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Abstract

In this paper we investigate the disruption of the glucose homeostasis at the whole-body level 

by the presence of cancer disease. Of particular interest are the potentially different responses of 

patients with or without hyperglycemia (including Diabetes Mellitus) to the cancer challenge, and 

how tumor growth, in turn, responds to hyperglycemia and its medical management. We propose 

a mathematical model that describes the competition between cancer cells and glucose-dependent 

healthy cells for a shared glucose resource. We also include the metabolic reprogramming of 

healthy cells by cancer-cell-initiated mechanism to reflect the interplay between the two cell 

populations. We parametrize this model and carry out numerical simulations of various scenarios, 

with growth of tumor mass and loss of healthy body mass as endpoints. We report sets of cancer 

characteristics that show plausible disease histories. We investigate parameters that change cancer 

cells’ aggressiveness, and we exhibit differing responses in diabetic and non-diabetic, in the 

absence or presence of glycemic control. Our model predictions are in line with observations of 

weight loss in cancer patients and the increased growth (or earlier onset) of tumor in diabetic 

individuals. The model will also aid future studies on countermeasures such as the reduction of 

circulating glucose in cancer patients.
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1 Introduction

In recent years it has become increasingly clear that cancer is associated with a wide 

set of risk factors and co-morbidities that aggravate the clinical outcomes, undermine the 

benefits of cancer therapy, and contribute to disparities in cancer mortality [1]. Prominent 

among these is an impaired glucose/insulin homeostasis that manifests itself in insulin 
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resistance (IR). Rapidly proliferating cancer cells require large amounts of energy and 

building materials. A large portion of these come in form of glucose, while other nutrients 

such as amino acids and lipids also contribute to cancer cell energetics and proliferation. 

On one hand, cancer cells enhance the rate of nutrient consumption and exhibit an altered 

metabolic pattern to meet their demands for biosynthesis as a new and fast-growing organ 

in the body. On the other hand, cancer cells also reprogram the metabolism of their host 

organism to further tip the balance of energy in their favor [2, 3]. There is currently an 

intensive research effort into the precise mechanisms by which the cancer cells achieve this. 

For example it has been shown that extracellular vesicles secreted by breast cancer cells and 

carrying miRNA suppress glucose consumption by brain and lung cells [4] and also impair 

insulin secretion to exert a broad effect on insulin-responsive tissues [5].

In healthy individuals, blood glucose levels are tightly regulated to achieve homeostasis. 

A disruption of this regulation mechanism may result in conditions such as Diabetes 

Mellitus. The glucose-insulin-glucagon feedback system has been studied by physiologists, 

mathematicians and biomedical engineers for nearly 60 years. This has resulted in an 

impressive number of mathematical models and experimental studies, see [6] for a review. 

In order to keep the complexity at a manageable level, in this work we forgo the explicit 

modeling of insulin and the precise mechanism by which some cancer may desensitize 

insulin response in the healthy peripheral cells. Instead we focus on the interplay between 

different cell populations competing for glucose.

Here we propose an ordinary differential equation (ODE) model for the competition between 

a cancer cell population and the healthy glucosedependent remaining body. The conceptual 

model is depicted in Figure 1. Its central part is a denial of glucose to the healthy part of 

the body in the presence of cancer. This is a combined consequence of the simultaneous 

consumption of glucose by the two parties from a common glucose reservoir, and the ability 

of some cancer cells to suppress glucose consumption by healthy tissues. We investigate 

the model through numerical simulations and exploring the parameter space. Our results are 

of qualitative nature. For example, what is the influence of parameters on the time to the 

tumor reaching a certain size and on body mass loss associated with glucose reallocation? 

Moreover, we investigate how the disease differs in diabetic respectively non-diabetic 

patients. Another aspect we address is the possible use of drugs such as Metformin as 

supportive therapy for cancer patients [7–9].

2 The mathematical model

We begin by considering a cancer-free human in whom glucose uptake, loss and body mass 

are in a stable equilibrium. The variables of our model are

1. G(t), the amount of available glucose to support the body at time t, (in g)

2. M(t), the glucose-dependent body mass of the individual (in g), and

3. B(t), the mass of the cancer tissue (in g), which will be included in the second 

step of the model construction.
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The free, accessible form of circulating glucose exists in a reservoir from which the whole 

body draws and which is replenished regularly by consumption of food. There are various 

ways this reservoir can be defined, depending for example whether glycogen stored in the 

liver and skeletal muscle is counted towards it. For the sake of simplicity, we only count 

the amount of glucose constantly circulating in the blood. For a non-diabetic person this is 

approximately 4 g [10], while it can be up to 11 g for a diabetic person [11]. At the tissue 

or organ level, some tissues, such as muscle and adipose tissue, exhibit a high degree of 

plasticity as their size and weight fluctuate dramatically in response to the availability of 

nutrients such as glucose. In contrast, other tissues such as bone and brain exhibit a lower 

degree of fluctuation in size and weight in response to nutrient conditions. Here we focus on 

those tissues that are highly responsive to glucose availability and their contribution to the 

overall body mass, which we refer to “glucose-dependent body mass” in this paper.

Glucose is supplied through food, consumed by the body, and lost at a certain rate through 

excretion by the kidneys. As our first equation, we propose

dG
dt = r − kMMG − mG . (1)

On a time scale of days, the supply rate r is time-dependent, and roughly 24 h-periodic 

in response to meals and circadian rhythm. However, on a timescale of months or years, 

as usually used in the clinical follow-up of cancer patients, we ignore the daily spikes and 

assume a constant supply rate r. Glucose is lost at a rate m. The constant kM models the 

consumption of the glucose by the body (the subscript M is used to distinguish it from a 

similar constant for the cancer to be introduced later). It is mirrored by a corresponding term 

in the equation for the glucose-dependent body mass

dM
dt = kMMG − dMM . (2)

The constant dM models the rate of glucose consumption due to the regular metabolic 

processes of the body that are independent of building up body mass. In Equation (2) it takes 

the form of a mass loss rate for the case that no glucose is resupplied. We assume this is the 

body mass minus the mass of the skeleton.

We find the equilibrium solution of the model (1)–(2) to be

G* = dM

kM
, M* = kMr − dMm

dMkM
. (3)

Since M* > 0, this requires that the parameters satisfy the inequality kMr > dMm. This 

equilibrium can be shown to be asymptotically stable. That is, a small perturbation away 

from it will disappear in time.

When cancer is present, we modify the glucose balance Equation (1) to include two new 

phenomena. Firstly, we add a term to model the glucose consumption by the cancer cells. 

For this we use a term similar to −kMMG in Equation (1), and just replace M by B and 

Salentine et al. Page 3

Bull Math Biol. Author manuscript; available in PMC 2023 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



introduce another constant. Secondly, we assume that the glucose consumption rate by the 

healthy tissue decreases in the presence of the cancer, such as through the mechanisms 

previously reported [4, 5]. Thus we have to replace Equation (1) by

dG
dt = r − kBBG − kMMG

1 + α B
B0

n − mG .
(4)

Here kB is the glucose consumption rate of the cancer. Once the cancer reaches a critical 

mass B0, it begins to impair the glucose consumption. The strength of this suppression is 

encoded in the constants α and n. Equation (2) is altered accordingly so that it becomes

dM
dt = kMMG

1 + α B
B0

n − dMM .
(5)

The cancer cells grow depending on the availability of glucose and die at a rate dB > 0. Thus

dB
dt = cBkBBG − dBBβ . (6)

The conversion factor cB allows for the fact that the cancer uses glucose differently than the 

healthy cells with regard to growing its mass. The exponent β accounts for an increased 

mortality at larger cell numbers. This could be caused for example by lack of oxygen and 

nutrients at the core of the cancer due to insufficient blood supply.

3 Implementing the model

3.1 Parameter choices in the cancer-free case

The following section is devoted to finding parameters first for the cancer free case. A 

guiding principle are the steady state values for G* and M*. A difficulty is that the value of 

M* is not the same in every healthy subject as there is a wide variation of body weights. We 

choose M* = 6 ⋅ 104 g(10 kg bone mass in a 70 kg individual) and, as stated before, G* = 4 g
in a non-diabetic person [10].

To determine the rate of glucose intake we consider a diet of 10,000 kJ per day for a healthy 

person. According to Institute of Medicine (IOM), the recommended daily allowance for 

carbohydrates is 130 g [12]. This is based on the necessity of glucose acting as the required 

fuel for the central nervous system [13, Section 30.2]. Additionally, it is recommended by 

the IOM that 45-65 % of the total energy intake is in form of carbohydrates. Using the 

chosen diet above, we have a range of 139 - 202 g of carbohydrates daily. We choose the 

center point of this interval, r = 164 g d−1 ±38.1 g d−1 . The National Institutes of Health 

(NIH) and the American Diabetes Association (ADA) recommend low carbohydrate eating 

plans for individuals with type 2 diabetes [14, 15]. We implement this through a value of 

r that is reduced by 85 %, or to 140 g d−1 in diabetic patients. We also assume that all 
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carbohydrates acquired from diet, regardless of their form, break down into glucose with a 

100 % efficiency.

In healthy individuals an amount of up to 25 mg/dL glucose in urine is considered normal 

whereas higher values indicate glycosuria [16]. The range of urine volume is 800 to 

2000 mLd−1. Thus about 0.2 - 0.5 g of the 4 g circulating glucose are lost daily. The center 

point of this interval is m = 0.0875 d−1 ±0.0375 d−1 .

The glucose consumption rate is not easily available in the literature. We use the fact that at 

equilibrium,

kM = r − mG*
M*G* . (7)

Using the values that we have already selected, we find that kM = 6.8 ⋅ 10−4 g−1 d−1 for a 

non-diabetic person and kM = 2.1 ⋅ 10−4 g−1d−1 for a diabetic person.

The rate of mass loss dM can be estimated from various reports of the effects of starvation 

and semi-starvation experiments. [17] reported a 25 % loss of body weight in a six-month 

semi-starvation study on human volunteers, although the actual degree to which energy 

intake was reduced is not known. We work with the values given in Table 1 selected to 

match the equilibrium condition from Equation (3),

dM = G*kM (8)

in cancer-free individuals.

3.2 Introduction of the cancer

Our choice of the parameters in cancer patient is given in Table 2. As they are not 

available in the literature, their overall justification is that we are able to replicate plausible 

developmental histories of cancer. However, some comments can still be made. For example, 

we choose as a baseline value that cancer cells consume glucose at twice the rate of healthy 

cells in a non-diabetic individual. The higher glucose consumption rate in cancer cells 

is achieved partially through cancer-specific high expression of transporters (e.g., certain 

types of glucose transporters) and enzyme isoforms (e.g., hexokinase 2) that drive glucose 

flux forwards [18, 19]. Glucose uptake in cancer and normal cells has been evaluated and 

compared by PET and 2-deoxyglucose incorporation, indicating 2-3 fold higher uptake in 

cancer cells that correlates with the expression levels of glucose transporters and hexokinase 

[20]. We choose

kB = 2kM, (9)

but this will be subjected to changes later on. Another constant that deserves some 

discussion is the dimensionless constant cB which is the way in which the cancer cells 

convert glucose into their maintenance and growth relative to the healthy cells. It is well 

known that they are inefficient when it comes to converting glucose into energy in form of 
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ATP due to the Warburg effect [21]. However this does not necessarily imply that cB < 1
as the biosynthesis of proteins can actually be more efficient than in healthy cells. We will 

explore this deeper by varying this parameter below.

With these parameters, we perform numerical simulations of the Equations (4)–(6). The 

initial condition for the cancer mass is B(0) = 0.5 g, while for G(0) and M(0) we use their 

equilibrium values in a diabetic respectively non-diabetic individual (which are the same for 

M(0)). In Figure 2 we show simulation results for a pair of non-diabetic patients. For 6-7 

years there is no visible change until the body mass begins to drop and the cancer mass 

grows dramatically. We also observe an increase of the glucose circulating in the blood. As 

the glucose supply remains constant and the cancer suppresses the uptake of glucose by 

the healthy cells, it does not react with increased consumption to the greater availability of 

glucose. Decreasing the parameter α below 1 results in a delay of the cancer eruption, which 

can be identified with a less aggressive cancer type. In Figure 3 we show simulation results 

for a non-diabetic and a diabetic patient. Clearly, the eruption of cancer is much earlier in 

the diabetic patient. We define the time t* to be the time at which B t* = 100 g. This choice 

of cancer mass to define the critical time point is somewhat arbitrary, as is the choice of the 

initial mass. However, at the qualitative level, the dependence of the time a threshold on the 

parameters is independent of the choice of the threshold. We report the doubling time at t*,

T2 = ln 2
r ,

where r is the growth rate obtained by fitting the logarithm of the cancer mass B(t) up to t* to 

a linear function. To quantify the mass loss, we select M(0) − M t*  and the rate −M′ t*  at 

that time. Finally, we report the elevation of blood glucose levels over their baseline values. 

These simulated cancer characteristics for the different simulation scenarios are collected in 

Table 3.

At this point we can investigate the influence of the parameters from Table 2 on the 

aggressiveness of the cancer. We select as the primary marker the time t* that it takes for 

B(t) to reach 100 g. For example, increasing the glucose competitiveness of the cancer α
results in shorter values of t*, see Figure 4, left panel. Similarly, t* is a decreasing function 

of the cancer glucose consumption rate kB, see Figure 4, right panel, and of the efficiency 

of glucose use by the cancer cB (simulations not shown). The same pattern holds when the 

parameters of a diabetic patient are varied (simulations not shown).

Furthermore, our model allows to test strategies of using anti-diabetic drugs or dietary 

changes in supportive treatment of cancer patients. Three different approaches can be 

distinguished, namely

1. “type K” drugs that increase the uptake of glucose in healthy cells and hence in 

our model increase kM. These include most of the glucoselowering medicines for 

type 2 diabetes known as biguanides, such as metformin that decreases glucose 

production in the liver and increases the body’s sensitivity to insulin. Metformin 

is often combined with other drugs for type 2 diabetes, such as glipizide, a 
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sulfonylurea that increases release of body-produced insulin. In this case, both 

drugs function as “type K” drugs to cause a greater increase in kM. Supplemental 

insulin also increases kM and therefore belongs to this category.

2. “type M” drugs that inhibit the reabsorption of glucose in the kidneys, and hence 

in our model increase m. These include sodium-dependent glucose cotransporter 

2 (SGLT2) inhibitors.

3. “type R” strategies that decrease the dietary glucose intake and in our model 

decrease r. Such a strategy can also include appetite-reducing drugs.

It needs to be recalled that changing any of these parameters has implications on the 

values of kM and dM, as these were determined using the equilibrium conditions (7) and 

(8), respectively. A change in kM in turn has further implications if the relationship (9) 

is assumed. With this in mind, our model provides guidance on what to expect from the 

different mitigation strategies and whether synergistic effects are possible. The simulations 

in Figure 5 suggest that a type K drug has a substantial effect in increasing t* if relationship 

(9) is not in force. The effect of a type K drug is also more pronounced in a cancer patient 

without diabetes. In numbers, an increase of kM by a factor of 1.3 increases t* by a factor of 

1.62 in a non-diabetic patient but only by a factor of 1.36 in a diabetic patient. On the other 

hand, for a reduction of r to have an effect on t* it is necessary for the relationship (9) to be 

in force, see Figure 6. Finally, an increase of m has a negligible effect on t* (simulations not 

shown).

4 Discussion

In the following we gauge the model predictions from Figures 2 and 3 and Table 3 against 

observations with an emphasis on clinical or experimental studies. Naturally, there are large 

ranges of values reported in the literature, depending on the types of cancer and the goals 

of the particular studies. For example, in a clinical study [22] report doubling times of 

primary lung cancer between 30 and 1077 days, with a mean of 163 days. Similarly, the 

meta-study [23] lists a range of breast cancer doubling times of 150-250 days which has 

remained stable over the past 80 years. These ranges overlap with our values from Table 3 

although the means are smaller than our values in non-diabetic cancer patients (scenarios 

A and B). Clearly, this depends on the choice of the cancer parameters in Table 2. Thus 

in future work these will need to be adapted to a particular type of cancer that is being 

studied. In recent work, [5] observed elevated fasting glucose levels in breast cancer patients 

of (mean value) 125.3 g/dL compared to 110.6 g/dL for the control group. This ratio of 1.13 

is somewhat smaller than our values, but the average daily glucose levels could exhibit a 

greater difference between cancer and control groups due to the reported effect of cancer 

cells to suppress both basal and glucose-stimulated insulin secretion. Notably, all these 

parameters can be adjusted in future work to allow personalized modeling of tumor growth 

and response to interventions.

The time t* can be interpreted as the time between inception of the cancer and its detection 

or the appearance of clinical symptoms. In our implementation, t* depends on the choice of 

B(0) (here 0.5 g), and the threshold for detection (here 100 g). The time from emergence of a 
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cancerous founder cell to clinical detection of the primary tumor is generally believed to be 

several years to a decade [24]. Such estimates are based on the fact that often metastases are 

present already at time of detection and these require a sequence of mutations. The time t*
is particularly valuable when comparing different scenarios. In our simulations we observe 

a reduction of t* in a diabetic patient to about 25 % of its value in a non-diabetic patient 

(compare scenarios A and C). Diabetes or hyperglycemia are associated with a significantly 

higher risk of all-cause mortality in patients with NSCLC [25]. Similarly, the meta study 

by [26] indicates an increased cancer mortality in patients with an increased fasting glucose 

levels. There is a broad consensus that diabetes poses a general higher risk of developing 

cancer [27].

[28] report that in stage III and IV non-small cell lung cancer (NSCLC) patients weight 

loss occurs at a rate of 59 ± 3 g/week. This is somewhat larger than what our model predicts, 

but it may also result from full scale cachexia, the involuntary loss of skeletal muscle and 

adipose tissue caused by profound metabolic rewiring of normal tissues during the late stage 

of the disease.

Therapeutic intervention is possible by re-purposing anti-diabetic drugs, even in cancer 

patients that had no earlier diagnosis of diabetes. Metformin decreases glucose production 

by the liver, increases insulin sensitivity of tissues, and further reduces appetite and caloric 

intake. Hence it is possible to view it as a type K drug as it was introduced above. In 

contrast, SGLT2 inhibitors (also known as gliflozins) such as empagliflozin increase the 

excretion of glucose through the kidneys. Whether type K drugs or the type R strategy have 

any impact on t* depends on if and how the cancer glucose consumption rate kB changes 

as a response. If kM increases and kB stays the same, then t* increases, see Figure 5. If kM

decreases due to a decrease of r then kB needs to decrease as well, and then t* will increase, 

see Figure 6. At present we are required to use equilibrium conditions such as (7) and (8) 

since we do not have access to all parameters (of the cancer-free model) from the literature. 

Whether the crucial connection (9) is solely a choice of our numerical implementation or 

whether there could be some biological background for it remains a question for future 

research.

Metformin has shown some improved survival rates in colorectal cancer, while use of insulin 

is associated with worse survival [9]. Metformin shows positive outcomes for pancreatic, 

colorectal, breast and lung cancers. On the other hand, there is no significant improvement 

in prostate, bladder, thyroid, renal, head and neck, esophageal, and hepatocellular cancers. 

[29] list various types of malignancies and whether they are associated with increased 

incidence of non-insulin dependent diabetes mellitus. We have simulated only an “abstract” 

cancer, but we have indicated how parameters can be adapted to match the characteristics 

of different types of malignancies. Beyond that, there is also the possibility of differences 

between patients with the same type of cancer. An elevated glucose consumption rate kB

could be derived from a PET scan. It has been well-recognized that cancer cells in different 

tumors and even within the same tumor are heterogeneous, which is a combined result 

of the diverse tumor-intrinsic genetic and epigenetic factors (e.g., cancer cells’ abilities to 

consume glucose and suppress healthy tissues’ consumption) and host factors (e.g., status of 
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glucose homeostasis). On the other hand, patients with similar tumor characteristics and host 

conditions could still have different prognoses. Therefore, those measurable tumor and host 

factors, together with other unknown or stochastic factors, together define the phenotypic 

characteristics and behaviors of cancer. In this regard, future modeling would benefit from 

tuning the general parameters determined herein using a large number of diverse tumors, and 

could include one or more terms reflecting a stochastic process.
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Fig. 1. 
The competing cell populations (top row) and their common glucose resource. In this model, 

some cancer cells could suppress the glucose consumption by the glucose-dependent healthy 

body mass.
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Fig. 2. 
The amount of circulating glucose G (left), the glucose-dependent body mass M (center) and 

the cancer mass B (right) over a period of approximately 12 years. Blue lines indicate α = 1
(scenario “A”, a cancer more aggressively competing for glucose) and red lines indicate 

α = 0.7 (scenario “B”, a cancer less aggressively competing for glucose). In the first case 

we have that t* = 2427 d, in the second case t* = 3128 d. These time points are marked by 

black dots on the curves. The dashed lines in the right panel show the optimal fit with an 

exponential function which is used to determine the overall doubling time.
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Fig. 3. 
A plot of G, M and B for a non-diabetic patient (blue, column A of Table 1, scenario “A” 

again) and a diabetic patient (red, column B of Table 1, scenario “C”). For the diabetic 

patient we have t* = 625 d. The cancer parameters are those listed in Table 2.
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Fig. 4. 
The relative eruption times t* as a function of the cancer’s glucose competitiveness α
(left; reference value is 1) and as a function of the cancer’s consumption rate kB. The 

cancer-unrelated parameters are those for a non-diabetic individual. The aggressiveness of 

the cancer increases from left to right.
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Fig. 5. 
Plots of G, M and B for increasing values of kM when kB does not change in response. The 

cancer-unrelated parameters are those for a non-diabetic individual (top row) respectively for 

a diabetic individual (bottom row). The times t* are marked by black dots.
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Fig. 6. 
Plots of G, M and B for decreasing values of r when kB does change in response. The 

cancer-unrelated parameters are those for a non-diabetic individual. The times t* are marked 

by black dots.
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Table 1

Parameters of the cancer-free model (1)–(2) in non-diabetic (column A) and diabetic (column B) individuals.

parameter value A value B role

r 164 g d−1 140 g d−1 rate of glucose replenishment

kM 6.8 ⋅ 10−4(g d−1) 2.1 ⋅ 10−4(g d−1) glucose consumption rate

m 0.0875 d−1 same rate of glucose loss

dM 2.7 ⋅ 10−3 d−1 2.3 ⋅ 10−3 rate of body mass loss
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Table 2

Baseline parameters in the presence of cancer. Note that some parameters are varied in subsequent 

simulations.

parameter value role

kB 1.4 ⋅ 10−3(g d)−1 rate of glucose consumption

B0 10 g cancer threshold size for glucose deprivation

n 0.3 strength of the glucose suppression

cB 0.35 efficiency of glucose use by the cancer

dB 1.2 ⋅ 10−3 d−1 death rate of cancer cells

α 1 modulation of cancer competition for glucose

β 1.1 exponent of cancer loss term
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Table 3

Cancer characteristics for the three simulated scenarios in Figures 2 and 3. From left to right are 1. the time for 

the cancer mass B(t) to reach 100 g, 2. the overall doubling time, 3. the total mass loss, 4. the rate of mass loss 

at the time t*, and 5. the elevation of the blood glucose level compared to the normal level.

scenario t*(d) T2(d) M(0) − M t* (g) −M′ t* g d−1 G t* /G(0)

A 2427 330 433 1.14 2.11

B 3128 422 378 0.76 1.86

C 625 92 622 4.8 2.05

Bull Math Biol. Author manuscript; available in PMC 2023 August 17.


	Abstract
	Introduction
	The mathematical model
	Implementing the model
	Parameter choices in the cancer-free case
	Introduction of the cancer

	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Table 1
	Table 2
	Table 3



