
eScholarship
Combinatorial Theory

Title
Every group-embeddable monoid arises as the bimorphism monoid of some graph

Permalink
https://escholarship.org/uc/item/35d2v8t6

Journal
Combinatorial Theory, 4(2)

ISSN
2766-1334

Authors
H. Coleman, Thomas D.
Dilley, Isaac K.

Publication Date
2024

DOI
10.5070/C64264240

Supplemental Material
https://escholarship.org/uc/item/35d2v8t6#supplemental

Copyright Information
Copyright 2024 by the author(s).This work is made available under the terms of a 
Creative Commons Attribution License, available at 
https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35d2v8t6
https://escholarship.org/uc/item/35d2v8t6#supplemental
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


combinatorial theory 4 (2) (2024), #12 combinatorial-theory.org

Every group-embeddable monoid arises
as the bimorphism monoid of some graph

Thomas D. H. Coleman1 and Isaac K. Dilley∗2

1,2School of Mathematics and Statistics, University of St Andrews, St Andrews, U.K.
tdhc@st-andrews.ac.uk (corresponding author)

Submitted: Jan 5, 2024; Accepted: May 30, 2024; Published: Sep 30, 2024
© The authors. Released under the CC BY license (International 4.0).

Abstract. Generalizing results of Frucht and de Groot/Sabidussi, we demonstrate that every
group-embeddable monoid is isomorphic to the bimorphism monoid of some graph.
Keywords. Infinite graph theory, group-embeddable monoids, bimorphism monoids
Mathematics Subject Classifications. 05C63, 20M30

1. Introduction and preliminaries

Answering a question posed by König in 1936 [K5̋0], Frucht proved that every finite group is iso-
morphic to the automorphism group of some finite graph, a result now known widely as Frucht’s
theorem [Fru39]. Since then, there have been considerable efforts to generalize Frucht’s theorem
in a number of different directions. Frucht himself showed that every finite group arises as the
automorphism group of a 3-regular graph [Fru49]. Sabidussi followed this by proving an analo-
gous result for k-regular graphs and k-vertex-connected graphs (both for k ⩾ 3) and k-chromatic
graphs (for k ⩾ 2) [Sab57], and Mendelsohn followed suit for strongly regular graphs [Men78].
These theorems are part of a class of results known as universality theorems, for which there
are versions for other first-order structures (such as distributive lattices and commutative rings);
see Babai for more [Bab95]. Generalizing in a different direction (and working independently
of each other), de Groot and Sabidussi proved that every group is isomorphic to the automor-
phism group of a graph [dG59, Sab60]. A similar result is true for monoids: every monoid is
isomorphic to the endomorphism monoid of some graph (see [Bab95]).

∗This article is based on work done during Isaac Dilley’s summer Laidlaw scholarship at the University of St
Andrews during the summers of 2020 and 2021. Isaac is currently working in industry.

https://www.combinatorial-theory.org
mailto:tdhc@st-andrews.ac.uk
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Endomorphism monoids of a graph Γ encompass many different kinds of self-map, depend-
ing on the property of the underlying function on the vertex set V Γ. In general, endomorphisms
of Γ must preserve edges by definition but may also add in edges or shrink a non-edge to a sin-
gle point. By imposing additional properties of the underlying function of the endomorphism,
behaviour like this is restricted. For instance, injective graph endomorphisms, called monomor-
phisms, may only add in edges, but these may not shrink a non-edge to a single point as this
would violate injectivity of the function. Of these endomorphisms, the most paradoxical (cer-
tainly for an algebraist!) is the idea of a bimorphism of a graph Γ, a bijective endomorphism of Γ
that preserves edges but may change non-edges to edges – and so is not necessarily an isomor-
phism. Since bimorphisms of Γ are permutations on the underlying vertex set V Γ (and hence
elements of the symmetric group on V Γ), it follows that the monoid Bi(Γ) of all bimorphisms
of Γ is a group-embeddable monoid.

Group-embeddable monoids have played an important part in the development of semigroup
theory as a subject. For instance, a celebrated theorem of Ore states that a monoid M is group-
embeddable if and only if it is cancellative and satisfies Ore’s condition on ideals (for a, b ∈ M
then aM ∩ bM ̸= ∅) (see [CP61]). More recently, viewing group-embeddable monoids as sub-
monoids of some symmetric group (called permutation monoids) has led to a strong connection
between group-embeddable monoids and bimorphisms of first-order structures. For instance,
a submonoid of the infinite symmetric group Sym(N) is closed (under the pointwise conver-
gence topology) if and only if it is isomorphic to the bimorphism monoid of some first-order
structure [CEG19].

Given the celebrated results of Frucht and de Groot/Sabidussi, and the recent work on bi-
morphisms of first-order structures, it is natural to ask: is every group-embeddable monoid iso-
morphic to the bimorphism monoid of a graph? In this article, we answer this question in the
affirmative:

Theorem 1.1. Let M be a group-embeddable monoid. Then there exists a graph Γ∗ such
that Bi(Γ∗) ∼= M .

Note that ifM is finite, it is a group; sinceBi(Γ) = Aut(Γ) for any finite graph Γ, this special
case is precisely Frucht’s theorem. We therefore restrict our attention to whenM is infinite. IfM
is a group, then this reduces to the infinite version of Frucht’s theorem proved by de Groot and
Sabidussi. This theorem then generalizes both Frucht’s original theorem and its generalization
to infinite groups.

We use standard graph-theoretic terminology throughout; a good source is [Die10]. Un-
less specified, in this article all graphs are loopless, undirected, and unlabelled. A graph is
rigid if its automorphism group is trivial. Any monoid M contains a group of units which
consist of all invertible elements of M ; for more background information on semigroups and
monoids, see [How95]. Functions act on the right of their arguments, and we compose maps
from left to right.



combinatorial theory 4 (2) (2024), #12 3

2. Strategy and motivating examples

Let G be a finite group. The proof of Frucht’s theorem relies on the Cayley graph of G with
respect to some generating set A of G such that e /∈ A; by definition, this is a loopless, la-
belled, directed graph. This Cayley graph is then turned into a simple undirected graph Γ by
the replacement of edges labelled by a by a rigid ‘gadget’ Ra. These gadgets are chosen to be
pairwise non-isomorphic so if a ̸= b ∈ A, then Ra ≇ Rb; this ensures that different generat-
ing elements are distinguished from each other. Since the gadgets are put in place to preserve
the symmetries of the Cayley graph without adding any more, one can prove that Aut(Γ) ∼= G
via the action of G by left multiplication on the modified Cayley graph; see [Cam94] for finer
details. This strategy generally extends to the infinite case; however, the gadgets tend to be far
more intricate due to the nature of infinite cardinals. This is expanded upon in Construction 3.1
for use throughout the article.

To test this strategy for group-embeddable monoids, one could look at the nicest group-
embeddable monoid which is not a group, which is the infinite monogenic semigroup with iden-
tity (N0,+). This is embeddable via inclusion into the infinite cyclic group (Z,+). It could be
hoped that Bi(Γ) ∼= (N0,+) where Γ is the graph as given in Figure 2.2; but we will see now
that this is not the case.

Example 2.1. Consider the Cayley graph Γ′ of M = (N,+) with respect to the generating
set A = {1} of M , which is given in Figure 2.1.

0 1 2 3 4 5 6

1 1 1 1 1 1

Figure 2.1: Cayley graph of M = (N,+) with respect to A = {1}.

Replacing each instance of the labelled directed edge corresponding to the single generator 1
with an undirected edge gives a undirected graph Γ; see Figure 2.2.

0 1 2 3 4 5 6

Figure 2.2: Graph Γ obtained from the Cayley graph of M = (N0,+) with respect to A = {1}.

It is easy to see that this graph has no non-trivial bijective endomorphisms.

So what was the problem here? To represent the group-embeddable monoid M (that is not a
group) as the bimorphism monoid of some graph Γ, we need to have bimorphisms of Γ that are
not automorphisms! So any element of M not in its group of units should be represented by a
bimorphism that changes a non-edge to an edge. To that end, there are a few considerations that
need to be made when defining such a graph Γ:

• extra vertices need to be added to the Cayley graph of M with respect to some generating
set A to allow things to move more freely;
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• bimorphisms of Γ should add in edges where the group-embeddable monoid M is not a
group;

• a way to identify those vertices representing elements of the group-embeddable monoid
M must be retained.

This leads to our motivating example, first given in [Col17].

Example 2.2 ([Col17]). Consider a graph Γwith vertex setZ×{0, 1}, with adjacencies given by

• (a, 0) ∼ (b, 1) if and only if a = b;

• (a, 0) ∼ (b, 0) if and only if |a− b| = 1, and;

• (a, 1) ∼ (b, 1) if and only if a ⩽ 0 and |a− b| = 1.

See Figure 2.3 for a diagram.

(−3,1) (−2,1) (−1,1) (0,1) (1,1) (2,1) (3,1)

(−3,0) (−2,0) (−1,0) (0,0) (1,0) (2,0) (3,0)

Figure 2.3: Construction of Γ as in Example 2.2.

It is clear to see thatAut(Γ) is trivial. However, there do exist bijections on V Γ such that only
edges are preserved. Consider the shift map α : Γ → Γ given by (a, x)α = (a− 1, x). Then α
preserves all edges and sends the non-edge between (0, 1) and (1, 1) to the edge between (−1, 1)
and (0, 1). We claim that the only bimorphisms of Γ are of the form αn.

Claim 2.3. Bi(Γ) ∼= (N0,+), the infinite monogenic semigroup with identity.

Proof of claim. It can be shown that the only bijective maps on vertices that preserve edges
are of the form β : Γ → Γ such that (b, x)β = (b − n, x); the proof relies on the fact
that deg(xβ) ⩾ deg(x) whenever β is a bimorphism.

You can notice that this graph Γ contains an undirected version the Cayley graph for (Z,+)
with respect to the group generating set A = {1} (the ‘bottom layer’ of Figure 2.3) and some
way of identifying an image of (N0,+) in (Z,+) in this graph (the one way line on the ‘top layer’
of Figure 2.3). The undirected version of the Cayley graph of (Z,+) provides the extra vertices
to move the vertices corresponding to (N0,+) around. Any non-trivial bimorphism of Γ adds in
edges on the ‘top layer’. Finally, Aut(Γ) is trivial, which corresponds to the fact that the group
of units of (N,+) is trivial.
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3. Proof of Theorem 1.1

Following Example 2.2, the rough steps to prove Theorem 1.1 are as follows:

(A) define a graph Γ based on the Cayley graph for a group G that M embeds in (with respect
to some generating set A of G) as a ‘bottom layer’;

(B) show that this graph Γ has no non-trivial bimorphisms, so Bi(Γ) = Aut(Γ) = G;

(C) define a second graph Γ∗ that extends Γ by adding a ‘top layer’ of vertices corresponding
to group elements of G above Γ, while identifying an image of M in this ‘second layer’;

(D) show that this graph Γ∗ is such that Bi(Γ∗) ∼= M , completing the proof.

Bottom layer Γ [(A) and (B)]

The first construction we give illustrates the gadgets required to define a graph with given au-
tomorphism group. Here, we use de Groot’s inductive demonstration that for every cardinal m,
there exist m many non-isomorphic, rigid graphs [dG59].

Construction 3.1 ([dG59]). Step 0: Suppose that {p, q} is an isomorphic copy of K2.
Step 1: Let m > 0 be any cardinal. Add in m new vertices {qα1 : α1 ∈ m}, and draw

each edge {q, qα1}; here, the 1 represents the step of the construction.
Step n: Assume that n − 1 steps of this construction have been completed; that is, for

all 1 < i < n:

• there are cardinals mα1α2...αi
such that if αk ̸= βk for some 1 ⩽ k ⩽ i then

mα1α2...αi
̸= mβ1β2...βi

,

and where αi ∈ mα1α2...αi−1
.

• the vertices qα1α2...αi
and edges {qα1α2...αi−1

, qα1α2...αi
} exist. It is useful to note that the

vertices qα1α2...αn−1 exist and have degree 1.

Now, for all α1α2 . . . αn−1 where (α1, α2, . . . , αn−1) ∈ m×mα1 × . . .×mα1α2...αn−2:

• select a cardinal mα1α2...αn−1 such that such that if αk ̸= βk for some 1 ⩽ k ⩽ i then

mα1α2...αi
̸= mβ1β2...βi

noting also that mα1α2...αn−1 ̸= m for all such sequences α1α2 . . . αn−1;

• add in mα1α2...αn−1 vertices {qα1α2...αn : αn ∈ mα1α2...αn−1} to the graph;

• draw in all edges {qα1α2...αn−1 , qα1α2...αn}.
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p
q

m

mα1
mβ1 mγ1

mα1α2
mα1β2 mβ1α2 mβ1β2 mγ1α2 mγ1β2

Figure 3.1: Construction of the tree G in Construction 3.1.

An illustration is given in Figure 3.1. This process completes after countably many steps,
and the resulting graph G has trivial automorphism group. By varying the choice of cardinals
at each step, we can conclude that for every cardinal m there exists m many non-isomorphic
graphs with trivial automorphism group.

We note here that the number of steps in this construction cannot be finite; as if so, then
the edges {qα1α2...αn−1 , qα1α2...αn} with root qα1α2...αn−1 can be permuted by the symmetric group
on mα1α2...αn−1 elements. It follows from this that p is the only vertex with degree 1. Note also
that G is a tree; there are no cycles induced at any point in the construction.

We need to show that these rigid gadgets are indeed suitable for our uses by showing that
they are bimorphism-rigid; that is, the only bimorphism of the graph is the identity mapping.
Recall (from [CEG19], for example) that two graphs G,H are bimorphism equivalent if there
exist bijective homomorphisms α : G → H and β : H → G.

Lemma 3.2. (a) Any two graphs G,H obtained from Construction 3.1 are bimorphism equiv-
alent if and only if they are the same graph. As a corollary, every graph G obtained from
Construction 3.1 is bimorphism-rigid.

(b) If |G| ̸= |H|, then there is no pair of monomorphisms α : G → H and β : H → G.

Proof. (a) This proof relies on the fact that G and H are trees. Since H is a tree, any bijective ho-
momorphism from G to H that adds an edge must induce a cycle somewhere in H (see [Die10]);
a contradiction. Therefore, every bijective homomorphism from G to H must preserve non-
edges, and hence must be an isomorphism. Since G and H are isomorphic if and only if G = H,
we are done. The corollary follows immediately upon setting G = H in the above proof.

(b) Follows from the Cantor–Schroeder–Bernstein theorem.

Remark 3.3. Using a similar argument, it can be shown that Bi(G) = Aut(G) for any tree G.
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Next, we use de Groot’s construction to generate a Cayley graph Γ of G such that
Aut(Γ) = Bi(Γ) ∼= G, by replacing each of the usually labelled edges using bimorphism-rigid
graphs from Construction 3.1.

Construction 3.4 ([dG59]). Let G be a group with |G| > 3, and take A = G \ {e}; this is
certainly a generating set for G.

For each a ∈ A, use Construction 3.1 to construct a graph Ra where each cardinal involved
is strictly greater than |G|. Using the work above, we can also ensure that Ra

∼= Rb if and only
if a = b, and that |Ra| ≠ |Rb| for all a ̸= b ∈ A. Denote a typical vertex of Ra by va. The verti-
ces pa, qa ∈ Ra respectively correspond to the specially named vertices p, q in Construction 3.1.

Let us now define the vertex set of Γ by:

V Γ = G ∪
⋃
a∈A

{G× (V Ra ∪ {a})}

so vertices of Γ are group elements g, ordered pairs (g, a), or ordered pairs (g, va).
The edges of G are defined in two parts for ease of reading. The first part E1 consists of the

edges that make up the undirected Cayley graph of G with respect to A, and contains machinery
to attach the gadget Ra to any instance of a in the graph:

E1(Γ) = {{g, (g, a)}, {(g, a), (g, pa)}, {(g, pa), ga} : g ∈ G, a ∈ A, pa ∈ Ra}

The second set of edges code in the edges of Ra for all a ∈ A:

E2(Γ) =
⋃
a∈A

{{(g, va), (g, wa)} : {va, wa} ∈ E(Ra)}

Then, define EΓ = E1(Γ) ∪ E2(Γ). Call Γ = (V Γ, EΓ) the modified Cayley graph of G with
respect toA; sinceA is fixed throughout the rest of the article, we will refer to this as the modified
Cayley graph of G.

Remark 3.5. The assumption that |G| > 3 is to make sure that a degree argument in the proof of
Proposition 3.8 is sound. The case where |G| ⩽ 2 (or indeed where G is finite) can be handled
by Frucht’s theorem, and the fact that any finite group-embeddable monoid is a group.

Notation. Denote the induced subgraph of Γ isomorphic to Ra associated with g by (g,Ra), and
write

R(g) = {(g,Ra) : a ∈ A}.

Lemma 3.6. Let β be a bimorphism of Γ. Then (g,Ra)β = (gβ,Ra) for all a ∈ A and g ∈ G.

Proof. Since each Ra has a different cardinality by construction, both R(g) and R(gβ) can
be well ordered by cardinality of the Ra’s. Our claim is that β induces a bijection from R(g)
to R(gβ) that preserves this well-order.

Since g is mapped to gβ, one can use a degree argument to show that each (g,Rb)
is mapped to some (gβ,Rc) for some c ∈ A. This must be at least a monomorphism;
hence β|R(g) : R(g) → R(gβ) is a monomorphism.
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g ga

(g, a)

(ga, a−1)

(ga, pa−1)

(g, pa)

(ga, qa−1)

(g, qa)

Figure 3.2: A snippet of the graph Γ constructed in Construction 3.4. Vertices in (g,Ra) are
highlighted in red; vertices in (ga,Ra−1) are highlighted in blue.

As β is a bimorphism, for every (gβ, pb) there exists an x ∈ Γ such that xβ = (gβ, pb).
Because of this, the degree of x must be less than or equal to (gβ, pb), which is 3. This means
that the only potential preimage for (gβ, pb) is either (k, pc) or (k, c) for some c.

Assume for a contradiction that it is (k, c) for some k∈G and c∈A; so that (k, c)β=(gβ, pb).
As (k, c) has degree 2, it follows that either k or (k, pc) is mapped to (gβ, b); this is impossible
by a degree argument. So any preimage of (gβ, pb) must be (k, pc) for some k ∈ G and c ∈ A.
Since this happens for all (gβ, pb), and each Ra has cardinality greater than that of G, it follows
that β induces a bijection from R(g) to R(gβ).

Now, to show that it preserves the stated well-order on R(g). Assume for a contradiction
that this is not true. Therefore, there is a least element in R(g) (ordered by cardinality) such
that (g,Ra)β = (gβ,Rb), where Rb ̸= Ra. However, since β is a bijection there must ex-
ist (g,Rc) such that (g,Rc)β = (gβ,Ra); this cannot happen as |Rc| > |Ra| by assumption.
Therefore, this bijection must be order-preserving, and (g,Ra)β = (gβ,Ra).

Corollary 3.7. Let β ∈ Bi(Γ). Then (g, a)β = (gβ, a) and (ga)β = gβa for all g ∈ G
and a ∈ A.

Proof. It follows from Lemma 3.6 that (g, pa)β = (gβ, pa). As g is sent to gβ, and (gβ, a) is
the only vertex adjacent to both gβ and (gβ, pa), it follows that (g, a)β = (gβ, a). Since this
happens, together with the fact that (g, qa)β = (gβ, qa), the only potential image point for ga
under β must be gβa giving (ga)β = gβa for all g ∈ G and a ∈ A.

Proposition 3.8. Let G be a group with |G| > 3, and suppose that Γ is the modified Cayley
graph of G as defined in Construction 3.4. Then Bi(Γ) = Aut(Γ) ∼= G.

Proof. Let g, h ∈ G. Define a permutation α : Γ → Γ as follows:

• For any x ∈ G, define xα = hg−1x;
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• (x, a)α = (hg−1x, a) for all x ∈ G and a ∈ A;

• (x, va)α = (hg−1x, va) for all x ∈ G, va ∈ Ra and a ∈ A.

Note that gα = hg−1g = h, and α preserves edges; hence α ∈ Bi(Γ) and acts as left
multiplication by hg−1 on G. The idea is to show that this is the unique bimorphism sending g
to h; so suppose that β ∈ Bi(Γ) also sends g to h. Note that if g = h, then α is the (necessarily
unique) identity map.

Let x ∈ G and choose b = g−1x, which gives x = gb. Then, using Corollary 3.7

xβ = (gb)β = gβb = hb = hg−1x = xα

so xβ = xα for all x ∈ G. From this point, it follows that β behaves like α on all other vertices
of Γ, and so the two are equal.

Since g, hwere chosen arbitrarily inG, there exists a unique bimorphismα′ such that hα′ = g
and α′ acts as left multiplication by gh−1 on G. Therefore, α′ = α−1 and so each bimorphism
defined is an automorphism.

The goal is now to show that there are no bimorphisms sending g ∈ G to any of the other
vertices in Γ. First, note that each g ∈ G is part of a 6-cycle given by

{g, (g, g−1)}, {(g, g−1), (g, pg−1)}, {(g, pg−1), e}, {e, (e, g)}, {(e, g), (e, pg)}, {(e, pg), g}

Since this cyclic path must be preserved by a bimorphism, it follows that g cannot be sent to
a vertex in the acyclic induced subgraph (h,Ra) for all a ∈ A and h ∈ G, with the possible
exception of (h, pa).

Note that d(g) ⩾ |A| ⩾ 3 for all g ∈ G, since g ∼ (g, a) and (h, pa) ∼ g for some h ∈ G.
Since d((h, a)) = 2 and d((h, pa)) = 3 for all h ∈ G and a ∈ A, it follows that there does not
exist a bimorphism sending g to either (h, a) or (h, pa) for all h ∈ G. Therefore, the only non-
trivial bimorphisms send vertices g ∈ G to other group elements h ∈ G via left multiplication,
at which point the rest of the function is determined by uniqueness of the defined bimorphism α.
Therefore, Bi(Γ) = Aut(Γ) ∼= G.

Top layer graph Γ∗ [(C) and (D)]

Let M be a group-embeddable monoid; the aim now is to use Γ to build a graph Γ∗ such
that Bi(Γ∗) ∼= M . From the general strategy, the idea is to add a second layer of vertices cor-
responding to group elements of G onto Γ (as defined in Construction 3.4), and identify those
vertices in some image of M in G.

Construction 3.9. Let G be a group, and suppose that Γ is constructed as in Construction 3.4.
Suppose that M ⩽ G is a monoid that embeds in the group G. Choose σ to be such an embed-
ding, and define B = im σ ∼= M .

Define the vertex set of Γ∗ to be

V Γ∗ = V Γ ∪ {(g, •) : g ∈ G}
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essentially adding a layer of vertices ‘above’ elements of the group G.
Define the edge set of Γ∗ to be

EΓ∗ = EΓ ∪ {{g, (g, •)} : g ∈ G} ∪ {{(a, •), (b, •)} : a ̸= b ∈ B}

consisting of

• all edges from Γ;

• edges between corresponding elements of G ⊆ V Γ and G× {•} ⊆ V Γ∗;

• edges between all pairs of distinct elements of B × {•} ⊆ V Γ∗.

g ga

(g, a)

(ga, a−1)

(ga, pa−1)

(g, pa)

(ga, qa−1)

(g, qa)

(g, •) (ga, •)

Figure 3.3: A snippet of the graph Γ∗ constructed in Construction 3.9. Since (g, •) and (ga, •)
are adjacent, both g and ga are in B.

Lemma 3.10. Let β be a bimorphism of Γ∗. Then (g,Ra)β = (gβ,Ra) for all g ∈ G and a ∈ A.

Proof. Much like Lemma 3.6, our claim is that β induces a bijection from R(g) to R(h) that
preserves the well-order on cardinality in R(g).

One can use a degree argument to show that each (g,Rb) is mapped to some (gβ,Rc) for
some c ∈ A. This must be at least a monomorphism; hence β|R(g) : R(g) → R(gβ) is a
monomorphism.

As β is a bimorphism, for every (gβ, pb) there exists an x ∈ Γ such that xβ = (gβ, pb).
Because of this, the degree of x must be less than or equal to the degree of (gβ, pb), which is 3.
This means that the only potential preimages for (gβ, pb) are some (k, pc) or (k, c) for some c,
or (f, •) for some f ∈ G \ B. Using a similar argument to Lemma 3.6, it follows that this
potential preimage cannot be (k, c).

So assume that (f, •) maps to (gβ, pb). By a degree argument, it follows that f must be
mapped to hb. However, since (f, •) is mapped to (gβ, pb), there is no other vertex adjacent
to f that can be mapped to the degree 1 vertex (hb, •). Therefore, any preimage of (gβ, pb) must
be (k, pc) for some k ∈ G and c ∈ A. Since this happens for all (gβ, pb), and each Ra has
cardinality greater than that of G, it follows that β induces a bijection from R(g) to R(gβ).
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Now, to show that β preserves the well-order on R(gβ). Assume for a contradiction that
this is not true. Therefore, there is a least element in R(gβ) (ordered by cardinality) such
that (g,Ra)β = (gβ,Rb), where Rb ̸= Ra. However, since β is a bijection there must ex-
ist (g,Rc) such that (g,Rc)β = (gβ,Ra); this cannot happen as |Rc| > |Ra| by assumption.
Therefore, this bijection must be order-preserving, and (g,Ra)β = (gβ,Ra).

The proof of Corollary 3.7 applies in this case too, giving the following for free:

Corollary 3.11. Let β ∈ Bi(Γ∗). Then (g, a)β = (gβ, a) and (ga)β = gβa for all g ∈ G
and a ∈ A.

Finally, we can prove Theorem 1.1. In the following, we will abuse notation and write (C, •)
to mean the induced subgraph of V Γ∗ on some C × {•} ⊆ G× {•}.

Proof of Theorem 1.1. Suppose that B is the image of some group-embeddable monoid M in a
groupG, and thatΓ∗ is the corresponding graph as constructed in Construction 3.9. Let g, h ∈ B.
Define a permutation α : Γ∗ → Γ∗ as follows:

• For any x ∈ G, define xα = hg−1x;

• (x, a)α = (hg−1x, a) for all x ∈ G and a ∈ A;

• (x, va)α = (hg−1x, va) for all x ∈ G, va ∈ Ra and a ∈ A.

• (x, •)α = (hg−1x, •) for all x ∈ G.

If there exists a ∈ B such that ag = h, then ag = hg−1g. As group-embeddable monoids are
cancellative, it follows that a = hg−1. It follows that left multiplication in B can be viewed as
multiplication by those hg−1 ∈ B. Note that α acts as left multiplication by hg−1 on B, should
that element exist in B. Finally, note that if g = h, then α is the identity map.

To prove the result, it is enough to show:

(1) α is a bimorphism of Γ∗ if and only if hg−1 ∈ B, and so the bimorphisms defined above
act as left multiplication on B;

(2) α is unique: so if β is a bimorphism sending g to h, with g, h ∈ B, then β = α;

(3) all bimorphisms of Γ∗ arise in this way.

For (1), Proposition 3.8 shows thatα|Γ is a bimorphism ofΓ regardless of the location of hg−1

in G. Therefore, the statement of (1) reduces to proving that α preserves edges in EΓ∗ \ EΓ if
and only if hg−1 ∈ B.

Assume that hg−1 ∈ B and consider the edge {x, (x, •)}. This is then sent by α to the
pair {hg−1x, (hg−1x, •)}; since hg−1x ∈ G, this pair is an edge of Γ∗ by definition. Next, look
at the edge {(a, •), (b, •)} ∈ EΓ∗; as this exists, it follows that a, b ∈ B. Since this happens,
then hg−1a, hg−1b ∈ B by assumption. It follows by definition that {(hg−1a, •), (hg−1b, •)}
is also an edge of Γ∗. This, together with Proposition 3.8, shows that α is a bimorphism of Γ∗

when hg−1 ∈ B.
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Next, assume that hg−1 /∈ B. Since |B| ⩾ 2, it follows that there exists y ∈ B that is not
the identity element. Therefore, (e, •) ∼ (y, •) is an edge of Γ∗. However, (e, •)α = (hg−1, •)
by definition; since hg−1 /∈ B, it follows that (hg−1, •) ≁ (hg−1y, •) in Γ∗. So α is not a
bimorphism of Γ∗ when g−1h /∈ B. This completes the proof of (1).

For (2), assume that β is another bimorphism of Γ∗ sending g to h in B. By Lemma 3.10, β
moves (g,Ra) to the isomorphic induced subgraph (gβ,Ra) = (h,Ra) for all a ∈ A; it follows
that (ga)β = ha for all a ∈ A by Corollary 3.11.

In addition, since every vertex in Γ is adjacent to at least one vertex in some (g,Ra), and
every vertex in V Γ∗ \ V Γ is non-adjacent to every (g,Ra), then no bimorphism sends a vertex
of V Γ to a vertex of V Γ∗ \ V Γ. So the restriction β|V Γ of a bimorphism β ∈ Bi(Γ∗) to Γ must
be a monomorphism of Γ at the very least. To prove that this must be a bimorphism of Γ, we
must show that the preimage of any vertex of Γ also lies in Γ. To do this, it is enough to prove
that any vertex in V Γ∗ \ V Γ does not map into V Γ.

Since every vertex (y, •) of V Γ∗ \ V Γ is adjacent to y ∈ Γ, this edge must be preserved in
any bimorphism β sending (y, •) to some vertex of V Γ. This splits into two cases:

• If y ∈ B, then (y, •) is part of a complete graph of size at least 3 contained in the induced
subgraph (B, •), and this triangle must be preserved by any bimorphism β. However,
the induced subgraph on Γ∗ \ (B, •) contains no triangles (or indeed any complete graphs
of size 3 or larger). Therefore, elements of (B, •) cannot be mapped into Γ.
As (y, •)β ∈ V Γ∗ \ V Γ and the edge {y, (y, •)} must be preserved, the only element
of V Γ∗ \ V Γ adjacent to yβ is (yβ, •); and so (y, •)β = (yβ, •).

• If y ∈ G \ B, then (y, •) has degree 1 and is adjacent to y ∈ V Γ. Since (y, •)β ∈ V Γ,
and yβ ∈ V Γ by above, it follows that exactly one of the three cases must occur:

(a) (y, •)β = (yβ, •);
(b) (y, •)β = (yβ, a) for some a ∈ A or
(c) (y, •)β = (yβb, pb−1) for some b ∈ A.

Of these, it cannot be case (b); since (y, a)β = (yβ, a) by Corollary 3.11. Also, it can-
not be case (c); set g = yb and a = b−1 in Lemma 3.10 and use Corollary 3.11 to see
that (yb, pb−1)β = (ybβ, pb−1) = (yβb, pb−1). Therefore, it must be case (a) and so ele-
ments of (G \B, •) cannot be mapped into Γ.

It follows that β|V Γ is a bimorphism of V Γ; so by Proposition 3.8, β = α on V Γ. Work
above also shows that

(x, •)β = (xβ, •) = (xα, •) = (hg−1x, •) = (x, •)α

Therefore, β = α on Γ∗ as well.
Finally, for (3). It is enough to show that g ∈ G is mapped to some other x ∈ G. By the

work above, we know that g cannot be moved to anywhere in V Γ∗ \ V Γ by any bimorphism;
work in the proof of Proposition 3.8 then applies to show that g can only be mapped to another
group element in G ⊆ V Γ. This then completes the proof, as any bimorphism mapping g to x
is unique and acts like left multiplication.



combinatorial theory 4 (2) (2024), #12 13

Following Ore’s theorem, the bimorphism monoid of a graph Γ is a natural example of a can-
cellative monoid. A monoid M is left-cancellative if ab = ac implies b = c for all a, b, c ∈ M ;
equivalently, a monoid is left-cancellative if the action of M on itself by left multiplication is
injective. Right-cancellative monoids are defined analogously, and a monoid is cancellative if
and only if it is both left- and right-cancellative [CP61]. Examples of left-cancellative monoids
include epimorphism monoids of graphs (the monoid of all surjective endomorphisms), and ex-
amples of right-cancellative monoids include monomorphism monoids of graphs (the monoid of
all injective endomorphisms) [Col17]. Therefore, there is a natural question to ask:

Question 3.12. Does every left-cancellative (right-cancellative) monoid arise as the epimor-
phism (monomorphism) monoid of a graph Γ?

We note that a similar question is not necessarily true for bimorphism monoids, as not every
cancellative monoid is group-embeddable. We therefore refine Question 3.12:

Question 3.13. What class of left-cancellative (right-cancellative) monoids can be represented
as epimorphism (monomorphism) monoids of graphs?

Finally, we note that compared to the (potentially countable) group-embeddable monoid M ,
the graph Γ obtained by our construction such that Bi(Γ) ∼= M could be gigantic by comparison.
The size ofBi(Γ) is equal to the largest cardinal k used at a vertex adding step in Construction 3.1
which is present in some Ra for a ∈ A. Example 2.2 details a countable graph that represents a
countable group-embeddable monoid M . We surmise that for any such monoid, one can use (or
modify) the construction given in this article to show that there exists a countable graph Γ such
that Bi(Γ) ∼= M .

We also note that there are some uncountable group-embeddable monoids that can be ex-
pressed as the bimorphism monoid of a countable graph. It was shown in [CEG19] that the
bimorphism monoid of the countable random graph R (see [Cam97]) has cardinality of the
continuum; the same is true of the bimorphism monoid of any countable MB-homogeneous
graph [CEG19].

With these examples in mind, we end on the following question:

Question 3.14. Given a group-embeddable monoidM of some cardinal order k, does there exist
a graph Γ of size at most k such that Bi(Γ) ∼= M?
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