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Abstract

Many real-world scientific processes are governed by complex nonlinear dynamic sys-

tems that can be represented by differential equations. Recently, there has been increased

interest in learning, or discovering, the forms of the equations driving these complex non-

linear dynamic system using data-driven approaches. In this paper we review the current

literature on data-driven discovery for dynamic systems. We provide a categorization to

the different approaches for data-driven discovery and a unified mathematical framework

to show the relationship between the approaches. Importantly, we discuss the role of statis-

tics in the data-driven discovery field, describe a possible approach by which the problem

can be cast in a statistical framework, and provide avenues for future work.

Key Words: Differential Equations, Dynamic Equation Discovery, Probabilistic Dynamic

Equation Discovery

1 Introduction

Recently there has been a push from within computer science, physics, applied mathemat-

ics, and statistics to learn the governing equations in complex dynamic systems parameterized

through dynamic equations. There are a variety of reasons researchers may want to know the
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underlying laws driving a system – to reinforce their assumptions, uncover extra information

about the system, or to produce a more realistic mathematical representation for the system.

Historically, scientists have relied on their ability to represent physical systems using math-

ematical equations in the form of dynamic equations. Dating back to at least the inference

of equations describing the motion of orbital bodies around the sun based on the positions of

celestial bodies (Legendre, 1806; Gauss, 1809), dynamic equations have been used to model

the evolution of complex processes (e.g., the use of susceptible, infected, recovered models for

epidemics), and have become ubiquitous across virtually every area of science and engineering.

More recently, the idea of learning, rather than representing, the equations underlying complex

systems has become popular due in part to the initial ideas presented by Bongard and Lipson

(2007), Schmidt and Lipson (2009), and Brunton et al. (2016). We review methods used to dis-

cover the governing equations driving complex, potentially nonlinear, processes, often referred

to as data-driven discovery.

Consider the general dynamic equation describing the evolution of a continuous process

{u(s, t) : s ∈ Ds, t ∈ Dt},

ut(J)(s, t) =M
(
u(s, t),ux(s, t),uy(s, t), ...,ut(1)(s, t), ...,ut(J−1)(s, t),ω(s, t)

)
, (1)

where the vector u(s, t) = [u(s, t,1),u(s, t,2), ...,u(s, t,N)]′ ∈ RN denotes the state of the N-

dimensional system at location s and time t, ut( j)(s, t) is the jth order temporal derivative of

u(s, t), J denotes the highest order of the temporal derivative, M(·) represents the (potentially

nonlinear) evolution function, and ω(s, t) represents covariates that might be included in the

system. We denote partial derivatives by a subscript; that is ∂u(x,t)
∂x = ux(x, t) and ∂u(x,t)

∂ t =

ut(x, t), for example. Here, s ∈ {s1, ...,sS} = Ds is a discrete location in the domain with

|Ds|= S and t ∈ {1, ...,T}=Dt is the realization of the system at discrete times where |Dt |= T .

Equation (1) is composed of partial derivatives of the system with Ds ∈ R2 and s = (x,y)′

(although this can be simplified to R1 with s = x or generalized to higher dimensions) and is

often referred to as a partial differential equation (PDE). Example 1 details how the general

formulation for a PDE relates to a classical example, Burgers’ equation. Removing the spatial
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component from (1) results in a temporal ordinary differential equation (ODE),

ut(J)(t) =M
(
u(t),ut(1)(t), ...,ut(J−1)(t),ω(t)

)
, (2)

where M(·) is composed solely of derivatives of the components in time (i.e., no partial deriva-

tives). This review will focus on methods to discover the evolution function M for both PDEs

(e.g., equation (1)) and ODEs (e.g., equation (2)).

The goal of data-driven discovery is to learn the governing equation(s) in (1) and (2) –

specifically the (non)linear function M(·) – having only observed noisy realizations of the true

process u(s, t) (i.e., true derivatives are unknown). Broadly, we group the approaches used

for data-driven discovery into three categories – classical sparse methods, classical symbolic

methods, and deep modeling methods using either symbolic or sparse regression techniques

– but recognize other categorizations are possible. The first approach uses sparse regression

where a library of potential solutions are proposed and the correct solution set is obtained

by regularization based techniques, resulting in a sparse solution. The second uses symbolic

regression where the solution is learned, or generated, through the estimation procedure. The

third uses deep models to facilitate the discovery process of the previous two approaches (e.g.,

symbolic regression using deep models). As this is an active area of research, we refer the

reader to the special issue Epureanu and Ghadami (2022) for emerging areas of research and

applications.

While less common than the deterministic counterparts, methods to quantify uncertainty in

the discovered equations have been proposed (Zhang and Lin, 2018; Niven et al., 2020; Yang

et al., 2020; Fasel et al., 2021; North et al., 2022a,b; Bhouri and Perdikaris, 2022). However,

these methods generally do not account for uncertainty in the observed data, missing a vital

piece of the statistical puzzle. We draw parallels between traditional statistical models and data-

driven discovery, discussing how statistical models can be formulated for data-driven discovery

and highlighting possible improvements to the methods.

The remainder of the paper is organized as follows. In Section 2 we review sparse re-

gression methods for data-driven discovery, which are sub-categorized into deterministic and

probabilistic approaches. In Section 3 we review symbolic methods for data-driven discovery.
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In Section 4 we review deep modeling approaches for data-driven discovery, which are sub-

divided into methods approximating and discovering the underlying dynamics. In Section 5 we

show how the problem can be formulated in a statistical paradigm and in Section 6 we review

a possible method of data-driven discovery using a fully probabilistic approach.

Example 1: Burgers’ Equation

To motivate the setup with a classic PDE, consider Burgers’ equation

ut(s, t) =−u(s, t)ux(s, t)+νuxx(s, t), (3)

which is a simplification of the Navier-Stokes equations describing the speed of a fluid

(Bateman, 1915; Burgers, 1948), where u(s, t) is the speed of the fluid at location s = (x)

and time t and ν is the viscosity of the fluid. To frame (3) in the context of (1), let

N = 1 and J = 1 so the left-hand side (LHS) of (1) is now ut(s, t). For the right-hand

side (RHS) of (1), the nonlinear function M(·) = −u(s, t)ux(s, t)+ νuxx(s, t) will take

arguments u(s, t),ux(s, t), and uxx(s, t), and ν will be a learned parameter value.

An example of the solution surface u(s, t) with initial condition u(s,0) = exp{−(s+

2)2} and ν = 0.1 with 256 spatial locations across 101 time points where Ds =

[−8,8] and Dt = [0,10] is shown in Figure 1(a). The solution is generated using

spectral differentiation and the Tsit5 (Tsitouras, 2011) numerical solver from the Ju-

lia package DifferentialEquations.jl (Rackauckas and Nie, 2017), and source code

for generating this data can be found at https://github.com/jsnowynorth/

BayesianDiscovery.jl.

To simulate measurement error, which we refer to as ζ noise, we add white noise

to the solution. Specifically, let v(s, t) = u(s, t)+ζ ε(s, t), where u(s, t) is the simulated

data, ε(s, t)∼ N(0,σ2) is the additive noise, σ is the standard deviation of the simulated

data u(s, t), and ζ is the proportion of noise ranging from 0 to 1. For all the following

examples, we take ζ = 0.01 (Figure 1(b)) and use the noisy data when estimating model

parameters. For cases with larger artificial noise, see the examples provided in Rudy

et al. (2017) and North et al. (2022b). Note, v(s, t) is analogous to the data model that

will be introduced in Section 5.
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Figure 1: Data simulated from Burgers’ equation, ut(s, t) =−u(s, t)ux(s, t)+νuxx(s, t), where
ν = 0.1, Ds = [−8,8], Dt = [0,10], |Ds|= 256, and |Dt |= 101. Left (a) is the true data u(s, t)
and right (b) is the noisy data v(s, t) with ζ = 0.01.

2 Sparse Regression

Sparse regression approaches for dynamic discovery of ODEs and PDEs are fundamentally

the same. We formulate the general approach for PDEs (e.g., equation (1)), noting that the

approach for ODEs (e.g., equation (2)) is equivalent but with only one spatial location (i.e.,

S = 1). First, consider rewriting (1) as a linear (in parameters) system

ut(J)(s, t) = f(u(s, t), ...)M,

where M is a D×N sparse matrix of coefficients and f(·) is a length-D vector-valued nonlin-

ear transformation function termed the feature library. The input of the arguments for f(·) are

general and contain terms that potentially relate to the system (e.g., advection term, polyno-

mial terms, interactions). Sparse identification seeks to identify relevant terms of M, thereby

identifying the components of f that drive the system and discovering the governing dynamics.

We denote the matrix of all data (all components at all time points) for the jth derivative of
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the system as

Ut( j) =



ut( j)(s1,1)

ut( j)(s1,2)
...

ut( j)(sS,T )


=



ut( j)(s1,1,1) ut( j)(s1,1,2) · · · ut( j)(s1,1,N)

ut( j)(s1,2,1) ut( j)(s1,2,2) · · · ut( j)(s1,2,N)

...
...

...

ut( j)(sS,T,1) ut( j)(sS,T,2) · · · ut( j)(sS,T,N)


.

The response matrix is then Ut(J) of size (ST )×N and we generically denote the feature library

as

F =



f(1,ut(0)(s1,1), ...,ut(J)(s1,1),ux(s1,1),uy(s1,1),uxx(s1,1), ...,ω(s1,1))

f(1,ut(0)(s1,2), ...,ut(J)(s1,2),ux(s1,2),uy(s1,2),uxx(s1,2), ...,ω(s1,2))
...

f(1,ut(0)(sS,T ), ...,ut(J)(sS,T ),ux(sS,T ),uy(sS,T ),uxx(sS,T ), ...,ω(sS,T ))


,

where F is a (ST )×D matrix. We can write the linear system in matrix form

Ut(J) = FM, (4)

whereby identifying the terms of M that are non-zero, the dynamic equation is identified.

The derivatives of the system are rarely observed (i.e., only Ut(0) is measured). To obtain

derivatives in space and time, numerical techniques are used to approximate the derivatives.

There are multiple methods to approximate derivatives numerically, and the choice of approx-

imation has the potential to impact the discovered equation (de Silva et al., 2020). Originally,

a finite difference approach was suggested, but this approach is sensitive to white noise (Char-

trand, 2011). When measurement error is present, data are either smoothed a priori and then

derivatives are computed, or derivatives are computed using total variation regularization (Char-

trand, 2011) or polynomial interpolation (Knowles and Renka, 2012).

Due to the numerical approximation of the derivative and the potential for noise in the
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observed data, (4) does not hold exactly. Instead,

Ut(J) = FM+η, (5)

where η ∼ MNST×N(0,IST ,σ
2IN), MNA×B(C,Σ1,Σ2) denotes the matrix normal distribution

with mean C ∈ RA×B and row and column covariance matrices Σ1 ∈ RA×A and Σ2 ∈ RB×B,

respectively, and σ2 is the variance associated with the model approximation and the numer-

ical differentiation. To induce sparsity, and thereby identify the relevant terms governing the

system, solutions to (5) of the form

M = argmin
M̂

∥Ut(J) −FM̂∥2
2 +Penθ (M̂), (6)

are sought, where Penθ (M̂) generically denotes a penalty term based on parameters θ (i.e.,

Penθ (M̂) = λ∥M̂∥1 where θ = λ for the LASSO penalty) and ∥ · ∥p denotes the p-norm for

either a vector or matrix depending on the argument. Example 2 illustrates how to frame

Burgers’ equation from Example 1 in a sparse regression framework and the role the feature

library plays in the dynamic equation identification.

While not the main focus of this review, boundary conditions serve an important role for

dynamic equations. Recently Shea et al. (2021) and Wei (2022) have proposed approaches to

incorporate and/or learn boundary and initial conditions for sparse regression problems. Meth-

ods for estimating and incorporating boundary and initial conditions in data-driven discovery

is an active and on-going area of research.
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Example 2: Burgers’ Equation for Sparse Regression

We now illustrate how Burgers’ equation from Example 1 can be formulated for

the sparse regression framework. Assume the data are observed (e.g., Figure 1) and

all derivatives can be computed using numerical methods. To frame Burgers’ equa-

tion (3) as (4), we first define a viable library of potential functions, f(s, t). Let

f(s, t) = [u(s, t),u2(s, t),u3(s, t),ux(s, t),u(s, t)ux(s, t),uxx(s, t)], resulting in D = 6 (note,

in an actual implementation one would choose a much larger set of functions). We

then compute F by evaluating f(s, t) at every space-time location, resulting in F being a

(ST )×6 matrix. Expanding this for clarity,



ut(s1,1)

ut(s2,1)
...

ut(s2,1)

ut(s2,2)
...

ut(sS,T )



=



u(s1,1) u2(s1,1) u3(s1,1) ux(s1,1) u(s1,1)ux(s1,1) uxx(s1,1)

u(s2,1) u2(s2,1) u3(s2,1) ux(s2,1) u(s2,1)ux(s2,1) uxx(s2,1)
...

u(s2,1) u2(s2,1) u3(s2,1) ux(s2,1) u(s2,1)ux(s2,1) uxx(s2,1)

u(s2,2) u2(s2,2) u3(s2,2) ux(s2,2) u(s2,2)ux(s2,2) uxx(s2,2)
...

u(sS,T ) u2(sS,T ) u3(sS,T ) ux(sS,T ) u(sS,T )ux(sS,T ) uxx(sS,T )





m1

m2

m3

m4

m5

m6


,

or in matrix form, ut = Fm, where m = [m1,m2,m3,m4,m5,m6]
′. The goal is then to es-

timate m = [0,0,0,0,−1,0.1], where m5 is the coefficient corresponding to u(s, t)ux(s, t)

and m6 = ν is the coefficient associated with uxx(s, t), which is done by finding the solu-

tion to (6). Note, in this example ut and m are vectors because N = 1 (i.e., there is only

one system). However, if N > 1, which could occur with reaction-diffusion models, then

ut and m would be matrices (e.g., Ut and M).

2.1 Deterministic Approaches

The majority of deterministic approaches are composed of three steps – denoising and differ-

entiation, construction of a feature library, and sparse regression. Assuming data have been

properly differentiated and a library has been proposed, the deterministic approach seeks solu-
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tions of the form (6). The original sparse regression approach to data-driven discovery, Sparse

Identification of Nonlinear Dynamics (SINDy; Brunton et al., 2016), uses sequential threshold

least-squares (STLS; Algorithm 1) to discover the governing terms for ODEs. While the orig-

inal paper does not discuss the algorithm in terms of a penalty term, STLS has been shown to

be equivalent to the ℓ0 penalty, Penθ (M̂) = ∥M̂∥0 (Zhang and Schaeffer, 2019), which removes

values of M less than some pre-specified threshold κ . That is, at each iteration of the minimiza-

tion procedure, values of M < κ are set to zero and the remaining values of M are re-estimated.

In the original implementation, the algorithm was only iterated 10 times, but a stopping criteria

(e.g., change in loss or identified parameters) could be used. In this manner, a sparse solution

set is obtained.

In the literature, SINDy is illustrated on a variety of simulated ODE problems with varying

amounts of noise. The examples used generally contain many observations (on the order of

hundreds of thousands), and it is unclear the impact of noise if a smaller number of observations

is considered. In contrast to the symbolic approaches discussed in Section 3, SINDy can be fit

quickly. However, a drawback of the approach is the sensitivity to the thresholding parameter

and the dependence on the method approximating the derivative.

To extend SINDy to PDEs, Rudy et al. (2017) proposed Sequential Threshold Ridge Re-

gression (STRidge, Algorithm 2), a variant to STLS. Due to the correlation present in F for data

pertaining to PDEs, STLS is insufficient at finding a sparse solution set. Instead, STRidge uses

the same iterative technique as STLS, where values of M < κ are set to zero at each iteration,

but with the addition of the penalty term Penθ (M̂) = λ∥M̂∥2
2. Cross-validation is then used

to find the optimal values for κ and λ . The effectiveness of STRidge is shown on multiple

simulated data sets with varying noise. In comparison to the symbolic counterparts, the algo-

rithm is quick, but still dependent on the method used to approximate the derivative. Example

3 provides additional details on the STRidge algorithm, what the discovered equation may look

like, and where to find code to implement the example.
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Example 3: Burgers’ Equation with STRidge

A worked example using Python can be found in the at https://github.com/

snagcliffs/PDE-FIND or in the PySINDy (de Silva et al., 2020) documentation

at https://pysindy.readthedocs.io/en/latest/index.html. The re-

sults presented are taken directly from the PDE-FIND GitHub example.

The final identified equation is dependent on various model specification, such as the

feature library and the optimizer’s (e.g., STRidge) parameters - default values are used

this example. The feature library is specified as

[1,u,u2,u3,ux,uux,u2ux,u3ux,uxx,uuxx,u2uxx,u3uxx,uxxx,uuxxx,u2uxxx,u3uxxx],

and using the noisy data from example 1 (e.g., ζ = 0.01) as the observed data, the system

is de-noised and the appropriate derivatives are computed (note, this happens within the

optimization procedure). After running the optimization procedure, the identified model

is

ut =−1.008uux +0.103uxx,

which correctly identifies the two correct terms with coefficient estimates that are close

to the truth. Additionally, the algorithm does not include extraneous terms in its final

solution.

STRidge can be adapted to allow for parametric PDEs by grouping terms either spatially

or temporally (Rudy et al., 2019a). To incorporate parametric PDEs in 4, the coefficients now

vary in space or time (i.e., M(s) or M(t)) and F is constructed as a block diagonal matrix of

the appropriate form (e.g., either in space or time). Similar to the group LASSO (Meier et al.,

2008), coefficients are assigned to a collection g ∈ G by grouping the same location in space

over the entire time domain (e.g., g ≡ s and G ≡ DS) or the same time point over the whole

spatial domain (e.g., g ≡ t and G ≡ DT ). Within the STRidge algorithm, all coefficients with

the same group index are set to zero if ∥M(g)∥2 < κ . In this manner, the same dynamics are

identified across space and time and only the coefficient estimate is allowed to vary in space or

time.

Champion et al. (2020) proposed a robust unifying algorithm (Algorithm 3) for the SINDy
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framework based on sparse relaxed regularized regression (SR3; Zheng et al., 2019). SR3

introduces an auxiliary variable matrix W within the penalization term, resulting in Penθ (M̂) =

λR(W)+ 1
2ν
∥M̂−W∥, where R(·) is another penalization term (e.g., ℓ1), and ν controls how

closely the auxiliary variable W is to M. The addition of the auxiliary variables provides a more

favorable geometric surface to optimize (see Zheng et al., 2019, for a mathematically regorius

explination of the SR3). SR3 is shown to be able to handle outliers (a potential issue when

numerically differentiating noisy data), accommodate parametric formulations, and allow for

physical constraints in the library.

While not discussed in detail, there are other applications and approaches of dynamic equa-

tion discovery using sparse methods within the literature. Applying SINDy to stochastic differ-

ential equations (Boninsegna et al., 2018) and systems where the dynamics evolve on a different

coordinate system (Champion et al., 2019) further increase the SINDy applicability. Instead of

using finite differences or total variation regularization, Schaeffer (2017) use spectral methods

to compute spatial derivatives and the Douglas-Rachford algorithm (Combettes and Pesquet,

2011) to find a sparse solution. Further consideration of highly corrupt signals (Tran and Ward,

2017), convergence properties of the SINDy algorithm (Zhang and Schaeffer, 2019), and the

choice of denoising and differentiation methods (Lagergren et al., 2020) have also been studied

within the literature. For ease of use, SINDy and related variants are available in the Python

package PySINDy (de Silva et al., 2020).

2.2 Addressing Uncertainty

Bayesian and bootstrapping approaches have been proposed to quantify uncertainty in the pa-

rameters for the sparse regression formulation of data-driven discovery. These approaches seek

to quantify the variability in the discovered equation and parameters of (5).

2.2.1 Bayesian Approach

A penalized likelihood estimator of the form shown in (6) can be analogously cast as the pos-

terior mode in a Bayesian framework under the prior p(M|θ) where Pen(M̂)θ = log p(M|θ).

That is, (5) can be formulated in the Bayesian framework where priors are put on M and σ2.

11



Instead of an optimization procedure, the Bayesian approach aims to sample from the joint

posterior distribution

p(M,σ2|F,Ut( j)) ∝ p(Ut( j)|F,M,σ2)p(M|θ)p(σ2|θ)p(θ),

where p(Ut( j)|F,M,σ2) is the data likelihood derived from (5), and p(M|θ) and p(σ2|θ) are

prior distributions for M and σ2, respectively, and p(θ) is the prior distribution for the hyper-

parameters (or penalization parameters in (6)). To enforce a sparse solution set in a Bayesian

framework, a regularization prior is placed on the parameter of interest, in this case M. Further

discussion comparing the sparse regression approach to a Bayesian formulation of the problem

is explored by Niven et al. (2020).

Using the Bayesian framework in an algorithmic setting, Zhang and Lin (2018) proposed

using the priors p(md|αd) = N(0,α−1
d ), p(σ2) = IG(as,bs), and p(α−1

d ) = IG(aa,ba), where

IG(a,b) is the inverse Gamma distribution with shape a and scale b, and d = 1, ...,D. They

estimate the parameters using a threshold sparse Bayesian regression algorithm, which max-

imizes the marginal likelihood instead of sampling from the full conditional distributions as

in Markov chain Monte Carlo. Their algorithm uses a hard thresholding parameter, similar to

the deterministic sparse regression approaches, where at each iteration, values of the posterior

M(i, j) < κ are set to zero. Their procedure assigns what they term “error bars” to their pa-

rameter estimates based on the ratio of the estimate for the posterior variance to the estimate

for the posterior mean squared. Zhang and Lin (2018) consider many of the same simulated

ODEs and PDEs used to illustrate the deterministic approaches and provide error bars to the

parameter estimates for these systems with varying amounts of noise. As an interesting appli-

cation, Zanna and Bolton (2020) use this framework to discover unknown equations in ocean

mesoscale closures.

Hirsh et al. (2021) explore the use of two common Bayesian selection priors on system

discovery and uncertainty quantification – the continuous spike and slab (i.e., stochastic search

variable selection (SSVS); Mitchell and Beauchamp, 1988; George et al., 1993; George and

McCulloch, 1997), and the regularized horseshoe (Carvalho et al., 2010; Piironen and Vehtari,

2017) – calling the approach uncertainty quantification SINDy (UQ-SINDy). Their choice of
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priors are distinct in that SSVS is a mixture of two continuous mean zero Gaussian distribu-

tions and the horseshoe is part of the global-local shrinkage prior family. For the SSVS prior,

variables that are not to be included in the model are sampled from a mean zero Gaussian dis-

tribution with a small variance, rendering their effect on inference negligible, and variables that

are to be included are sampled from a mean zero Gaussian distribution with a larger variance.

The posterior inclusion probability for a variable is the number of times it was sampled from

the Gaussian with a large variance over the total number of samples. In contrast, the horseshoe

prior has a hyper-prior performing global shrinkage on all variables in conjunction with indi-

vidual hyper-priors performing individual shrinkage. To determine the probability a variable is

included under the regularized horseshoe, the ratio of each element of the estimate of M with no

prior and with the horseshoe prior is computed, providing pseudo-inclusion probabilities (i.e.,

not necessarily bounded by 0 and 1). Using both of these priors, Hirsh et al. (2021) provide

inclusion probabilities for multiple simulated ODE systems with varying amounts of noise and

to the classic hare-lynx population data set (Elton and Nicholson, 1942).

However, these two approaches are limited in that the uncertainty being quantified is the

uncertainty in the numerical approximation of the system (i.e., the numerical differentiation

and de-noising). That is, because the approximated derivative is, in fact, a single realization of

the true derivative (which is unknown), the uncertainty estimates recovered by this approach

are biased toward this single approximation of the derivative. A more complete treatment of the

problem would be to consider the derivative as a random process and account for uncertainty

in the random process.

Yang et al. (2020) proposed the use of Bayesian differentiable programming as a method

by which to discover the dynamics and account for measurement uncertainty when estimating

parameters. Generally speaking, Bayesian differentiable programming uses a numerical solver

(e.g., Runge-Kutta) to predict the state at a new time, and the loss between the predicted data

and observed data is used to estimate parameters. More precisely, letting Mθ (u(t)) be the

output of a numerical solver at time t, Bayesian differentiable programming aims to minimize

∑∥u(t +∆t)−Mθ (u(t))∥2, where ∆t does not need to be uniformly spaced. The parameters

are estimated using Hamiltonian Monte Carlo (HMC) and differentiable programming is used
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to compute gradients within the HMC algorithm. By directly relating the observed data to the

dynamics, measurement uncertainty is accounted for in the estimation procedure, providing

a more thorough statistical treatment to the data-driven discovery problem. The approach is

illustrated on multiple simulated ODE systems with varying amounts of noise.

Bhouri and Perdikaris (2022) extend the idea of Bayesian differential programming for

data-driven discovery by using Gaussian process priors on the state variables to model temporal

correlations and use NeuralODEs (Chen et al., 2018) to perform numerical integration. Addi-

tionally, they use the “Finnish Horseshoe prior” to impose variable shrinkage on the learned

library, similar to Hirsh et al. (2021). The model parameters are estimated using HMC and

the No-U-Turn-Sampler (NUTS; Hoffman and Gelman, 2014) algorithm to automatically cal-

ibrate model parameters. Similar to Yang et al. (2020), the approach is illustrated on multiple

simulated ODE systems in addition to human motion capture data.

2.2.2 Bootstrap Approach

Fasel et al. (2021) proposed two methods of bootstrapping (4) – either sampling rows of the data

(i.e., space-time sampling) or sampling library terms (i.e., columns of F). The first approach

samples rows of the data with replacement and uses STRidge to estimate the parameters in the

model q times. In the second approach, the columns of F are sampled without replacement to

create q data sets, and again STRidge is used to estimate parameters. For both methods, the q

models are then averaged and coefficients with an inclusion probability below a pre-specified

value are set to zero. Uncertainty is quantified by the inclusion probability and the distribution

of values obtained from the q different estimates. However, as with Hirsh et al. (2021), the un-

certainty associated with the observed data is not considered and the numerical approximation

to the derivative is treated as an observation of the derivative, limiting uncertainty quantifi-

cation. The method is illustrated on multiple simulated ODE and PDE systems with varying

levels noise and applied to the classic hare-lynx population data set.
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3 Symbolic Regression

Symbolic regression is a type of regression that searches over mathematical expressions (e.g.,

+,−,×) to find the optimal model for a given data set (Wang et al., 2019). This approach

differs from classical regression where the model structure is fixed and a set of parameters

are estimated. One of the main challenges underlying symbolic regression is that there are an

infinite number of combinations of expressions that can be used to fit any particular data set.

Genetic programming is used to efficiently search over the possible model structures (Willis,

1997; Koza et al., 1993; Koza, 1994) and regression techniques are used to determine coef-

ficient values given the model structure. Genetic programming follows Darwin’s theory of

evolution, selecting the “fittest” solution that is the product of generations of evolution (i.e., it-

erating through an algorithm). We give a brief overview of genetic programming and its roll in

symbolic regression and subsequently data-driven discovery of dynamics. For a more detailed

overview of genetic programming, see Minnebo and Stijven (Chapter 4, 2011) and Garg and

Tai (2012).

Genetic programming relies on a predefined function set of mathematical expressions. For

symbolic regression, the function set typically consists of basic mathematical expressions such

as addition, multiplication, and trigonometric terms (see Nicolau and Agapitos, 2018, for de-

tails on function set choice). Possible model solutions are constructed using a combination of

functions from the function set and encoded in a tree structure (Figure 2). Within the tree, the

mathematical expressions are the decision nodes and input data passed into the mathematical

expression are the terminal nodes. To make the searchable space smaller, the maximum node

size of the tree can be specified. A population of potential solutions is composed of individual

potential solutions. The ability of an individual to properly represent data is determined based

on the fitness function, which is analogous to an objective or loss function in statistics. Indi-

viduals can then reproduce to create a copy of themselves, crossover with another individual,

or mutate themselves. Crossover is where two individuals swap sub-trees (i.e., a decision node

is randomly selected from each tree and exchanged) to produce two new individuals, which is

equivalent to parents producing offspring with shared genetics. Mutation is where an individu-

als decision node is randomly changed (e.g., plus to multiplication or plus to a variable), which
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Figure 2: Symbolic representation of f (X ,Y ) = X
10 +Y ∗1.2cos(X).

is akin to a genetic mutation.

The general algorithm for genetic programming proposes an initial population, assesses the

fitness of each individual, and then generates the next population based on the fittest individuals

of the current population (Algorithm 4). Taking the fitness function to be based on regression

where the goal is to minimize mean squared error results in symbolic regression (Schmidt and

Lipson, 2009). This basic genetic programming/symbolic regression method has generated

multiple extensions (Icke and Bongard, 2013; Chen et al., 2017; Amir Haeri et al., 2017; Jin

et al., 2019) and incurred extensive discussion (Korns, 2014; Nicolau and Agapitos, 2018;

Ahvanooey et al., 2019).

Within the context of data-driven discovery, symbolic regression attempts to find the evo-

lution function M(·) in (1) or (2). The difficulty is relating a proposed choice for M(·) that

is generated within the genetic algorithm to derivatives of the observed data. Specifically, be-

cause derivatives of the system are unknown, either the fitness function needs to account for

the derivative or the derivatives must be obtained in order to use a traditional fitness function.

Bongard and Lipson (2007) were the first to apply symbolic regression to data-driven dis-

covery of dynamic systems, focusing on the discovery of ODEs. To use symbolic regression

to discover dynamic models with potentially nonlinear interactions of multiple variables, the

authors introduced partitioning, automated probing, and snipping within a symbolic regression

algorithm. Partitioning considers each variable in a system separately, even though they may
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be coupled, substantially reducing the search space of possible equations. With partitioning, a

candidate equation for a single variable is integrated with the others assumed fixed. Automated

probing is where initial conditions used for temporal integration of the dynamic equation of

the system are found. Last, snipping is the process of simplifying and restructuring models

by replacing sub-expressions (sub-trees) in the generated population with a constant. Using

these three components, each variable in the system is integrated forward in time to produce

a “test” based on the initial condition and compared to the observed data. The fitness of each

potential solution is computed based on the average absolute difference between the observed

data and the test. The approach is illustrated on simulated data and on two real-world examples

- the classic hare-lynx system and data they collect from a pendulum. Although effective, their

method is sensitive to noise in the data and has the same demanding computational require-

ments as other symbolic regression algorithms.

Schmidt and Lipson (2009) adopt a different approach to data-driven discovery with sym-

bolic regression. They search over a function space constrained by a loss function dependent on

partial derivatives computed from the symbolic functions and from the data. Specifically, given

two variables observed over time, x(t) and y(t) (i.e., u(t) = [x(t),y(t)]′), the numerical estimate

of the partial derivatives between the pair is approximated as ∆x
∆y ≈

dx
dt /

dy
dt , where dx

dt and dy
dt are

estimated using local polynomial fits (Thompson and Wallace, 1998). From a potential solu-

tion function (i.e., generated in the genetic algorithm), the partial derivatives can be computed

using symbolic differentiation to get δx
δy (i.e., from the symbolic function). To determine how

well the potential function expresses the data, the mean log error between the approximated

and symbolic partial derivatives,

− 1
N

N

∑
i=1

log
(

1+
∣∣∣∣∆x
∆y

− δx
δy

∣∣∣∣) ,

is used as the fitness function. This approach can be extended to systems with more than two

variables by looking at pairs of the variables in the system (see supplementary material of

Schmidt and Lipson, 2009, for details). In this manner, they assign a fitness to each proposed

individual based on how well the derivative of the system relates to the derivative of the data,

resulting in data-driven discovery using symbolic regression. However, noise can be impactful
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because the derivatives from the observed data are approximated numerically. To accommo-

date measurement uncertainty, Schmidt and Lipson (2009) use Loess smoothing (Cleveland

and Devlin, 1988) prior to fitting to remove the high frequency noise. Their approach is illus-

trated using simulated data and data collected by motion tracked cameras, showing an ability to

recover the equations on complex, real-world problems. However, similar to Bongard and Lip-

son (2007), the method is also computationally cumbersome with some examples reportedly

taking days to converge.

Motivated by symbolic and sparse regression, Maslyaev et al. (2019) embed sparse regres-

sion within the coefficient estimation step in a symbolic regression algorithm to discover the

governing equations of PDEs. In their approach, derivatives of the data are computed a priori

using finite difference (in the same manner as sparse regression discussed in Section 2) and

used as the response in symbolic regression. Within the symbolic regression algorithm, after a

population has been proposed, sparse regression using an ℓ1 penalty is employed, the fitness of

each individual in the population is assessed, and mutation, crossover, and replication are per-

formed in the usual manner. Because derivatives are computed before the estimation procedure,

they are able to be incorporated into the function set. This allows for the discovered equations

to contain spatial derivatives. The approach is tested on multiple simulated PDEs with varying

amounts of noise. However, the robustness to noise is dependent on the numerical method used

to approximate the derivative, and it is unclear how this impacts model results. Additionally,

while specifics are not given, the approach is computationally cumbersome, owing in part to

the symbolic regression.

4 Deep Models

Deep modeling has been considered for data-driven dynamic discovery in two different ways –

approximating dynamics and learning dynamics. Approximating dynamics using deep models

provides a computationally cheap method to generate data from complex systems while still

preserving physical aspects of the system (i.e., emulation). While this review is concerned with

the discovery of the governing equations and refers to “data-driven discovery” as the discovery

18



of the functional form of the governing system, deep models approximating the dynamics are

an important part of the literature and we devote a section to them. Deep models coinciding

with our definition of data-driven discovery have also been developed. There are multiple

approaches by which dynamics can be approximated and subsequently learned, which we also

discuss.

4.1 Approximating Dynamics with Deep Models

One method of approximating dynamics considers a so-called physics-informed neural network

(PINN; Raissi et al., 2017a,b; Raissi, 2018; Raissi et al., 2019, 2020). PINNs are applicable to

both continuous and discrete time models, yet we discuss only the continuous version. Define

g(s, t) = ut(J)(s, t)+M (u(s, t),ux(s, t), ...) ,

where the form of M is assumed known. Approximating u(s, t) with a neural network results in

the PINN g(s, t), where the derivatives associated with the PINN are computed using automatic

differentiation. The neural network is trained using the loss function MSE = MSEu +MSEg

where MSEu is the mean squared error of the neural network approximating u(s, t) and MSEg =

1
Ng

∑
Ng
i=1 ∥g(si, ti)∥2 is the mean squared error associated with the structure imposed by g(·). In

this manner, the neural network obeys the physical constraints imposed by g(·).

Neural networks have also been used to approximate the evolution operator M using a

residual network (ResNet). Reframing the problem according to the Euler approximation u(t+

∆t)≈ u(t)+∆tM(u(t)), where u(t) represents the vector of the process for all locations at time

t, the goal is to find a suitable approximation for M(), there-by approximating the dynamics.

In contrast to PINN, physics are not incorporated into the NN and the structure of the NN is

dependent completely on the data. Applying the problem to ODEs, Qin et al. (2019) show

how a recurrent ResNet with uniform time steps (i.e., uniform ∆t) and a recursive ResNet with

adaptive time steps can be used to approximate dynamics. This approach is further extended to

PDEs (Wu and Xiu, 2020), where the evolution operator is first approximated by basis functions

and coefficients, and a ResNet is fit to the basis coefficients.
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While not described in detail, there are other approaches to approximating dynamic equa-

tion using deep models. Physics-informed candidate functions can be used with numerical

integration in an objective function to restrict the temporal evolution of a NN (Sun et al., 2019).

NN have also been used to approximate parametric PDEs (Khoo et al., 2021), represent molec-

ular dynamics (Mardt et al., 2018), learn turbulent dynamical systems (Qi and Harlim, 2022),

and approximate ODEs with time-varying measurement data (Wu and Xiu, 2019). Using deep

models to learn the time-stepping scheme of dynamic equations, Rudy et al. (2019b) and Liu

et al. (2022) independently show how the approximation of the dynamics are improved when

dynamic time-stepping is accounted for in the estimation proceedure. Wikle and Zammit-

Mangion (2022) review methods using deep learning for spatial processes and for approximat-

ing spatio-temporal DEs.

4.2 Discovering Dynamics with Deep Models

Deep modeling using neural networks (NNs) has become increasingly popular in recent years

due to NNs being a universal approximator (Hornik et al., 1989). Additionally, computing

derivatives of NNs is possible through automatic differentiation (e.g., using PyTorch; Paszke

et al., 2017). Assuming a surface can be approximated using a NN, derivatives of the surface

in space or time or both are obtainable. This approach, where derivatives are computed using

NN, is used in many of the deep model approaches to data-driven discovery.

4.2.1 Deep Models with Sparse Regression

A common issue with data-driven discovery in the “classical” sparse regression approach is

the sensitivity to noise when approximating derivatives numerically. To address this issue,

Both et al. (2021) proposed using a NN to approximate the system, and then perform sparse

regression within the NN. For example, let Û be the output of a NN and construct F in (4) using

Û and derivatives computed from Û via automatic differentiation. The NN is trained using the

loss function

L=
1

ST ∑ |U− Û|2 + 1
ST ∑ |FM− Ût(J)|

2 +λ ∑ |M|.
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After training the NN and estimating parameters, most terms of M are still nonzero (but

very close to zero), and a thresholding is performed to obtain the final sparse representation.

Through this formulation of the problem whereby derivatives are obtained from a NN, Both

et al. (2021) show their ability to recover highly corrupt signals from traditional PDE systems

and apply their approach to a real-world electrophoresis experiment.

4.2.2 Deep Models with Symbolic Regression

Using symbolic regression with a neural network for data-driven discovery has gained popular-

ity in recent years. In a series of papers, Xu et al. (2019, 2020, 2021) construct a deep-learning

genetic algorithm for the discovery of parametric PDEs (DLGA-PDE) with sparse and noisy

data. DLGA-PDE first trains a NN that is used to compute derivatives and generate meta-data

(global and local data), thereby producing a complete de-noised reconstruction of the surface

(i.e., noisy sparse data are handled through the NN). Using the local metadata produced by the

NN, a genetic algorithm learns the general form of the PDE and identifies which parameters

vary spatially or temporally. At this step, the coefficients may be incorrect or missrepresent

the system because the global structure of the data is not accounted for. To correct the co-

efficient estimates, a second NN is trained using the discovered structure of the PDE and the

global metadata. Last, a genetic algorithm is used to discover the general form of the varying

coefficients.

One method of implementing symbolic regression within a deep model is to allow the acti-

vation functions to be composed of the function set instead of classic activation functions (e.g.,

sigmoid or ReLU; Martius and Lampert, 2016; Sahoo et al., 2018; Kim et al., 2021). Moti-

vated by this idea, Long et al. (2019) proposed a symbolic regression NN, SymNet. Similar to

a typical NN, the ℓth layer of SymNet is

(cℓ,dℓ)′ = Wℓ[f0, f 1, ..., f ℓ−1]′+bℓ

f ℓ = cℓ×dℓ, ℓ= 1, ...,k

where the length-m vector f0 is the function set that contains partial derivatives (e.g., f0 =
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[u,ux,uy, ...]), Wℓ ∈ R2×(m+ℓ−1), and bℓ is a length-2 vector. In this manner, each subsequent

layer adds a dimension to the activation function based on the previous layer, allowing the

construction of complex functions. To relate the network to a nonlinear function, the final

layer is fk+1 = wk+1[f0, f k]′+bk+1 where wk+1 is a length-m+ k vector. Following Long et al.

(2017), spatial derivatives are computed using finite-difference via convolution operators. To

model the time dependence of PDEs, they employ the forward Euler approximation, termed a

δ t-block, as

u(t +δ t)≈ u(t)+δ t ·SymNetk
m(u,ux,uy, ...),

δ t is the temporal discritization, and SymNetk
m(u,ux,uy, ...) has k hidden layers (i.e., ℓ= 0, ...,k)

and m variables (i.e., number of arguments u,ux,uy, ...). To facilitate long-term predictions, they

train multiple δ t-blocks as a group so the system has long-term accuracy.

Distinct from the previous two approaches, Atkinson et al. (2019) incorporate differential

operators into the function set of a genetic algorithm. They train the NN on the observed data

and supply the NN to a genetic algorithm where the function set contains typical operators (e.g.,

addition, multiplication) and differential operators. The differential operators are computed

from the NN using PyTorch (Paszke et al., 2017), enabling the inclusion of derivatives in the

search space of the genetic algorithm.

5 Physical Statistical Models

To account for measurement uncertainty and missing data when modeling complex non-linear

systems, dynamic equations parameterized by ordinary and partial differential equations have

been incorporated into Bayesian hierarchical models (BHMs). While there are various meth-

ods by which to model dynamic equations in a probabilistic framework, we focus on physical

statistical models (PSM; Berliner, 1996; Royle et al., 1999; Wikle et al., 2001) due to the simi-

larities with data-driven discovery that will soon become apparent. Broadly, PSM are a class of

BHMs where scientific knowledge about a process is known and incorporated into the model

structure.
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PSMs are generally composed of three modeling stages – data, process, and parameter

models – where dynamics are modeled in the process model and the observed data are modeled

conditioned on the latent dynamics. That is, the observed data are considered to be a noisy

realization of the “true” latent dynamic process. This formulation results in the data being

described conditionally given the process model, simplifying the dependence structure in the

data model and enabling complex structure to be captured in the process stage. The evolution of

the latent dynamic process is then parameterized by a dynamic equation, incorporating physical

dynamics into the modeling framework.

Consider the R(t)×1 observed data vectors v(t)≡ [v(r1, t), ...,v(rR(t), t)]′ and {v(r, t) : r ∈

Ds, t ∈ Dt} where r ∈ {r1, ...,rR(t)} ⊂ Ds is a discrete location in the spatial domain Ds, and

t ∈ {1, ...,T} ⊂ Dt is the realization of the system at discrete times in a temporal window Dt .

Assume we are interested in the latent “true” dynamic process {u(s, t) : s ∈ Ds, t ∈ Dt} where

u(t)≡ [u(s1, t), ...,u(sS, t)]′ is a length S vector. It is common that the observation locations do

not coincide with the process (e.g., due to missing data or mismatch in resolution). In the case

of missing observations, the observed data are mapped to the latent process using an incidence

matrix H(t), which is a matrix of zeros except for a single one in each row corresponding the

the observation associated with a process location (see Chapter 7 of Cressie and Wikle, 2011,

for examples of H(t)). The general data model for time t is

v(t) = H(t)u(t)+ϵ(t),

where H(t)∈RL(t)×N and uncertainty in the observations of the process are captured by ϵ(t)
indep.∼

NL(t)(0,ΣV (t)) where ΣV (t) is the covariance matrix.

The dynamic process is characterized through the specification of the evolution of u(t) over

time. For example, the process model, which specifies this evolution under a first-order Markov

assumption, is given as

u(t) =M(u(t −1),θ)+η(t), (7)

where M(·) is a (non)linear function relating a previous space-time location (or multiple lo-

23



cations) to the next, θ are parameters associated with M, and η(t) i.i.d.∼ NN(0,ΣU) is a mean

zero Gaussian process with variance/covariance matrix ΣU . While not discussed here, the error

term η(t) can be considered multiplicative (see Chapter 7 of Cressie and Wikle, 2011, for more

detail).

Physical dynamics are encoded through the parameterization of M. We consider physical

dynamic parameterizations (i.e., ODEs and PDEs), but a general autoregressive structure for

M (i.e., not parameterized with differential equations) can also be considered. Consider the

general PDE

ut(t) =M(u(t),θ),

analogous to the motivating PDE (1), which can be approximated using finite differences

u(t) = u(t −1)+∆tM(u(t −1),θ),

where ∆t is the difference in time between time t and t−1 and θ are parameters associated with

the PDE. Because the finite difference approximation can be written as a linear system, we can

write

u(t) = Mu(t −1), (8)

where M is a sparse matrix derived from the finite difference scheme. Replacing (7) with (8),

the process model parameterized by a linear finite difference equation is

u(t) = Mu(t −1)+η(t),

where η(t) may now account for approximation error due to the finite difference approximation.

As a clarifying example, assume a spatio-temporal process u(x, t) in one-dimensional space

0 ≤ x ≤ L and time t. Assume the process is approximated by the diffusion equation ut(x, t) =

buxx(x, t) where b is a diffusion constant and the boundary conditions u(0, t) = u0 and u(L, t) =

24



uL and initial condition {u(x,0) : 0 ≤ x ≤ L} are known. Using numerical analysis, the time

derivative can be approximated using the forward difference

ut(x, t)≈
u(x, t +∆t)−u(x, t)

∆t
,

and the spatial derivative can be approximated by the central difference

uxx(x, t)≈
u(x+∆x, t)−2u(x, t)+u(x−∆x, t)

∆x2 .

Using the finite difference approximation, we can reformulate the diffusion equation as

u(x, t +∆t)≈ u(x, t)+
b∆t
∆x2 (u(x+∆x, t)−2u(x, t)+u(x−∆x, t)) .

Assuming three internal spatial locations, x1,x2,x3 and boundary locations x0,xL, let u(t) =

[u(x1, t),u(x2, t),u(x3, t)]′ and ub(t) = [u(x0, t),u(xL, t)]′. Then,

u(t +∆t)≈


1− 2b∆t

∆x2
b∆t
∆x2 0

b∆t
∆x2 1− 2b∆t

∆x2
b∆t
∆x2

0 b∆t
∆x2 1− 2b∆t

∆x2

u(t)+


b∆t
∆x2 0

0 0

0 b∆t
∆x2

ub(t),

which can be written more compactly as u(t +∆t) ≈ Mu(t)+Mbub(t). Thus, the PDE dy-

namics have been “encoded” into the structure of the transition operator, M. In most PSM im-

plementations, the (banded) structure of M is retained, but the specific elements are estimated

from the data, rather than given by the finite difference representation. This adds flexibility and

explicitly assumes that the PDE is not an exact representation of the data. Note that other PDE

representations, such as finite element, or spectral, can be used to motivate such models.

This simple example can be made more complex by considering a parametric diffusion

equation (i.e., replacing M with M(θ)) or by putting priors on the boundary and/or the initial

conditions (see Cressie and Wikle, 2011, for details). Additionally, there are certain numerical

conditions that need to be satisfied to guarantee numerical stability from the approximation,

which can vary based on the system and approximation scheme considered (e.g., see CFL
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condition in Higham et al., 2016). There are cases where the numerical constraints, or more

specifically the parameters dictating the discritization scale(s), can be modeled as statistical pa-

rameters through non-constrained PSMs (Berliner et al., 2003). For a more complete overview

of PSMs and possible parameterizations, see Berliner (2003), Cressie and Wikle (2011), Kuh-

nert (2017), and references therein.

PSMs have been used to study a variety of real-world systems. PSMs parameterized using

shallow-water equations (Wikle, 2003) and the Rayleigh friction equation (Milliff et al., 2011)

have been used to study ocean surface winds. Using a parametric diffusion equation (Wikle,

2003) and parametric reaction-diffusion equation (Hooten and Wikle, 2008), PSMs have mod-

eled the spread of invasive avian species. PSMs can be grouped into a larger category of models

called general quadratic nonlinear model (GQN; Wikle and Hooten, 2010; Wikle and Holan,

2011; Gladish and Wikle, 2014), which accommodate multiple classes of scientific-based pa-

rameterization such as PDEs and integro-difference equations.

5.1 General Quadratic Nonlinear Models

General quadratic nonlinear models provide a nice generalization to the PSM framework and, as

discussed in the subsequent section, provide an interesting link between data-driven discovery

methods and PSMs. The general GQN model is

u(si, t) =
S

∑
j=1

ai ju(s j, t −1)+
S

∑
k=1

S

∑
l=1

bi,klu(sk, t −1)g(u(sl, t −1);θ)+η(si, t), (9)

for i = 1, ...,S, where ai j are linear evolution parameters, bi,kl are nonlinear evolution parame-

ters, g() is a transformation function of u(t −1) dependent on parameters θ, and η(si, t) is an

error process. This is motivated by the fact that many real-world mechanistic processes have

been described by PDEs that have quadratic (nonlinear) interactions, often where the interac-

tion of system components consists of the multiplication of one component by a transformation

of another (see Wikle and Hooten, 2010, for details).
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Equation (9) can be condensed in matrix form as

u(t) = Au(t −1)+(IS ⊗g(u(t −1);θ)′)Bu(t −1)+η(t), (10)

where A and B are matrices constructed from ai j and bi,kl , respectively, and IS is a size S identity

matrix (see Wikle and Hooten, 2010, for specific details). From (10), we see that letting

M(u(t −1),θ) = Au(t −1)+(IS ⊗g(v(t −1);θ)′)Bu(t −1)

recovers the PSM model. The GQN framework is very flexible, due in part to the over-

parameterization of the model from all possible quadratic interactions. To constrain the param-

eter space, thereby learning which dynamic interactions are important, either physics-informed

priors or strong shrinkage priors are used. For examples on what these constraints may be and

their underlying physical motivation, see Wikle and Hooten (2010).

5.2 Relation to Data-Driven Discovery

While unexplored in the literature, there is a strong connection between PSMs (particularly, the

more general GQNs) and data-driven discovery. Formulating a BHM where the latent process

evolves according to the generic PDE (1), the two-stage data-process model for location s and

time t is

v(s, t) = H(s, t)u(s, t)+ϵ(s, t)

ut(J)(s, t) =M(u(s, t),ux(s, t), ...)+η(s, t),

where ϵ(s, t) ∼ NL(t)(0,ΣV (s, t)) is the measurement error process with ΣV (s, t) a variance/-

covariance matrix, η(s, t)∼ NN(0,ΣU(s, t)) the process model error with ΣU(s, t) a variance/-

covariance matrix. However, as discussed in Section 5, PSMs rely on M to be parameterized

according to known dynamics. Instead, borrowing the notion of a feature library from the

sparse regression approach to data-driven discovery, linearizing the process model results in a

matrix of coefficients M and a feature library f(·). Given the feature library, the goal is to find
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the correct values of M (as in sparse regression). In the case of GQN, we rarely need the whole

set of quadratic interactions, so the “discovery” is selecting which quadratic components are

needed to describe the data.

As an example, consider two approaches that can be used to incorporate dynamic discovery

into PSMs - employing a finite difference scheme or using (5) for the process model – each of

which have their own pros and cons. The finite difference approach results in the same model

as in Section 5, where

v(s, t) = H(s, t)u(s, t)+ϵ(s, t),

u(s, t) = Mf(u(s, t −1),ux(s, t −1), ...)+η(s, t),
(11)

and M represents the coefficients associated with the finite difference and the discovered equa-

tion. Directly incorporating (5) in the process model results in

v(s, t) = H(s, t)u(s, t)+ϵ(s, t)

ut(J)(s, t) = Mf(u(s, t),ux(s, t), ...)+η(s, t),
(12)

where now the temporal derivative is directly related to a library of potential functions and M

represents the coefficients associated only with the discovered equation.

The benefit of formulating the problem using (11) is that a Kalman filter or ensemble

Kalman filter can be used to estimate parameters (see Stroud et al. 2018, Katzfuss et al. 2020,

and Pulido et al. 2018 for examples of the Kalman filter with dynamic systems in statistics).

Additionally, as mentioned previously, the GQN framework provides an over-parameterized

library of potential dynamical interactions by construction. However, interpreting parameters

can be difficult and incorporating spatial derivatives into the library is not as straightforward

as with traditional PSMs. In contrast, (12) has a very clear interpretation of parameters but

requires a method to relate the previous state to the current state (e.g., numerical differentia-

tion scheme). Additionally, model estimation will rely on Metropolis-Hastings Monte-Carlo

as the Markov assumption required for Kalman filter and EnKF methods is violated. For both

approaches, parameter shrinkage or variable selection or both will need to be employed on M

to produce a sparse solution set. The field of Bayesian variable selection is quite large and
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there are a variety of priors that can be used (see George et al., 1993; Park and Casella, 2008;

Carvalho et al., 2010; Li and Lin, 2010, for possible choices)

Assuming model estimation is possible, formulating the problem using either (11) or (12)

provides significant contributions to the data-driven discovery. In contrast to the sparse regres-

sion approaches with uncertainty quantification discussed in Section 2.2.1, (11) and (12) treat

the latent process u(s, t) as a random process and do not disregard the measurement error when

estimating the system. That is, instead of computing derivatives and de-noising prior to model

estimation, uncertainty in the derivatives as a product of measurement error is accounted for.

This makes estimation more challenging as the derivatives are no longer assumed known a pri-

ori. Additionally, missing data can be handled through the incidence matrix H. By formulating

the problem within a BHM, known methods accounting for missing data can be used, providing

more real-world applicability than the deterministic counterparts.

6 Bayesian Dynamic Discovery

In a sequence of papers, North et al. (2022a,b) proposed a fully probabilistic Bayesian hierar-

chical approach to data-driven discovery of dynamic equations. Similar to the sparse regression

approached discussed in Section 2, the Bayesian approach uses a library of potential functions

to identify the governing dynamics. However, in contrast to the methods discussed in Sections

2, 3, and 4, the dynamic system is modeled as a random process and assumed latent. Specifi-

cally, North et al. (2022a,b) use the approach detailed by (12), where the process model in the

BHM,

ut(J)(s, t) = Mf(u(s, t),ux(s, t), ...)+η(s, t), (13)

directly relates the time derivative of the dynamic system to a library of potential functions.

In its most general form, (13) has three dimensions, space (S), time (T ), and the number

of components (N), and can be represented as a tensor – a higher-order representation of a

matrix (see Kolda, 2006, for a details). Let U = {u(s, t,n) : s ∈ Ds, t = 1, ...,T,n = 1, ...,N}

where U ∈ RS×T×N is the tensor of the dynamic process. Similarly, let F ∈ RS×T×D be the
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tensor of the function f(·) evaluated at each location in space-time and η̃ ∈ RS×T×N the space-

time-component uncertainty tensor. The process model can represented compactly using tensor

notation as

Ut(J) = F×3 M+ η̃. (14)

While not explicitly stated, F is still a function of the state process U and its derivatives.

The process U can be defined using a finite collection of spatial, temporal, and component

basis functions. Let

U≈
P

∑
p=1

Q

∑
q=1

R

∑
r=1

a(p,q,r)ψ(p)◦ϕ(q)◦θ(r) =A×1 Ψ×2 Φ×3 Θ := [[A;Ψ,Φ,Θ]],

where A ∈ RP×Q×R, Ψ ∈ RS×P, Φ ∈ RT×Q, and Θ ∈ RN×R. Here, Ψ,Φ, and Θ are matrices

of spatial, temporal, and component basis functions, respectively, and A is a tensor of basis

coefficients (traditionally called the core tensor). Defining Ψ and Φ to be matrices of basis

functions differentiable up to at least the highest order considered in (1), derivatives of U can

be obtained analytically by computing derivatives of the basis functions. For example

∂ 3

∂x∂y∂ t
U= Uxyt =A×1 Ψxy ×2 Φt ×3 Θ≡ [[A;Ψxy,Φt ,Θ]],

where we use [[·]] as shorthand for the tensor product. Defining the compact tensor representa-

tion of the dynamic process (14) using the basis decomposition, we can write

[[A;Ψ,Φt(J),Θ]] = F×3 M+η, (15)

where η may now include truncation error due to the approximation of the process using basis

function. While not explicitly stated, the arguments of F are now Ψ,Φ,Θ,A, and appropriate

derivatives of Ψ and Φ.

Taking the mode-3 matricization of (15) – the flattening of a tensor to a matrix (see Kolda,

30



2006, for detail on this operation) – yields

ΘA(ϕt(J)(t)⊗ψ(s))
′ = Mf(A,ψ(s),ψx(s),ψy(s),ψxy(s), ...,ϕt(0)(t), ...,ϕt(J)(t),ω(s, t))+η(s, t),

where A is a R×PQ matrix of basis coefficients, ψ(s) is a length-P vector of spatial basis

functions, ϕ(t) is a length-Q vector of temporal basis functions, and Θ is a N ×R matrix of

component basis functions (see North et al., 2022b, for a detailed explanation). This form is

convenient because only A (or A) needs to be estimated to fully define the dynamic process

and its derivatives as opposed to requiring all spatial, temporal, or spatio-temporal derivatives

of the process.

Equation (1) can be extended by rewriting the left-hand side (LHS) to accommodate spatio-

temporal derivatives of the process (e.g., ∇2ut(s, t) = uxxt(s, t)+uyyt(s, t)), which is common in

fluid dynamics (see Higham et al., 2016, for examples). Specifically, consider the more general

PDE

g(ut(J)(s, t)) =M
(
u(s, t),ux(s, t),uy(s, t),ψxy(s), ...,ut(1)(s, t), ...,ut(J−1)(s, t),ω(s, t)

)
, (16)

where g(·) is a linear differential operator. The basis formulation of (16) is

ΘA(ϕt(J)(t)⊗g(ψ(s)))′ = Mf(A,ψ(s),ψx(s),ψy(s),ψxy(s), ...,ϕt(0)(t), ...,ϕt(J)(t),ω(s, t))+η(s, t),

where η(s, t) i.i.d.∼ NN(0,ΣU) in space and time (see North et al., 2022b, for a details). This

results in the general BHM for location s and time t

v(s, t) = H(s, t)ΘA(ϕt(0)(t)⊗ψ(s))
′+ϵ(s, t)

ΘA(ϕt(J)(t)⊗g(ψ(s)))′ = Mf(A,ψ(s),ψx(s),ψy(s),ψxy(s), ...,ϕt(0)(t), ...,ϕt(J)(t),ω(s, t))+η(s, t),

where ϵ(s, t) indep.∼ NL(s,t)(0,ΣV (s, t)) and η(s, t) i.i.d.∼ NN(0,ΣU).

Model parameters are estimated by sampling from their full-conditional distributions using

Markov chain Monte Carlo, requiring the specification of prior distributions. We provide a brief
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summary of the model priors, but for complete model specification, we refer the reader to North

et al. (2022a,b). Standard diffuse priors can be assigned to ΣV (s, t) and ΣU . To induce sparsity

in M, the spike-and-slab prior (Mitchell and Beauchamp, 1988; George et al., 1993) is used,

where a latent indicator variable matrix Γ of the same dimension as M denotes if an element

of M is included in the discovered equation or not. A constant issue in discovering equations

for PDE systems is multicollinearity in the library. See North et al. (2022b) for a subsampling

approach proposed to mitigate the impacts of multicollinearity. Last, the elastic net prior (Li

and Lin, 2010) is assigned to A to help regularize the basis coefficients. Because A is embedded

in the nonlinear function f(·), estimation can be problematic (see North et al., 2022b, for more

detail). To provide a conjugate updating scheme and reduce computation time, A is sampled

using an adapted version of stochastic gradient descent (SGD) with a constant learning rate

(SGDCL; Mandt et al., 2016).

While the Bayesian dynamic discovery model proposed in this section relies on more model

assumptions and parameters to estimate compared to the methods discussed in Section 2, the

benefit is a fully probabilistic discovery of the dynamic system. Most notably, the latent vari-

able Γ provides an inclusion probability for each element of M, enabling a researcher to identify

a model based on their own desired confidence (i.e., a model identified where each component

is included with at least 50% probability). Additionally, uncertainty quantification can be ob-

tained for the dynamic system u(s, t) and all of its subsequent derivatives given the full poste-

rior distribution of A. Example 4 provides more detail on model specification and results for

Bayesian dynamic discovery.
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Example 4: Burgers’ Equation with Bayesian Discovery

A worked example using Julia can be found in the BayesianDiscovery.jl

(North et al., 2022b) documentation at https://jsnowynorth.github.io/

BayesianDiscovery.jl/dev/#. This example is entirely based on this docu-

mentation.

The general setup for the Bayesian approach is the same as the sparse regression

setup (Example 2), except derivatives are not calculated a priori to model estimation.

Instead, this approach requires the number of spatial and temporal basis functions, size

of the minibatch for SGDCL, the learning rate, and the feature library to be chosen. For

reference, the example in the documentation specifies the feature library as

[u,u2,u3,ux,uux,u2ux,u3ux,uxx,uuxx,u2uxx,u3uxx,uxxx,uuxxx,u2uxxx,u3uxxx].

Note, different from Example 3, this library does not include an intercept term.

There are two major differences in the Bayesian approach compared to the determin-

istic approach in Example 3. First because this approach allows for uncertainty quan-

tification, the user is able to look at uncertainty bounds on the estimated equation - we

present the upper and lower 95% highest posterior density intervals (HPDs). Second,

the user can specify the desired inclusion probability due to the latent indicator variable

Γ - for this example, we only keep terms with greater than a 50% inclusion probability

to be included in the identified equation. Using the code supplied in the documentation

and use the noisy data from example 1 (e.g., ζ = 0.01) as input data, we obtain 10000

posterior samples, discarding the first 5000 as burnin. The identified equation is shown

in Table 1, where we see the equation is recovered and no extraneous terms are included.

Statistic Discovered Equation
Mean ut =−0.995uux +0.096uxx

Lower HPD ut =−1.037uux +0.086uxx
Upper HPD ut =−0.968uux +0.102uxx

Table 1: Discovered Burgers’ equation (mean) and lower and upper 95% HPD intervals. The
true Burgers’ equation is ut =−uux +0.1uxx.
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System Missing Real
Reference Library (ODE/PDE) Type UQ Noise Data Data
Bongard et al. (2007) Symbolic ODE T No No No Yes
Schmidt et al. (2009) Symbolic ODE T No Yes No Yes
Maslyaev et al. (2019) Symbolic PDE T No Yes No No
Brunton et al. (2016) Sparse ODE T No Yes No No
Rudy et al. (2017) Sparse PDE T No Yes No No
Rudy et al. (2019) Sparse PDE T No Yes No No
Schaeffer (2017) Sparse PDE T No Yes No No
Hirsh et al. (2021) Sparse ODE B Yes Yes No Yes
Zhang et al. (2018) Sparse PDE B Yes Yes No* No
Yang et al. (2020) Sparse ODE B Yes Yes No No
Bhouri et al. (2022) Sparse ODE B Yes Yes No No
Fasel et al. (2021) Sparse PDE BO Yes Yes No Yes
Both et al. (2021) Sparse PDE NN No Yes No Yes
Xu et al. (2021) Symbolic PDE NN No Yes Yes No
Long et al. (2019) Symbolic PDE NN No No No No
Atkinson et al. (2019) Symbolic PDE NN No No No Yes
North et al. (2022a) Sparse ODE B Yes Yes Yes Yes
North et al. (2022b) Sparse PDE B Yes Yes Yes Yes
* Zanna and Bolton (2020) applied this framework to real data.

Table 2: Summary of select discussed papers where the columns are: Library - method
used to construct the library, System - type of system, either ODE or PDE, considered,
Type - our categorization of the model (combined with library to get the section it is
discussed in) where T is Traditional, B is Bayesian, BO is Bootstrap, and NN is Neu-
ral Network, UQ - if uncertainty quantification is considered, Noise - if the approach
considers or can accommodate measurement error, Missing Data - if the approach con-
siders or can accommodate missing data, Real Data - if the approach is illustrated using
real data.

7 Discussion

While relatively young, the field of data-driven discovery is expanding quickly. Areas currently

under-studied include methods that properly account for uncertainty quantification and missing

data and applications to real-world data sets (see Table 2). BHMs can address these issues,

however they rely on the same assumptions as the sparse regression approach - the library is

pre-specified. Relaxing the pre-specified library assumption while retaining the benefits of the

statistical approach promises to be a major improvement in the data-driven discovery realm. To

this aim, one promising approach is the recent extension in symbolic regression to the Bayesian

framework (Jin et al., 2019). The incorporation of Bayesian symbolic regression into a BHM

could provide the next step to a truly user-free, unbiased, method at data-driven discovery.

Recent advances in deep modeling such as embedding NNs in the BHM (Zammit-Mangion
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et al., 2021) could also be explored. To this aim, symbolic regression using a NN can be

combined with a BHM, providing an alternate method of joining the approaches.

Real-world data come from a variety of sources such as gridded model output (e.g., reanal-

ysis models), in situ observations, and remotely sensed (e.g., satellite) measurements. While

gridded model output is convenient because it is generally complete and spatially and tempo-

rally continuous, the discovered dynamics are biased due to the nature of how the data product

is constructed. Conversely, in situ and remotely sensed measurements, which are a more direct

and unbiased observation of the true dynamic process, are more difficult to use because of they

can be missing data and the observations are generally inconsistent in space and time. Discov-

ery methods that can either use in situ measurements, remotely sensed measurements, or both

would be beneficial in that the discovered dynamics would be of the “true” process and not of

the model output. Additionally, methods combining the model output with in situ and remotely

sensed measurements, where the spatial and temporal domains may be different (e.g., change

of support problem), could provide an extension to not only data-driven discovery but also for

change-of-support related methods.

A final direction for future work we discuss are methods that can accommodate mixed data

types. For example, a predator-prey system that takes into account the vegetation coverage of

the prey’s spatial domain. Vegetation coverage, a positive continuous variable, is dependent on

the number of prey, a positive integer valued variable, which in turn is dependent on the number

of predators, another positive integer valued variable. In a system such as this, the vegetation

coverage, which is a positive continuous variable, is dependent on the number of prey, a positive

integer valued variable, which in turn is dependent on the number of predators, another positive

integer valued variable. Methods that are able to discover the dynamics of a system with various

observed data types provide a much wider range for real-world applications.
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F. Didot.

Li, Q. and Lin, N. (2010). The Bayesian elastic net. Bayesian Analysis, 5(1):151–170.

Liu, Y., Kutz, J. N., and Brunton, S. L. (2022). Hierarchical deep learning of multiscale dif-
ferential equation time-steppers. Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, 380(2229).

Long, Z., Lu, Y., and Dong, B. (2019). PDE-Net 2.0: Learning PDEs from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925.

Long, Z., Lu, Y., Ma, X., and Dong, B. (2017). PDE-Net: Learning PDEs from data. 35th
International Conference on Machine Learning, ICML 2018, 7:5067–5078.

Mandt, S., Hoffman, M., and Blei, D. (2016). A variational analysis of stochastic gradient al-
gorithms. Proceedings of The 33rd International Conference on Machine Learning, 48:354–
363.
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A Algorithms

Algorithm 1: Sequential Threshold Least-Squares: SINDy
Input: K,κ
Data: Ut(J),F
Result: M
Initialize: M = (F′F+λ I)−1F′Ut(J)

for k = 1 to K do
γ = |M|< κ ; /* Matrix identifying small coefficients */
M(γ) = 0 ; /* Threshold M */
for n = 1, ...,N do

i := γ(n) == 0 ; /* Identify non-zero columns */
m(n) = (F(i)′F(i))−1F(i)′Ut(J) ; /* Regress */

end
end

Algorithm 2: Sequential Threshold Ridge Regression: PDE-FIND
Input: K,κ,λ
Data: Ut(J),F
Result: M
Initialize: M = (F′F+λ I)−1F′Ut(J)

for k = 1 to K do
γ = |M|< κ ; /* Matrix identifying small coefficients */
M(γ) = 0 ; /* Threshold M */
for n = 1, ...,N do

i := γ(n) == 0 ; /* Identify non-zero columns */
m(n) = (F(i)′F(i)+λ I)−1F(i)′Ut(J) ; /* Regress */

end
end
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Algorithm 3: Sparse Relaxed Regularized Regression: SR3
Input: K,κ,λ , tolerance
Data: Ut(J),F,W

0

Result: M
Initialize: k = 0, err = 2∗ tolerance, M = (F′F+λ I)−1F′Ut(J)

while err > tolerance do
k = k+1;
Mk = argmin

M̂

1
2∥Ut(J) −FM̂′∥2 + 1

2ν
∥M̂−Wk−1∥2;

Wk = proxλ ,ν ,R(Mk) ; /* prox is the proximal gradient */
err = ∥Wk −Wk−1∥/ν ;

end

Algorithm 4: General Genetic Algorithm
Input: Stopping criteria - ξ , function set, fitness function - f (), summary statistic - T ()
Result: Best individual
Initialize: P = Randomly generate the initial population based on the defined
functional set, ∆C = 2ξ ,∆N = 0

while |T (∆C)−T (∆N)|> ξ do
∆C = f (P) ; /* Evaluate fitness of current individuals */
P = Generate new population based on reproduction, crossover, and mutation
where individuals are chosen based on fitness level (i.e., higher fitness equals
higher probability of being chosen) ;

∆N = f (P) ; /* Evaluate fitness of new individuals */
end
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