8 99.0 67.0 79.8 94.9 86.1 95.4 99.2

91.1 96.9 100 96.6 98.4 99.7 91.9 96.9 99.2 66.8 79.1 97.9 91.2 97.0 99.4

b = 1 81.4 88.2 95.4 80.3 89.2 97.6 79.5 88.6 96.9 71.2 80.0 90.2 78.1 84.1 93.8

87.2 93.1 98.7 88.5 95.4 98.8 81.5 89.9 97.5 84.1 93.7 99.2 82.8 93.2 99.6

92.0 97.8 99.7 88.7 95.8 98.9 80.5 89.4 98.0 88.6 98.2 99.9 90.9 99.1 100

n = 1000 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 80.9 88.0 96.5 76.9 88.0 97.4 75.4 86.1 96.8 56.8 63.8 76.9 65.4 76.2 88.8

86.1 92.1 97.8 82.7 92.9 98.7 76.8 90.2 97.8 51.2 58.6 71.7 62.8 74.4 92.8

89.9 95.2 99.1 82.2 93.0 98.3 76.3 89.4 97.7 35.5 42.8 58.4 48.1 59.7 85.8

b = .5 81.9 87.6 95.0 75.3 86.1 97.2 77.5 87.8 98.1 67.0 73.8 83.6 70.3 79.3 93.3

86.4 91.5 97.8 86.6 95.7 99.2 89.1 97.0 99.5 71.7 81.6 97.1 81.7 94.2 99.4

90.0 95.5 99.8 96.3 98.2 99.6 93.9 98.1 99.7 69.3 84.4 99.3 94.0 98.5 99.5

b = 1 82.2 88.1 94.6 79.9 88.4 97.4 78.4 89.0 96.9 68.9 76.1 88.0 78.4 84.1 91.4

87.1 93.1 97.9 85.8 94.4 99.6 81.2 90.9 98.4 80.1 91.8 99.4 83.2 92.3 99.3

89.5 95.2 991. 88.7 96.9 99.0 79.3 90.8 98.3 88.7 98.8 100 91.5 99.3 100

Table 1: Empirical size for two-sided test with Type I error rate α = .10, .05, .01 for the left, middle,
and right hand entries respectively, in each cell. In each cell, the first row is for sampling fraction
a = .2, the second row for a = .1, and the third row for a = .04. Various sample sizes and taper
bandwidths b are considered. The data process is Differential Memory.
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Negative Memory: β = −.8

Sample Size Tapers

n= 250 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 86.6 90.7 95.4 81.3 88.5 93.9 81.5 87.8 93.3 84.4 89.7 94.3 83.6 89.4 94.4

88.9 93.7 97.6 76.6 83.9 90.4 81.7 89.0 95.5 83.3 89.9 95.7 82.0 87.8 93.1

100 100 100 99.9 100 100 99.8 100 100 100 100 100 100 100 100

b = .5 84.5 90.6 95.0 85.0 90.2 95.8 84.5 91.1 96.5 81.7 87.6 92.2 83.4 89.0 94.5

90.1 95.2 97.6 87.8 93.7 98.0 88.0 94.1 97.4 85.4 91.3 95.9 86.6 93.5 96.7

99.4 100 100 93.8 96.9 99.4 89.6 94.1 97.3 99.2 99.8 100 95.8 98.8 100

b = 1 84.1 88.6 94.0 84.0 90.4 96.7 83.0 89.5 96.0 81.7 88.2 95.4 85.9 92.5 97.3

90.1 94.1 97.1 88.2 94.7 97.8 88.9 94.8 98.1 89.4 94.5 98.2 88.0 94.5 98.2

94.0 97.4 99.6 89.3 93.7 98.7 91.1 94.9 98.7 90.2 95.1 98.3 90.5 95.2 98.9

n = 500 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 84.7 90.9 96.6 82.0 87.4 92.0 80.0 85.8 91.7 80.9 86.9 93.8 78.5 84.2 91.2

90.7 95.0 98.1 83.2 89.1 94.8 85.2 89.8 95.6 86.7 91.1 96.8 85.0 90.9 95.6

95.7 98.4 99.6 85.2 90.6 96.5 88.4 92.2 97.7 89.7 93.5 98.2 86.2 92.3 96.8

b = .5 85.4 90.7 95.5 83.3 88.6 96.1 82.7 89.5 96.5 81.6 86.4 91.9 82.4 89.4 95.9

91.4 94.8 98.0 87.4 93.3 98.5 86.9 92.9 98.0 85.5 91.2 96.9 88.2 93.0 97.6

93.5 97.1 99.6 89.0 94.2 98.9 87.9 93.0 98.3 88.8 93.9 97.8 89.5 93.9 98.1

b = 1 86.8 92.4 96.6 86.8 93.0 97.4 83.7 91.1 97.4 82.0 88.5 94.4 84.1 90.1 97.0

89.6 94.5 98.0 89.3 93.8 98.4 89.0 94.0 98.8 88.3 93.2 97.1 88.0 94.3 98.4

90.9 96.3 99.5 89.9 93.4 98.6 89.4 95.0 98.8 90.2 95.0 99.5 89.7 94.0 98.4

n = 1000 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 86.1 90.7 96.1 84.0 89.3 95.0 80.5 87.2 93.4 82.3 89.3 94.0 81.4 86.4 92.3

89.1 94.4 98.4 85.7 91.0 95.8 86.9 92.7 98.0 87.1 91.9 97.8 86.7 92.5 96.4

92.4 97.4 99.2 86.9 92.8 97.8 87.9 93.3 98.5 86.3 91.2 97.6 87.6 93.2 98.2

b = .5 84.4 89.5 95.6 82.1 89.9 96.9 83.2 88.9 97.5 83.6 89.0 94.0 83.5 89.7 95.6

87.9 93.6 97.9 88.7 94.0 98.4 89.2 94.2 98.2 86.7 91.5 97.4 87.6 93.1 98.5

92.0 96.1 99.6 88.5 92.7 98.5 90.6 95.6 98.5 90.5 94.0 98.6 89.4 94.1 98.8

b = 1 85.3 90.5 95.1 85.2 93.0 98.5 84.6 90.7 97.9 85.0 92.0 96.9 84.9 91.6 97.3

91.4 95.5 98.5 90.2 94.9 99.3 88.2 93.9 98.9 86.9 92.6 97.3 91.1 95.7 98.9

92.5 97.3 99.7 88.8 94.3 98.8 91.1 95.4 99.3 88.0 94.8 99.1 90.8 95.6 99.4

Table 2: Empirical size for two-sided test with Type I error rate α = .10, .05, .01 for the left, middle,
and right hand entries respectively, in each cell. In each cell, the first row is for sampling fraction
a = .2, the second row for a = .1, and the third row for a = .04. Various sample sizes and taper
bandwidths b are considered. The data process is Negative Memory with β = −.8.
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Negative Memory: β = −.6

Sample Size Tapers

n= 250 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 84.0 88.2 94.1 81.9 86.3 91.7 78.1 84.7 90.5 82.0 87.6 92.4 82.8 88.0 92.6

89.9 94.8 97.6 81.2 87.0 92.9 84.2 90.3 95.4 85.3 92.3 96.5 84.5 90.5 94.5

99.8 100 100 99.9 100 100 99.6 100 100 100 100 100 99.9 99.9 100

b = .5 85.3 89.8 94.0 84.8 89.0 94.9 81.8 89.6 96.5 82.4 87.6 91.8 82.2 88.0 94.3

88.3 92.9 96.6 87.6 92.4 96.7 87.4 92.3 96.4 85.4 91.2 95.6 85.8 91.6 96.5

98.4 99.1 99.5 94.0 97.0 98.8 90.9 93.4 97.4 97.4 99.2 100 95.7 98.2 99.5

b = 1 85.9 90.8 93.2 84.5 90.0 96.0 83.7 90.7 95.8 84.1 88.4 94.4 85.7 90.4 96.6

89.0 93.3 96.6 87.5 93.3 97.3 89.1 93.5 97.6 86.3 92.0 96.1 88.7 94.4 99.0

92.0 96.5 99.2 91.6 95.7 98.4 89.7 94.6 98.8 89.6 94.3 97.8 90.5 94.6 98.7

n = 500 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 84.7 88.8 94.4 80.3 86.7 92.8 82.8 88.2 92.6 84.7 89.8 95.3 84.2 88.8 95.3

89.5 94.7 98.5 85.7 92.2 95.9 85.2 90.4 95.4 87.1 92.4 96.9 86.7 92.2 96.5

92.9 96.0 98.8 86.2 91.8 97.3 88.9 94.0 98.6 89.9 95.6 98.6 88.1 92.5 97.4

b = .5 82.8 87.7 92.5 81.9 89.5 96.0 82.3 88.8 96.2 79.7 84.8 91.1 81.0 88.0 94.4

87.6 91.9 96.7 86.5 91.9 97.3 86.6 92.6 98.3 87.5 92.7 96.8 87.8 92.4 97.9

91.8 96.2 98.9 89.5 94.4 98.4 88.8 93.5 98.1 88.7 93.8 97.2 89.6 94.5 98.9

b = 1 86.9 91.0 95.2 83.6 90.7 97.3 85.3 91.2 97.7 79.4 87.0 94.0 85.2 90.7 97.1

89.0 93.5 97.2 89.1 94.4 98.5 88.4 93.1 98.6 87.1 91.9 97.1 86.5 92.6 98.3

92.6 96.5 99.2 90.0 94.9 98.8 87.3 93.4 98.4 89.3 94.0 98.6 89.7 95.2 99.0

n = 1000 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 83.6 89.1 93.7 82.1 86.5 91.5 83.3 88.1 92.8 83.7 89.7 94.4 81.6 87.6 93.7

88.3 93.2 97.4 85.5 91.1 96.5 86.6 92.7 97.1 87.2 93.0 96.8 84.0 90.2 95.3

93.2 96.4 99.1 90.5 95.3 98.7 88.3 92.6 97.8 90.3 94.0 97.9 89.0 93.2 98.2

b = .5 82.9 89.4 94.5 83.3 89.5 96.7 83.7 89.9 97.3 78.8 84.8 92.4 82.8 88.0 94.5

90.3 93.9 97.9 85.8 92.5 97.9 88.0 93.4 98.0 86.5 91.8 96.8 87.0 92.3 97.5

90.6 95.1 99.1 89.7 93.4 98.7 88.3 93.6 98.8 89.0 93.9 98.3 86.9 93.0 98.5

b = 1 86.0 91.0 96.0 85.5 91.0 96.0 86.0 92.4 97.4 84.5 89.8 96.0 84.9 91.3 97.1

88.1 93.4 97.2 87.4 93.3 98.0 87.2 91.8 98.4 85.2 91.7 97.1 87.5 94.1 98.7

91.8 95.9 99.1 88.2 94.3 98.7 88.7 93.3 99.2 88.3 93.5 98.5 89.5 95.5 99.5

Table 3: Empirical size for two-sided test with Type I error rate α = .10, .05, .01 for the left, middle,
and right hand entries respectively, in each cell. In each cell, the first row is for sampling fraction
a = .2, the second row for a = .1, and the third row for a = .04. Various sample sizes and taper
bandwidths b are considered. The data process is Negative Memory with β = −.6.
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Negative Memory: β = −.4

Sample Size Tapers

n= 250 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 85.2 89.0 93.2 82.2 86.5 92.0 82.2 86.6 90.7 83.7 88.7 92.6 79.7 84.9 90.8

87.5 92.0 96.0 84.3 89.1 93.8 83.9 88.5 93.6 86.6 90.8 94.4 83.0 88.7 93.3

99.5 99.9 100 99.3 99.9 100 98.8 99.6 99.9 99.6 100 100 99.5 100 100

b = .5 79.2 83.2 88.9 80.8 86.8 93.4 82.2 87.8 95.5 81.3 85.8 90.2 80.7 86.0 92.8

84.9 90.5 95.2 84.9 91.2 96.5 85.0 92.6 96.8 85.1 90.1 94.5 87.2 92.9 97.2

96.9 98.7 99.7 92.5 96.0 98.6 90.3 94.1 97.7 96.7 98.6 99.6 94.1 96.9 99.3

b = 1 80.7 87.5 91.8 85.2 91.0 97.3 83.8 89.6 95.8 83.2 88.1 92.8 86.4 91.6 97.0

89.0 94.0 97.4 90.1 95.1 98.3 87.6 94.6 98.2 86.8 92.2 96.6 86.0 92.0 97.0

90.1 95.1 98.3 90.5 94.8 98.1 90.4 94.5 98.5 90.3 94.9 98.0 89.9 94.4 98.3

n = 500 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 81.2 86.8 92.4 80.0 85.3 90.5 82.0 87.1 92.1 83.5 88.0 92.8 82.3 88.1 93.0

87.0 90.4 95.8 85.0 89.4 94.7 86.6 91.0 95.0 85.9 91.2 95.3 87.2 91.5 95.2

90.9 95.8 99.0 86.6 91.4 96.2 89.7 94.2 98.6 89.0 93.9 97.6 88.6 93.2 97.6

b = .5 82.4 87.3 92.2 81.6 88.9 95.7 81.1 88.9 95.6 81.5 85.8 89.6 81.7 87.7 94.3

87.2 92.1 96.2 87.7 93.3 97.8 86.9 92.6 98.2 85.9 91.1 96.4 85.8 92.0 97.1

90.8 96.0 98.5 87.3 94.2 98.1 88.9 94.4 98.2 88.6 93.5 97.6 88.7 94.1 98.3

b = 1 84.1 87.1 91.5 84.0 90.5 96.6 83.2 89.8 96.9 82.3 87.7 93.4 82.9 90.1 96.8

86.2 91.2 96.4 88.3 94.0 98.1 86.1 92.1 97.8 87.5 92.5 96.6 88.1 93.5 98.4

91.2 95.1 98.5 88.4 93.6 99.0 88.9 94.7 98.9 89.1 94.7 99.3 88.9 94.1 98.7

n = 1000 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 84.9 88.7 92.7 82.9 87.8 92.1 82.0 87.2 91.1 83.3 88.0 92.9 83.3 89.1 92.7

88.5 92.3 95.7 84.2 90.2 95.2 87.2 92.2 96.2 85.9 90.3 95.7 86.4 90.8 95.4

88.4 93.4 97.6 89.5 93.8 97.6 89.3 93.9 97.5 87.7 93.0 98.1 88.3 93.0 96.7

b = .5 82.6 87.1 92.6 83.0 87.8 94.9 83.6 88.2 94.5 80.9 85.7 90.5 81.0 86.8 93.1

88.7 92.8 96.2 84.6 90.9 98.4 86.8 93.1 98.2 85.5 92.2 95.9 86.5 91.2 97.1

90.0 94.0 97.9 89.4 95.0 99.2 86.8 93.8 99.3 89.3 95.0 98.4 89.2 94.3 98.0

b = 1 82.6 88.6 93.1 84.3 90.6 97.3 86.4 92.2 98.4 81.0 86.8 93.2 86.1 91.3 97.1

86.6 91.6 96.3 87.1 93.6 98.4 86.7 93.5 98.9 86.5 91.9 96.2 86.5 92.8 98.1

88.0 94.1 98.3 88.1 93.7 98.6 87.6 94.4 99.4 88.9 93.8 98.4 90.4 94.7 99.1

Table 4: Empirical size for two-sided test with Type I error rate α = .10, .05, .01 for the left, middle,
and right hand entries respectively, in each cell. In each cell, the first row is for sampling fraction
a = .2, the second row for a = .1, and the third row for a = .04. Various sample sizes and taper
bandwidths b are considered. The data process is Negative Memory with β = −.4.
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Negative Memory: β = −.2

Sample Size Tapers

n= 250 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 79.0 83.8 88.6 79.3 84.1 88.1 80.1 83.7 88.1 79.8 85.4 90.9 78.6 84.2 89.7

84.9 89.7 93.7 83.2 87.7 92.2 83.8 88.3 92.8 84.0 89.6 93.8 82.8 88.9 92.9

97.6 99.3 99.8 97.1 99.0 99.9 96.4 98.4 99.5 97.8 99.1 99.6 96.6 99.2 99.8

b = .5 80.1 85.3 90.3 80.4 86.5 92.6 80.7 87.2 94.7 80.6 84.6 89.0 79.6 84.7 91.1

85.5 92.3 94.8 84.6 90.2 96.7 84.7 91.3 96.1 86.2 90.9 95.2 84.8 90.0 95.2

94.2 97.1 99.7 91.3 94.4 98.5 90.3 93.9 97.8 93.3 96.5 99.3 91.6 94.7 98.4

b = 1 80.2 86.0 91.0 82.7 88.6 95.4 81.3 87.8 94.8 81.0 85.8 91.2 83.5 90.1 96.1

85.6 90.4 94.4 88.0 93.6 97.5 86.6 93.5 97.3 87.3 91.6 95.7 87.2 93.8 98.0

87.2 93.8 97.7 89.2 93.9 98.7 87.7 93.3 98.2 87.6 92.5 97.3 88.6 94.8 98.4

n = 500 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 80.4 85.8 90.0 80.9 85.4 90.1 79.8 84.6 89.0 80.8 85.1 90.9 80.5 84.3 90.3

87.1 91.8 95.3 86.8 90.0 93.8 85.3 90.7 95.4 85.6 89.3 94.3 85.5 89.3 93.1

90.7 95.4 98.5 86.5 92.0 96.8 89.8 94.9 98.5 86.4 91.6 97.1 90.3 93.9 97.6

b = .5 79.1 84.6 88.9 81.3 87.6 94.3 82.0 89.7 95.2 81.3 85.8 91.4 81.0 86.8 92.6

88.2 91.6 95.7 86.3 91.7 96.6 87.2 92.9 98.1 84.3 89.0 94.3 84.4 89.5 95.2

89.9 94.7 98.2 90.3 94.3 98.0 86.7 93.1 98.6 87.6 92.5 96.8 88.2 93.9 98.3

b = 1 81.4 86.4 91.2 82.6 88.8 96.6 84.8 90.6 96.7 80.9 86.6 92.2 83.3 89.7 95.7

84.5 89.9 95.1 87.8 92.6 97.7 86.7 92.2 98.0 87.9 93.0 96.5 88.0 93.0 98.5

89.8 94.8 98.5 89.8 94.7 98.9 87.4 93.1 98.7 88.6 93.9 98.2 90.5 94.9 99.4

n = 1000 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 81.2 86.2 90.9 78.9 83.8 88.7 79.9 85.7 90.4 80.1 85.5 90.1 81.4 86.2 91.0

86.9 89.5 94.6 85.6 90.2 95.1 86.4 90.3 94.8 84.6 89.8 94.3 83.8 89.9 95.5

89.4 94.3 97.9 88.6 93.3 97.2 89.1 94.3 97.7 90.6 94.6 97.8 88.4 92.5 97.3

b = .5 80.7 85.1 89.7 82.7 88.2 94.8 81.5 87.0 95.7 79.2 84.1 90.3 80.6 87.5 93.5

85.4 90.5 96.0 86.7 92.1 97.9 84.4 91.3 98.3 84.7 90.8 95.3 85.7 89.7 97.0

87.0 91.9 97.9 86.6 92.3 97.6 87.9 94.1 98.9 88.0 92.8 97.7 87.7 93.1 98.6

b = 1 82.9 87.2 90.7 85.3 91.4 97.0 83.3 89.1 96.9 83.0 88.7 94.1 83.1 89.3 96.1

85.8 91.2 95.6 86.5 92.2 98.2 87.5 92.8 98.3 86.7 92.4 97.1 86.5 91.6 97.5

89.7 94.4 98.2 88.4 93.4 98.5 87.8 93.2 98.6 87.2 93.0 97.5 87.9 93.3 98.4

Table 5: Empirical size for two-sided test with Type I error rate α = .10, .05, .01 for the left, middle,
and right hand entries respectively, in each cell. In each cell, the first row is for sampling fraction
a = .2, the second row for a = .1, and the third row for a = .04. Various sample sizes and taper
bandwidths b are considered. The data process is Negative Memory with β = −.2.
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Short Memory

Sample Size Tapers

n= 250 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 77.8 82.0 86.2 77.3 82.1 85.7 77.8 82.8 87.6 78.6 83.7 88.4 77.0 82.6 85.7

84.1 89.9 93.1 80.7 86.3 90.6 81.8 88.4 93.0 85.7 89.9 93.3 85.8 90.0 93.4

91.6 95.8 98.0 91.5 95.5 98.6 92.2 95.9 98.7 91.4 96.4 98.9 92.6 95.7 98.8

b = .5 79.4 84.7 88.0 79.3 85.4 91.2 81.5 86.4 93.8 80.0 84.1 87.5 77.3 83.2 89.6

84.3 89.9 93.7 84.6 89.4 94.9 85.2 92.4 96.9 85.0 90.2 93.6 83.3 89.3 94.9

89.6 94.7 98.3 89.7 94.1 97.8 89.0 92.8 97.2 91.2 95.3 98.4 90.1 93.6 98.2

b = 1 79.3 83.4 87.9 81.3 88.6 94.9 82.7 89.9 95.8 79.5 84.6 88.9 83.0 88.4 94.2

81.4 87.9 92.4 87.1 92.9 97.2 85.5 91.9 96.9 84.0 90.7 94.7 84.2 91.8 97.8

87.4 92.0 97.2 88.9 93.3 97.7 88.7 92.9 98.1 89.5 94.2 98.2 89.0 93.9 97.8

n = 500 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 77.7 83.9 87.5 77.4 81.3 85.0 81.7 86.7 90.6 78.7 82.5 87.0 77.6 82.8 86.7

84.6 88.8 92.1 84.5 89.4 94.4 85.4 90.3 94.1 84.8 88.9 93.3 82.9 88.1 92.6

88.2 92.9 97.2 87.7 92.4 96.7 87.4 93.1 97.7 86.9 92.1 97.0 88.3 93.6 97.3

b = .5 80.6 84.9 89.1 81.1 85.2 91.3 81.7 88.7 94.8 75.7 80.4 86.3 78.7 83.9 90.7

85.1 89.4 93.9 86.5 91.6 97.7 85.6 91.9 97.2 84.0 88.9 93.4 83.7 89.7 96.5

86.9 91.6 96.8 88.2 93.8 98.7 87.0 92.8 98.4 87.0 92.3 97.2 90.0 93.4 98.3

b = 1 78.5 84.6 88.8 83.2 89.1 95.3 83.6 89.5 95.5 81.2 85.6 90.1 82.8 88.4 94.5

85.3 91.1 95.6 85.3 90.6 97.0 88.3 93.2 97.7 86.7 90.6 95.6 87.2 93.3 97.6

86.7 92.5 97.3 87.2 93.1 98.6 87.8 94.4 98.4 86.5 92.5 98.0 87.4 93.9 99.0

n = 1000 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 77.5 82.3 86.3 77.9 82.2 86.9 80.1 84.2 87.8 78.9 82.9 87.8 78.7 82.4 87.1

84.4 89.1 93.6 84.2 89.5 92.9 84.9 89.3 93.7 84.8 89.0 93.2 84.6 89.1 93.0

86.4 93.1 97.2 87.8 92.5 97.7 88.6 93.9 97.5 88.5 93.1 96.8 87.2 91.9 97.5

b = .5 76.6 81.6 86.2 79.6 85.3 92.5 80.5 87.0 94.0 77.5 83.6 88.0 80.0 84.7 91.1

83.4 88.1 93.9 84.6 90.7 97.5 85.8 91.9 97.8 83.1 88.8 93.6 86.1 90.1 95.9

88.0 93.0 96.7 89.2 93.4 97.7 88.2 92.4 98.4 88.6 93.7 97.7 86.7 91.3 98.0

b = 1 77.2 82.3 88.2 82.9 89.4 96.2 80.8 87.7 95.9 76.0 82.2 87.7 81.2 87.3 94.0

85.3 90.2 93.9 88.4 93.2 99.1 85.1 91.8 97.7 88.3 92.6 96.3 85.2 91.9 97.6

87.9 92.4 96.9 87.0 93.3 98.1 89.6 93.7 99.0 88.5 92.6 98.2 88.7 93.6 98.6

Table 6: Empirical size for two-sided test with Type I error rate α = .10, .05, .01 for the left, middle,
and right hand entries respectively, in each cell. In each cell, the first row is for sampling fraction
a = .2, the second row for a = .1, and the third row for a = .04. Various sample sizes and taper
bandwidths b are considered. The data process is Short Memory.
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Long Memory: β = .2

Sample Size Tapers

n= 250 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 78.2 82.1 84.7 81.3 85.6 88.5 75.0 78.4 82.4 80.0 82.6 85.9 80.2 83.7 86.6

89.5 92.4 94.3 90.1 93.1 94.6 87.7 91.8 94.1 91.0 94.2 95.6 89.7 92.5 94.4

80.8 87.6 94.7 81.4 88.6 95.6 84.0 90.3 95.5 75.7 84.5 93.6 84.3 90.0 95.6

b = .5 79.2 82.6 85.3 78.6 83.4 88.7 81.1 85.7 91.7 77.9 81.3 84.4 78.3 82.8 87.2

85.6 90.9 94.1 83.5 89.2 93.3 84.5 90.2 95.5 86.2 90.6 95.0 83.3 89.3 94.3

93.8 96.2 98.3 94.4 97.1 99.2 95.2 97.2 99.1 92.7 96.1 98.5 95.8 97.6 99.1

b = 1 77.5 81.8 86.3 81.1 87.4 92.7 81.4 87.4 94.8 76.8 81.6 86.8 80.3 86.5 91.4

87.4 92.8 95.6 85.0 91.6 97.0 88.8 94.1 98.1 83.7 90.2 94.4 84.7 90.7 96.3

91.1 94.8 98.3 91.8 95.2 98.8 89.7 94.0 97.8 91.8 96.0 99.0 90.1 94.7 98.7

n = 500 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 78.2 82.9 85.8 77.5 81.9 85.1 75.8 79.2 83.3 78.2 81.7 85.4 77.1 82.4 85.8

87.7 91.6 94.0 85.1 88.8 92.6 87.3 91.4 94.6 89.7 91.5 94.9 87.6 90.9 93.8

94.3 97.3 98.9 93.4 96.0 98.4 94.4 96.9 98.7 95.1 97.5 98.8 95.4 97.5 98.9

b = .5 77.6 81.1 85.2 77.1 81.8 87.7 77.9 84.6 92.4 77.8 82.6 86.1 79.8 84.9 89.3

85.5 90.7 94.6 84.3 89.6 95.7 84.0 90.3 95.9 85.4 90.0 93.9 83.8 89.3 94.7

92.3 95.8 98.3 91.5 94.1 98.3 89.2 94.8 99.4 89.9 94.1 98.1 89.0 93.6 98.3

b = 1 79.3 84.1 87.4 79.3 86.7 93.1 81.5 87.9 95.1 77.5 83.0 88.4 79.6 85.9 92.9

88.4 92.6 96.0 86.7 92.5 97.5 88.3 92.3 97.9 84.9 88.9 93.5 86.7 90.7 96.5

91.5 94.9 97.7 89.3 94.5 98.8 92.3 95.4 98.8 89.4 94.7 98.6 89.3 94.7 97.6

n = 1000 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 79.3 82.5 86.1 78.1 82.1 84.8 78.3 82.6 84.7 ‘ 78.5 82.4 86.5 78.0 82.1 84.6

85.8 90.4 93.8 85.2 89.8 93.8 86.6 90.4 94.9 88.4 91.0 93.6 85.4 89.9 93.1

93.1 95.8 98.1 93.1 96.1 98.3 92.6 95.6 98.0 93.8 97.0 99.0 92.6 96.1 98.8

b = .5 76.1 81.2 85.0 78.2 83.6 89.0 77.2 83.8 92.7 76.2 79.7 83.1 77.7 82.3 87.1

84.5 89.8 93.2 83.7 90.0 94.7 85.5 91.9 96.7 84.0 89.1 92.9 84.8 89.7 95.1

91.3 95.3 98.8 87.3 92.5 98.2 90.2 95.1 98.4 90.6 94.2 98.2 90.5 94.6 98.0

b = 1 77.9 83.0 87.8 82.8 88.0 94.5 81.1 89.1 96.1 78.7 83.1 87.9 80.4 86.0 92.8

84.4 90.1 94.7 86.8 93.0 97.5 88.1 92.8 98.5 86.1 91.3 94.9 84.0 90.7 96.8

91.7 94.7 98.3 90.2 94.2 98.6 91.4 95.7 99.5 88.9 93.8 97.6 90.7 94.2 98.4

Table 7: Empirical size for two-sided test with Type I error rate α = .10, .05, .01 for the left, middle,
and right hand entries respectively, in each cell. In each cell, the first row is for sampling fraction
a = .2, the second row for a = .1, and the third row for a = .04. Various sample sizes and taper
bandwidths b are considered. The data process is Long Memory with β = .2.
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Long Memory: β = .4

Sample Size Tapers

n= 250 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 76.7 80.6 83.4 74.3 78.0 80.3 76.1 79.2 82.1 75.9 78.9 81.7 76.0 79.5 83.0

87.4 90.7 94.1 87.5 92.0 94.4 85.7 89.6 92.0 87.0 90.9 93.2 86.8 90.1 93.4

73.4 80.8 88.1 76.1 83.9 91.6 81.6 87.1 93.5 69.8 77.5 86.8 76.0 83.7 91.7

b = .5 72.6 76.8 81.7 76.7 80.8 85.9 79.2 84.9 90.0 74.6 79.1 81.8 74.4 78.4 84.4

83.6 88.2 92.3 81.9 88.0 93.6 83.3 89.6 95.1 84.8 90.0 92.6 82.8 88.9 94.0

90.0 95.0 98.0 93.3 96.5 98.4 94.4 96.7 98.7 90.3 94.5 97.4 91.0 95.0 97.3

b = 1 73.3 79.2 83.8 76.7 83.6 91.7 78.3 85.8 93.0 76.5 81.3 86.3 76.4 82.8 89.2

83.2 88.5 92.1 84.6 90.4 96.2 84.2 91.6 97.6 82.7 88.5 93.1 84.0 89.6 94.8

91.2 95.7 98.5 89.0 94.4 98.0 91.1 95.4 98.6 90.7 95.5 99.2 89.5 93.8 97.8

n = 500 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 75.8 80.7 83.7 74.7 77.8 80.5 74.3 78.6 81.9 78.2 81.5 83.8 76.9 80.0 83.4

86.8 90.3 93.4 86.0 89.4 92.1 85.4 89.3 92.6 86.9 89.8 94.2 84.9 88.5 91.8

92.2 95.7 98.0 93.4 96.3 98.7 93.6 96.6 98.7 94.1 96.4 98.8 95.0 97.7 98.9

b = .5 75.0 79.3 83.0 75.2 80.7 85.9 76.6 81.8 89.7 73.3 78.3 81.7 76.1 79.6 85.2

83.6 87.9 91.9 83.2 87.8 94.1 83.4 89.1 95.7 81.8 86.9 91.7 85.1 91.0 94.7

89.2 93.9 98.3 90.3 93.5 98.3 89.4 93.1 97.5 89.2 94.1 97.6 87.5 93.5 97.3

b = 1 73.9 78.8 83.8 79.5 85.2 93.6 79.0 85.6 94.7 75.6 80.0 85.8 79.1 84.0 90.5

83.1 88.2 93.3 83.8 90.4 96.4 84.4 90.7 96.4 82.8 88.2 92.6 82.5 88.5 94.6

90.7 94.3 98.1 87.8 93.0 98.1 90.8 94.4 98.7 90.2 94.3 98.7 89.3 94.5 98.4

n = 1000 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 75.5 78.7 82.0 74.6 78.1 80.8 71.5 76.1 80.6 74.9 78.2 82.5 74.6 78.6 82.4

87.6 90.2 93.0 85.1 89.1 92.0 84.2 87.8 91.9 85.1 89.0 91.7 84.9 88.8 91.8

91.8 95.7 98.2 91.1 94.0 97.7 89.3 93.9 97.6 92.9 96.5 99.0 90.7 94.0 97.0

b = .5 73.7 77.8 81.3 75.5 80.2 85.4 75.3 82.3 89.9 74.9 80.2 84.3 73.3 79.5 85.9

83.5 89.4 93.6 82.4 88.8 93.8 83.8 89.8 96.0 83.4 87.8 92.0 84.1 89.8 94.7

90.4 94.7 97.8 88.5 94.2 97.9 88.3 92.7 97.4 86.7 91.4 96.1 88.4 93.0 97.4

b = 1 76.0 80.9 85.0 79.0 85.0 93.1 80.4 86.8 94.3 75.1 82.0 87.3 77.9 83.9 91.0

81.8 86.7 91.1 85.0 91.2 97.7 84.6 91.4 97.0 82.2 87.0 92.6 87.3 92.2 96.5

89.3 93.6 97.9 88.2 93.1 98.5 88.8 94.4 98.5 90.1 94.4 98.2 88.8 93.9 98.3

Table 8: Empirical size for two-sided test with Type I error rate α = .10, .05, .01 for the left, middle,
and right hand entries respectively, in each cell. In each cell, the first row is for sampling fraction
a = .2, the second row for a = .1, and the third row for a = .04. Various sample sizes and taper
bandwidths b are considered. The data process is Long Memory with β = .4.
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Long Memory: β = .6

Sample Size Tapers

n= 250 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 70.9 74.7 77.4 71.6 76.6 79.3 70.5 74.6 77.5 71.3 74.6 78.1 70.9 74.9 76.7

82.3 86.2 89.1 84.0 88.5 91.7 81.5 86.8 90.5 81.8 85.8 88.9 84.9 88.5 91.7

61.2 70.5 81.4 65.3 73.2 83.4 73.3 80.3 87.9 59.0 67.6 80.2 63.7 72.0 81.0

b = .5 71.6 76.6 80.5 70.8 78.0 84.1 72.0 78.3 84.9 67.7 72.6 75.1 71.3 76.3 82.5

79.4 84.8 89.9 79.5 84.7 90.9 79.9 86.9 93.8 80.4 85.9 89.3 80.2 86.8 92.2

86.7 90.4 95.1 89.5 93.4 96.6 88.9 93.5 97.0 86.9 91.0 95.1 87.1 90.9 95.3

b = 1 71.2 75.9 80.2 73.9 80.8 90.8 74.8 82.4 90.9 69.7 75.5 80.8 75.9 81.4 88.3

82.0 87.7 92.0 81.3 88.9 94.0 82.8 90.0 95.3 80.6 85.8 91.8 83.2 89.3 95.0

86.8 91.1 96.4 89.6 94.0 98.1 88.2 93.8 97.7 88.3 93.0 97.9 87.9 92.4 97.4

n = 500 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 70.6 74.3 77.7 67.3 71.7 74.9 67.8 71.5 74.6 69.4 73.5 76.8 70.4 74.8 78.0

79.4 83.6 88.7 83.1 86.8 90.2 81.5 85.9 89.1 81.3 84.8 88.1 79.1 84.6 88.2

88.3 92.5 97.0 88.5 92.6 97.6 89.8 94.0 97.5 91.1 94.3 97.1 89.0 93.2 97.0

b = .5 70.2 74.2 78.2 73.8 79.5 84.6 73.0 80.2 87.8 68.9 73.2 76.7 72.4 76.6 81.6

81.6 87.2 90.9 77.2 84.6 92.6 79.2 86.5 93.9 79.3 84.2 88.8 81.7 88.2 92.7

85.9 92.2 96.9 86.2 91.3 97.3 84.8 91.3 97.6 87.2 91.8 97.4 85.7 90.3 96.3

b = 1 71.5 77.1 81.6 75.6 82.4 92.9 77.1 84.2 93.0 68.7 75.7 81.9 74.2 81.0 88.2

77.6 83.5 88.9 84.0 89.4 96.8 82.3 88.9 96.5 82.7 86.9 92.8 80.0 86.0 93.9

87.2 91.5 96.5 87.7 92.8 98.2 88.2 94.6 98.5 87.8 93.0 97.6 89.2 94.4 99.0

n = 1000 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 68.6 73.0 76.4 69.8 73.8 76.2 67.8 71.8 75.2 67.0 70.6 74.1 68.1 71.5 74.8

79.4 83.9 88.2 79.7 84.5 88.7 77.7 82.5 87.6 81.2 85.1 88.9 81.1 86.9 90.5

87.4 91.2 95.8 88.0 92.2 96.3 86.6 93.0 97.3 88.2 92.6 96.0 88.3 93.3 96.3

b = .5 71.9 77.1 80.8 71.3 77.3 83.0 70.8 76.9 85.4 68.5 74.2 77.6 72.2 77.6 83.5

79.5 84.7 90.0 80.9 86.5 93.2 80.4 87.7 94.7 77.2 82.8 87.8 79.3 85.7 92.8

85.1 90.9 96.0 86.8 91.5 97.7 87.2 94.0 98.2 84.5 90.3 95.7 86.7 91.5 97.4

b = 1 69.5 74.9 79.6 73.8 81.3 91.4 74.4 82.2 92.3 72.4 78.8 83.2 72.8 80.3 87.9

80.3 85.6 93.1 83.5 89.9 96.5 83.1 90.9 97.5 79.2 84.8 92.6 81.4 89.0 96.1

86.4 92.5 97.7 86.7 92.7 97.8 86.4 92.8 98.4 85.1 91.6 96.9 86.3 91.5 97.2

Table 9: Empirical size for two-sided test with Type I error rate α = .10, .05, .01 for the left, middle,
and right hand entries respectively, in each cell. In each cell, the first row is for sampling fraction
a = .2, the second row for a = .1, and the third row for a = .04. Various sample sizes and taper
bandwidths b are considered. The data process is Long Memory with β = .6.
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Long Memory: β = .8

Sample Size Tapers

n= 250 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 59.8 63.0 65.8 59.2 62.4 64.7 60.6 64.2 68.3 58.9 63.3 65.9 60.4 63.9 66.5

72.8 78.4 81.6 75.8 80.5 83.9 76.0 81.2 84.9 73.3 78.6 83.4 73.9 78.9 82.4

49.3 58.7 68.3 50.0 59.6 69.9 56.0 64.1 73.7 43.6 50.9 61.5 49.8 56.9 68.4

b = .5 61.1 66.8 70.9 61.8 68.3 76.2 65.0 71.6 81.2 58.8 63.8 67.5 62.6 67.0 72.7

73.9 81.2 86.5 70.6 78.6 86.8 76.4 84.0 92.4 72.0 78.7 84.5 74.2 81.2 86.5

74.8 81.9 89.0 77.6 84.5 91.6 82.1 87.3 92.8 72.4 78.9 87.4 79.4 85.2 91.8

b = 1 62.3 67.2 72.6 68.1 76.8 85.0 66.8 75.9 85.9 64.2 70.5 76.6 65.4 72.0 83.0

74.9 80.6 86.4 75.9 84.4 92.8 79.0 87.0 94.4 75.5 82.3 89.3 76.1 84.9 92.0

82.1 88.6 93.9 85.0 91.1 97.7 85.4 91.9 97.3 80.8 87.3 94.2 83.7 89.9 96.5

n = 500 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 59.0 62.9 66.0 59.6 63.7 66.8 59.5 63.9 66.0 55.6 59.0 62.4 57.2 61.2 63.6

69.0 74.1 79.1 71.1 75.9 80.9 69.4 74.7 79.4 72.3 76.7 81.8 71.8 75.7 81.8

79.3 84.9 92.3 81.0 85.9 91.7 81.2 86.2 92.2 81.4 87.0 92.1 80.9 86.2 92.8

b = .5 59.5 64.2 68.8 64.4 70.8 78.1 63.0 70.9 81.1 60.1 64.1 68.6 62.0 68.0 74.7

69.2 75.5 83.7 74.1 81.9 89.9 72.2 80.3 91.3 72.9 79.8 85.9 73.5 80.9 88.7

82.8 88.3 94.5 78.4 86.3 95.3 82.5 89.1 96.6 81.7 87.5 95.1 81.9 87.7 96.0

b = 1 63.3 69.9 75.0 68.6 77.6 87.3 63.2 73.5 86.1 62.8 70.0 75.4 66.7 74.7 84.0

75.1 79.7 88.0 78.3 85.0 94.0 77.6 84.3 94.7 73.6 80.2 86.8 76.3 85.2 93.8

79.9 87.1 94.3 84.0 90.4 97.6 83.9 90.2 96.8 80.3 88.3 95.5 82.0 89.2 96.3

n = 1000 Bartlett Trapezoid (.25) Trapezoid (.5) Parzen Daniell

b = .1 56.6 60.3 63.7 55.6 60.3 63.2 54.8 60.4 64.6 55.4 58.4 61.2 57.7 61.1 64.9

68.5 74.6 80.4 70.4 75.5 79.7 67.6 74.1 80.5 65.5 71.9 77.7 68.1 73.3 78.6

79.3 85.7 92.1 80.2 86.4 91.0 78.8 83.1 89.9 80.6 85.3 91.8 80.2 86.5 92.4

b = .5 63.1 67.4 70.7 63.1 69.2 77.3 67.1 74.8 83.9 61.1 65.2 68.8 62.4 68.8 76.9

69.5 76.3 83.6 75.9 82.1 89.5 75.5 83.5 91.9 71.4 78.4 83.8 69.7 78.5 86.2

83.8 88.7 95.1 79.2 86.9 95.8 80.8 87.7 95.4 81.5 87.6 93.4 77.3 85.8 94.2

b = 1 61.3 66.7 71.6 69.0 76.7 87.3 66.4 75.5 87.3 61.0 67.7 74.5 67.9 74.7 83.2

74.0 80.0 86.2 78.1 86.1 94.8 74.4 81.9 93.1 74.4 81.9 89.1 76.1 82.6 91.8

79.8 86.4 93.8 80.4 87.4 96.3 82.8 89.8 98.5 78.6 86.3 94.4 83.5 89.9 96.4

Table 10: Empirical size for two-sided test with Type I error rate α = .10, .05, .01 for the left,
middle, and right hand entries respectively, in each cell. In each cell, the first row is for sampling
fraction a = .2, the second row for a = .1, and the third row for a = .04. Various sample sizes and
taper bandwidths b are considered. The data process is Long Memory with β = .8.
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Optimal Bandwidth Fraction

Beta

-.8 -.6 -.4 -.2 0 .2 .4 .6 .8

Bartlett

.90 .02 .02 .02 .02 .02 .10 .14 .14 .18

.95 .02 .02 .02 .02 .02 .06 .10 .14 .18

.975 .02 .02 .02 .02 .02 .06 .10 .14 .14

.99 .02 .02 .02 .02 .02 .04 .10 .14 .14

Trapezoid (.25)

.90 .02 .02 .02 .02 .02 .06 .12 .14 .14

.95 .02 .02 .02 .02 .02 .06 .10 .12 .14

.975 .02 .02 .02 .02 .02 .04 .08 .14 .14

.99 .02 .02 .02 .02 .02 .04 .08 .08 .10

Trapezoid (.50)

.90 .02 .02 .02 .02 .02 .04 .10 .12 .16

.95 .02 .02 .02 .02 .02 .04 .10 .10 .12

.975 .02 .02 .02 .02 .02 .04 .06 .10 .12

.99 .02 .02 .02 .02 .02 .02 .04 .06 .06

Parzen

.90 .02 .02 .02 .02 .02 .12 .20 .22 .28

.95 .02 .02 .02 .02 .02 .06 .16 .20 .20

.975 .02 .02 .02 .02 .02 .06 .10 .22 .20

.99 .02 .02 .02 .02 .02 .06 .08 .14 .20

Daniell

.90 .02 .02 .02 .02 .02 .06 .10 .16 .18

.95 .02 .02 .02 .02 .02 .06 .10 .16 .14

.975 .02 .02 .02 .02 .02 .06 .10 .08 .14

.99 .02 .02 .02 .02 .02 .04 .06 .08 .10

Table 11: Optimal bandwidth fractions b as a function of taper and memory parameter β. Each
row corresponds to either the (upper one-sided) .90, .95, .975, or .99 quantile.
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Figure 1: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and true
mean µ ∈ [0, 1). These power surfaces are for the Bartlett taper with bandwidth fraction b = .2.
Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds to
subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 2: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and true
mean µ ∈ [0, 1). These power surfaces are for the Bartlett taper with bandwidth fraction b = .5.
Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds to
subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 3: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and true
mean µ ∈ [0, 1). These power surfaces are for the Bartlett taper with bandwidth fraction b = 1.
Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds to
subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 4: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and
true mean µ ∈ [0, 1). These power surfaces are for the Trapezoidal (.25) taper with bandwidth
fraction b = .2. Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b)
corresponds to subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling
with sampling fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel
(e) corresponds to using the plug-in method with β = 0; panel (f) corresponds to using the true
(unknown) value of β.
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Figure 5: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and
true mean µ ∈ [0, 1). These power surfaces are for the Trapezoidal (.25) taper with bandwidth
fraction b = .2. Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b)
corresponds to subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling
with sampling fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel
(e) corresponds to using the plug-in method with β = 0; panel (f) corresponds to using the true
(unknown) value of β.
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Figure 6: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and true
mean µ ∈ [0, 1). These power surfaces are for the Trapezoidal (.25) taper with bandwidth fraction
b = 1. Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds
to subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 7: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and true
mean µ ∈ [0, 1). These power surfaces are for the Trapezoidal (.5) taper with bandwidth fraction
b = .2. Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds
to subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 8: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and true
mean µ ∈ [0, 1). These power surfaces are for the Trapezoidal (.5) taper with bandwidth fraction
b = .5. Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds
to subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 9: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and true
mean µ ∈ [0, 1). These power surfaces are for the Trapezoidal (.5) taper with bandwidth fraction
b = .5. Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds
to subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 10: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and
true mean µ ∈ [0, 1). These power surfaces are for the Parzen taper with bandwidth fraction b = .2.
Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds to
subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 11: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and
true mean µ ∈ [0, 1). These power surfaces are for the Parzen taper with bandwidth fraction b = .5.
Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds to
subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 12: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and
true mean µ ∈ [0, 1). These power surfaces are for the Parzen taper with bandwidth fraction b = 1.
Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds to
subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 13: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and
true mean µ ∈ [0, 1). These power surfaces are for the Daniell taper with bandwidth fraction b = .2.
Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds to
subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 14: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and
true mean µ ∈ [0, 1). These power surfaces are for the Daniell taper with bandwidth fraction b = .5.
Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds to
subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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Figure 15: Power surfaces by Memory parameter β ∈ {−1,−.8,−.6,−.4,−.2, 0, .2, .4, .6., .8} and
true mean µ ∈ [0, 1). These power surfaces are for the Daniell taper with bandwidth fraction b = 1.
Panel (a) corresponds to subsampling with sampling fraction a = .04; panel (b) corresponds to
subsampling with sampling fraction a = .12; panel (c) corresponds to subsampling with sampling
fraction a = .2. Panel (d) corresponds to using the plug-in estimate of β; panel (e) corresponds to
using the plug-in method with β = 0; panel (f) corresponds to using the true (unknown) value of
β.
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