
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Sensor Directed AI-Based Robot Task Planning in Unstructured Environments

Permalink
https://escholarship.org/uc/item/35g6r7m4

Author
Mounesisohi, Alireza

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35g6r7m4
https://escholarship.org
http://www.cdlib.org/

 i

Sensor Directed AI-Based Robot Task Planning
in Unstructured Environments

By

ALIREZA MOUNESISOHI

 DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Mechanical and Aerospace Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Prof. Bahram Ravani, Chair

Prof. Paul Erickson

Prof. Zhaodan Kong

Committee in Charge

Year of Degree (2022)

 ii

Abstract

This dissertation aims to improve methods for sensor-guided intelligent robotic task planning in

unstructured environments. It will examine two fully unstructured environments: roadway maintenance and

maintenance of space habitats. Maintenance automation of roadways and space habitats using robotic

systems requires sensors and intelligent planning since both environments are highly unstructured. Robotic

systems for automating roadway maintenance functions are typically installed on moving maintenance

vehicles and must account for the unstructured nature of roadway traffic and conditions. In space habitats,

when astronauts are not present, disturbances can perturb the environment, requiring sensor-driven and task

planning robotic systems to deal with the habitat changes when performing maintenance functions.

This dissertation first considers the automation of roadway crack cleaning or sealing using a vehicle-based

robotic system. It develops a machine-vision based task planning system to automatically detect and map

roadway cracks and guide a manipulator following a crack on the pavement. The work in this area is limited

to roadway edge cracks that are approximately straight compared to alligator pavement cracks. The results

are demonstrated experimentally on a linear device used to mimic the motion of vehicle-based robotic

systems.

Space habitats are very structured until a perturbation occurs due to a malfunction or movement of items

within the habitat or in robotic interactions with on-board manufacturing as new parts are being fabricated.

Robotic interaction with 3D printing manufacturing in space habitats is the second unstructured

environment considered in this dissertation. A sensor-directed task planning and simulation method is

developed which can autonomously fine-tune a robotic motion plan during interactions with the objects to

be handled and address changes in objects configurations due to perturbations that can occur in the robot

task space. As a result, this sensor-directed robotic system with task planning capabilities can be used for

simulation and verification of several On-board Manufacturing (OBM) and maintenance operations.

 iii

Acknowledgements

First and foremost, I would like to thank my advisor Bahram Ravani for suggesting the topic of this

dissertation as well as for his consistent guidance, encouragement, inspiration, and leadership during my

Ph.D. program. Bahram’s immense experience and determination in many branches of science motivated

me to explore new areas that interest me. Without his insight, it would have been nearly impossible to

overcome challenges of getting this doctorate degree.

I am grateful for all the generous funding support from the University of California, Davis, including the

awards, grants, and scholarships. I want to thank professors: Paul Erickson, Donald L. Margolis, Zhaodan

Kong, Ronald A. Hess, and Yong Jae Lee whose classes I took or from whom I received critical feedback

to complete my dissertation.

I want to thank the Advanced Highway Maintenance and Construction Technology (AHMCT) Research

Center. I have obtained ongoing financial support and equipment from the center. Working at AHMCT has

also provided the opportunity of getting to know amazing colleagues. In that regard, I would like to thank

Travis Swanston, Duane Bennet, Dr. Ty Lasky, and Dr. Sean Donohoe.

I would also like to thank the organizations that provided additional support during my program: the

AHMCT research center funded by the California Transportation (Caltrans) providing funding for the first

portion of this work and Habitats Optimized for Exploration Missions (HOME) program funded by the

National Aeronautics and Space Administration (NASA) providing the second portion of this research.

I would like to express my gratitude to my family from whom I’ve received a great deal of emotional

support. Finally, I would acknowledge my cousin and all the medical staff who worked hard during the

pandemic and saved many lives.

 iv

“Asimov's Three Laws of Robotics:

1. A robot may not injure a human being or,

through inaction, allow a human being to

come to harm.

2. A robot must obey orders given it by human

beings except where such orders would

conflict with the First Law.

3. A robot must protect its own existence as

long as such protection does not conflict

with the First or Second Law.”

Isaac Asimov ~ 1920-1992

CONTENTS

 v

Table of Contents

Abstract ... ii

Acknowledgements .. iii

Table of Contents .. v

List of Figures .. x

List of Tables ... xv

List of Acronyms ... xvi

CHAPTER 1 ... 1

1. Introduction .. 1

1.1. Background .. 2

1.2. Dissertation Structure ... 6

CHAPTER 2 ... 7

2. Overview of AI Task Planning ... 7

2.1. Introduction ... 8

2.2. Task Planning .. 8

2.2.1. Task planning in unstructured environments ... 9

2.2.2. Task planning and offline programming .. 10

2.2.3. AI task planning in nature .. 10

2.2.4. Robot task planning in maintenance .. 12

CONTENTS

 vi

2.3. Related Works in Task Planning ... 12

2.3.1. Traditional task planning ... 12

2.3.2. Task Directed Sensing ... 14

2.3.3. Reactive Execution Method ... 15

2.3.4. Deliberation in Task planning .. 16

2.3.5. Automated Task Planning .. 16

2.4. Sensor-directed task planning method .. 17

2.4.1. Sensor-directed AI-based robot task planning ... 18

CHAPTER 3 ... 21

3. Sensor-Directed Robotic Task Planning for Roadway Edge Crack Cleaning/Sealing

Operation .. 21

3.1. Introduction ... 22

3.2. Automated Task Planning Supervisory System Control ... 26

3.2.1. Task planning for a moving vehicle robotic system in a roadway crack sealing/cleaning application

 27

3.2.2. Manual mode scheme .. 29

3.2.3. Semi-automated and automated guidance schemes ... 30

3.2.4. System Software for Tracking ... 31

3.3. Machine vision crack sensing technique ... 35

3.3.1. Edge Identification and Edge Path Extrapolation Program ... 35

3.3.2. Statistical line fitting and coordination transformation ... 38

3.3.3. Kinematic Registration .. 40

3.4. Data Collection and Model Training for Machine Learning Algorithm 42

3.4.1. CNN based Filter: Model selection and training ... 44

3.4.2. Threshold filtering ... 46

CONTENTS

 vii

3.4.3. Filter parameter tuning ... 47

3.4.4. Detection results ... 49

3.5. Proof-of-concept laboratory testbed development and demonstration 50

3.5.1. Camera setup for data collection .. 51

3.5.2. Testing inside the lab ... 52

3.5.3. Testing on UC Davis roadways ... 53

3.5.4. Results and Discussion .. 55

CHAPTER 4 ... 58

4. Simulation of Sensor-Directed Robotic Task Planning for Space Manufacturing

Applications .. 58

4.1. Introduction ... 59

4.1.1. Space maintenance strategies ... 60

4.1.2. Robotic application in space .. 61

4.2. Digital Modeling for Physics Based Simulation ... 64

4.2.1. Physics engine .. 66

4.2.2. Subsystems modeling .. 66

4.2.3. ROS Nodes .. 68

4.2.4. Agent-based AI task planning system .. 69

4.2.5. ROS Actions .. 71

4.2.6. Action Server Modules .. 71

4.2.7. Primitive actions .. 74

4.2.8. Higher-level actions ... 74

4.2.9. Hierarchical task network .. 75

4.3. Robot Perception and Control ... 76

4.3.1. Image Analyzer Module .. 76

4.3.2. Image preprocessing .. 78

CONTENTS

 viii

4.3.3. Deep learning model for object detection .. 79

4.3.4. Post processing of object detection .. 80

4.3.5. Data Collection and Training ... 80

4.3.6. Robot Perception System ... 83

4.3.7. End Effector Positioning .. 84

4.3.8. Estimation of X Distance ... 85

4.3.9. Estimation of Y and Z Distance ... 86

4.3.10. Multi-step vs 1-step Approach ... 86

4.4. Simulation Task Planning and Image Analyzer Results ... 89

4.4.1. End effector positioning error Analysis ... 89

4.4.2. End Effector Time and Space Analysis ... 91

CHAPTER 5 ... 94

5. Conclusions and Future Work ... 94

5.1. Introduction ... 95

5.2. Robotic Task Planning for Crack Detection and Sealing/Routing 97

5.3. Sensor-guided Robotic Task Planning for Interaction with On-board 3D Printing on a

Space Habitat ... 99

List of References ... 101

Appendix A: Machine Vision GUI .. 104

Appendix B: Crack Clean Testbed Specifications .. 105

Appendix C: Image Processing HSV Filter .. 106

Appendix D: Digital Twin Concepts .. 107

Appendix E: Example AI Planning Application .. 108

CONTENTS

 ix

Appendix F: Relative X vs. Area and Data Samples for Model Fitting 109

Appendix G: Model Fitting for Robot Interpolation and Approaching 110

Appendix H: Model Setting and Training for YOLO ... 111

LIST OF FIGURES

 x

List of Figures

Figure 1-1 Basic diagram of sensor-directed agent-based robotic systems. ... 3

Figure 2-1 a) Bear fishing[14] exhibiting single forepaw and mouth to capture b) Bear’s fishing technique

components[13] ... 11

Figure 2-2 Traditional task planning architecture model inspired from [19] .. 13

Figure 2-3 Task-directed sensing planning model inspired from [19] .. 14

Figure 2-4 Complete reactive task planning model inspired from [19] .. 15

Figure 2-5 A conceptual model for dynamic planning ... 17

Figure 2-6 Sensor-directed task planning .. 19

Figure 2-7 The conceptual sensor-directed task planning by separating robot agents from the world 19

Figure 3-1 Longitudinal joint crack on same highway in California a) In-lane longitudinal crack b)

Shoulder Joint Transition crack ... 22

Figure 3-2 Vehicle-Based Sealzall Sealing a) Highway Traffic on Interstate b) traffic control flow 23

Figure 3-3 Installed positions of Leading and Trailing View cameras, a) Front-right perspective, and b)

Top perspective ... 26

Figure 3-4 Automated co-located vision based longitudinal crack sensing .. 26

Figure 3-5 Sensor-directed task planning for a moving vehicle robotic in an unstructured environmental

setting .. 28

Figure 3-6 Functional Diagram and the Data Flow of the Three Operational Modes of Operations. 29

Figure 3-7 Guidance system for operation on longitudinal cracks a) Manual guidance b) semi-automated

guidance .. 31

Figure 3-8 a) Operator Supervisor Control Diagram and b) Task planning control architecture of

processing and control ... 32

Figure 3-9 The crack detection source code .. 34

LIST OF FIGURES

 xi

Figure 3-10 Four stages of image processing to identify position and orientation of longitudinal edge

cracks ... 37

Figure 3-11 Details of hybrid image processing technique: 1: down-sampling 2: Applying CNN 3:

applying threshold 4: Binarizing the image 5: estimate the position and direction of the longitudinal crack

 ... 37

Figure 3-12 a) Longitudinal crack frame dimensions b) Show the extrapolation of the crack line 38

Figure 3-13 Crack mapping and linear line fitting to the detected longitudinal crack 38

Figure 3-14 Coordinate system representation of crack tracking system including a truck with the attached

linear robotic actuator. ... 41

Figure 3-15 Guidance frame design for the crack cleaner system .. 42

Figure 3-16 First round of data collection for training the network from California highways a) Regular

crack before routing/cleaning crack, b) Longitudinal crack after routing, and c) Truck moving and

collecting data d) Example of the collected routed crack image ... 43

Figure 3-17 Second round of laboratory data collection setup at UC Davis: a) Leading-view camera, b)

Sample of collected image of longitudinal crack with guidance labels, and c) Testbed view during image

collection ... 43

Figure 3-18 Collected data with laboratory setup with guidance frame labels ... 44

Figure 3-19 Results of training the CNN-based model: quantized Mobilnet V2 a) Learning rate and b)

detection trial that crack detected with 99% accuracy .. 46

Figure 3-20 Results comparing simple versus adaptive threshold on a longitudinal crack; the top model

with AT outperforms the ST method .. 46

Figure 3-21 Representation of TP, TN, FP, and FN for distress detection and calculating accuracy 47

Figure 3-22 Parameter optimization vs. the error: (a) The ideal ST parameter value is at 108, with an error

of 0.28 and (b) The ideal threshold value for adaptive thresholding is s= 55 t = -0.07, with an error of

0.24. ... 48

LIST OF FIGURES

 xii

Figure 3-23: Results of the MV technique on challenging scenarios such as rainy, shadowy, cluttered, and

dark .. 50

Figure 3-24 Components of experimental system including a self-contained cart with camera, laptop,

joystick, battery, actuator, and laser .. 51

Figure 3-25 The experimental test setup in the lab with paper printed version of AC joint a) During the

testing process and b) Trailing-view and heading-view cameras mounted on the cart 53

Figure 3-26 Field test: a) Integrated guidance test cart and b) Close-up actuator with the laser pointer for

evaluation .. 54

Figure 3-27 Test field at UC Davis. First row is the low amplitude maneuvering, second row is an

example of medium amplitude maneuvering, and last row is the example of high amplitude maneuvering

 ... 55

Figure 3-28 Validation Results of the experimental system for ten test rounds. .. 56

Figure 3-29 The RMSE for different motion amplitudes. ... 57

Figure 4-1 Examples of robotic applications in space. a) Astrobee [49],b) Robonaut [50], c) Canadian

Arm with Dextre [51], and d) Dextre which is known as SPDM [52] .. 62

Figure 4-2 Functional block diagram of an intelligent robotic task planning system for space applications

 ... 63

Figure 4-3 Sensor-directed task planning system for a simulated space manufacturing application 64

Figure 4-4 Simulation environment of the US Lab in ISS equipped robotic systems 65

Figure 4-5 Intelligent packages used the modeling of the space autonomy world 67

Figure 4-6 The nodes that are running .. 68

Figure 4-7 A partial screenshot of the ROS rqt graph, visualized nodes, and edges 69

Figure 4-8 Agent-based AI system architecture for the simulation of the space habitat environment 70

Figure 4-9 Action client: sending a joint goal ... 73

Figure 4-10 Published topics by the RGBD camera driver ... 73

Figure 4-11 Robot action servers for the 3D printer interaction: a) Gripper b) Manipulator c) Rail 74

LIST OF FIGURES

 xiii

Figure 4-12 An example hierarchy structure of planning for interaction with the 3D printer 75

Figure 4-13 Image Analyzer action server module ... 78

Figure 4-14 YOLOv3 architecture .. 79

Figure 4-15 Collected data within the Gazebo simulation a) No 3D-printed object, b) Edge cases -partially

visible object c) Unobscured 3D-printed object .. 81

Figure 4-16 Model training results .. 82

Figure 4-17 Robot perception view of the inside of the 3D printer .. 84

Figure 4-18 Coordinate systems shown on the simulation snapshot including world, robot, and image

coordinates .. 84

Figure 4-19 Linear piecewise interpolation Python code .. 85

Figure 4-20 Robot perceptual system calibration from object bounding box area to X world coordinate . 86

Figure 4-21 Auto position control Python code .. 88

Figure 4-22 End effector positioning error (charts on left by coordinates, charts on right by approach type)

 ... 90

Figure 4-23 End effector average positioning error (cm) ... 91

Figure 4-24 Comparing three different approaches in 3D .. 91

Figure 4-25 Time analysis of the end effector positioning error ... 92

Figure 4-26 Four frames from an integrated simulation example ... 93

Figure 5-1 Sensor-directed task planning .. 96

Figure 5-2 The conceptual sensor-directed task planning by separating robot agents from the world 96

Figure 5-3 Automated longitudinal crack guidance system a) Physical structure b) Data flow structure .. 99

Figure 5-4 An ideal architecture platform for task planning and simulation using ROS and Gazebo 100

Figure A-1 Machine vision application for the operator ... 104

Figure C-1 Image analyzer HSV filter .. 106

Figure D-1 Block diagram of the AI planning for the digital twin ... 107

Figure D-2 The digital twin idea for the smart station .. 107

LIST OF FIGURES

 xiv

Figure E-1 Example AI planning application ... 108

Figure F-1 Relative X vs. area and data samples for model fitting ... 109

Figure G-1 Offset data sampled from simulation .. 110

Figure G-2 Curve fitting for scaling factor ... 110

Figure H-1 Model setting and training for YOLO .. 112

LIST OF TABLES

 xv

List of Tables

Table 3-1 Result table for longitudinal crack tracking capability of the crack detection system 57

Table 4-1 Strategy process of maintenance for the ISS .. 61

Table 4-2 Action server nodes and messages .. 72

Table 4-3 Summary of training parameters ... 82

Table 4-4 Training results for four object classes ... 83

Table 4-5 Results of the end effector positioning in the simulation environment 89

Table B-1 Crack clean testbed specifications ... 105

LIST OF ACRONYMS

 xvi

List of Acronyms

2D – 2-Dimensional

3D – 3-Dimensional

AC – Asphalt Concrete

AHMCT – Advanced Highway Maintenance and Construction Technology

AI – Artificial Intelligence

API – Application Programming Interface

AT – Adaptive Threshold

BGR – Blue-Green-Red

CAD – Computer Aided Design

Caltrans – California Department of Transportation

CCD – Charge-Coupled Device

CNN – Convolutional Neural Network

DCNN – Deep Convolutional Neural Network

DDS – Data Distribution Services

DOF – Degree of Freedom

DS1 – Deep Space 1

DT – Digital Twin

EVA – Extravehicular Activity

EVR – Extravehicular Robotics

FN – False Negative

FP – False Positive

FPN – Feature Pyramid Network

GigE – Gigabit Ethernet

GUI – Graphical User Interface

LIST OF ACRONYMS

 xvii

HDMI – High-Definition Multimedia Interface

HOME – Habitats Optimized for Exploration Missions

HSV – Hue-Saturation-Value

ID – Identification

IoU – Intercept over Union

ISAFR – In-Space Assembly, Fabrication, and Repair

ISS – International Space Station

IVA – Intravehicular Activity

LEO – Low Earth Orbit

LiDAR – Light Detection and Ranging

LNS – Least Normal Square

mAP – mean Average Perception

NASA – National Aeronautics and Space Administration

NCHW – N-Channels-Height-Width (A Data Format)

NMS – Non-Max Suppression

NRC – National Research Council Canada

OBM – On-board Manufacturing

OC – Line of Organic Correlation

OLP – Off-line Programming

OLS – Ordinary Least Squares

PCC – Portland Cement Concrete

PID – Proportional-Integral-Derivative

POSIX – Portable Operating System Interface

RA –Remote Agent

RGB – Red-Green-Blue

RGBD – Red-Green-Blue-Depth

LIST OF ACRONYMS

 xviii

RMSE – Root Mean Square Error

ROI – Return of Investment

ROS – Robot Operating System

SPDM – Special Purpose Dexterous Manipulator

SRDF – Semantic Robot Description Format

SRMS – Shuttle Remote Manipulator System

SSD – Single Shot Detector

SSRMS – Space Station Remote Manipulator System

ST – Simple Threshold

TCP – Transmission Control Protocol

TN – True Negative

TP – True Positive

TPU – Tensor Processing Unit

TTLS – Transfer Tank Longitudinal Crack Sealer

UR – Universal Robot

URDF – Universal Robot Description Format

USB – Universal Serial Bus

YOLO – You Only Look Once (Real-time Object Detection Architecture)

CHAPTER 1

 1

CHAPTER 1

1. Introduction

CHAPTER 1

 2

1.1. Background

The research on developing sensor-directed robotic manipulators working as autonomous intelligent

systems in real world environments involves a necessary combination of practical and theoretical

considerations. The practical aspect plays a significant role in information processing to determine the most

cost-effective and efficient use of resources. Autonomous intelligent systems are the integration of several

subsystems working together to attain certain goals efficiently and safely. Integrating task planning for

sensor-directed robotic systems is also important from a theoretical perspective. The computation

components of intelligence are one of the critical targets of artificial intelligence (AI) research [1].

Advanced AI-based approaches can be included in perception systems to improve accuracy and self-

sufficiency.

Most if not all autonomous systems using automated planning are built individually based on subsystems

[2]. As shown in Figure 1-1, the major subsystems are sensing modules, actuation modules, and

computation modules. Examples of the sensory modules include cameras, Light Detection and Ranging

(LiDAR), force sensors, proximity sensors, and radars. The use of actuators for robotic arms and

manipulators is essential for the movement of a robotic system as well as for changing the state of the

environment. Finally, the intelligent system needs a brain to compute and analyze data from the perceptual

system as well as plan and execute commands to achieve the goals. This computational aspect includes

system awareness, signal processing, control, and planning. Robotic applications require sensors, actuators,

and computational systems to be well-integrated to conduct high-precision operations. Well-defined

intelligent automated systems are beneficial for factories, transportation industries, and space exploration

missions [3].

CHAPTER 1

 3

Figure 1-1 Basic diagram of sensor-directed agent-based robotic systems.

The environment in the real world is generally unstructured, meaning that unexpected circumstances may

occur. Therefore, autonomous robotic systems require integration of sensors with machine learning and

task planning capabilities to cope with dynamic environments. This dissertation aims to improve methods

for sensor-guided intelligent robotic task planning in unstructured environments. It incorporates advanced

model-based task planning techniques into autonomous robotic maintenance systems to increase their self-

sufficiency. It will examine two fully unstructured environments: roadway maintenance and space habitat

maintenance. Automating maintenance of roadways and space habitats using robotic systems require

sensors and intelligent planning systems since both of these environments are or can become unstructured.

Robotic systems for automated roadway maintenance functions are typically installed on moving

maintenance vehicles and deal with the unstructured nature of roadway traffic and conditions. In space

habitats, when astronauts are not present, disturbances can perturb the structure of the environment,

requiring sensor-driven task planning robotic systems to deal with the changes when performing

maintenance functions.

This dissertation first considers the automation of roadway crack cleaning or sealing using a vehicle-based

robotic system. It develops a machine vision-based task planning system to automatically detect and map

Task Planning Logic

CHAPTER 1

 4

roadway cracks and guide a manipulator to follow a crack on the pavement. The work in this area is limited

to roadway edge cracks that are approximately straight compared to alligator pavement cracks. Longitudinal

highway edge cracking is considered one the most destructive forms of pavement defects as it absorbs 75

percent of the total water entering highway sublayers [4]. Because highway edge cracks are relatively

straight, automated robotic operations on them can be continuous, i.e., the robotic system can run without

coming to a complete stop. In this dissertation the application of the vision-based task planning system

developed is demonstrated in an experimental testbed that can mimic an actual robotic system working on

a roadway environment.

Second, this dissertation develops a model-based task planning system for sensor-guided robotic

applications in space habitats with interactions with OBM. The structured nature of a space habitat allows

for developing a baseline digital world model that can be used in a model-based task planning system. This

dissertation develops a digital model of an example space habitats that can provide the basis for a robotic

task planning simulation system. OBM can fabricate new parts and present them for robotic handling that

would require on-the-fly sensing their locations and features. This dissertation develops a sensor-directed

task planning system to handle robot interactions with an on-board 3D (3-Dimentional) printer. The US lab

of the International Space Station (ISS) is used as an example. The combination of the simulation

environment and the sensor-based task planning system can be used human integrated robotic task

verification as well as for autonomous task planning. The simulation of the use cases performed in this

work shows that the robotic task planning system developed is able to increase its autonomy significantly,

gaining the ability to query the state of the environment by observing objects, to communicate with other

objects, to conduct automated path planning, and to handle newly printed parts from 3D printers.

The contributions in this dissertation include enhancing robotic task planning and model-based

programming for sensory robotic systems. The first contribution is the use of machine vision technology

for a vehicle-based robotic guidance system. The automated system employs a state-of-the-art deep

CHAPTER 1

 5

convolutional neural network (DCNN) to detect object features and extract their actual coordinates. These

image features are translated to the world frame and then used to compute the error for feedback control of

the robotic end-effector. The application of DCNN-based image processing for a roadway crack detection

and cleaning or sealing operation is new. The method, when integrated with a vehicle-based robotic

actuation system, allows for self-guided operations for manual or automated edge crack sealing or cleaning

operations on a continuous basis. The method developed is illustrated in a simplified experimental system.

In the second part, this dissertation develops a simulation system for robotic task planning, programming,

and verification purposes. This simulation system uses Gazebo physics engine, the Moveit Application

programming interface (API) and the Robot Operating System (ROS)-based, off-line program. In addition,

the task planning system uses the planning technique for high-level control of abstract commands to interact

with objects in a 3D printer.

CHAPTER 1

 6

1.2. Dissertation Structure

The structure of the remainder of the dissertation is as follows:

Chapter 2 reviews the current state of sensor-based robotic task planning systems. Furthermore, it evaluates

the literature on sensor-guided robotic guidance system applications. Roads and space stations are examined

in two different instances. Finally, this chapter provides an outline of some of the relevant research gaps

that will be addressed in the subsequent chapters.

Chapter 3 presents the development and implementation of the sensor-directed guidance system with

advanced machine learning techniques in roadway crack cleaning or crack sealing applications. It presents

the actuation's control logic and task planning to track longitudinal cracks through a linear manipulator. It

then covers the evaluation of the system inside and outside of the laboratory setting.

Chapter 4 presents the development of the simulation system and the robotic task planning and automation

of in-space manufacturing using a sensor-guided intelligent robotic systems. The challenges of task

planning sensor-directed robotic guiding and interaction with 3D printing in space is analyzed and

addressed.

Chapter 5 provides some of the conclusions of this research focusing on the functional connections between

the systems developed for the two different applications one for roadway maintenance and second for space

habitats as well as discussing some of the areas of future research.

CHAPTER 2

 7

CHAPTER 2

2. Overview of AI Task Planning

CHAPTER 2

 8

2.1. Introduction

An intelligent robotic system is one that can perform tasks autonomously or independent of human input in

a given context [2]. Robots require task planning algorithms to automate the execution of actions necessary

to achieve goals that are impossible to accomplish through individual actions. The system designer must

consider two primary aspects in developing a robotic task planning system for the system to be used

effectively. The first aspect is to develop individual subsystem components [2]; the second aspect is to

integrate those components into a unified model that will work together to achieve a goal [2]. These two

processes are interconnected, and system engineering expertise is required to create a fully functional

robotic system with efficient communication between the system components.

Components which commonly make up task planning systems are sensor modules, actuation modules, a

logic unit, and a command interface. In this architecture, the logic unit is the primary component and accepts

commands from, and communicates status to, the command interface. To perform task planning and

execution, the logic unit analyzes data from the sensor modules, computes a plan, and controls the robots

via the actuation modules. Proper integration of these components would allow the autonomous completion

of tasks by the robot agent, potentially with a high level of autonomy.

2.2. Task Planning

An automated task planning system must be capable of developing task plans using its computing module.

Data driven task planning systems may be broadly classified into two categories: pre-programmed for a

given task objective and autonomous with world sensing and task analysis in which the robot plans and

executes a set of actions based on sensory input. The primary distinction is whether a robot's actions are

determined by a detailed sequence of steps provided to it before performing a task or whether a robot

CHAPTER 2

 9

functions autonomously by intelligently acquiring and interpreting sensory data, perceiving the world,

changing its work environment, and planning its actions. In most cases, providing a robot with a set of

actions to deliver a task in an environment that constantly changes is impractical. Frequently in these cases,

the system encounters new and unexpected events and fails the operation. Therefore, these systems have to

demonstrate significant levels of autonomy to cope with new, upcoming uncertainties. These uncertainties

may be accomplished with robot’s task planning and advanced communication protocols between the

robot’s agents, such as sensors capable of mapping the world and passing information on to plan, control,

and execute tasks[5]. Constant dependability under uncertain real-world situations is a significant issue in

developing intelligent robotic systems [5], [6].

2.2.1. Task planning in unstructured environments

An intelligent robot system with autonomous capability is not guaranteed to function in every

environment[7], [8]. Since the environment of the robot is application-based, it is best to concentrate system

perception and data processing in particular settings. The challenges from perception to actuation and all

the needed task planning for every application is inherited in the nature of the task to which a system is

designed to operate in [7]. For instance, the development of the architecture of a sensor-directed task

planning for an intelligent aerial device is completely different from that of an autonomous vehicle. The

automated task planning system must extract related features from the observations of the perceptual system

and use them to accomplish the goal’s task to compensate for the uncertainties of the environment [7].

Some examples of these considerations include the need to model the world or not, if only one robotic

system is operating or multiple robots are operating, how often changes occur in the environment, and how

the controller should be engaged in the system.

CHAPTER 2

 10

2.2.2. Task planning and offline programming

The development of discrete components that can be used in a larger robotic system has been the focus of

research investigations over the past decade [9]. These research studies contributed to the development of

efficient image processing, analysis, and interpretation techniques as well as several robot control and path-

planning systems, digital representation modeling, task planning, and off-line programming[10]. Off-line

programming (OLP) is a robot programming technique in which the program is written apart from the

physical robot in a virtual setting [11], typically using a CAD based simulation environment. The robot

software is subsequently uploaded and executed on a physical industrial robot [10].

Autonomous robotic operations involve robotic actions without human input. This can be achieved, for

example, in a sensory environment when the computational module of a robotic system can intelligently

process sensory data and modify a pre-planned task and develop new actions to complete a task effectively

(see [11], [12]). In such a system, the sensors identify local abnormalities from the ideal state, and the robot

system handles them autonomously[10]. As a result, sensor-controlled motions must be employed to elevate

local autonomy to the level of the machine[9]. For complete autonomy, high-level planning capabilities for

task planning and intelligent error management are required, but current methodologies are insufficient to

provide the necessary tools[10]. At the moment, complete autonomy does not seem to have been achieved

in many robotic applications.

2.2.3. AI task planning in nature

The natural task planning behavior of an Alaska brown bear while fishing in a river can illustrate the purpose

of planning in unstructured environments. The bear's fishing process involves three steps: orientation,

approach, and capture [13]. The bear takes several positions which are sitting, standing, and walking. There

are also several approaches that the bear can take to reach the fish, such as loping, head underwater, and

plunging. Finally, to capture the fish, it can use its forepaws, mouth, or both. To eat the fish, the bear may

CHAPTER 2

 11

take any possible options in orientation, approach, and capture. For example, it may use standing- plunging-

forepaws or sitting-head underwater-mouth. Although the underlying reasoning behind the selection of a

bear’s fishing strategy is unclear, it is evident that bears take combinatorial tactics every time they near a

river to hunt. For example, a hungry bear, approaches the environment, selects a strategy, waits, searches,

and tracks for the prey, and uses its mouth or forepaws to seize the fish.

a)

b)

Figure 2-1 a) Bear fishing[14] exhibiting single forepaw and mouth to capture b) Bear’s fishing technique components[13]

Alaskan bears’ fishing behavior, however, is alike intelligent robotic systems. First, the bear is hungry and

needs food. This desire is assumed to be the highest-level command in this example[13]. When arriving at

the river, the bear knows that the prey is close. The bear then searches and tracks the fish in the creek, which

is similar in concept to intelligent robotic systems utilizing the sensory motors of its perceptual system to

search and track objects. The bear plunges its head in the water to increase the chance finding a fish, and

the bear tracks the prey until it is within reach. Finally, using either its mouth or forepaws, it hunts the prey.

In robotics, this approach of tracking is referred to as visual servoing, and hunting is similar to the concept

of reactive action[15]. The ultimate goal of an intelligent system is to achieve its goals. The example of the

Alaska bear provides a clear picture of how small actions are organized to achieve a goal, which can then

be applied to many application-based robotic systems.

CHAPTER 2

 12

2.2.4. Robot task planning in maintenance

Unstructured environments are referred to the conditions that are subject to change[15]. Such environments

can be common when performing maintenance in a system. Maintaining a system or an environment occurs

to restore the system to a desirable condition[16]. Currently, the number of complex environmental systems

in need of monitoring and maintenance is increasing[17]. The maintenance function can be divided into

three types of actions: inspection, regular maintenance, and disturbance handling [18]. The first type of

action, inspection, is to assess the environment. The second maintenance action, routine maintenance, is

about scheduling a system to be checked to prevent considerable damages to the system. The third

maintenance action is the disturbance handling for sudden failures of the system. The design of an

intelligent system should consider all the maintenance actions. Designing intelligent robotic systems for

any of these maintenance actions is a subject of interest for research agencies and companies[18]. The

automation of these maintenance processes would have a long time Return of Investment (ROI) and would

even allow some currently not yet conceived missions, such as space exploration, to be carried out[18]. In

the following sections, an overview of the challenges of system design and planning for two different

environments is discussed. The first environment involves roadway maintenance dealing specifically with

robotic crack filling/sealing operations. The second environment involves robotic applications in space

habitats. The remainder of this chapter provides an overview of the some of the related works in robotic

task planning.

2.3. Related Works in Task Planning

2.3.1. Traditional task planning

Some of the existing architectures for robot control systems separate sensing and perception sub-system

from the planning and action sub-systems. The two sub-systems then interact via an explicit world model

CHAPTER 2

 13

[19]. Figure 2-2 provides a schematic of such an architecture. The sensing and perception sub-system

monitors the environment and maintains a comprehensive representation of the status of objects in its

vicinity. The planning and acting sub-system derives its perception of the world from the model and chooses

actions in response to the perception system.

Figure 2-2 Traditional task planning architecture model inspired from [19]

The separation of planning and perception allows for handling the two aspects of planning independently

[19]. Previously, planning research focused on the challenge of developing a series of basic robot operations

to fulfill a set of objectives using a comprehensive initial world model as a point of reference [19].

Currently, due to the asynchronous nature of events such as arrival of other robots and the presence of

invisible barriers, the model must include sensor data throughout task execution [8].

A challenge that emerges when planning and perception are separated is that the perception sub-system

must create the world model without knowing the robot's goals [15]. An environment may encompass

hundreds of different items, and the sensing system must be readily available to provide information about

the status of each one for the planner [19]. If the planning system communicates with the sensing system

exclusively via the world model, the sensing system has no means of knowing which features the planner

CHAPTER 2

 14

needs[15]. Thus, sensing research has been focused on continuously describing the exact condition of

everything in the world [20].

2.3.2. Task Directed Sensing

The concept of task-directed sensing has been studied for several decades. A separate world model, in

particular, is an essential element of the design as displayed in Figure 2-3. As can be seen in this figure, the

world model contains the most up-to-date information that the perception system has about the actual

environment, including the current values of all sensors as well as prior recordings of what those sensors

detected [8]. In this architecture, the planning system directs the sensors and the analysis of their data [19].

The planner is tasked with analyzing the robot's objectives and the present state of the world model and

producing both the action and sensing tasks necessary to accomplish the objectives.

Figure 2-3 Task-directed sensing planning model inspired from [19]

Additionally, task-directed sensing implies that the most effective method for incorporating sensing

functions into plans is to consider them as action tasks. As goals are decomposed into executable actions,

the sensing functions necessary to support those actions are added. Sensing tasks, like actions, can be

incorporated into planning hierarchies and templates or they can be represented as separate operators that

change the state of the world model [19]. In other words, actuator tasks work in the world whereas sensor

CHAPTER 2

 15

activities operate on the world model. In this manner the future system of the world model can be anticipated

in the same fashion as the future state of the world can be expected. Actions modify the world, and sensing

tasks modify the robot's understanding of the environment [21].

2.3.3. Reactive Execution Method

One technique for joining robotic perception and planning is to combine them into a unified, state-free,

entirely reactive system [19]. This is depicted in Figure 2-4 where the sensors provide information for the

decision network which guides the actions of the actuators. The motivation for this method is to address a

significant issue that occurs when an agent's world model is inadequate or uncertain. In such a situation

plans built on that world model will be unreliable [22]. Due to the perception system's inability to maintain

an ideal world model, plans are inevitably inaccurate a significant portion of the time [23]. Plan execution

eventually fails, and new plans are needed to generate pre-existing world model failure [23].

Figure 2-4 Complete reactive task planning model inspired from [19]

Reactive execution systems solve this issue by producing just one action at a time and selecting it based on

the world's current state, not on a model of that state [19]. The goal is to reduce the inherent uncertainty in

a model by simply relying on directly observed input. Reactive type systems directly link a robot's sensors

CHAPTER 2

 16

to its actuators via a decision network that enables the current action depending on the sensors' current

readings, or sensor data indexes straight into an action to perform [19].

2.3.4. Deliberation in Task planning

During the deliberation decision process, the robot selects and organizes activities by predicting intended

consequences [1]. This deliberation is used to achieve as many predetermined objectives as possible [24].

The state of the dynamic system is constantly changing. Two factors cause these changes: events and

actions. Events are environmental occurrences that supervisory planners cannot control or modify [1], [24].

On the other hand, actions are the environmental occurrences that the principal planner can execute at the

right time [25]. In this environment, the agent is an entity that can perform actions; however, the agent does

not necessarily reason about its actions. If it does reason about its actions and anticipates the outcomes, it

is called an actor. The performed action by agents can take several forms, including an exerting force, a

movement, activation of sensory motors, and communication [1].

2.3.5. Automated Task Planning

Automated task planning computationally examines the deliberation process of robotic systems [21]. The

interplay of the three components consisting of observations, plans and actions is shown in Figure 2-5.

Given a world system's state denoted by "𝑠" as input, a controller outputs an action denoted by "𝑎" following

some plans [21]. A state-transition function denoted by “Υ" is used to transform these components in

response to the events and actions that it receives [1]. Describing the system, a starting state, and an aim, a

planner generates a plan for the controller to follow to accomplish the objective. There are also events

denoted by “e” that occur in the world that can impact the plans. Each of these four components of planning

namely s, a, e, and Υ have a set of values where their sets are denoted by S, A, E and Υ. A state transition

system model can therefore be represented by Σ [21] consisting of these four sets as follows:

CHAPTER 2

 17

Σ = (𝑆, 𝐴, 𝐸, Υ)

Where:

• 𝑆 = {𝑠!, 𝑠", 𝑠#, … } is a limited or iteratively enumerable set of states;

• 𝐴 = {𝑎!, 𝑎", 𝑎#, … } is a limited or iteratively enumerable set of actions;

• 𝐸 = {𝑒!, 𝑒", 𝑒#, … } is a limited or iteratively enumerable set of events; and

• Υ = 𝑆 × 𝐴 × 𝐸	 → 2$ is a state-transition function.

Figure 2-5 A conceptual model for dynamic planning

2.4. Sensor-directed task planning method

The primary prerequisite for autonomy is the capability of intelligent sensor data processing to guide

completion of a task effectively. Actual sensory data are typically compared to a specified reference pattern

to provide information to the robot controller to attain the desired end position [19]. The sensors identify

local abnormalities from the ideal state, and the robot system handles them autonomously [7]. As a result,

sensor-controlled motions must be employed to elevate local autonomy to the level of the machine [26].

CHAPTER 2

 18

For complete autonomy, high-level planning capabilities for task planning and intelligent error management

are required, but current methodologies are insufficient to provide the necessary tools [24].

2.4.1. Sensor-directed AI-based robot task planning

In this dissertation, the idea of sensor-directed task planning was developed in response to realistic sensor

deployment requirements. It tackled the issue of timely delivery of critical information to the planning and

action system. Because it is only feasible to have direct knowledge of a tiny portion of the environment at

any given time, the sensing system must focus on the aspects of the world that are necessary for the tasks

at hand. Sensor-directed task planning methods developed here use advanced system level communication

methods, such as ROS [27], to connect the sensing and action systems. The planning and action system, in

particular, guides the sensing system to gather and evaluate only information relevant to the robot's purpose.

Figure 2-6 shows the sensor-directed task planning architecture developed in this dissertation. In this

architecture, the sensor and perception of the robot agent is separated from the world. This separation as

shown clears the path for exact sensory information that can be used by the robot or to calibrate the model

of the world. The perceptual system can be very sophisticated and incorporate several advanced data

sources. The next element of this architecture is the task controller. The task controller is where the agent-

based system receives the featured data from the perception system, aligns it with the current plan, and

generates an action. The actions, once finally executed, will change the state of the world. The task

controller is designed to behave reactively, which means that it helps to accomplish the task and

compensates for local inconsistencies. Given the example of robot gripper grabbing an object, if the relative

position of the object and the robot has slightly changed, the task controller takes care of the position

change.

CHAPTER 2

 19

Figure 2-6 Sensor-directed task planning

Once the sensor-directed task planning is developed for every individual robot agent, then a central task

planner can control a network of robots that interact with each other as conceptualized in Figure 2-7. Under

the policy of the central task planning, each robot agent interacts with another agent and with the world.

Each robot also receives its plan from the planner. In this scenario, every robot is helping to build the model

of the world that is ultimately used by the planner to accomplish the goals of the operations.

Figure 2-7 The conceptual sensor-directed task planning by separating robot agents from the world

CHAPTER 2

 20

In this dissertation, two scenarios are examined using this sensor-directed-task planning method. The first

scenario is a vehicle-based robotic system to be deployed in an unstructured roadway environment. The

second scenario is a robot arm-based system in the confined environment of a space habitat. Both of these

systems use a robotic arm, or robotic guidance systems which will be discussed in chapters 4 and 5. The

goal of the first guidance system in roadway environment is to track longitudinal cracks during operation.

The goal of the second guidance system in a space habitat is to move objects, specifically 3D printed objects.

Both of these environments are considered unstructured. In the roadway environment, vegetation and other

debris may introduce noise to the perceptual system. In space objects, objects may move due to existence

micro or no gravity or other events, leading to environment becoming perturbed or unstructured.

CHAPTER 3

 21

CHAPTER 3

3. Sensor-Directed Robotic Task Planning for
Roadway Edge Crack Cleaning/Sealing
Operation

CHAPTER 3

 22

3.1. Introduction

Longitudinal highway edge cracking is one of the most damaging types of pavement defect since it absorbs

75% of all water entering the highway sublayers [4], [28]. Longitudinal/edge cracking runs parallel to the

centerline direction of the road which are relatively straight as depicted in Figure 3-1. These edge cracks

are very common in California highways consisting of 2,716 center lane miles of Portland Cement Concrete

(PCC) highways. The total number of miles of edge cracks is twice to four times the number of center lane

miles, since edge cracks can exist between the travel portion and the two shoulders, in both directions.

a)

b)

Figure 3-1 Longitudinal joint crack on same highway in California a) In-lane longitudinal crack b) Shoulder Joint Transition
crack

Robotic systems have been developed to automate the treatment of these longitudinal cracks (see, for

example, [4], [28]). These systems consist of vehicles that travel the roadway with a connected robotic arm

which applied sealant material to seal the edge cracks. Two such systems developed at Advanced Highway

Maintenance and Construction Technology (AHMCT) research center at UC-Davis are the Transfer Tank

Longitudinal Crack Sealer (TTLS) and Sealzall systems [4], [28]. Both of these systems use the driver to

position a simple arm on the roadway crack and then apply the sealant material to seal the crack. Figure

3-2-a depicts the Sealzall system performing sealing operations of edge cracks on a California highway. A

picture of the traffic control system used with the Sealzal system is shown in Figure 3-2-b. It consists of a

shadow vehicle equipped with a crash attenuator following the Sealzal vehicle.

CHAPTER 3

 23

a)

b)

Figure 3-2 Vehicle-Based Sealzall Sealing a) Highway Traffic on Interstate b) traffic control flow

Both the TTLS and Sealzal system fully rely on the driver of the vehicle to properly position and guide the

robotic arm over the cracks while driving the vehicle which would make the task difficult and exhaustive.

As a result, there is a need for the development of a guidance system that can relive the driver for precise

positioning and guiding the robotic applicator over the edge cracks while also driving the vehicle. In this

dissertation, we develop a guidance system utilizing a vision based task planning approach to guide the

robotic arm over the longitudinal cracks with both manual and automatic modes. This system decouples the

driver from the robotic positioning function and allows the driver to focus on driving while the positioning

function can be performed automatically by the vision based task planning guidance system or operated in

human-in-the-loop mode by a separate operator.

The system developed here uses two cameras as perceptual sub-systems: a trailing-view camera and a

heading-view camera. The task planning system is a supervisory system, which coordinates crack mapping,

joystick inputs, and different operational modes. This task planning system uses Deep Convolutional

Neural Network (DCNN) machine vision to detect and map highway cracks through the trailing camera

and automatically guide the robotic arm over the pavement's longitudinal crack. After task planning

CHAPTER 3

 24

generates the action, it commands the robotic manipulator to properly position its end tip applicator. The

end tip applicator is either a sealant device or a router so the system can be used for both crack sealing as

well as crack routing/cleaning which is needed in some situations before the sealing operations. It should

be pointed out that the guidance/task planning system developed is for edge cracks which are approximately

straight and appear between the travelled roadway and shoulders. The system, in its present form, is not

applicable to alligator cracks that appear across the travel portion of the roadway. The guidance system

developed can be used with TTLS or the Sealzal systems or other similar systems and in combination

provides for a roadway crack sealing maintenance system.

The roadway environment, when dealing with roadway edge cracks, is an unstructured environment due to

the potential for uneven plant growth in the cracks as well as accumulation of unwanted debris. In addition,

environmental conditions may impair crack sensing, such as rain, sun brightness, shade, or dim light. Since

sensor data independently control actions by the robotic agent, the overall task planning system developed

provides for different levels of autonomy based on its two modes of operations. A functional diagram of

the corresponding maintenance system is depicted in Figure 3-3.

Figure 3-3 Functional diagram of the developed system for roadway edge crack maintenance

CHAPTER 3

 25

Developing an automated guidance system capable of directing the cleaning/sealing end-effector of a

robotic arm along the longitudinal joint crack creates two significant sensing challenges. The first challenge

is due to the need for co-located crack sensing since the operational tool head is sufficiently big and can

conceal the crack zone that must be sensed, obstructing the camera's vision. The second challenge is sensing

under unstructured highway conditions.

To address the sensor co-location challenge, we installed the camera sensor in the closest trailing vicinity

of the working zone in order to sense the extension of the longitudinal crack (see Figure 3-3). Figure 3-4

shows that the relative straight longitudinal gap divides the travel lane made of Portland Cement Concrete

(PCC) from the shoulder made of Asphalt-Concrete (AC). The red-dotted square in this last figure is the

region that is observed by the trailing camera. The black rectangle is where the router box conceals the

crack section. Since longitudinal cracks are approximately straight, our crack sensing uses the non-

concealed trailing image region behind the router box to detect and extrapolate the crack path. After the

path is extrapolated through its position and orientation, then the lateral linear actuator moves toward the

desired position where the cleaning or sealing operation should happen. Regarding the second problem, we

selected a DCNN model and trained it over the real images of longitudinal edge cracks for robust detection

approach to recognize longitudinal edge cracking on the highway shoulders.

CHAPTER 3

 26

a

b

Figure 3-3 Installed positions of Leading and Trailing View cameras, a) Front-right perspective, and b) Top perspective

Figure 3-4 Automated co-located vision based longitudinal crack sensing

3.2. Automated Task Planning Supervisory System Control

The autonomy level of every system relies on hardware and software capabilities. From the design

standpoint, some of these systems may have higher sensor and actuator capabilities. Also, one important

factor is the cooperation with a human controller. In this section we develop a task planning framework

Identified Edge

CHAPTER 3

 27

that can be controlled manually or semi-automatically. This system's task planning entails integrating

several modules, such as joystick input, visual camera inputs, image processing, and operation modules.

This integration must include a sophisticated logic algorithm capable of reconciling and combining these

modules with their various data sources. The task plan controller, in principle, would handle the majority

of the router steering action, which is the movement of the actuator. The supervisory task planner must

watch for the coming joint cracks and involve the manipulator for positioning of the tool head. The planning

program must also be in such that the operator is able to override the auto-mode control at any stage.

3.2.1. Task planning for a moving vehicle robotic system in a roadway crack
sealing/cleaning application

The functional architecture of a sensor-directed task planning system for a robotic system on a moving

vehicle performing work on a roadway is depicted in Figure 3-5. In such a system, the sensors provide

information for the perception and task controller. They also send the data to the digital display for use by

the operator and the driver. The operator can provide control inputs through the joystick to the execution

module. The execution module then applies voltage signals to the actuator to perform the operations. The

driver provides steering input to the vehicle. In crack sealing or cleaning operations, the task controller is

obtaining data from the pavement longitudinal crack and sends the information to the perception system.

The perception system is a multistage advanced deep learning system with feature extraction. The output

of the feature extraction system is passed into three modules where, depending on the mode of the operation

(manual control or semi-autonomous control, and automated control), only one of the three modules is

activated.

CHAPTER 3

 28

Figure 3-5 Sensor-directed task planning for a moving vehicle robotic in an unstructured environmental setting

The manual mode allows the operator to provide the needed input to the joystick to position the robotic

end-effector on the crack. The operator can use the camera installed on the side of the vehicle to position

the end-effector on the crack. The display system from image processing system can also be used which

would provide a more enhanced image of the crack in a semi-automated mode. In the fully automated mode,

the image data is passed through the deep learning-based image processing filters to provide the required

features to calculate the lateral offset. During this process the perceptual system ensures that the system is

robust to identify and map the crack under various environment which has been discussed. Finally, the

lateral offset is used to automatically move the robotic manipulator end-effector or tooltip on top of the

longitudinal crack.

In the automated mode, the system is in charge of handling the movement of the actuator. The machine

vision module in this operational mode extracts features from the tracking view image. Then output of the

image processing is used by the controller to move the cutter head on top of the edge crack. The semi-

autonomous mode requires the operator to supervise the operation. A comparative functional diagram of

these three modes in illustrated in Figure 3-6.

CHAPTER 3

 29

Figure 3-6 Functional Diagram and the Data Flow of the Three Operational Modes of Operations.

3.2.2. Manual mode scheme

One of the sponsors of this research, the California Department of Transportation (Caltrans) initially

considered a manual tracking technique for crack sealing/cleaning to be a viable method. In this scenario,

a worker in the vehicle monitors a live leading-view video image of the longitudinal joint crack and controls

the end-tool’s position immediately as shown in Figure 3-7-a. The tool head's location was indicated by an

indicator on the live crack video image, and the operator would jog one degree of freedom on a joystick

controller to move the end-tool laterally to the desired position. Manual remote-control tracking is, without

a doubt, the most elementary control method available. Although it is convenient to deploy the manual

tracking system, it is a time-consuming operation that requires a human to maintain constant focus and react

quickly. Joint crack video frames travel at a speed of 3 mph or 53 in/sec inside this tiny field of view. At

CHAPTER 3

 30

this rate, even minor changes in joint crack positions are extremely difficult for the human brain/visual

system to process and are inconvenient to track with a cursor. The manual camera streaming system was

used to follow a longitudinal joint crack at a vehicle speed of three miles per hour. The image was provided

to a technical team at Caltrans. After viewing the sample video, they decided to focus on a more automated

guidance approach.

3.2.3. Semi-automated and automated guidance schemes

Semi-automated guidance systems integrate automated tracking with supervisory control as shown in

Figure 3-7-b. This approach entails the use of both leading- and trailing-view video frames. This method

of tracking processes the trailing-view image to identify and track the longitudinal joint crack, whereas the

system operator focuses on the oncoming joint crack in the leading-view image. The scheme's fundamental

assumptions are that the edge crack is approximately straight. When incongruities in the edge crack are

encountered, the supervisory control provides a means of manually navigating the router through these

incongruities at a significantly slower speed. The driver is responsible for navigating the vehicle nominally

along the longitudinal joint crack in this scheme. The lateral actuator controls the router precisely,

preventing contact with the PCC travel lane. During the operation, the system operator selects the most

appropriate source of lateral actuator control and alternates between manual and semi-automated tracking

control. Thus, whenever inconsistencies with the PCC are detected, the driver will (supposedly) decelerate

to allow the system operator to deactivate the semi-automatic guidance system in favor of the manual one.

Once the issue has been resolved, the supervisory control will re-engage the automatic system.

Once the system has analyzed the trailing-view image to identify the PCC lane edge and has generated a

projected router tracking path, the system operator can switch to automated guiding mode at which point

the router will track itself. The trailing-view image is digitally processed using an edge recognition

algorithm to correctly identify the PCC lane edge and calculate a projected lateral router position to generate

CHAPTER 3

 31

the automated lateral guidance positioning control. The tool head travels laterally to the required place to

follow the joint crack (Figure 3-7-b). The system operator can monitor the automated-guidance system, and

bypass it if it will become necessary, by engaging the lateral joystick. Additionally, the system operator

would be responsible for initiating routing and initially establishing enough routed joints/cracks for the

auto-guidance to lock on. Only the trailing camera's image processing techniques are used to enable

automated tracking.

Figure 3-7 Guidance system for operation on longitudinal cracks a) Manual guidance b) semi-automated guidance

3.2.4. System Software for Tracking

A schematic diagram of the tracking system is shown in Figure 3-8 (a). The Linux-based system schedules

events in real time. The laptop communicates with its modules through the USB, HDMI, and GigE ports.

The main components are the power supply, the camera, the operator control display, a TPU, and the robot’s

controller system. Figure 3-8 (b) shows the software modules including:

1. Main application process: Device initialization, shutdown, and user interface handling

2. System control process: Orchestrates the system operation by controlling the other system modules.

CHAPTER 3

 32

3. Video control process: Configures and controls the trailing-view camera device and stores the most

recent video frame.

4. Detection control process: Manages the TPU system and transforms and analyzes video frames to

estimate the position of the cracks

5. Actuator control process: Manages system actuator motor controller

6. Joystick control process: Manages the joystick system and produces joystick event notifications

a)

b)

Figure 3-8 a) Operator Supervisor Control Diagram and b) Task planning control architecture of processing and control

CHAPTER 3

 33

The system control process is the core component of the software task planning system. This module

integrates all other components and provides the system status for the main application process. The video

control process includes the camera driver which obtains and stores the most recent video frame. The

detection control process estimates crack position by transforming and analyzing video frames generated

by the video control process. The estimation logic (Figure 3-9) makes use of a Google Tensor Processing

Unit (TPU) for accelerated inferencing. The joystick controller process is responsible for detecting joystick

events and communicating them to the system control process. It is important that the joystick device is

serviced several times per second in order to allow for quick response. The actuator control process contains

the actuator drivers and manages the actuator motor controller based on input from the system control

process.

coding=utf-8

import math
import time
import numpy
from PIL import Image
from PIL import ImageDraw

import crackthresh

class CrackDetect(object):

 COLOR_FILTER_PTS = '#FFFF00FF'
 COLOR_LINE = '#0000FFFF'
 COLOR_BBOX_DETECTED = '#00FF00FF'
 COLOR_BBOX_NOT_DETECTED = '#FF0000FF'

 BBOX_VERT_GROWTH_FACTOR = 0.4
 BBOX_VERT_GROWTH_THRESHOLD_PX = 100
 DETECTION_MAX_OBJECTS = 10
 LSTSQ_MIN_PTS = 40

 def __init__(self, img_dim, lid_crack, lid_circle, lid_square, lg_mm,
guid_center_x_px, scaling_factor):
 self.img_dim = img_dim
 self.lid_crack = lid_crack
 self.lid_circle = lid_circle
 self.lid_square = lid_square
 self.lg_mm = lg_mm
 self.guid_center_x_px = guid_center_x_px
 self.scaling_factor = scaling_factor
 #
 self.lx_mm = lg_mm - (guid_center_x_px * self.scaling_factor)

 def process_image(self, engine, img_l, cbox_prev, detect_thresh,
simpfilter_thresh, adaptfilter_thresh, adaptfilter_radius, adaptive):
 img_rgb = img_l.convert('RGB')
 draw_rgb = ImageDraw.Draw(img_rgb)
 # perform detection
 ts_begin = time.monotonic()
 cands = engine.DetectWithImage(img_rgb, threshold=detect_thresh,
keep_aspect_ratio=True, relative_coord=False,
top_k=CrackDetect.DETECTION_MAX_OBJECTS)
 infer_time = time.monotonic() - ts_begin
 # get highest-scoring crack_obj

CHAPTER 3

 34

 crack_obj = None
 crack_det_cnt = 0
 if cands:
 hi_score = None
 for obj in cands:
 if (obj.label_id == self.lid_crack):
 if ((hi_score is None) or (hi_score < obj.score)):
 crack_obj = obj
 hi_score = obj.score
 crack_det_cnt += 1
 # Determine region to filter
 (x0, y0, x1, y1) = [None] * 4
 if crack_obj is not None:
 # Calculate region by transforming and clipping detected bounding box
 x0 = max(0, int(round(crack_obj.bounding_box[0][0])))
 y0 = max(0, int(round(crack_obj.bounding_box[0][1])))
 x1 = min((self.img_dim - 1), int(round(crack_obj.bounding_box[1][0])))
 y1 = min((self.img_dim - 1), int(round(crack_obj.bounding_box[1][1])))
 else:
 # Estimate region
 prev_height = int((cbox_prev[3] - cbox_prev[1] + 1))
 if (prev_height < CrackDetect.BBOX_VERT_GROWTH_THRESHOLD_PX):
 # base region on previous cbox, adding 40% to the height and
maxing out the width
 delta_y = int(round(prev_height *
CrackDetect.BBOX_VERT_GROWTH_FACTOR / 2))
 x0 = 0
 y0 = max(0, cbox_prev[1] - delta_y)
 x1 = self.img_dim - 1
 y1 = min((self.img_dim - 1), cbox_prev[3] + delta_y)
 else:
 # Use previous cbox as-is
 (x0, y0, x1, y1) = cbox_prev
 # execute filter
 imgbytes = CrackDetect.__crop_to_bytes(img_l, x0, y0, x1, y1)
 if adaptive:
 (x_vals, y_vals, xy_vals) = crackthresh.filter_adaptive(imgbytes, x1-
x0+1, y1-y0+1, x0, y0, adaptfilter_thresh, adaptfilter_radius)
 else:
 (x_vals, y_vals, xy_vals) = crackthresh.filter_simple(imgbytes, x1-
x0+1, y1-y0+1, x0, y0, simpfilter_thresh)
 # draw filter points
 draw_rgb.point(xy_vals, fill=CrackDetect.COLOR_FILTER_PTS)
 # conditionally calculate y_mm
 if (len(xy_vals) > CrackDetect.LSTSQ_MIN_PTS):
 (m, b_px) = CrackDetect.__least_squares(x_vals, y_vals)
 y_mm = -m * self.lx_mm + (b_px - (self.img_dim / 2)) *
self.scaling_factor
 # draw line
 draw_rgb.line((0, b_px, (self.img_dim - 1), (m * (self.img_dim - 1)) +
b_px), fill=CrackDetect.COLOR_LINE)
 else:
 y_mm = None
 # draw cbox
 if crack_obj is not None:
 rect_color = CrackDetect.COLOR_BBOX_DETECTED
 else:
 rect_color = CrackDetect.COLOR_BBOX_NOT_DETECTED
 cbox = [x0, y0, x1, y1]
 draw_rgb.rectangle(cbox, outline=rect_color)
 # Return results
 return (y_mm, img_rgb, crack_det_cnt, infer_time, cbox)

 @staticmethod
 def __least_squares(x_vals, y_vals):
 a = numpy.vstack([x_vals, numpy.ones(len(x_vals))]).T
 (m, b_px) = numpy.linalg.lstsq(a, y_vals, rcond=None)[0]
 return (m, b_px)

 # convert a cropped region of a PIL mode-L image to a Python bytes object
 @staticmethod
 def __crop_to_bytes(img_l, x0, y0, x1, y1):
 imgarr = numpy.asarray(img_l)
 crop = imgarr[y0:(y1+1), x0:(x1+1)]
 return crop.tobytes(order='C')

Figure 3-9 The crack detection source code

CHAPTER 3

 35

3.3. Machine vision crack sensing technique

The semi-automated and the automated tracking component of the guidance system are dependent on

creating a method for digitally analyzing the trailing-view image and successfully recognizing the PCC lane

edge that runs through the frame. When the joint crack transition surface is clear, the color difference

between the predominantly white PCC pavement and the primarily black AC pavement is visible using

typical image processing techniques. However, on most PCC roadways, the surface close to the transition

joint is frequently hidden by lane striping, old sealant, and pavement markers, introducing inaccuracy and

significantly reducing the reliability of standard image recognition approaches.

A new field of intelligent image processing technology is emerging that is well suited for classifying objects

inside a digital image [29] Deep learning is a broad phrase that refers to a diverse set of AI machine learning

techniques [30] In deep learning, rather than applying a fixed set of predetermined filters that must be

programmed, the filters are built internally by the program through learning based on supervised training.

Given the ambiguous nature of the trailing-view highway pavement images, a deep learning image

processing framework was developed here to deliver the best feasible identification for the crack

cleaning/sealing guidance system.

3.3.1. Edge Identification and Edge Path Extrapolation Program

After the edge identification program detected a crack edge path, we constructed a real-time filtering and

computer code to extrapolation the next point on the edge crack and determine the lateral end-tool’s

position. Appendix A contains the transformation equations developed for path extrapolation. Because the

crack cleaning guidance method required extrapolating the recognized edge path approximately 30 inches

ahead of the longitudinal joint crack, any minor geometric positional errors can become significant.

Additionally, the trailing-view camera moves in sync with the guided vehicle, allowing for an unrestricted

CHAPTER 3

 36

view of the joint crack in the image. Because the vehicle's orientation will change somewhat between

frames, the joint/crack will constantly shift and rotate slightly within the image. The edge tracking algorithm

must adjust for the picture frame inherent movements and calculate an accurate end-tool/router lateral

position. This is especially important in crack cleaning when a router is used since the router cutter's inner

edge must be kept next to the PCC edge to avoid hitting the stronger AC edge of the shoulder. As a result,

for the tracking system to be effective, a method for reducing the inherent errors of this methodology need

to be established. Once the edge path has been discovered, the guidance system must translate it into the

lateral position of the end-tool/router inside the edge. A router lateral position is calculated by entering a

crack path line and guiding point positions in a trailing-view image. The transformation software involves

initializing the trailing-view camera and defining critical geometric dimensions between the end-tool/router

and the guiding points.

The edge identification and edge path extrapolation programs have four stages (see Figure 3-10). The first

stage preprocesses the image data by down-sampling and changing the dimension of the input image as

well as converting its color channels. The second stage is the deep convolutional neural network filtering.

In this stage, if the network model detects the longitudinal crack, then the detection bounding box is utilized

for the next processing stage. If the crack is not detected, an estimated bounding box is created by scaling

up the bounding box from the previous detection in order to maximize the probability of crack detection in

the subsequent processing stages. The third stage involves threshold filtering which allows for the

identification of crack pixels from non-crack pixels using binarization of the image. After the pixel

candidates are identified, the final stage utilizes a regression model on the identified crack pixels to find the

position and orientation of the edge crack.

CHAPTER 3

 37

Figure 3-10 Four stages of image processing to identify position and orientation of longitudinal edge cracks

The novel real-time joint crack sensing architecture developed here uses a DCNN method and it is shown

in Figure 3-11. This detection technique, which consists of two primary processing stages. First, it takes the

original frame from a camera, preprocesses it, and then uses a DCNN-based detection model to find the

longitudinal crack within a bounding box. Second, it binarizes the identified crack picture in the bounding

box to map the crack using an adaptive threshold approach. The output is then sent to the task planning

system for real-time manipulator actions.

Figure 3-11 Details of hybrid image processing technique: 1: down-sampling 2: Applying CNN 3: applying threshold 4:
Binarizing the image 5: estimate the position and direction of the longitudinal crack

..

Original crack
image Down-sampling CNN Threshold Filter Binary Image of

Crack
Position

Estimation

.

Step 1 Step 2

CHAPTER 3

 38

3.3.2. Statistical line fitting and coordination transformation

As discussed earlier, for the robot arm to move and track the longitudinal edge crack, the distance between

the robot’s end effector and the longitudinal crack must be calculated. This process requires two more steps

after finding the crack pixel candidates through the previous two filters. The first step uses statistical line

fitting to the crack pixels as illustrated in Figure 3-12-a and the second step uses a coordination

transformation moving the data from the camera frame to the world frame as depicted in Figure 3-12-b.

a)

b)

Figure 3-12 a) Longitudinal crack frame dimensions b) Show the extrapolation of the crack line

Line fitting is the process of calculating a line that would best fit a set of data points [31]. The statistical

line fitting to the crack pixel candidates fits a straight line on top of the straight edge of the pavement as

can be seen in Figure 3-13. The equation of the fitted line will provide the relative orientation and relative

position of the longitudinal edge crack.

Figure 3-13 Crack mapping and linear line fitting to the detected longitudinal crack

CHAPTER 3

 39

There are three main types of statistical line fitting which is mentioned in [32]:

- OLS (Ordinary Least Squares)

- LNS (Least Normal Squares)

- OC (Line of Organic Correlation)

All the above-mentioned methods pass through the centroid of the data set but may differ in the way they

determine the slop [32]. In our case, since we only need to estimate the longitudinal crack orientation and

direction, we can use the simple OLS method also known as the regression estimating method.

The linear equation of the fitted line is:

𝑦6 	= 	𝑏𝑥̅ 	+ 	𝑎 Equation 3-1

where the parameters 𝑥̅ and 𝑦6 are defined as:

𝑥̅ 	= 	
1
𝑛
	= 𝑥%

&

%	(!

 𝑦6 	= 	
1
𝑛
	= 𝑦%

&

%	(!

with (xi, yi) are the coordinates of all the data points. The Least Square formulation is to minimize the

following equation:

=(𝑦% 	− 	𝑦?%)"
&

%	(!

Equation 3-2

𝑦?% 	= 	 𝑏𝑥?% + 	𝑎 Equation 3-3

The optimal values for 𝑎 and 𝑏 are obtained from:

𝑏	 = 	𝑟	
𝑆)
𝑆*

Equation 3-4

Where 𝑟, 𝑆), and 𝑆*are:

𝑆*" 	= 	
1
𝑛
	=(𝑥% 	− 	 𝑥̅)"
&

%	(!

 𝑆)" 	= 	
1
𝑛
	=(𝑦% 	− 	𝑦6)"
&

%	(!

 𝑟	 = 	
1
𝑛∑ (𝑥% 	− 	 𝑥̅)(𝑦% 	− 	𝑦6)&

%(!

𝑆*𝑆)

CHAPTER 3

 40

The parameter 𝑎 is found from:

𝑎	 = 	𝑦6 	− 	𝑏𝑥̅ Equation 3-5

Now having the values for 𝑎 and 𝑏, we can estimate the position and orientation of the longitudinal crack.

3.3.3. Kinematic Registration

The robotic arm with its end-tool/applicator is installed on a moving vehicle while the edge cracks to be

filled or routed for cleaning are on the roadway. This means that the position of the crack relatively to the

end-tool must be estimated in real-time using the camera images requiring a kinematic registration.

Kinematic registration involves establishing the coordinate transformation associated with establishing the

correspondence between the roadway and the coordinate system of the robotic system in the moving

vehicle. The position of the crack is available in the image coordinate system in pixels. The pixel distance

then needs to be converted from the image coordinate system to regular distances in the robot tool

coordinate system.

Different coordinate systems for a maintenance truck with a robotic tool for crack sealing/routing is

depicted in the Figure 3-14 application. In this Figure the subscript “w” is used to indicate the world

coordinate system, “c” is used for the car or vehicle coordinate system, “a” for the actuator and “i” for the

image coordinate system. In the figure, the yellow arrow shows the direction of the travel. The world

coordinate system includes the roadway with the longitudinal edge crack. The Car or the vehicle coordinate

system is attached to the vehicle and it includes the camera mount. The 2D (2-Dimensional) Image

coordinate system is set to the image recordings. The Actuator coordinate system is attached the robotic

arm.

CHAPTER 3

 41

Figure 3-14 Coordinate system representation of crack tracking system including a truck with the attached linear robotic
actuator.

The coordinate transformation chain includes the transformation from the World coordinate to the Image

coordinate, from Image coordinate to the Vehicle coordinate and from vehicle coordinate to the Actuator

coordinate as follows:

𝐶+, =	𝐶-,𝐶.-𝐶+. Equation 3-6

The following notation is used in the above equation:

𝐶/0	1	23145
2304	1	23145

 In this application, internal sensors are used in the vehicle and the robot actuator so that all the values are

relative to the position of the vehicle therefore the equation can be simplified as follows:

𝐶+- =	𝐶.-𝐶+. Equation 3-7

The coordinate transformation from the image to the vehicle is denoted by𝐶.- which includes scaling and

translation. The coordinate transformation from the vehicle to the actuator is denoted by 𝐶+. and includes

translation and if the end effector is subject to vibration, then roll, pitch, and yaw must also be included.

In our experimental prototype, the shooting angle of the camera is downward and perpendicular to the

pavement surface. To ensure perpendicularity, we designed an initializing fixture. The fixture is attached

to the actuator robotic arm (Figure 3-15) and contains a rectangle of guide points (𝐴67𝐵67𝐶67𝐷67). If the

CHAPTER 3

 42

guide points compose a perfect rectangle in the camera image frame (i.e., 𝐺8 	= 	𝐺8! and 𝐻8 	= 	𝐻8!), then

the camera angle is normal to the initializing fixture.

Figure 3-15 Guidance frame design for the crack cleaner system

3.4. Data Collection and Model Training for Machine Learning
Algorithm

The most self-evident constraint in model training for machine learning application is a lack of data.

Erroneous model input results in incorrect outcomes. As a result, we attempted to collect correct and

relevant data to train the model for our machine learning algorithm used for crack detection. For this, we

collected data for joint/crack detection in two separate settings: one with a truck on a highway in California

and second at a test site at UC, Davis. We mounted a set of rails on the side of a service vehicle and attached

it to its bed. We then installed two cameras on the rail: one for the trailing view and another for the heading

view. The trailing-view camera was placed directly on top of the crack with the lens pointing downward

delivering image data for the crack detection module. Heading-view cameras were mounted in strategic

positions to view the horizon along the longitudinal crack and assist the driver and operator in directing the

vehicle forward in a straight line. Both cameras were configured to begin and stop recording remotely to

help ensure the safety of both operators and equipment.

CHAPTER 3

 43

a

b

c

d

Figure 3-16 First round of data collection for training the network from California highways a) Regular crack before
routing/cleaning crack, b) Longitudinal crack after routing, and c) Truck moving and collecting data d) Example of the collected

routed crack image

The second round of data collection took place at a site on the UC Davis campus with pavement that bore

a resemblance to the AC/PCC pavement joint cracks seen in Figure 3-16. The data was collected using the

testbed (Figure 3-17) described in Section 3.5. The cameras were programmed to capture frames at 15

frames per second. A subset (150) of the collected frames were selected for random and split-sample

training, testing, and validation, with the split ratio of 60, 20, and 20.

a

b

c

Figure 3-17 Second round of laboratory data collection setup at UC Davis: a) Leading-view camera, b) Sample of collected
image of longitudinal crack with guidance labels, and c) Testbed view during image collection

CHAPTER 3

 44

We added guiding frame labels throughout the data collecting process as seen in Figure 3-17-b. These

guiding frame labels are used as feedback for the guidance control system. These labels are affixed to a

frame that is connected directly to the end effector. The end effector's location may be calculated with a

high degree of precision using these guiding frames, especially when there are disturbances such as in crack

cleaning and routing. Because the robotic arm shakes when the cutter blades come into contact with the

ground, the cutter blade would otherwise deviate from its planned route. Having a feedback system to

provide precise information on the position or forces applied to the end-effector is advantageous in

controlling the system.

Figure 3-18 Collected data with laboratory setup with guidance frame labels

3.4.1. CNN based Filter: Model selection and training

Transfer learning is a robust framework in deep learning in which pre-trained models are used as the starting

point for computer vision and natural language processing tasks.

Several models are selected, trained, and tested through the transfer learning technique for the crack

detection task. Numerous criteria were examined in making these model selections, including:

CHAPTER 3

 45

• High accuracy or high mAP (mean Average Precision) to distinguish between cracks and non-

cracks

• Rapid inference speed: to locate the crack in the shortest amount of time possible

• Real-time application: must be applicable in a robotic system for real-time processes

• Being quantized: to offer the quantized output for the tensor processing unit's vector calculation

Considering the four abovementioned criteria, we selected various models from the Model Zoo collection.

Model Zoo is a platform for developing and deploying machine learning models and emphasizes transfer

learning applications [33]. After experimenting with various models, we determined that SSD-mobilenet-

v2-quantized-coco best met the aforementioned requirements. It had the best model precision with the specs

of 22 mAP and 29 milliseconds inference speed for a single image. This model generates a bounding box

around the longitudinal edge crack. Finally, we used a 1070 TI GeForce GTX graphics card to train the

model. The training result is shown in Figure 3-19.

Figure 3-19-a shows the learning rate curve of crack model training using 120,000 epochs for training. The

number of epochs is a hyper-parameter that specifies how many times the learning algorithm covers the

training dataset. Each epoch is a chance for each sample in the training dataset to change the internal model

parameters. The learning rate plot indicates that the mean average precision (mAP) is about 86%. We could

have trained it further, but our experience with the first highway dataset indicated that we would fall into

the overfitting problem; therefore, we discontinued training at this stage. Overfitting is a term that refers to

a model that is too precise in predicting the training data resulting in capturing noise or other random

variations in the training data degrading the model.

CHAPTER 3

 46

a)

b)

Figure 3-19 Results of training the CNN-based model: quantized Mobilnet V2 a) Learning rate and b) detection trial that crack
detected with 99% accuracy

3.4.2. Threshold filtering

As part of filtering, Simple Threshold (ST) and Adaptive Threshold (AT) filters were implemented to map

the crack from the identified crack bounding box. If the pixel value is lower than the global threshold value,

the ST filter considers it as a crack pixel, and if they are more than the global threshold value, considers it

as a non-crack pixel. In the AT approach, the threshold value for each pixel is calculated locally. Our

experiments indicated that the AT outperformed the ST. An example result comparing the two thresholding

methods on an edge crack is depicted in Figure 3-20.

Figure 3-20 Results comparing simple versus adaptive threshold on a longitudinal crack; the top model with AT outperforms the
ST method

10 20 30 40 50 60 70 80 90 100 110 1200

66

70

74

78

82

86

90

m
AP

 [%
]

Epoch [×1000]

CHAPTER 3

 47

3.4.3. Filter parameter tuning

The crack mapping outcomes produced by threshold filtering are not necessarily optimal. We optimized

these filtering parameters by modifying the confusion matrix to modify our crack detection technique. A

confusion matrix is a tool for evaluating the performance of a classification model. It compares the ground

truth (actual values) and the predicted values for the target variable generated by the model. The four

quadrants of a confusion matrix are:

• True Positive (TP) is an outcome that occurs when the model predicts the positive class correctly.

• True Negative (TN) is an outcome that occurs when the model predicts the negative class correctly.

• False Positive (FP) is an outcome that occurs when the model forecasts the positive class wrongly.

• False Negative (FN) is an outcome that occurs when the model forecasts the negative class wrongly.

Figure 3-19 depicts the parameters of the confusion matrix as applied to a crack image in its bounding box.

Figure 3-21 Representation of TP, TN, FP, and FN for distress detection and calculating accuracy

The parameters of the confusion matrix, TP, TN, FP, and FN illustrated in Figure 3-21 are interpreted as

follows. TP will correspond to the correct identification of the longitudinal crack. TN will correspond to

the correct identification of the intact road pavement. FP are incorrect predictions of the longitudinal crack

class, while FN are incorrect predictions of the intact pavement surface.

CHAPTER 3

 48

 In order to improve the accuracy of our crack detection method, we considered the image reference to be

the portion of the captured frame within the bounding box rather than the entire captured frame. In other

words, whenever a crack was identified, we stored its bounding box information and then computed its

accuracy concerning its bounding box. This modification of the method results in the bounding box size

(i.e., its height and width) to change with each detection to ensure that the filter parameters are optimized.

The errors in thresholding are calculated using the following equations:

𝐸𝑟𝑟𝑜𝑟990* =	
𝐹𝑃 + 𝐹𝑁

𝐴𝑙𝑙	𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛	𝐵𝐵𝑜𝑥
= 	

𝐹𝑃 + 𝐹𝑁
(𝑋" − 𝑋! + 1)(𝑌" − 𝑌! + 1)

 Equation 3-8

𝐸𝑟𝑟𝑜𝑟 = 	
∑ 𝐸𝑟𝑟𝑜𝑟990*_𝑖%(!∶	&

𝑛

Equation 3-9

In these equations, X1, X2, Y1, and Y2 are the coordinates of the bounding box (BBox), and n is the frame

number. The first equation calculates the error value for a single frame with a detected crack, and the second

equation accumulates the error for n frames. The two graphs in Figure 3-22a and Figure 3-22b illustrate

the outcomes of the optimization of the thresholding parameters. The same input and error measure were

used to generate both graphs. Comparing Figure 3-22a and Figure 3-22b, the minimal error value obtained

for the ST filter was 0.28, whereas the value obtained for adaptive thresholding was 0.24. A lower error

score for the filter indicates better crack mapping.

a)

b)

Figure 3-22 Parameter optimization vs. the error: (a) The ideal ST parameter value is at 108, with an error of 0.28 and (b) The
ideal threshold value for adaptive thresholding is s= 55 t = -0.07, with an error of 0.24.

CHAPTER 3

 49

ST filtering is a practical approach with straightforward implementation, and its parameters are easy to

tune. The results, however, are not resilient to changes in lighting conditions or backdrop texturing. On the

other hand, the adaptive thresholding approach is more challenging to apply and to fine-tune its settings.

AT is more resilient than ST when it comes to producing the crack map.

3.4.4. Detection results

Sample experimental results from many tests that we performed with our crack detection system is shown

in Figure 3-23. We tested in a variety of challenging scenarios such as rainy, shadowy, cluttered, and dark

environments. The crack image no. 1 in Figure 3-23 shows the normal condition longitudinal crack in an

ordinary situation. The crack image no. 2 illustrates the crack in a damp environment that may occur in

rainy conditions. The light reflection on the wet surface of the road causes a signal error in the detection

process; but the detection is robust enough to overcome this issue. The crack images no. 4 and no. 5 are in

shadowy and darker settings. The crack image no. 4 presents the challenge of dealing with contrast between

the dim light and shadows. The effectiveness of our crack sensing method can also be seen in the dark

setting of image no. 5. The crack detection method developed is using the little clues in the image to detect

the crack. The crack images on the second row from image no. 6 to image no. 10 are all scenarios where

the longitudinal crack is covered by vegetation. The crack image no. 6 shows the partially cluttered scenario

where half of the crack image is covered by vegetation. The crack image no. 7 shows a heavy cluttered

situation in which the trace of the crack and its edges are small, but the algorithm can still detect the crack.

Crack image no. 8 shows a garden hose that we had placed in the vicinity of the longitudinal crack. In this

scenario, we are trying to deceive the model cluttering the space with an object that looks similar in an

image to a roadway crack. As can be seen in crack image no. 9, although there are objects crossing the

longitudinal crack, the crack and its orientation are very well estimated by our crack detection system.

Crack image no. 10 is an example of failing detection. In the case of a detection failure, a backup detection

is used which utilizes the previous image that is still in the memory. This backup detection would work

CHAPTER 3

 50

even if there are up to five consecutive detection failures. If the number of consecutive failures pass the

number five, then the system notifies the operators that there was a detection failure.

Figure 3-23: Results of the MV technique on challenging scenarios such as rainy, shadowy, cluttered, and dark

3.5. Proof-of-concept laboratory testbed development and
demonstration

In order to demonstrate the concepts developed in this dissertation, we utilized a simple experimental setup

to demonstrate the operation of the system. The experimental prototype system developed uses a cart that

we pull around to model a moving vehicle and a linear actuator moving a pointer as an end effector

(modeling a simple robot arm) laterally based on the signals developed from the crack detection system.

The camera system with its computer set up containing the detection algorithm were all mounted in the cart

as shown in Figure 3-24. The details of all the sub-systems are described in the sections that follow.

Normal Rainy Side
objects

Shadowy Dark

Partially
cluttered

Heavy
cluttered

Similar
objects

Crossing
objects

Backup
Detection

1 2 3 4 5

6

7

8 9 10

CHAPTER 3

 51

Figure 3-24 Components of experimental system including a self-contained cart with camera, laptop, joystick, battery, actuator,

and laser

3.5.1. Camera setup for data collection

The camera was installed in the middle of the lateral positioning travel distance, at the height of

approximately 40" and perpendicular to the pavement surface as depicted in Figure 3 25. This installation

provides good functionality of the trailing-view video image. In the actual system the trailing-image camera

is attached to the end of the tandem camera mounting which will be permanently connected to the truck

body, and hence unaffected by the lateral motion of the tool head. The guidance tracking system houses the

high-resolution trailing-view camera in a protective aluminum weather-tight enclosure. The cover protects

it from physical damage while in this exposed position.

The crack sealing/routing or cleaning equipment is planned to work at vehicle low moving speeds of up to

3 mph in moving traffic lane closures. As a result, the trailing-view camera must be capable of recording a

high-quality image perpendicular to the pavement surface while the vehicle is traveling slowly. A camera

with a fixed aperture shutter speed will typically smear the pixels at a speed of three miles per hour, resulting

in a fuzzy image. A specialized machine vision camera with a configurable high-speed shutter is required

CHAPTER 3

 52

to address image blurriness for this application. The camera used to capture the trailing-view image, in our

experimental system, is a reasonably inexpensive machine vision FLIR Blackfly 52 frames/second CCD

camera connected through a fast GigE connection to the image processing computer. The Blackfly features

a software-controllable high-speed shutter and a robust open-source driver software library to aid in

integrating custom crack repairing machines. The Blackfly camera features a shutter speed of 0.019

milliseconds, which in preliminary testing, virtually eliminated pixel blurriness at the intended 3 mph.

Because the digital imaging application processes only one image at a time, it only needs to access the most

recent high-resolution camera image available from a computer buffer when required. As a result, the

trailing-view camera is set up to save a continuous stream of still images at a defined rate, rather than a

video format, which would require additional data compression and would degrade image resolution.

The control system guides the tool head within a half-inch PCC roadway edge to ensure effective operation.

The picture resolution of the tracking system's trailing-view camera must be at least an order of magnitude

greater than half the positioning tolerance to achieve the required level of accuracy. As a result, the trailing-

view camera should have a minimum resolution of 0.015" for a 12" to 16" image width. This equates to a

camera CCD line resolution of around 1,000 pixels within the range of commonly used machine vision

cameras. The FLIR Blackfly camera chosen has a 1/3 CCD format and a resolution of 1280 × 960 pixels.

3.5.2. Testing inside the lab

To verify the crack detection system system's effectiveness, we began testing it in a laboratory setting. To

do this, we photographed several longitudinal cracks from a highway in California and then printed them

on a long A3 paper and stacked them together to resemble the actual longitudinal crack. These experiments

enabled us to fine-tune all the tunable parameters, such as the image processing filters, the PID control

parameters, and kinematic relation parameters. Additionally, we were able to resolve a few software

communication issues, such as the checksum errors. Later, we discovered that the associated USB port was

CHAPTER 3

 53

malfunctioning and used another port to troubleshoot it. Although some of these faults were minor, they

were sufficient to cause the system to fail initially during the field test. The experimental set up for our

laboratory testing is depicted in Figure 3-25. The printed photographs of the longitudinal cracks used is

shown in Figure 3-25a while the close-up camera location is better depicted in Figure 3-25b.

a)

b)

Figure 3-25 The experimental test setup in the lab with paper printed version of AC joint a) During the testing process and b)
Trailing-view and heading-view cameras mounted on the cart

3.5.3. Testing on UC Davis roadways

The test cart was relocated to a test site road at UC Davis for field testing to evaluate the effectiveness of

the crack detection system in a more realistic setting as illustrated below in Figure 3-26. This figure depicts

the cart being rolled down a short path of a PCC asphalt pavement at speeds of up to 3 mph while being

pushed by hand. A laser pointer is attached to the lateral actuator's end to indicate the location of the end

tool applicator. We undertook ten test runs with the goal of maintaining the commanded position value of

the laser, which represents the point of contact between the crack and the cutter blade, to within ½ inch

(1.27 cm).

CHAPTER 3

 54

Figure 3-26 Field test: a) Integrated guidance test cart and b) Close-up actuator with the laser pointer for evaluation

We classified each test into three categories according to the lateral magnitude of the motion: low range

between 5 and 10 cm, medium range between 10 and 15 cm, and high range between 15 and 20 cm which

was the max. The test runs 4 and 9 had a low magnitude range. Low magnitude is an ideal situation as the

vehicle moves very precisely. Although this is a desirable tracking test, practically speaking, it is hard to

achieve.

Figure 3-27 illustrates a representative sample of all test instances. As depicted in the image, the top row is

the fourth test run, demonstrating low range movement. The middle row, as seen in the figure, is the eighth

test run, which shows medium-range motion magnitude. Finally, we have the fifth test run in the bottom

row, illustrating the high magnitude cart motion.

CHAPTER 3

 55

Figure 3-27 Test field at UC Davis. First row is the low amplitude maneuvering, second row is an example of medium amplitude

maneuvering, and last row is the example of high amplitude maneuvering

3.5.4. Results and Discussion

Test runs 1, 3, 6, 8, and 10 are with the medium range motion magnitude (10-15 cm). We have collected

more from this range since our highway maintenance experts would think that this is range that the driver

will likely move the vehicle. The test runs 4 and 9 are at the low range motion magnitude (5-10 cm). This

is an ideal case where the truck moves very accurately. The test runs 2 and 5 are in the range of high motion

magnitude (15-20 cm). In conducting this range, we accelerated and decelerated the cart to model the worse

scenario in terms of vehicle driving. The results of the ten runs are depicted in the images in Figure 3-28.

CHAPTER 3

 56

Figure 3-28 Validation Results of the experimental system for ten test rounds.

The average root-mean-square error (RMSE) of the low range movement was around 0.39 cm. The average

RMSE for medium-range motion amplitude was at 0.9 cm. Finally, the average RMSE for the high range

CHAPTER 3

 57

cart motion was 1.93 cm. The results of the RMSE are plotted in Figure 3-29. The data for each test are

summarized in table 3-1. It is clear from these that the average RMSE value in centimeters for the low and

medium motion magnitude test runs was less than 1.00 cm, which is less than our goal of ½ inch (1.27 cm).

Figure 3-29 The RMSE for different motion amplitudes.

Table 3-1 Result table for longitudinal crack tracking capability of the crack detection system

test
round

RMSE
(cm)

difficulty
level

difficulty level
amplitude

1 0.83 2 medium ~ [10, 15]

2 1.74 3 high ~ [15, 20]

3 0.74 2 medium ~ [10, 15]

4 0.39 1 low ~ [5, 10]

5 2.12 3 high ~ [15, 20]

6 1.01 2 medium ~ [10, 15]

7 1.30 2 medium ~ [10, 15]

8 0.82 2 medium ~ [10, 15]

9 0.38 1 low ~ [5, 10]

10 0.70 2 medium ~ [10, 15]

CHAPTER 4

 58

CHAPTER 4

4. Simulation of Sensor-Directed Robotic Task
Planning for Space Manufacturing Applications

CHAPTER 4

 59

4.1. Introduction

Extensive logistical support is required for extended human activities in space, both in Low Earth Orbit

(LEO) and beyond [34]–[36]. Spare parts, equipment, consumables, and other necessary components for

the International Orbit Station (ISS) are periodically transported into space from Earth by a varied fleet of

government and private resupply ships [34]. Longer mission durations increase the likelihood of failures,

and as a result, the logistical mass required to compensate for them. Additionally, the absence of immediate

options that would safely return a crew to Earth in an emergency on the ISS raises the critical importance

of different system failures [37]. Logistics, in aggregate, are a considerable operational expenditure for the

International Space Station and a significant impediment to safe, inexpensive human exploration beyond

the station [34], [37], [38]. The National Aeronautics and Space Administration (NASA) of the United

States highlighted the need for in-space assembly, fabrication, and repair (ISAFR) in their Space

Technology Roadmaps under Technology Area-12 Manufacturing [39]. The ability to conduct

manufacturing activities in space significantly improves mission capabilities. Manufacturing in space will

enable missions beyond Low Earth Orbit (LEO) to be extended. Crews would be able to become more self-

sufficient and would be less dependent on prefabricated products [40].

ZBLAN fiber optic cable is an example of a product better manufactured in space than on Earth [41]. In

early 2018, zero-gravity manufacturing was tried on the ISS, and it was discovered that the tiny crystals

that frequently form in fiber produced under Earth's gravity were missing [42]. ZBLAN, a high-grade,

nearly perfect fiber optic cable made in space by the Made in the Space business illustrated how

microgravity manufacturing might generate superior goods for a range of commercial space and Earth uses

[41].

Tele-robotics has been used in space and sectors, such as medicine, for a long time [41]. For example, when

a space probe is launched to Mars or the outer solar system, a human technician on Earth monitors its

CHAPTER 4

 60

progress and commands the spacecraft to modify its course in space or direct a rover over an intriguing

feature on the planet's surface [41].

Different planning technologies have a variety of uses in the space exploration industry. Deep Space 1

(DS1) was the first flight of NASA's new millennium program launched from Cape Canaveral on October

24, 1998 [21]. It was chartered to test, in space, new technology developed by NASA. On December 18,

2001, the spacecraft was retired after successfully completing the DS1 mission by encountering Comet

Borrelly and providing the highest-quality photographs and other scientific data ever returned from a comet

[21]. DS1 demonstrated the viability of 12 innovative technologies, including novel mechanical, solar, and

control systems, as well as novel software components. Between May 17 and 21, 1999, the Autonomous

RA (Remote Agent) software system, which incorporated automatic planning methods, was successfully

tested during an experiment on-board DS1 [21], [43].

4.1.1. Space maintenance strategies

According to [44], maintenance strategies, which are tabulated in Table 4-1, are classified as follows:

Modes, Types, Levels, and Imagery & Fit checks. OBM ensures station survival, crew protection, mission

performance, and cargo operations support while maintaining a reasonable degree of system operability

[44].

There are three main maintenance categories in ISS: External Vehicular Robotics (EVR), External

Vehicular Activities (EVA), and Internal Vehicular Activities (IVA). IVAs are the most time-consuming

activities to do at the ISS. According to [44], more than two-thirds of the maintenance work is done inside

the ISS compared to outside the ISS. Additionally, the presented statistics indicate that, outside the ISS,

robots perform about twice the number of operations in a given time period compared to astronauts.

External maintenance may be performed using the Space Station Remote Manipulator System (SSRMS)

CHAPTER 4

 61

alone or in combination with EVA [44]. The preferred approach for performing external maintenance is to

use the SSRMS alone as this reduces crewmember exposure to space environment hazards. The SSRMS

can be used to transfer work to the crew on board or vice versa when used in combination with EVA [44].

Table 4-1 Strategy process of maintenance for the ISS

Strategy Procedure Maintenance Situations:

Modes: - Intravehicular Activity (IVA)
- Extravehicular Activity (EVA)
- Extravehicular Robotics (EVR)

Types: - Preventative
- Corrective
- In-Situ
- Contingency

Levels: - Organizational (performed on orbit)
- Intermediate (performed IVA on orbit or on ground)
- Depot (typically performed on the ground)

Imagery & fit checks: - Interior and exterior component photos and videos
- Measure the fit of the hand tools on the hardware
when building an element on the earth.

4.1.2. Robotic application in space

NASA and the Canadian Research Council (NRC) developed the Canadarm Shuttle Remote Manipulator

System (SRMS) [45], [46] for the ISS. A six-twelve degree-of-freedom (DOF) programmable robotic

manipulator was created to aid astronauts on the ISS during the station's early stages of development [45].

It was a tremendous success, paving the way for the employment of robotic manipulators in space

applications. The many interplanetary rovers that have been dispatched to locations such as Mars are

instances of cutting-edge technology that have aided in the unraveling of some of life's biggest mysteries

[45]. For example, Mars rovers, such as the Curiosity and Opportunity [47], [48], employ various,

customizable robotic manipulators to conduct various scientific investigations. Figure 4-1 shows four of

these robotic systems, including Astrobee, Robonaut, Canadian Arm, and Special Purpose Dexterous

Manipulator (SPDM).

CHAPTER 4

 62

a)

b)

c)

d)

Figure 4-1 Examples of robotic applications in space. a) Astrobee [49],b) Robonaut [50], c) Canadian Arm with Dextre [51],

and d) Dextre which is known as SPDM [52]

Despite the efforts that have been made to automate extravehicular activities in the space station, not many

efforts have been made to automate IVA to the best of our knowledge. Developing an intelligent visual

control system to detect and grasp objects with a robotic arm inside the space station comes with a

significant challenge: the objects are not guaranteed to remain fixed relative to the space station body. This

dynamic motion behavior of the object can occur for several reasons such as presence of zero or micro

gravity and other perturbations. This and other factors necessitate the need for a sensor-directed robotic

task planning system. Figure 4-2 depicts the functional architecture of such a system for space applications.

This thesis focuses on developing a simulation of such a system that can be used to develop motion and

task planning for robotic interaction with a 3D printer for space applications. The world modeling part of

the simulation would use a model of the US lab and a robotic system interacting with a custom payload-

sized 3D printer. Although geometric model of other space habitats can also be easily developed and replace

those of the US lab and still utilize the robotic task planning approach developed here.

CHAPTER 4

 63

Figure 4-2 Functional block diagram of an intelligent robotic task planning system for space applications

The task planning method presented here is intended to improve the task planning capabilities of robotic

systems in the unstructured environment of space habitats, and the simulation modeling is limited to a US

lab and interaction with a custom payload-sized 3D printer. The simulation system developed here models

a depth camera in an eye-in-hand configuration to provide immediate feedback for the controller and to

help map the world for the robot's task planning. The camera sensors are used to fine-tune the motion plan

during interactions with the objects to be handled and to address changes in object configurations due to

perturbations that can occur in the robot task space. As a result, this sensor-directed robotic system with

task planning capabilities can be used for simulation and verification of several OBM and maintenance

operations.

The functional architecture of a sensor-directed task planning system for a simulated space manufacturing

application is depicted in Figure 4-3. In such a system, the sensors provide information for the perception

and task controller. The planner manages the sequence of actions necessary to complete a given task

objective (e.g., pick up an object). The planner collaborates with the task controller, which receives robot

sensor data from the robot perception module for object detection and location purposes. Once the task is

ready to be executed, the task controller sends movement requests to the robotic execution module which

manages motion planning and execution of robot movements.

CHAPTER 4

 64

The system uses two types of sensors: robotic sensors and world sensors. Robotic sensors are attached to

the robots, and world sensors are stationary in the environment. Both sensor types can be used to update

the world model, which is necessary for both task and motion planning purposes. Our simulation made use

of world sensors for monitoring purposes. The robot perception module uses a deep learning algorithm to

process camera sensor data in order to detect and identify objects in view, and to calculate their positions

relative to the robot.

Figure 4-3 Sensor-directed task planning system for a simulated space manufacturing application

4.2. Digital Modeling for Physics Based Simulation

This section discusses the overall digital modeling framework for the physics-based robotic simulation

system developed for robotic task planning and verification. The modeling system developed provides a

digital representation of the robotic environment and incorporates sensory data from simulated cameras. As

an example for demonstration purposes, the modeling and simulation system will be used to simulate

CHAPTER 4

 65

robotic interactions with an OBM 3D printing in a physics-based digital simulation. The simulation model

serves two purposes: to demonstrate the usability of a simulation environment for task verification, and to

demonstrate the use of deep-learning object detection in robot task planning developed in this thesis. The

robot environment considered includes a robot on a linear rail, a perception system, a 3D printer, a 3D

printed part, a tool rack, and payloads.

Figure 4-4 depicts the simulation environment which includes the US Lab as an example of a space habitat

with all the robotic components. The robot manipulator is a Universal Robots UR5, a six DOF universal

robot. The manipulator’s base is attached to a linear rail. The gripper is mounted on the end of the robot

manipulator. The linear rail is attached to the ceiling of the space station and provides a full range of linear

motion for the robot arm to travel and grab objects. The gripper and the linear rail each provide one DOF

which makes our whole robotic system to have eight DOF. The perceptual system provides critical

information for the system task planner. The perceptual system is an RGBD (Red-Green-Blue-Depth)

camera that is attached to the top of the robot’s end effector. Through this camera the state of the space

station can be updated frequently to provide feedback for space monitoring and robot motion planning.

Figure 4-4 Simulation environment of the US Lab in ISS equipped robotic systems

CHAPTER 4

 66

The overall simulation-based task planning system is implemented on the free, open-source ROS platform

[27]. The physics engine used for physical simulation is discussed next followed by the ROS platform

implementation details.

4.2.1. Physics engine

The physics engine used in our work is Gazebo which is a 3D robotic simulator capable of simulating

populations of robots in complicated indoor and outdoor contexts [53], [54]. It is comparable to other

physical simulation engines in that it provides high quality simulation and supports a collection of sensing

devices and interfaces for users and programs. Gazebo is comprised of five core elements: a world file,

models, Gazebo Server, Graphical Client, and Gzweb. Our simulation’s world file contains all the

simulation’s parts, such as robots, lighting, sensing devices, and stationary objects. As an example, we are

modeling a robot on a linear rail system so that it can have base mobility to reach more areas within its

work environment. Since the base movement on the rail is spate from the joint motion control for the robot

this would make the simulation system more versatile in that it would need to handle device parallelism.

Our simulation uses URDF (Universal Robot Description Format) models for the robotic manipulator and

the gripper, and an SRDF (Semantic Robot Description Format) model for the linear rail. Gazebo Server is

the core physics engine which simulates the environment specified by the world file. The Graphical Client

communicates with the Gazebo Server to render the simulation for the user. Lastly Gzweb is a web-based

client that makes use of WebGL.

4.2.2. Subsystem modeling

Our digital model for the space station environment, like many others in a robotic system, is split into

numerous independent subsystems. These subsystems can be used as a tool for task planners to maintain

the space station and increase its self-sufficiency, through the use of planning, computer vision, and

CHAPTER 4

 67

grasping operations. Each of these subsystems is composed of one or more modules which, in turn, contain

various ROS packages and/or ROS nodes. The use of space station as the robot world is only arbitrary and

is chosen as an example here. Models of any other future space habitats can easily be used instead, and the

basic ingredients of the simulation-based task planning system would remain the same.

One of the benefits of using ROS is its strong support for communications between components in a robotic

system. ROS communications is organized around a message-passing model in which messages are passed

between ROS “nodes”. Each of the modules in our digital model contain various nodes to support inter-

module communications.

Figure 4-5 shows three of the modules that are used for the system task planning. The camera module

includes the camera driver, image processing, position estimator, and object tracking. The motion plan

module handles the coordinate transformation, inverse kinematics, path correction, and joint space. The

robot module holds the control loop, state publisher, drivers and GUI (Graphic User Interface). These

components are contained within the modules. For instance, the image processing functionality may be

used by the motion plan module for task execution or as a controller feedback.

Figure 4-5 Intelligent packages used the modeling of the space autonomy world

CHAPTER 4

 68

4.2.3. ROS Nodes

In a ROS system, a node is an independent entity that executes a computation or function and communicates

with other ROS nodes [55]. The graphical abstract representation of all these nodes and edges (i.e.,

subsystems and their connections) is referred to as a graph [55]. Although things can become complicated,

ROS nodes are generally Portable Operating System Interface (POSIX) processes, and edges are

Transmission Control Protocol (TCP) connections that provide extra fault tolerance [55]. Figure 4-6 depicts

code line examples of the nodes that are running in the simulation developed here. The first four lines

represent the action server nodes for the Gripper, Manipulator, Rail, and The Image Analyzer. The rest of

nodes are the Gazebo nodes, RViz nodes, state publisher, move group, and so on.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

$ rosnode list
/GripperActionServer
/ManipulatorActionServer
/RailActionServer
/ImageAnalyzerActionServer
/gazebo
/gazebo_gui
/joint_state_publisher
/move_group
/move_group_commander_wrappers_1634437917262890235
/move_group_commander_wrappers_1634437917305371204
/move_group_commander_wrappers_1634437917308722773
/robot_controllers
/rosout
/rostopic_23701_1634437929192
/rviz_ros_23293_2053448388210896119
/state_publisher
/testimageclient_py

Figure 4-6 The nodes that are running

Figure 4-7 is a partial screenshot of rqt – the ROS node graph visualization tool – which represents how

these nodes are connected. For instance, the Gazebo simulator node is connected to several other nodes

since the simulation is dynamic and its physical state is maintained within Gazebo.

CHAPTER 4

 69

Figure 4-7 A partial screenshot of the ROS rqt graph, visualized nodes, and edges

4.2.4. Agent-based AI task planning system

The goal of an agent-based AI task planning system is to enable reliable communications between different

simulation agents, as well as to process signals for robot control or monitoring purposes. Figure 4-8 shows

our agent-based AI system architecture for the simulation of the space habitat environment in ROS. ROS

includes low-level features such as a build system, message forwarding, device drivers, and some integrated

capabilities such as navigation [55]. The core module of our Agent-based AI system is the Task Planning

action client module. This module allows the user or the automated system to choose a task to execute.

Each task corresponds to a series of goals for the robot components. The Task Planning action client module

CHAPTER 4

 70

communicates with four action server modules: Linear Rail, Gripper, Manipulator, and Image Analyzer.

The Linear Rail, Gripper, and Manipulator action server modules interface with the MoveIt library. MoveIt

is the main source of manipulation (including mobile manipulation) functionality in ROS for processing

and executing planning requests [56]. Lastly, the Image Analyzer module interfaces with the OpenCV

library. OpenCV is a real-time optimized Computer Vision library that provides various image processing

functions [57].

Figure 4-8 Agent-based AI system architecture for the simulation of the space habitat environment

CHAPTER 4

 71

4.2.5. ROS Actions

Our system’s task planner is based on a set of primitive actions for task planning verification. These actions

are implemented as ROS actions.

In ROS, actions are a commonly used client-server communications paradigm for long-running tasks, and

are composed of three components: a goal, feedback, and a result [55]. The goal component can be thought

of as a command sent by an action client to instruct the action server to execute a particular task, the

feedback component is a periodic communication from the action server to inform the action client of the

status of the task being executed, and the result component is returned by the action server to the action

client to communicate the result of the task upon its completion. These underlying communications use the

ROS Action Protocol which is based on the lower-level node-based ROS communications functionality.

Actions in ROS are similar to services, but actions can be preempted (i.e., the user can abort the execution),

and they additionally can provide consistent, timely feedback as the execution progresses, in contrast to

services that only deliver a single response at the end of execution.

4.2.6. Action Server Modules

Table 4-2 tabulates all the action server nodes and messages. The Manipulator action server module

commands a 6-DOF UR5 robotic manipulator. The module responds to action requests to (a) move the end

effector to a specific position, (b) move the end effector to a new position relative to its current position, or

(c) move each manipulator joint to a specific state. The Gripper action server module commands a 1-DOF

two-finger robotic gripper. The module responds to the action requests to open or close the gripper by a

specified amount. The Linear Rail action server module commands a 1-DOF linear rail. The module

responds to action requests to move to a specified point (goal) along the rail and returns success or failure.

All three of the movement-based action server modules return a status of success or failure upon completion

of movement.

CHAPTER 4

 72

The Image Analyzer action server module implements the perception system. It subscribes to image topics

from the camera driver and responds to the Task Planning action client module to analyze the current

camera image. The image analyzer model returns the offset, in pixels, of the target’s center from the center

of the camera image and the area, in square pixels, of the target’s bounding box.

Table 4-2 Action server nodes and messages

ACTION
SERVER

Message Definition Goal Request Task Robot
Element

Action
Type

ROS Message

Manipulator 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

Manipulator.action:
#goal action
string goal type
float32 p0
float32 p1
float32 p2
float32 p3
float32 p4
float32 p5
float32 p6

#result
uint32 val

#feedback
uint32 status

Move the end effector to
a specific position
Return: success or failure

End effector Position (m)
Orientation
(rad) Goal

`

Move the end effector to
a new position relative to
its current position
Return: success or failure

End-
effector

Relative
Position(m)
Goal

‘pose_rel’
position offsets
(𝑃!, 𝑃", 𝑃#):
(𝑑𝑥, 𝑑𝑦, 𝑑𝑧)

Move each manipulator
joint to a specific state
Return: success or failure

Manipulator
Joints

Joint
Angle(rad)
Goal

‘joint’
joint angles
(𝑃!, 𝑃", 𝑃#, 𝑃$, 𝑃%, 𝑃&):
(𝜃", 𝜃#, , 𝜃$, 𝜃%, 𝜃&, 𝜃')

Gripper 1.
2.
3.
4.
5.
6.
7.
8.
9.

Gripper.action:
#goal action
float32 p0

#result
uint32 val

#feedback
uint32 status

Open or close the gripper
by a specific amount
Return: success or failure

Gripper
Fingers

Position(m)
Goal

‘val’
- local

position
(𝑃!): (𝑥)

Rail 1.
2.
3.
4.
5.
6.
7.
8.
9.

Rail.action:
#goal action
float32 p0

#result
uint32 val

#feedback
uint32 status

Move to a specific
point(goal) along the rail
Return: success or failure

Robot Base Position(m)
Goal

‘dist’
- position

(𝑃!): (𝑥)

Image
Analyzer

1.
2.
3.
4.
5.
6.
7.
8.
9.

IA.action:
#control action
int32 control_type

#result
float32[] result

#feedback
uint32 status

Analyze the current
camera image
Return: offsets [pixels]
and area [square pixels]

Robot
Perception

Image
Analysis

‘control-type’
- trigger

val: ‘1’

CHAPTER 4

 73

Figure 4-9 depicts an example code of an action client sending a joint goal to the Manipulator action server.

The code first specifies a goal type (joint) and six joint angles, then sends the goal to the action server for

execution.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

goal =
msg.ManipulatorGoal(
 goal type='joint',
 p0=rad0,
 p1=rad1,
 p2=rad2,
 p3=rad3,
 p4=rad4,
 p5=rad5
)
client.send_goal(goal)

Figure 4-9 Action client: sending a joint goal

The RGBD camera driver is a publisher module. The camera sensor captures data from the environment

and publishes 45 topics, including the four listed in Figure 4-10. These four topics provide streams of data

from their respective camera sensors (color image, depth, infrared images).

1.
2.
3.
4.

/camera/color/image_raw
/camera/depth/image_raw
/camera/infra1/image_raw
/camera/infra2/image_raw

Figure 4-10 Published topics by the RGBD camera driver

Figure 4-11 depicts three running action servers in the task planning system: gripper, manipulator, and rail.

Each action server module communicates with its respective client through ROS topics. Action clients use

the “goal” and “cancel” topics to request execution of a goal, and to cancel a running execution. Action

servers use the “status”, “result”, and “feedback” topics to communicate goal status and execution results.

CHAPTER 4

 74

a)

b)

c)

Figure 4-11 Robot action servers for the 3D printer interaction: a) Gripper b) Manipulator c) Rail

4.2.7. Primitive actions

Primitive actions facilitate task-based robot programming. Primitive actions are programmed only once and

allow the user to utilize them multiple times. For instance, closing and opening the gripper is a type of

primitive action. Another example of a primitive action is moving the robot end effector by increments

(e.g., right, left, up, down, forward, or backward).

4.2.8. Higher-level actions

Higher-level action commands combine several primitive actions. For instance, several primitive actions

are involved in opening the door of a 3D printer:

1) Adjust the gripper to an appropriate value to capture the door handle.

2) Move the rail to near where the door handle is when the door is closed.

3) Move the manipulator to the “grasp” position for the door handle.

4) Close the gripper to a value appropriate for grasp the handle.

5) Move the rail to near where the door handle is when the door is open.

6) Open the gripper to an appropriate value to release the door handle.

7) Move the manipulator back away from the handle.

CHAPTER 4

 75

4.2.9. Hierarchical task network

Figure 4-12 shows an example hierarchical task network for a robot and 3D printing interactions. On the

top of the task network, the intelligent system receives the most abstract action. This action is composed of

two sub-actions. These sub-actions are less abstract than the parent action, and more abstract than the

actions which compose them. In the case of this particular task (3D-print a part and place it in a designated

location), the top-level action contains two sub-actions: (a) bring the printed part and the plate to the desk,

and (b) separate the part from the plate. Each of these tasks utilizes primitive or low-level actions as well

as higher-level actions. Composing actions in this way allows the planner to call only the top-level action

and reduce redundancy which is a major factor in autonomy.

Figure 4-12 An example hierarchy structure of planning for interaction with the 3D printer

CHAPTER 4

 76

4.3. Robot Perception and Control

Using a set of predefined tasks to accomplish higher-level tasks works well in static scenarios but is

insufficient in dynamic environments. For example, we may need to pick up an object that is not guaranteed

to be in a particular location (e.g., floating objects in space). To handle such cases, we equipped the task

planner with a perception system. The role of robot perception in our task planning system is to provide

immediate feedback for the task executor. Another role of the perception system can be to model and update

the environment through the use of sensor data.

In this example, the perception system is involved in the control of the system when the robot arm is

approaching the object. The controller utilizes the data steaming from the camera and tracks the object until

the object is centered in the gripper. Then it estimates the depth through analysis of the 2D RGB image

data. The system also monitors the depth information from the camera sensor. We explicitly do not use this

feature for robot control, but it can be beneficial in further advancement of the perceptual system. According

to [58], in comparison to more traditional approaches such as capacitive sensors, using depth cameras to

detect touch has the following benefits:

• No instrumentation is required on the interactive surface.

• The engaging surface does not have to be perfectly flat.

• Information regarding the shape of users and their arms and hands above the surfaces may be

necessary for assessing hover state or determining that numerous touches originate from the same

hand or user.

4.3.1. Image Analyzer Module

The Image Analyzer action server is one of the key components of our agent-based AI system architecture.

The role of the image analyzer is to monitor (via ROS subscription) the camera frames and return world

CHAPTER 4

 77

coordinate information for the robot task planning system. Our Image Analyzer utilizes a deep learning

model which is called the YOLO (You Only Look Once) method to detect and locate the object. Then, it

applies several interpolation routines to the image data to obtain the object’s world coordinate information.

A deep-learning-based approach was chosen due to its successful application in many similar problems, as

well as for its extensibility to additional object types.

Figure 4-13 depicts the steps used by the Image Analyzer module, from analyzing the camera image most

recently received via ROS subscription, to the final calculation of offsets and responding to the planner

request. Upon each image analysis request from the planner, these following steps are used:

1) Preprocess the image

2) Apply YOLO deep learning detection system

3) Classify each detection by using its highest-score class confidence value

4) Filter out detections with class confidence levels below the configured threshold value

5) Apply NMS (Non-Max Suppression) filter

6) Filter out detections with undesired class types

7) Calculate the detection bounding box corners and area

8) Determine the detection with the largest bounding box area

9) Calculate the bounding box offset vector from image center

10) Respond to the planner request with the offset vector and area

CHAPTER 4

 78

Figure 4-13 Image Analyzer action server module

4.3.2. Image preprocessing

The input image is the most recent image from the camera driver that captures frames from the real time

simulation. The input size is (640 × 480 × 3) . First, the image is transformed into a “blob” using the

OpenCV call blobFromImage [59]. In our case, a “blob” is a binary object that represents an NCHW matrix

based on the input image. An NCHW matrix is a data format that represents N images, each with C channels,

CHAPTER 4

 79

a height of H pixels, and a width of W pixels. In our case, N is 1, C is 3, and H and W are each 416

(blobFromImage scales the image non-proportionally).

4.3.3. Deep learning model for object detection

After image preprocessing, the second stage is the application of a deep learning detection system to find

the object and identify its bounding box. The detection system used here is YOLOv3 [60]. The YOLOv3

feature extractor, Darknet-53 (it has 53 convolutions), is inspired by ResNet and FPN (Feature-Pyramid

Network) architectures. As can be seen in Figure 4-14, Darknet-53 contains skip connections (like ResNet)

and three prediction heads (like FPN), each processing the image at a different spatial compression. This

architecture is flexible, allowing for the detection of objects with different sizes. Each of the network

outputs produces a matrix. Together, these matrices represent all the detected objects.

Figure 4-14 YOLOv3 architecture

For an input image geometry of 416x416x3, the sizes of these matrices are (13 × 13 × 255),

(26 × 26 × 255), and (52 × 52 × 255). For our application, the multi-phase architecture of YOLOv3

provides a great advantage because the object’s size may vary considerably based on its distance from the

camera. The output in each of these cells is as follows:

CHAPTER 4

 80

[x, y, w, h, obj confidence, score label 1, score label 2, …, score label n]

The first four cells in each row are the x, y, width, and height of the bounding box, and the fifth cell is the

bounding box confidence. The rest of the cells—from the fifth cell through the end—are the confidence

scores for each of the classes.

4.3.4. Post processing of object detection

From the output of the second stage, we classify each detection by using its highest-score class confidence

value. Then, a confidence threshold filter is applied to eliminate low-confidence detections (i.e., below 0.5).

The next (fifth) stage applies Non-Max Suppression to “suppress” all non-optimal bounding boxes and

preserve the optimal bounding box which contains the object. For this, we chose an NMS threshold of 0.3

and an NMS box score threshold of 0.5. After the NMS stage, any detections whose class types are not that

of the 3D-printed object are discarded. The bounding box corners and area are then calculated, and only the

detection with the largest bounding box area is retained. Finally, the offset vector from the image center to

the bounding box center is calculated and returned, along with the area value, to the planner.

4.3.5. Data Collection and Training

To generate the dataset used to train our model, images were gathered using the Gazebo simulation. Three

hundred and seventy-seven images from the robot arm camera were captured. Some examples of these

captured images are depicted in Figure 4-15. We collected images that met one of the three conditions: (a)

images which do not include the 3D-printed object, (b) images which are edge cases (i.e., in which the

object is partially obscured), and (c) images which include a full, unobscured view of the object.

CHAPTER 4

 81

a)

b)

c)

Figure 4-15 Collected data within the Gazebo simulation a) No 3D-printed object, b) Edge cases -partially visible object c)

Unobscured 3D-printed object

These images were split randomly into two groups of training and testing with respective split ratio of 70%

and 30%. Although this split generation was distributing randomly, it was ensured that each of these image

conditions was fairly represented in both the training and the testing groups.

The training detection objects are:

• obj: The (red) 3D-printed object
• targ: The object’s (blue) gripper section
• lgrip: Left gripper finger
• rgrip: Right gripper finger

CHAPTER 4

 82

Training was done in a YOLO training environment using a transfer learning technique. Pre-trained weights

for 73 convolutional layers were transferred to the model for extra training. Table 4-3 summarizes the

training parameters that were used.

Table 4-3 Summary of training parameters

Testing Training Input Image Model
Parameters

Training
Parameters:

batch = 64
subdivisions = 16

batch = 64
subdivisions = 16

width = 416
height = 416
channels = 3

momentum = 0.9
decay = 0.0005
angle = 0
saturation = 1.5
exposure = 1.5
hue = 0.1

learning_rate = 0.001
burn_in = 1000
max_batches = 8000
policy = steps
steps = 6400,7200
scales = 0.1,0.1

Figure 4-16 illustrates the results of training a YOLO model which is trained for 8000 epochs. We chose to

train our model for 2400 epochs, as this resulted in optimal mAP and loss values for all four objects.

Figure 4-16 Model training results

CHAPTER 4

 83

The selected trained model has a mAP of 96.17% for the 3D-printed object, 99.23% for the target, 96% for

the left gripper finger, and 98.31% for the right gripper finger. Table 4-4 lists the training results (mAP,

TP, and FP) for each object class.

 Table 4-4 Training results for four object classes

Class ID Tag Name mAP TP FP

0 obj 96.17% 75 1
1 targ 99.23% 67 2
2 lgrip 96.33% 120 3
3 rgrip 98.31% 118 3

4.3.6. Robot Perception System

The primary purpose of our robot’s visual perception system is to identify and locate the 3D-printed object

and, via image analysis, to estimate its position so that the manipulator can accurately approach and grasp

the object. To accomplish this, the current camera image is analyzed to calculate an offset vector that

represents the 2-dimensional offset (in the camera image plane) from the image center to the center of the

3D-printed object’s bounding box (see Figure 4-17). In addition, the area of the 3D-printed object’s

bounding box is calculated. The bounding box area is used to estimate the distance (in meters) from the

camera to the object, and the offset vector (along with the estimated distance value) is used to estimate the

object’s position in the camera frustum. This object position value is then used to calculate the position goal

(in world space) for the robot arm’s end effector.

CHAPTER 4

 84

Figure 4-17 Robot perception view of the inside of the 3D printer

4.3.7. End Effector Positioning

For the positioning of the end effector (for 3D-printed object approach), it is assumed that both the object

and the camera are aligned with the world coordinate system. In this case, the task is reduced to using the

bounding box area and the X and Y coordinates (in image space) to calculate the X, Y, and Z of the object

in world space. Figure 4-18 illustrates the relationship between image-space X and Y (pixels) and world-

space Y and Z (meters).

Figure 4-18 Coordinate systems shown on the simulation snapshot including world, robot, and image coordinates

CHAPTER 4

 85

4.3.8. Estimation of X Distance

Our Python linear interpolation function is listed in Figure 4-19. To use the bounding box area to estimate

the distance (along X) from the 3D-printed object to the camera, we linearly interpolate along a piecewise

linear curve (Figure 4-20) constructed from a set of known bounding box area → distance mappings)

collected from the Gazebo simulation.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

def linterp(xlist, ylist, xval):
 xval = float(xval)
 num = len(xlist)
 if (num != len(ylist)) or (num < 2):
 raise ValueError('invalid list length(s)')
 xsort = xlist[:]
 xsort.sort()
 if (xlist != xsort):
 raise ValueError('xlist not sorted')
 xset = set(xlist)
 if (num != len(xset)):
 raise ValueError('xlist contains dupe(s)')
 for i in range(0, num-1):
 xa = float(xlist[i])
 xb = float(xlist[i+1])
 if (xval >= xa) and (xval <= xb):
 ya = float(ylist[i])
 yb = float(ylist[i+1])
 if (xval == xa):
 return ya
 if (xval == xb):
 return yb
 m = (yb - ya) / (xb - xa)
 return ya + (m * (xval - xa))
 if (xval < xlist[0]):
 xa = float(xlist[0])
 ya = float(ylist[0])
 xb = float(xlist[1])
 yb = float(ylist[1])
 m = (yb - ya) / (xb - xa)
 return ya + (m * (xval - xa))
 elif (xval > xlist[num-1]):
 xa = float(xlist[num-2])
 ya = float(ylist[num-2])
 xb = float(xlist[num-1])
 yb = float(ylist[num-1])
 m = (yb - ya) / (xb - xa)
 return ya + (m * (xval - xa))
 raise ValueError('unexpected state')

Figure 4-19 Linear piecewise interpolation Python code

CHAPTER 4

 86

Figure 4-20 Robot perceptual system calibration from object bounding box area to X world coordinate

4.3.9. Estimation of Y and Z Distance

To use the X and Y offsets (in image space pixels) of the 3D-printed object’s bounding box to estimate the

Y and Z distance from the 3D-printed object to the center of the camera frustum, we first estimate the

scaling factor between image space and world space for the current camera image. This scaling factor is

estimated by linearly interpolating along a piecewise linear curve (see Appendix F) constructed from a set

of known X distance → scaling factor mappings) collected from the Gazebo simulation.

4.3.10. Multi-step vs 1-step Approach

If the object’s position is known, it is a relatively simple task to move the robot arm to the object. Our goal

is to utilize the robot arm’s sensory information to detect and locate the object. We have implemented our

approach in a function called auto_position_controller. When this function is called, the robot

arm’s camera image is analyzed, the object’s position is estimated, and the robot arm is advanced toward

the object. This approach works but we have found that, due to initial camera/object alignment and object

distance from camera, the estimate is not always within tolerances. To address this, a 2-step approach was

developed that first uses the results of the image analysis to move the robot arm in the Y/Z plane such that

CHAPTER 4

 87

the object is centered in the camera view. Then the image analysis is performed again using this view, and

the results used to advance towards the object. This 2-step approach significantly reduces the positioning

error but was found to occasionally misestimate the X distance. This is believed to be caused by the fact

that the object in the camera view is smaller when the object is further from the camera, causing bounding

box geometry errors to have amplified effects. To address this problem, a 3-step approach was developed

that adds another X-estimation step, allowing the X distance to be recalculated once the camera is closer to

the object. It is expected that adding more steps (e.g., 4-step, 5-step) would further decrease error, but with

diminishing returns.

The 1-step approach is as follows:

1) Perform image analysis and use the returned offset values to calculate the required Y/Z

movement to center the object in the camera view; then use the bounding box area to calculate

the required X movement to bring the end effector to just outside the object’s gripping target.

2) Execute that X/Y/Z movement.

The 2/3-step approach is as follows:

1) Perform image analysis and use the returned offset values to calculate the required Y/Z

movement to center the object in the camera view.

2) Execute that Y/Z movement.

3) (3-step only): Perform image analysis and use the returned offset values to calculate the

required Y/Z movement to further center the object in the camera view, and the returned

bounding box area to calculate the required X movement to bring the end effector to within a

“buffer zone” (currently 0.25 m) of the object.

4) (3-step only): Execute that X/Y/Z movement.

5) Perform image analysis and use the returned offset values to calculate the required Y/Z

movement to further center the object in the camera view, and the returned bounding box area

CHAPTER 4

 88

to calculate the required X movement to bring the end effector to just outside the object’s

gripping target.

6) Execute that X/Y/Z movement.

7) Execute a predefined “grasping” movement that embraces the object’s gripping target in the

gripper.

The Python code for the auto position controller is depicted in Figure 4-21.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

def auto_position_controller(ia_client, mani_client, center_grip,
x_buf):
 offsets = call_image_analyzer(ia_client)
 if (offsets is None) or (len(offsets) == 0):
 return None
 (x_off_pix, y_off_pix, area) = offsets
 est_delta_x = linterp(X_OBJAREA, X_XREL, area)
 est_yz_absslope = linterp(YZ_X_REL, YZ_ABSSLOPE, est_delta_x)
 y_slope = est_yz_absslope * (-1.0)
 z_slope = est_yz_absslope
 if (center_grip):
 est_delta_y = y_slope * x_off_pix + (Y_TARG_XHAIRS -
Y_TARG)
 est_delta_z = z_slope * y_off_pix + (Z_TARG_OBJCENT -
Z_TARG)
 else:
 est_delta_y = y_slope * x_off_pix
 est_delta_z = z_slope * y_off_pix
 if est_delta_x is None:
 return None
 if est_delta_y is None:
 return None
 if est_delta_z is None:
 return None
 if (est_delta_x > x_buf):
 x_rel_goal = (est_delta_x - x_buf) * (-1.0)
 else:
 x_rel_goal = 0.0
 y_rel_goal = est_delta_y * (-1.0)
 z_rel_goal = est_delta_z * (-1.0)
 result = mani_pose_rel_goal(mani_client, x_rel_goal,
y_rel_goal, z_rel_goal)
 return result

Figure 4-21 Auto position control Python code

CHAPTER 4

 89

4.4. Simulation Task Planning and Image Analyzer Results

4.4.1. End effector positioning error Analysis

The results of the end effector positioning based on three different positioning approaches are tabulated in

Table 4-5. The table columns are the test ID, end effector starting position, end effector ending position,

and the error. Test ID has two subparts, one is the X distance from the 3D-printed object to the camera, and

second is a mnemonic that represents the relative position of the 3D-printed object from the robot gripper.

For example, “45-UR” implies a test position 45 cm (in X) from the camera, and that the object is on the

upper right side of the camera view. Note that the distances from the 3D-printed object are not available to

the planner. Seven test cases have been chosen from a variety of positions relative to the object.

Table 4-5 Results of the end effector positioning in the simulation environment

Figure 4-22 lists the end effector positioning average errors based on the three approaches tested. These are

represented as error in the X direction, error in the Y-Z plane, and the full error in X-Y-Z 3D space.

Approach TEST_ID X_START[m] Y_START[m] Z_START[m] X_END[m] Y_END[m] Z_END[m] ERR_YZ ERR_X ERR_XYZ
20-LL -0.295303 2.553749 1.534588 -0.461248 2.54472 1.498642 0.01163832 0.034036611 0.035971396
25-UR -0.245311 2.488706 1.464537 -0.500341 2.552178 1.497201 0.012832132 0.005056389 0.013792414
30-LL -0.195266 2.748711 1.584527 -0.467798 2.559068 1.509115 0.010337755 0.027486611 0.029366357
30-BA -0.195341 2.548711 1.509527 -0.500142 2.545381 1.499968 0.010166912 0.004857389 0.011267667
35-UR -0.145212 2.450246 1.409574 -0.498146 2.558669 1.501497 0.012793027 0.002861389 0.013109122
40-LL -0.09539 2.818674 1.63961 -0.442562 2.574457 1.520063 0.027777565 0.052722611 0.059592506
45-UR -0.045186 2.388817 1.359514 -0.471654 2.5559 1.491735 0.019212986 0.023630611 0.030455617
45-CE -0.045231 2.576658 1.550436 -0.496681 2.546246 1.503374 0.00667354 0.001396389 0.006818067

average 0.01392903 0.019006 0.025046643

20-LL -0.295219 2.553701 1.534596 -0.49015 2.542742 1.496075 0.014762423 0.005134611 0.015629886
25-UR -0.245398 2.48869 1.464521 -0.495968 2.543545 1.498732 0.012013336 0.000683389 0.012032758
30-LL -0.195196 2.748713 1.584483 -0.500437 2.542285 1.501108 0.010638184 0.005152389 0.01182024
30-BA -0.195304 2.548595 1.509507 -0.502214 2.544616 1.501258 0.009273457 0.006929389 0.011576418
35-UR -0.145241 2.450238 1.409664 -0.508686 2.546648 1.500711 0.009096817 0.013401389 0.016197201
40-LL -0.095175 2.818618 1.63952 -0.496782 2.544596 1.504 0.006937639 0.001497389 0.007097394
45-UR -0.045345 2.388601 1.359596 -0.505593 2.54604 1.503709 0.00644756 0.010308389 0.012158697
45-CE -0.045367 2.576698 1.550545 -0.502538 2.550186 1.5022 0.007504626 0.007253389 0.010437005

average 0.009584255 0.006295042 0.0121187

20-LL -0.295294 2.553643 1.534552 -0.502909 2.542438 1.497766 0.01337565 0.007624389 0.015396081
25-UR -0.245282 2.488678 1.464594 -0.491647 2.542769 1.500302 0.011019868 0.003637611 0.011604727
30-LL -0.195271 2.748596 1.584458 -0.495385 2.541724 1.500487 0.01147241 0.000100389 0.011472849
30-BA -0.195305 2.548597 1.509524 -0.49697 2.543233 1.498988 0.011923876 0.001685389 0.012042399
35-UR -0.145257 2.450323 1.409662 -0.495002 2.542593 1.499517 0.011778277 0.000282611 0.011781667
40-LL -0.095363 2.81858 1.639607 -0.496078 2.542314 1.500461 0.011142625 0.000793389 0.011170835
45-UR -0.045349 2.388569 1.359507 -0.4949 2.542814 1.500201 0.01108076 0.000384611 0.011087433
45-CE -0.045362 2.576667 1.550397 -0.496992 2.543795 1.500417 0.010398107 0.001707389 0.010537353

average 0.011523947 0.002026972 0.011886668

-0.495285 2.54874 1.509564

1-
st
ep

2-
st
ep

3-
st
ep

End Effector Goal Position

CHAPTER 4

 90

Figure 4-22 End effector positioning error (charts on left by coordinates, charts on right by approach type)

Figure 4-23 depicts the end effector positioning average error based on the three approaches tested,

represented as error in the Y-Z plane, error in the X direction, and the full error in X-Y-Z 3D space. It can

be seen that the 2-step approach significantly reduces error (both in X and Y-Z) relative to the 1-step

approach, and that the 3-step approach further reduces the error in [x].

CHAPTER 4

 91

Figure 4-23 End effector average positioning error (cm)

4.4.2. End Effector Time and Space Analysis

Figure 4-24 contains two views of the same graph which depicts the end effector trace in 3D world space.

The orange dot shows the initial position of the end effector, and the blue dot shows the ideal final position

of the end effector. The three lines show the end effector path for three distinct approaches (1-step, 2-step,

3-step).

Figure 4-24 Comparing three different approaches in 3D

CHAPTER 4

 92

Figure 4-25 shows the time analysis of the end effector positioning error. The trade-off of the 1-step method

rather than the multi-step methods is the settling time of the robot’s end effector. It can be seen that the 1-

step approach is settled faster than the 2-step, and the 2-step approach faster than the 3-step.

Figure 4-25 Time analysis of the end effector positioning error

The final result is the integration of the task planner, image analyzer, and auto position controller into the

simulation. The following depicts an example scenario (illustrated in Figure 4-26) demonstrating this

integration:

1) Initialize the robot system.

2) Move the rail to near the 3D printer.

3) Move the end effector to near the 3D printer plate.

4) Perform image analysis and position control to center the object in the camera view.

5) Perform image analysis and position control to further center the object in the camera view and

move the end effector in the X direction to just outside the object’s gripping target.

6) Execute a predefined “grasping” movement that embraces the object’s gripping target in the

gripper.

CHAPTER 4

 93

Figure 4-26 Four frames from an integrated simulation example

CHAPTER 5

 94

CHAPTER 5

5. Conclusions and Future Work

CHAPTER 5

 95

5.1. Introduction

The main objective of this dissertation was to design and develop AI-based Robotic task planning and

guidance systems for unstructured environments. We have developed two completely independent task

planning and guidance systems for two separate applications. The first system is for roadway robotic crack

sealing and cleaning. This system uses a vehicle-based simple robotic arm with an eye-to-hand vision

configuration. Second, we developed a guidance system for the application of on-board space

manufacturing. This system consists of a universal robot arm with 6 degrees of freedom attached to a linear

rail providing a seventh degree of freedom. The depth camera is attached to the gripper of the robot (eye-

in-hand configuration). Both systems developed share common architectural concepts.

Figure 5-1 shows the sensor-directed task planning architecture developed in this dissertation. In this

architecture, the sensor and perception of the robot agent is separated from the world. This separation as

shown clears the path for exact sensory information that can be used by the robot or to calibrate the model

of the world. The perceptual system can be very sophisticated and incorporate several advanced data

sources. The next element of this architecture is the task controller. The task controller is where the agent-

based system receives the featured data from the perception system, aligns it with the current plan, and

generates an action. The actions, once finally executed, will change the state of the world. The task

controller is designed to behave reactively, which means that it helps to accomplish the task and

compensates for local inconsistencies. Given the example of a robot gripper grabbing an object, if the

relative position of the object and the robot has slightly changed, the task controller takes care of the position

change.

CHAPTER 5

 96

Figure 5-1 Sensor-directed task planning

Once the sensor-directed task planning is developed for every individual robot agent, then a central task

planner can control a network of robots that interact with each other as conceptualized in Figure 5-2. Under

the policy of the central task planning, each robot agent interacts with another agent and with the world.

Each robot also receives its plan from the planner. In this scenario, every robot is helping to build the model

of the world that is ultimately used by the planner to accomplish the goals of the operations.

Figure 5-2 The conceptual sensor-directed task planning by separating robot agents from the world

CHAPTER 5

 97

5.2. Robotic Task Planning for Crack Detection and
Sealing/Routing

For robotic application in roadway edge crack detection and sealing/routing, this dissertation developed

methods to minimize the need of an operator or to make the job of the operator less cumbersome for these

unstructured maintenance tasks. On roadways, the operator can still supervise the procedure and override

the command control, but the reactive tracking control system is capable of handling and maneuvering the

end effector over the pavement crack for sealing or routing and cleaning operations. This real time system

is expected to be effective if it is deployed on a maintenance vehicle, relying on the driver to control the

vehicle so that it would remain close and parallel to the shoulder where the roadway edge crack exists.

Future work in this area can include using a robotic arm with more degrees of freedom and a longer reach

to compensate for driver deviations from the roadway edge crack.

The task planning system developed for roadway crack sealing/routing has several advanced capabilities,

including crack detection, three-mode task planning, and manipulator control. The system task

planning provides operational flexibility by tracking and controlling in automatic, semi-automatic, and

manual modes. The system’s image processing technology is based on a deep convolutional neural network,

one of the most powerful machine vision technologies, allowing the system to identify the crack in the

image by analyzing real-time image frames.

The automated tracking technique directs the tool head along the crack's edge. The tracking procedure

begins with capturing digital images of the tool head's environment. A straight-line path representing the

crack edge is identified by digitally processing the image with an edge detection method. The tracking

algorithm calculates the offset distance between the current end-tool/router position and the crack edge after

extrapolating the edge path to the tool head.

CHAPTER 5

 98

This offset value is then converted to a target tool head position. A joystick controller provides the system

operator with manual lateral positional control in order for tracking to begin and for crack edge

inconsistencies to be alleviated in manual or supervisory control operations.

System image processing utilizes the most advanced machine vision filtering technology, a deep

convolutional neural network (DCNN). This filter determines the position of the crack inside the image by

analyzing real-time frames. Unlike traditional image processing techniques using a preset filtering

parameter DCNN, the filtering parameters are optimized using regression with labeled images that we

collected from real roadway footage.

The system task planner uses the target position resulting from image processing to control the end-

effector's position. The operator can override this position through a joystick input. However, if the system

is set to auto-guiding mode – which is the default mode – then there is no need for the operator to intervene.

The crack-sensing position feedback is used to control the position of the linear robotic manipulator. For

this study, we limited the robotic system to a single linear-prismatic-manipulator; however, any

sophisticated robotic arm with multiple degrees of freedom can be deployed in the future. To command the

position, we used a simple PID controller rather than a sophisticated control strategy. A concept for future

implementation of this technology is depicted in Figure 5-3a. In this Figure, a robotic arm is integrated into

a maintenance vehicle equipped with the crack detection system. Figure 5-3b depicts the data flow structure

for this system consisting of the control computer, the display and the joystick for accommodating different

levels of autonomy from manual control to semi-automatic supervisory control and autonomous operations.

CHAPTER 5

 99

a)

b)

Figure 5-3 Automated longitudinal crack guidance system a) Physical structure b) Data flow structure

5.3. Sensor-guided Robotic Task Planning for Interaction with
On-board 3D Printing on a Space Habitat

In this dissertation, we developed an on-board sensor-guided robotic system for fine motion planning in

space where the position of objects may be perturbed or new parts are fabricated on-board. This system has

a vision-based task planning and perceptual system to direct the manipulator control. The perceptual system

includes a visual filtering technique to extract feature points from the object to be handled by the robot. The

filter identifies the feature points in the object frame and analyzes them in real time. Image processing filters

utilize a DCNN YOLO filter to identify the markers on the object. The output of this filter allows tracking

the object.

The system developed also includes a robust simulation environment that can model multi-agent systems.

The simulation system allows modeling a metal 3D printer and payload rack, and RGB and RGBD sensors

for machine vision. The simulation system also incorporates a physics engine for off-line task planning,

verification, and programming of smart habitat robotic tasks. Physics-based simulations can play a crucial

role in robotic task verification in mission-critical operations and provide an interface between human and

robot teams. The system can serve as a testbed for robotic task planning and execution.

CHAPTER 5

 100

The system developed would benefit from a number of future enhancements. Adding situational awareness

(e.g., detection of anomalous sensor data and other unexpected circumstances) and an AI-powered decision-

making interface would allow astronauts to efficiently deal with on-board situations that need attention.

The task planner and control manager system could be expanded to handle additional intelligent robotic

systems and tasks, including boundary enforcement. The image processing system could also be enhanced

to accommodate calibration of the CAD models used in the simulation. In addition, ROS2 could be

integrated into the system via a ROS bridge, allowing more distributed data service capabilities.

A schematic view of all the components and layers of an ideal task planning and simulation system is

depicted in Figure 5-4 An ideal. This system’s robotic advance task planner could handle automation of

various tasks. The system would process sensor data output and develop and execute a task plan. The plans

could also be overridden by the on-board astronauts. The system default, however, would be set to auto

mode without any need for the astronaut to intervene, allowing the task to be completed.

Figure 5-4 An ideal architecture platform for task planning and simulation using ROS and Gazebo

REFERENCES

 101

List of References

[1] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting. Cambridge University Press,
2016.

[2] M. Quigley, B. Gerkey, and W. D. Smart, Programming Robots with ROS: a practical introduction
to the Robot Operating System. O’Reilly Media, Inc., 2015.

[3] G. Best, “Planning Algorithms for Multi-Robot Active Perception,” PhD Doctorate, The University
of Sydney, 2019. [Online]. Available: http://hdl.handle.net/2123/19781

[4] D. Bennett and S. A. Velinsky, “Development of the Sealzall Machine: upgrade to the TTLS
(pavement crack sealer).,” California. Dept. of Transportation. Division of Research and Innovation,
2009.

[5] M. M. Trivedi and C. Chen, “Sensor-Driven Intelligent Robotics**This research was supported in
part by the DOE’s University Program in Robotics for Advanced Reactors (Universities of Florida,
Michigan, Tennessee, and Texas and the Oak Ridge National Laboratory) under grant DOE-DE-
FG02-86NE37968.,” in Advances in Computers, vol. 32, M. C. Yovits, Ed. Elsevier, 1991, pp. 105–
148. doi: 10.1016/S0065-2458(08)60246-6.

[6] R. D. Hale, M. Rokonuzzaman, and R. G. Gosine, “Control of mobile robots in unstructured
environments using discrete event modeling,” in Mobile Robots XIV, Nov. 1999, vol. 3838, pp. 275–
282. doi: 10.1117/12.369263.

[7] B. Brunner, K. Arbter, and G. Hirzinger, “Task-directed programming of sensor-based robots,” in
Intelligent Robots and Systems, 1995, pp. 387–400.

[8] R. D. Hale, M. Rokonuzzaman, and R. G. Gosine, “Control of mobile robots in unstructured
environments using discrete event modeling,” in Mobile Robots XIV, Nov. 1999, vol. 3838, pp. 275–
282. doi: 10.1117/12.369263.

[9] G. Wittenberg, “Developments in offline programming: an overview,” Ind. Robot Int. J., 1995.
[10] F. Leali, M. Pellicciari, F. Pini, G. Berselli, and A. Vergnano, “An offline programming method for

the robotic deburring of aerospace components,” in International Workshop on Robotics in Smart
Manufacturing, 2013, pp. 1–13.

[11] Z. Pan, J. Polden, N. Larkin, S. van Duin, and J. Norrish, “Automated offline programming for
robotic welding system with high degree of freedoms,” in Advances in computer, communication,
control and automation, Springer, 2011, pp. 685–692.

[12] J. Polden, Z. Pan, N. Larkin, S. Van Duin, and J. Norrish, “Offline programming for a complex
welding system using DELMIA automation,” in Robotic Welding, Intelligence and Automation,
Springer, 2011, pp. 341–349.

[13] M. H. Luque and A. W. Stokes, “Fishing Behaviour of Alaska Brown Bear,” Bears Their Biol.
Manag., vol. 3, p. 71, 1976, doi: 10.2307/3872756.

[14] “(31) Pinterest,” Pinterest. https://www.pinterest.com/pin/328410997802615113/ (accessed May 13,
2021).

[15] A. U. Frank, S. Bittner, and M. Raubal, “Spatial and cognitive simulation with multi-agent systems,”
in International Conference on Spatial Information Theory, 2001, pp. 124–139.

[16] “Definition of MAINTENANCE.” https://www.merriam-webster.com/dictionary/maintenance
(accessed Aug. 11, 2021).

[17] Read “The Competitive Edge: Research Priorities for U.S. Manufacturing” at NAP.edu. doi:
10.17226/1618.

[18] L. E. Parker and J. V. Draper, “Robotics applications in maintenance and repair,” Handb. Ind. Robot.,
vol. 2, pp. 1023–1036, 1998.

[19] R. J. Firby, “Task directed sensing,” in Sensor Fusion II: Human and Machine Strategies, 1990, vol.
1198, pp. 480–489.

REFERENCES

 102

[20] D. Marr, “Vision: A computational investigation into the human representation and processing of
visual information,” 1982.

[21] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and Practice. Elsevier, 2004.
[22] R. Brooks, “A robust layered control system for a mobile robot,” IEEE J. Robot. Autom., vol. 2, no.

1, pp. 14–23, Mar. 1986, doi: 10.1109/JRA.1986.1087032.
[23] P. E. Agre and D. Chapman, “Pengi: An Implementation of a Theory of Activity.,” in AAAI, 1987,

vol. 87, no. 4, pp. 286–272.
[24] R. Knight, F. Fisher, T. Estlin, B. Engelhardt, and S. Chien, “Balancing deliberation and reaction,

planning and execution for space robotic applications,” in Proceedings 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the
Next Millennium (Cat. No. 01CH37180), 2001, vol. 4, pp. 2131–2139.

[25] J. T. Doerflinger, T. Martiny-Huenger, and P. M. Gollwitzer, “Planning to deliberate thoroughly: if-
then planned deliberation increases the adjustment of decisions to newly available information,” J.
Exp. Soc. Psychol., vol. 69, pp. 1–12, 2017.

[26] A. J. Briggs and B. R. Donald, “Automatic sensor configuration for task-directed planning,” in
Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994, pp.
1345–1350.

[27] M. Quigley et al., “ROS: an open-source Robot Operating System,” in ICRA workshop on open
source software, 2009, vol. 3, no. 3.2, p. 5.

[28] D. Bennett and S. A. Velinsky, “Deployment Support and Caltrans’ Implementation of the Sealzall
Machine,” 2014. [Online]. Available: http://ahmct.ucdavis.edu/pdf/UCD-ARR-13-06-30-03.pdf

[29] W. Rawat and Z. Wang, “Deep Convolutional Neural Networks for Image Classification: A
Comprehensive Review,” Neural Comput., vol. 29, no. 9, pp. 2352–2449, Jun. 2017, doi:
10.1162/neco_a_00990.

[30] K. Gopalakrishnan, “Deep learning in data-driven pavement image analysis and automated distress
detection: A review,” Data, vol. 3, no. 3, p. 28, 2018.

[31] N. Chernov, Circular and linear regression: Fitting circles and lines by least squares. CRC Press,
2010.

[32] R. M. Hirsch and E. J. Gilroy, “METHODS OF FITTING A STRAIGHT LINE TO DATA:
EXAMPLES IN WATER RESOURCES 1,” JAWRA J. Am. Water Resour. Assoc., vol. 20, no. 5, pp.
705–711, 1984.

[33] tensorflow/models. tensorflow, 2021. Accessed: Jun. 01, 2021. [Online]. Available:
https://github.com/tensorflow/models/blob/0c9253b4a0b34935cf78bd13e6520bbeee2f5f92/research/
object_detection/g3doc/tf1_detection_zoo.md

[34] A. Owens and O. De Weck, “Systems Analysis of In-Space Manufacturing Applications for the
International Space Station and the Evolvable Mars Campaign,” in AIAA SPACE 2016, 2016, p.
5394.

[35] W. Cirillo, G. Aaseng, K. Goodliff, C. Stromgren, and A. Maxwell, “Supportability for beyond low
earth orbit missions,” in AIAA SPACE 2011 Conference & Exposition, 2011, p. 7231.

[36] K. Hurlbert, B. Bagdigian, C. Carroll, A. Jeevarajan, M. Kliss, and B. Singh, “Human Health, Life
Support and Habitation Systems,” Natl. Aeronaut. Space Adm. NASA Wash. DC U. S. Am., 2012.

[37] J. Agte, N. Borer, and O. de Weck, “Design of long-endurance systems with inherent robustness to
partial failures during operations,” 2012.

[38] H. W. Jones, E. W. Hodgson, and M. H. Kliss, “Life support for deep space and Mars,” 2014.
[39] B. Piascik, J. Vickers, D. Lowry, S. Scotti, J. Stewart, and A. Calomino, “Materials, structures,

mechanical systems, and manufacturing roadmap,” NASA TA, pp. 12–2, 2012.
[40] W. R. Longhurst et al., “Development of friction stir welding technologies for in-space

manufacturing,” Int. J. Adv. Manuf. Technol., vol. 90, no. 1–4, pp. 81–91, 2017.
[41] J. Gregg, “The Industrialization of Space,” in The Cosmos Economy, Springer, 2021, pp. 133–134.

REFERENCES

 103

[42] “Zero-G Space-Based Factories May be The Future of Our World,” Futurism.
https://futurism.com/neoscope/zero-g-space-based-factories-may-be-the-future-of-our-world
(accessed Aug. 21, 2021).

[43] D. E. Bernard et al., “Remote agent experiment ds1 technology validation report,” Ames Res. Cent.
JPL, pp. 8–9, 2000.

[44] L. P. Patterson, “On-orbit maintenance operations strategy for the international space station—
concept and implementation,” in AIP Conference Proceedings, 2001, vol. 552, no. 1, pp. 139–146.

[45] N. Sreekanth, A. Dinesan, A. R. Nair, G. Udupa, and V. Tirumaladass, “Design of robotic
manipulator for space applications,” Mater. Today Proc., vol. 46, pp. 4962–4970, 2021.

[46] M. Hiltz, C. Rice, K. Boyle, and R. Allison, “Canadarm: 20 years of mission success through
adaptation,” 2001.

[47] R. E. Arvidson et al., “Opportunity Mars Rover mission: Overview and selected results from
Purgatory ripple to traverses to Endeavour crater,” J. Geophys. Res. Planets, vol. 116, no. E7, 2011.

[48] S. Aswath et al., “Design and Development of an Intelligent Rover for Mars Exploration,” 2016.
[49] “Meet the Astrobees! These Tiny, Cube-Shaped Robots Have Arrived in Space | Space.”

https://www.space.com/astrobee-robots-on-space-station.html (accessed May 06, 2021).
[50] T. Reichhardt, “Robot Helpers Are Coming to the Space Station,” Air & Space Magazine.

https://www.airspacemag.com/space/space-station-robots-180967704/ (accessed May 06, 2021).
[51] M. Johnson, “Space Station Robotic Arms Have a Long Reach,” NASA, Mar. 18, 2019.

http://www.nasa.gov/mission_pages/station/research/news/b4h-3rd/hh-robotic-arms-reach (accessed
May 06, 2021).

[52] “Dextre (Special Purpose Dexterous Manipulator),” Supercluster.
https://www.supercluster.com/astronauts/dextre-(special-purpose-dexterous-manipulator) (accessed
May 06, 2021).

[53] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot
simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566), 2004, vol. 3, pp. 2149–2154.

[54] W. Qian et al., “Manipulation task simulation using ROS and Gazebo,” in 2014 IEEE International
Conference on Robotics and Biomimetics (ROBIO 2014), 2014, pp. 2594–2598.

[55] M. Quigley, B. Gerkey, and W. D. Smart, Programming Robots with ROS: a practical introduction
to the Robot Operating System. O’Reilly Media, Inc., 2015.

[56] “MoveIt Motion Planning Framework.” https://moveit.ros.org/ (accessed Oct. 20, 2021).
[57] “Home,” OpenCV. https://opencv.org/ (accessed Oct. 20, 2021).
[58] A. D. Wilson, “Using a depth camera as a touch sensor,” in ACM international conference on

interactive tabletops and surfaces, 2010, pp. 69–72.
[59] “OpenCV: Deep Neural Network module.”

https://docs.opencv.org/4.2.0/d6/d0f/group__dnn.html#ga29f34df9376379a603acd8df581ac8d7
(accessed Jan. 09, 2022).

[60] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” ArXiv Prepr. ArXiv180402767,
2018.

[61] D. J. Bora, “A novel approach for color image edge detection using multidirectional Sobel filter on
HSV color space,” Int J Comput Sci Eng, vol. 5, no. 2, pp. 154–159, 2017.

[62] F. Tao, M. Zhang, and A. Y. C. Nee, Digital twin driven smart manufacturing. Academic Press,
2019.

APPENDIX

 104

Appendix A: Machine Vision GUI

In the crack cleaning/sealing machine vision application, the operator is able to modify the image

processing parameters in real time and observe their effect. Figure A-1 shows an application screenshot

annotated with the descriptions of each of these parameters.

Figure A-1 Machine vision application for the operator

Mode toggle:
manual, auto

Machine-learning
detection sensitivity

Filter variables

Iteration rate

Diagnostic values

Image filter
options

Exit program

Offset distance

APPENDIX

 105

Appendix B: Crack Clean Testbed Specifications

Table B-1 lists specifications of the major components of the crack clean testbed described in Section 3.5.

Table B-1 Crack clean testbed specifications

APPENDIX

 106

Appendix C: Image Processing HSV Filter

Early in the research, a proof-of-concept object location algorithm (Figure C-1) was developed that worked

by performing hue, saturation, and value (HSV) range filtering [61]. Image pixels within a specified HSV

range were processed in order to estimate the position of an object target marker.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

void ImageAnalyzer::hsv_filter(Mat& img) {
 float b_thresh = 170.0;
 float b_window = 1;
 int low_H = (int)((b_thresh-b_window) * (255.0/360.0));
 int high_H = (int)((b_thresh+b_window) * (255.0/360.0));
 int low_S = (int)(60.0 * (255.0/100.0));
 int high_S = (int)(100.0 * (255.0/100.0));
 int low_V = (int)(60.0 * (255.0/100.0));
 int high_V = (int)(100.0 * (255.0/100.0));
 std::cout << "lo/hi H: " << low_H << "," << high_H << std::endl;
 Mat img_HSV, img_filter;
 // Convert from BGR to HSV colorspace
 cvtColor(img, img_HSV, COLOR_BGR2HSV);
 // Detect the object based on HSV Range Values
 inRange(img_HSV, Scalar(low_H, low_S, low_V),
 Scalar(high_H, high_S, high_V), img_filter);
 int hot_cnt = 0;
 int min_c = INT_MAX;
 int max_c = INT_MIN;
 int min_r = INT_MAX;
 int max_r = INT_MIN;
 for (int r=0; r<img_filter.rows; ++r) {
 for (int c=0; c<img_filter.cols; ++c) {
 int val = (int)(img_filter.at<uchar>(r,c));
 if (val > 0) {
 hot_cnt++;
 if (c < min_c)
 min_c = c;
 else if (c > max_c)
 max_c = c;
 if (r < min_r)
 min_r = r;
 else if (r > max_r)
 max_r = r;
 // if first is less than something assign it
 // if last is more then replace it
 }
 //std::cout << val << ",";
 }
 //std::cout << std::endl;
 }
 if (hot_cnt > 0) {
 std::cout << min_c << std::endl;
 std::cout << max_c << std::endl;
 std::cout << min_r << std::endl;
 std::cout << max_r << std::endl;
 }
 // display the hsv image
 imshow("hello2", img_HSV);
 // await user input
 waitKey(0);
 // display the filter
 imshow("filter", img_filter);
 // await user input
 waitKey(0);
 // save a copy
 imwrite("outfile.png", img_filter);
 return;
}

Figure C-1 Image analyzer HSV filter

APPENDIX

 107

Appendix D: Digital Twin Concepts

Figure D-1 and Figure D-2 illustrate the concept of a digital twin (DT) in the context of a smart station.

DT is a digital representation that communicates with the physical object during its lifecycle and provides

intelligence for measurement, optimization, and prediction [62]. This application provides communication

between the ROS plan, ROS, and Gazebo.

Figure D-1 Block diagram of the AI planning for the digital twin

Figure D-2 The digital twin idea for the smart station

APPENDIX

 108

Appendix E: Example AI Planning Application

Figure E-1 Example AI planning application

APPENDIX

 109

Appendix F: Relative X vs. Area and Data Samples
for Model Fitting

Figure F-1 Relative X vs. area and data samples for model fitting

APPENDIX

 110

Appendix G: Model Fitting for Robot Interpolation
and Approaching

Figure G-1 details the sampled data used to estimate the relationships between object target offset values

in image space and those in world space. Figure G-2 illustrates the linear fit chosen to estimate the

coordinate system scaling factor based on the camera’s relative x position in world space.

Figure G-1 Offset data sampled from simulation

Figure G-2 Curve fitting for scaling factor

APPENDIX

 111

Appendix H: Model Setting and Training for YOLO

CUDA-version: 11010 (11020), cuDNN: 7.6.5, CUDNN_HALF=1, GPU count: 1
 CUDNN_HALF=1
 OpenCV version: 3.2.0
 0 : compute_capability = 600, cudnn_half = 0, GPU: Tesla P100-PCIE-16GB
net.optimized_memory = 0
mini_batch = 1, batch = 16, time_steps = 1, train = 0
 layer filters size/strd(dil) input output
 0 Create CUDA-stream - 0
 Create cudnn-handle 0
conv 32 3 x 3/ 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF
 1 conv 64 3 x 3/ 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF
 2 conv 32 1 x 1/ 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF
 3 conv 64 3 x 3/ 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF
 4 Shortcut Layer: 1, wt = 0, wn = 0, outputs: 208 x 208 x 64 0.003 BF
 5 conv 128 3 x 3/ 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF
 6 conv 64 1 x 1/ 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF
 7 conv 128 3 x 3/ 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF
 8 Shortcut Layer: 5, wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
 9 conv 64 1 x 1/ 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF
 10 conv 128 3 x 3/ 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF
 11 Shortcut Layer: 8, wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
 12 conv 256 3 x 3/ 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF
 13 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
 14 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
 15 Shortcut Layer: 12, wt = 0, wn = 0, outputs: 52 x 52 x 256 0.001 BF
 16 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
 17 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
 18 Shortcut Layer: 15, wt = 0, wn = 0, outputs: 52 x 52 x 256 0.001 BF
 19 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
 20 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
 21 Shortcut Layer: 18, wt = 0, wn = 0, outputs: 52 x 52 x 256 0.001 BF
 22 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
 23 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
 24 Shortcut Layer: 21, wt = 0, wn = 0, outputs: 52 x 52 x 256 0.001 BF
 25 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
 26 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
 27 Shortcut Layer: 24, wt = 0, wn = 0, outputs: 52 x 52 x 256 0.001 BF
 28 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
 29 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
 30 Shortcut Layer: 27, wt = 0, wn = 0, outputs: 52 x 52 x 256 0.001 BF
 31 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
 32 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
 33 Shortcut Layer: 30, wt = 0, wn = 0, outputs: 52 x 52 x 256 0.001 BF
 34 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
 35 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
 36 Shortcut Layer: 33, wt = 0, wn = 0, outputs: 52 x 52 x 256 0.001 BF
 37 conv 512 3 x 3/ 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF
 38 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
 39 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
 40 Shortcut Layer: 37, wt = 0, wn = 0, outputs: 26 x 26 x 512 0.000 BF
 41 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
 42 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
 43 Shortcut Layer: 40, wt = 0, wn = 0, outputs: 26 x 26 x 512 0.000 BF
 44 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
 45 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
 46 Shortcut Layer: 43, wt = 0, wn = 0, outputs: 26 x 26 x 512 0.000 BF
 47 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
 48 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
 49 Shortcut Layer: 46, wt = 0, wn = 0, outputs: 26 x 26 x 512 0.000 BF
 50 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
 51 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
 52 Shortcut Layer: 49, wt = 0, wn = 0, outputs: 26 x 26 x 512 0.000 BF
 53 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
 54 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
 55 Shortcut Layer: 52, wt = 0, wn = 0, outputs: 26 x 26 x 512 0.000 BF
 56 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
 57 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
 58 Shortcut Layer: 55, wt = 0, wn = 0, outputs: 26 x 26 x 512 0.000 BF
 59 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
 60 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
 61 Shortcut Layer: 58, wt = 0, wn = 0, outputs: 26 x 26 x 512 0.000 BF
 62 conv 1024 3 x 3/ 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF

APPENDIX

 112

 63 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
 64 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
 65 Shortcut Layer: 62, wt = 0, wn = 0, outputs: 13 x 13 x1024 0.000 BF
 66 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
 67 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
 68 Shortcut Layer: 65, wt = 0, wn = 0, outputs: 13 x 13 x1024 0.000 BF
 69 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
 70 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
 71 Shortcut Layer: 68, wt = 0, wn = 0, outputs: 13 x 13 x1024 0.000 BF
 72 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
 73 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
 74 Shortcut Layer: 71, wt = 0, wn = 0, outputs: 13 x 13 x1024 0.000 BF
 75 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
 76 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
 77 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
 78 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
 79 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
 80 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
 81 conv 27 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 27 0.009 BF
 82 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
 83 route 79 -> 13 x 13 x 512
 84 conv 256 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF
 85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256
 86 route 85 61 -> 26 x 26 x 768
 87 conv 256 1 x 1/ 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF
 88 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
 89 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
 90 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
 91 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
 92 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
 93 conv 27 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 27 0.019 BF
 94 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
 95 route 91 -> 26 x 26 x 256
 96 conv 128 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF
 97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128
 98 route 97 36 -> 52 x 52 x 384
 99 conv 128 1 x 1/ 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF
 100 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
 101 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
 102 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
 103 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
 104 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
 105 conv 27 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 27 0.037 BF
 106 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 65.326
avg_outputs = 517320
 Allocate additional workspace_size = 52.43 MB
Loading weights from /mydrive/yolov3/training/yolov3-custom_final.weights...
 seen 64, trained: 512 K-images (8 Kilo-batches_64)
Done! Loaded 107 layers from weights-file

 calculation mAP (mean average precision)...
 Detection layer: 82 - type = 28
 Detection layer: 94 - type = 28
 Detection layer: 106 - type = 28
8Can't open label file. (This can be normal only if you use MSCOCO): data/obj/img_no_target_66.txt
Can't open label file. (This can be normal only if you use MSCOCO): data/obj/img_no_target_8.txt
24Can't open label file. (This can be normal only if you use MSCOCO): data/obj/img_no_target_134.txt
28Can't open label file. (This can be normal only if you use MSCOCO): data/obj/img_no_target_26.txt
128
 detections_count = 443, unique_truth_count = 393
class_id = 0, name = obj, ap = 96.17% (TP = 75, FP = 1)
class_id = 1, name = targ, ap = 99.23% (TP = 67, FP = 2)
class_id = 2, name = lgrip, ap = 96.33% (TP = 120, FP = 3)
class_id = 3, name = rgrip, ap = 98.31% (TP = 118, FP = 3)

 for conf_thresh = 0.25, precision = 0.98, recall = 0.97, F1-score = 0.97
 for conf_thresh = 0.25, TP = 380, FP = 9, FN = 13, average IoU = 88.73 %

 IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
 mean average precision (mAP@0.50) = 0.975084, or 97.51 %
Total Detection Time: 3 Seconds

Figure H-1 Model setting and training for YOLO

