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Abstract

This User’s Manual describes the code module MULTI-PRED, written in FORTRAN which
implements the methodology for “predictive modeling of coupled multi-physics systems (PM-
CMPS)” formulated by Cacuci (2014). This methodology fully takes into account the coupling
terms between the systems but requires only the computational resources that would be needed to
perform predictive modeling on each system separately. The PM-CMPS methodology uses the
maximum entropy principle to construct an optimal approximation of the unknown a priori
distribution based on a priori known mean values and uncertainties characterizing the experimental
and computational parameters and results of interest responses, called for the multi-physics models
under consideration. This “maximum entropy” a priori distribution is combined, using Bayes’
theorem, with the “likelihood” provided by the multi-physics simulation models to obtain a formal
posterior distribution. Subsequently, the posterior distribution thus obtained is evaluated using the
saddle-point method to obtain analytical expressions for the optimally predicted values for the
multi-physics models parameters and responses along with corresponding reduced uncertainties.
Noteworthy, the predictive modeling methodology for the coupled systems is constructed such
that the systems can be considered sequentially rather than simultaneously, while preserving
exactly the same results as if the systems were treated simultaneously. Consequently, very large
coupled systems, which could perhaps exceed available computational resources if treated
simultaneously, can be treated with the PM-CMPS methodology presented in this work
sequentially and without any loss of generality or information, requiring just the resources that
would be needed if the systems were treated sequentially. Three illustrative demonstration
problems are also provided. The first problem presents the application of the PM-CMPS
methodology to a simple particle diffusion problem which admits a closed-form analytical solution
which facilitates a rapid understanding of this methodology and its predicted results. The second
demonstration problem presents the application of the PM-CMPS methodology to the problem of
inverse prediction, from detector responses in the presence of counting uncertainties, of the
thickness of a homogeneous slab of material containing uniformly distributed gamma-emitting
sources, for optically thin and thick slabs. This problem highlights the essential role played by the
relative uncertainties (or, conversely, accuracies) of measured and computed responses. The third
demonstration problem presents the application of the PM-CMPS methodology to the F-area

cooling towers at the Savannah River National Lab. This problem demonstrates that the PM-CMPS



methodology reduces the predicted response uncertainties not only at locations where

measurements are available, but also at locations where measurements are not available.

1 INTRODUCTION

Results of measurements inevitably reflect the influence of experimental errors, imperfect
instruments, and imperfectly known calibration standards. Around any reported experimental
value, therefore, there always exists a range of values that may also be plausibly representative of
the true but unknown value of the measured quantity. On the other hand, computations are also
imperfect, since they are afflicted by errors stemming from numerical procedures, uncertain model
parameters, boundary and initial conditions, and/or imperfectly known physical processes or
problem geometry. Therefore, nominal values for experimentally measured or computed quantities
are insufficient, by themselves, for applications. The quantitative uncertainties accompanying the
measurements and computations are also needed, along with the respective nominal values.
Extracting “best estimate” values for model parameters and predicted results (responses), together
with “best estimate” uncertainties for these parameters and responses requires the combination of
experimental and computational data and their uncertainties. This combination process often
requires reasoning from incomplete, error-afflicted, and occasionally discrepant information.

The discrepancies between experimental and computational results provide the basic motivation
for performing quantitative model verification, validation, qualification and predictive estimation.
Loosely speaking, “code verification” means “are you solving the mathematical model correctly?”
“Code validation” means “does the model represent reality?” “Code qualification” means
certifying that a proposed simulation/design methodology/system satisfies all performance and
safety specifications. Model validation addresses issues of (a) assessing model accuracy when
several system response quantities have been measured and compared and (b) comparing system
response quantities from multiple realizations of the experiment with computational results that
are characterized by probability distributions. Model validation and qualification require selected
benchmarking, including sensitivity and uncertainty analyses.

Predictive modeling commences with the identification and characterization of uncertainties from
all steps in the sequence of modeling and simulation processes that leads to a computational model

prediction. This includes: (a) data error or uncertainty (input data such as cross sections, model



parameters such as reaction-rate coefficients, initial conditions, boundary conditions, and forcing
functions such as external loading), (b) numerical discretization error, and (c) uncertainty in (e.g.,
lack of knowledge of) the processes being modeled. The result of the predictive modeling analysis
is a probabilistic description of possible future outcomes based on all recognized errors and
uncertainties.

Predictive modeling combines/assimilates computational and experimental information using
response sensitivities to perform model calibration, model extrapolation, and estimation of the
validation domain. Model calibration addresses the integration of experimental data for the
purpose of updating the data of the computer model. Important components include the estimation
of discrepancies in the data, and of the biases between model predictions and experimental data.
The state-of-the-art of model calibration is fairly well developed, but current methods are still
hampered in practice by the significant computational effort required. Reducing the computational
effort is paramount, and methods based on adjoint models show great promise in his regard. Model
extrapolation addresses the prediction uncertainty in new environments or conditions of interest,
including both untested parts of the parameter space and higher levels of system complexity in the
validation hierarchy. Extrapolation of models and the resulting increase of uncertainty are poorly
understood, particularly the estimation of uncertainty that results from nonlinear coupling of two
or more physical phenomena that were not coupled in the existing validation database. The
quantification of the validation domain underlying the models of interest requires estimation of
contours of constant uncertainty in the high-dimensional space that characterizes the application
of interest. In practice, this involves the identification of areas where the predictive estimation of
uncertainty meets specified requirements for the performance, reliability, or safety of the system
of interest.

Cacuci and lonescu-Bujor (2010a) have recently published a comprehensive methodology for
predicting best-estimate values for model responses and parameters (following the assimilation
experimental data and simultaneous calibration of model parameters and responses), along with
reduced predicted uncertainties, for large-scale nonlinear time-dependent systems. This predictive
modeling methodology generalizes and significantly extends the “data adjustment” methods
customarily used in nuclear engineering, as well as those underlying the so-called 4D-VAR data
assimilation procedures in the geophysical sciences (see, e.g., Lahoz et al, 2010, and Cacuci et al.,

2013), and also provides a quantitative indicator, constructed from sensitivity and covariance



matrices, for determining the consistency (agreement or disagreement) among the a priori
computational and experimental data (parameters and responses). This consistency indicator
measures (in the corresponding metric) the deviations between the experimental and nominally
computed responses. Note that this consistency indicator can be evaluated directly from the
originally given data (i.e., given parameters and responses, together with their original
uncertainties), once the response sensitivities have been computed by either the forward or the
adjoint sensitivity analysis procedure, as developed by Cacuci (1981a, 1981b, 2003; see also:
Cacuci et al, 1980). When the numerical value of this consistency indicator is close to unity (per
degrees of freedom), the respective data is considered to be consistent “within the respective error
norms” (usually under quadratic loss). However, when the numerical value of this consistency
indicator differs considerably from unity, which usually occurs when the distance between the
mean values of two (sets of) measurements or two (sets of) computations of the same quantity are
larger than the sum of the two accompanying standard deviations, the respective (measured of
computed) data points are considered to be inconsistent or discrepant. This means that there is a
nonzero probability that two non-discrepant (i.e. belonging to the same distribution) measurements
that are separated by more than 2 standard deviations (thus giving the appearance of being
discrepant!) could actually occur in practice. Recall that for a Gaussian sampling distribution, the
probability that two equally precise measurements would be separated by more than two standard
deviations is 15.7%. However, this probability is rather small; therefore it is much more likely
that apparently discrepant data actually indicate the presence of unrecognized errors. Methods for
treating unrecognized errors have been developed by Cacuci and lonescu-Bujor (2010b), by
applying the maximum entropy principle under quadratic loss to the discrepant data. Once the
inconsistent data, if any, is discarded, the predictive modeling methodology by Cacuci and
lonescu-Bujor (2010a) predicts best-estimate values for parameters and predicted responses, as
well as best-estimate reduced uncertainties (i.e., “smaller” values for the variance-covariance
matrices) for the predicted best-estimate parameters and responses.

The predictive modeling methodology of Cacuci and lonescu-Bujor (2010a) has been successfully
applied by M.C. Badea et al (2012), and by Cacuci and Arslan (2014) to calibrate time-dependent
model parameters and boundary conditions for a large-scale LWR core thermal-hydraulics
simulations models codes using the BFBT international benchmark measurements. Furthermore,

Arslan and Cacuci (2014) have also applied the predictive modeling methodology by Cacuci and



lonescu-Bujor (2010a) to calibrate selected parameters in commercial CFD codes for predictive
modeling of liquid-sodium experiments.

The predictive modeling methodology of Cacuci and lonescu-Bujor (2010a) has been generalized
from a single multi-physics system to two or more coupled multi-physics systems by Cacuci
(2014). Noteworthy, the mathematical methodology underlying this “predictive modeling of
coupled multi-physics systems (PM-CMPS)” is constructed such that the systems can be treated
sequentially rather than simultaneously, while preserving exactly the same results as if the systems
had been treated simultaneously. Consequently, very large coupled systems, which could perhaps
exceed available computational resources if treated simultaneously, can be treated with the PM-
CMPS methodology sequentially, without any loss of generality or information, requiring just the
resources that would be needed if the systems were treated simultaneously. This new PM-CMPS
methodology is presented in Chapter 2. We use the maximum entropy principle to construct an
optimal approximation of the unknown a priori distribution for the a priori known mean values
and uncertainties characterizing the parameters and responses for both multi-physics models. This
approximate a priori distribution is subsequently combined using Bayes’ theorem with the
“likelihood” provided by the multi-physics computational models. Finally, the posterior
distribution is evaluated using the saddle-point method to obtain analytical expressions for the
optimally predicted values for the parameters and responses of both multi-physics models, along
with corresponding reduced uncertainties. Chapter 3 discusses the significance and new possible

applications of the new methodology, while Chapter 4 offers a summary and conclusions.

2 PREDICTIVE MODELING OF COUPLED MULTI-PHYSICS SYSTEMS (PM-
CMPS)

2.1 Introduction

This Chapter presents the mathematical formalism underlying the Predictive Modeling of Coupled
Multi-Physics Systems PM-CMPS methodology conceived by Cacuci (2014). The general
mathematical framework of the PM-CMPS methodology is presented in the following sequence:
Subsection 2.2.1 models the a priori information for two multi-physics models; Subsection 2.2.2

presents the application of the Maximum Entropy Principle to construct an optimal approximation



of the unknown a priori distribution from the a priori known mean values and uncertainties
characterizing the parameters and responses for both multi-physics models. This approximate a
priori distribution is subsequently combined using Bayes’ theorem with the “likelihood” provided
by the multi-physics computational models, as presented in Subsection 2.2.3. This Subsection also
presents the application of the saddle-point method on the posterior distribution to obtain analytical
expressions for the optimally predicted values for the parameters and responses of both multi-
physics models, along with corresponding reduced uncertainties. Section 2.3 presents several
important particular cases of the PM-CMPS methodology, which are often encountered in practice.

2.2 Mathematical Framework

2.2.1 A Priori Information for Two Multi-Physics Models

Consider a multi-physics model, henceforth called “Model A” comprising N system (model)

parameters ¢, . Model A is used to compute results, henceforth called responses, which can also
be measured experimentally. Consider now a second physical system, henceforth called “Model
B,” comprising N, system (model) parameters S, , and which is also used to compute responses

that can be measured experimentally. Model A and Model B are considered to be coupled. In
reactor analysis and design, for example, Model A may comprise the neutron transport and
depletion equations which are coupled to Model B which computes the thermal-hydraulics

conservation (mass, momentum, energy) equations.

Consider next that there are N, experimentally measured responses r, associated mostly, but not
necessarily exclusively, with Model A. Furthermore, consider also that there are N,
experimentally measured responses ; associated mostly, but not necessarily exclusively, with
Model B. For example, measurement of reaction rates and power (or flux) distributions could be
considered to be responses of type r, while measurements of flow rates and temperature
distributions could be considered responses of type q;. In the same spirit, cross sections can be

considered to be model parameters of type «,, while heat transfer correlations can be considered

model parameters of type S, . Parameters modeling the geometry of the system (e.g., rod and
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assembly dimensions, core dimensions), for example, could be considered to belong to either type
of model parameters (i.e., either «, or S ), since they affect both the neutron transport equation
and the thermal-hydraulics conservation equations.

In practice, the values of the parameters «, and £, are determined experimentally. Therefore,

these parameters cannot be known exactly, but can be considered to behave stochastically, obeying

some probability distribution function which is seldom known. Such stochastic quantities will be

called variates in this work; thus, the parameters ¢, and S, as well as the measured responses
r and q; are variates. To simplify the mathematical derivations to follow in this section, the model

parameters o, will be considered to constitute the components of the (column) vector o, defined

as

aé(al,...,aNa) , (2.1)

while the model parameters S, will be considered to constitute the components of the (column)

vector B defined as

B2 (B f,) 2.2)

By convention, all of the vectors considered in this work (e.g., @ and B) are column vectors. A
dagger (1) will be used to denote “transposition;” thus the quantities ' and B’ are row vectors;
Similarly, the N, experimentally measured responses r, will be considered to be components of

the column vector

r&(n,..1,), (2.3)

while the N, experimentally measured responses q; will be considered to be components of the

column vector

q (ql,...,qu). (2.4)
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Most generally, the parameters «, and /3, as well as the responses r, and q; can be considered
to obey some a priori probability distribution function P(a,B,r,q). For large-scale systems, as

customarily encountered in practice, the probability distribution P(a,B,r,q) cannot possibly be

known. The information usually available in practice comprises the mean values of the model
parameters and responses together with the corresponding uncertainties (standard deviations and,
occasionally, correlations) about the respective mean values. For notational simplicity, angular

brackets, <f> will be used to denote the integral of the quantity f (e,B,r,q) over the joint

probability distribution P(e,B,r,q), i.e.,

<f>é'[f (a,p,r,q)P(a,B,r,q)dadpdrdg. (2.5)

Using the above convention, the mean values of the model parameters «, will be denoted using
the superscript “zero”, i.e., as «’ é(an>; these mean values are considered to constitute the

components of the vector a° defined as

a’ é(af,...,aﬁ,a). (2.6)

Similarly, the mean values of the parameters S, are considered to be known, and will be denoted

as B0 = ( ,Bn). These mean values are considered to be the components of the vector B° defined

as

B 2(B00 R, ). (2.7)

The parameters’ second-order central moments, namely the standard deviations and correlations,

are also considered to be known. For the parameters ¢, , the second-order central moments are the

components of covariance matrices cMNe) defined as

aa

el 2foov(aay)]  2{(@-af)(e-al)) i ii=L..N,, (2.8)
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while the second-order central moments (i.e., the standard deviations and correlations) for the

. - N ;%N -
parameters B, form covariance matrices C(ﬂ; *) defined as

C(ﬂ;ﬂxwﬂ)é[cov(ﬂi,ﬂj)] é<(ﬁ 5)(5, /3)>N i i=LN, (2.9)

In general, the components of the vectors a and B may be correlated. The correlations among the

parameters a and B are quantified by correlation matrices C&'}“XN’J) defined as

i (fwear) o) 2 ] =

The experimentally measured responses are also considered to be characterized by known mean

measured values and measured variances and covariances. Thus, for the N, experimentally
measured responses I, the mean measured values will be denoted as r™, and will be considered

to constitute the components of the vector r™ defined as

rmé(rlm,...,rhr,‘:), m2(r),i=1...,N,, (2.11)
while the corresponding measured covariance matrix, denoted as C (NeN) s defined as
(NxNy) & _em o
CH™ & (k=) (r -, )>erNr i j=1..N, . (2.12)

Similarly, the N, experimentally measured responses q; are characterized by mean measured

values, denoted as g7, and constituting the components of the vector g™ defined as

Q" 2 (a7, ), oy 2(a;), i=1....N,, (2.13)
and by the measured covariance matrix Cg':“XN”) defined as

ch 2 (o -ar) (@ -al), o 1 i=1oNy .
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Furthermore, the responses r and g may also be correlated; such correlations would be quantified

by correlation matrices defined as

C(rgl'XNq) £ <(r —r" )(q —q" )f> 2 [CET“XN')T . (2.15)

In the most general case, correlations my also exist among all parameters and responses. Such

correlations would be quantified through matrices defined as follows:

ol & {({amot)r-en) ) 2] 219
cli 2 ((a-a)(a-q") ) [l . (2.17)
ch {2 @19

<

(-0 (a-a") )£l ], 219

2.2.2 Construction of the A Priori Distribution Function p(a,B,r,q) as the Maximum

Entropy Principle Approximation of the True but Unknown A Priori Distribution
Function P(a.B.r,q)

The quantities defined in Egs. (2.1) through (2.19) constitute the prior information regarding the
uncertain parameters and measured responses in the two-model multi-physics system considered
in the previous section. This prior information prescribes the means (i.e., the first-order moments)

and covariances (i.e., the second-order moments) of an otherwise unknown distribution function

p(a,B.r,q). Mathematically, these means and covariances are functionals of p(e,p,r,q), having

the generic form

(F)Y2[p(x)F (x)dx, x2(a.r,q), dx£dadpdrdg, k=12,...K, (2.20)

14



with F, (x) representing, in tum, the quantities: (o, —ay), (8,-4). (L —n"). (g4, —a7),

( : ;
(@) -a) (A-ANB-A) (E)no) (-
(@-a)p-m) (a-a)n-r) (a-al)a-a) (A-A)n-),
(A= 57)(a ~a7). and (1 —e") (o, ~a7).

The total number of first- and second-order moments is
KEZN, + N, +N, +Ny+N2+NZ+ N2+ N2+ (N, xN,; )+(N, xN )+ (N, xN,)

2.21
F(N, XN ) (N XN, ) (N, <N, ). (@20

An optimal way to approximate the true but unknown probability distribution function P (x) using

the information given in Eq. (2.20) is to apply the maximum entropy formalism. The maximum

entropy formalism enables the determination of an approximate probability distribution function,

denoted here as p(x), which approximates the exact but unknown distribution P(x) by

maximizing over p(x) the Shannon information entropy, defined as

g2 —Idx p(x)In P(x) (2.22)

where m(x) is a prior density that ensures form invariance under change of variable, while

satisfying the constraints given in Eq.(2.20). This maximum entropy principle insures that the

approximate distribution function p(x) maximizes the optimal compatibility with the available

information, namely the constraints given in Eq.(2.20), while simultaneously ensuring minimal

spurious information content.
Maximizing the information entropy S over p(x) subject to the constraints expressed by

Eq.(2.20) constitutes a variational problem that can be solved by using the method of Lagrange

multipliers to obtain a member of the exponential family, namely

p(x) :%m(x)exp[—zk:ﬂk F (x)}, (2.23)

15



where the quantities A, are the Lagrange multipliers. The normalization constant Z in Eq (2.23).

is defined as

Z E'fdxm(x)exp{—zkl/lk F (x)} (2.24)

The Lagrange multipliers A, must be found directly from the constraints [i.e., using Egs. (2.20).

and (2.23) or from the equivalent equations

(Fk>=—i|nz, k=12,... K, (2.25)

04,
which are more convenient if Z can be expressed as an analytic function of the Lagrange
parameters.

In the case of discrete distributions, if only the alternatives can be enumerated but the macroscopic

data <Fk> are not known, then m(x):l, and the maximum entropy algorithm described in the

foregoing yields the uniform distribution, as would be required by the principle of insufficient
reason. Therefore, the maximum entropy principle can be considered as a far-reaching
generalization of the principle of insufficient reason, ranging from discrete alternatives with no
other information given, to cases with given global or macroscopic information, and also
encompassing continuous distributions. Physicists will recognize the maximum entropy algorithm
described above as the essence of the Gibbs-formalism for statistical mechanics, where Z is the
partition function (or sum over states), carrying all information about the possible states of the
system, from which the expected macroscopic parameters can be obtained by differentiation with
respect to the Lagrange multipliers. If only the possible energies of a system and the average

energy (i.e., the temperature) are given, one finds Gibbs’ canonical ensemble, with probabilities

proportional to the Boltzmann factors exp(—AEj ) the Lagrange multiplier 4 being essentially

the inverse temperature. If, in addition, the average particle number is given, one finds the grand-
canonical ensemble, with a second Lagrange multiplier equal to the chemical potential, etc.
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Performing the (lengthy but straightforward) computations indicated in Eq (2.25) solving the

resulting system of equation for the Lagrange multipliers A, , and replacing the resulting

expressions in Eq. (2.23) leads to the following expression for p(x):

1 t
exp| —=(x—(x)) C*(x—(x}) |dx,
P(xI{x).C)dx= p{ ! det)(ZﬂC() )} A 220

where the dagger (1) denotes transposition (Hermitian conjugation of real vectors and matrices),

and the matrix C is defined as

C. Cyu C,. C, g o
C C c, C B p°
A P sp pr Aa ; A A
“Zlc, C, C. C, Wit X E) O (227)
C. Cy C, C, q q"

Thus, the foregoing considerations show that, when only mean values and covariances are known,
the maximum entropy algorithm yields the Gaussian probability distribution shown in Eq.(2.27)
as the most objective probability distribution consistent with the available information. Although

all of the above results are valid for —oo <X;< o, these results can also be used for 0 <Xj< o0

after introduction of a logarithmic scale (which leads to lognormal distributions on the original
scale).

Gaussian distributions are often considered appropriate only if many independent random
deviations act together so that the central limit theorem is applicable. At other times, Gaussian
distributions are invoked for mere convenience, with accompanying warnings about consequences
if the true distribution is not Gaussian. The maximum entropy principle cannot eliminate these
consequences, but it reassures the data user who is given only mean values and their (co)variances
that the corresponding Gaussian is the best choice for all further inferences, whatever the unknown
true distribution may happen to be. In contrast to the central limit theorem, the maximum entropy

principle is also valid for correlated data.
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2.2.3 Construction of the A Posteriori Predicted Mean Values and Covariances for the Given
Models (Likelihood Function) and Maximum Entropy Prior Distribution

Consider next that the coupled Models A and B are used to compute the (Nr + Nq) experimentally
measured responses. These computed responses will be considered to be the components of two
vectors, denoted as r°(a,B)=(r",...,r¢ ) and q°(a.p)= (qf,...,q,iq ) respectively, where the

superscript “c” indicates “computed.” In principle, the computed responses may depend on some
or all of the components of a and p. Consequently, r°(a,|3) and q°(e,p) are also variates,

characterized by probability distribution functions, which cannot, in general, be obtained in
explicitly closed forms.

The next step is to combine the experimental and computational information in order to obtain the

posterior distribution of x = (a,B,r,q). This combination is rigorously performed by using Bayes’

theorem, in which the (maximum entropy) prior is the Gaussian distribution computed in Eq.

(2.26), while the likelihood is provided by the computational models r® (@, p) and q° (a.,p). When

the numerical and/or modeling errors are not explicitly taken into account, but are considered to
be amenable to treatment via uncertain model parameters that are included among the components

of a, the computational models are considered to be “hard constraints” of the form

r=r°(e,p), g=q°(ap) . (2.28)

Needless to say the posterior distribution, which consists of the prior given in Eq (2.26) together
with the likelihood expressed by Eg.(2.28), cannot be computed exactly. Nevertheless, the main
contribution to the posterior distribution, and, in particular, the main contributions to the posterior
distribution’s means and covariances, can be obtained by applying the saddle-point method to
evaluate the Gaussian prior in Eq.(2.26) subject to the constraints expressed by Eq.(2.28). As is
well known, the saddle-point is the point where the gradient of exponent of the Gaussian prior in
Eq.(2.26) vanishes subject to the constraints in Eq.(2.28). The method of Lagrange multipliers can
be used to determine this saddle-point, by setting to zero the (partial) gradients with respect to

a,B,r,q of the following functional:
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P(a,pr.q)= —%(x — <x>)T c! (x - <x>) +A) [r -r°(a, [5)} +h] [q -q°(a, [3)] . (2.29)

where A and A, are vectors of (yet undetermined) Lagrange multipliers of sizes N, and N,
respectively. Thus, the saddle point of P(a,B,r,q) is attained at x™ £ (apred P P ,q‘”ed)
where the following conditions are simultaneously fulfilled:
V,P=r-r'(e,p)=0; V,P=q-q°(ap)=0; (2.30)
v,pP=0;V,P=0; VP=0; V,P=0, (2.31)

The conditions expressed in EQ.(2.30) simply ensure that the saddle-point will satisfy the
constraints imposed by the numerical simulation Models A and B. On the other hand, the

conditions imposed in Eq.(2.31) can be written in block-matrix form as

a pred - ao Caa Caﬂ Car Caq _SIa;\’r - S;a)"q
re t
Bp - BO _ Caﬂ Cﬁﬂ Cﬁ’r Cﬁq _Slﬂ;“r _S;ﬂ)”q (2.32)
rpred - rm CLr CTﬁr Crr er )"r .
rei m f T t
q™ —q Cu Cpa Cu Cy A

where the matrices S, (a°,8°), S,,(a°.8°), S, (’.B°). and S, (a°,p°) comprise first-order
response-derivatives with respect to the model parameters, computed at the nominal parameter

values (a°,°), and are defined as follows:

oo o
oy oa, op; aﬂN/f

S A e (2.33)
or,, or,, or,, o,
B o i %_
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oa o dg | o og, |
oa, oay, op, Py,
Sete=| b b syl b (2.34)
o0, aa, oo, aa,,
2 oay, | 9P, P, |

When written in component form, Eq.(2.32) yields the following relations:

(@7 —0°) ==C,, (Slh, +Shhy) = Cyy STk, +81ke )+ Cok, + C oo, (2.35)
(B”™ —B°) =—CL, (Sl,hr +Sihg ) = Cpp (STphy +Sishy )+ Cpd, +C i, (2.36)
(rPe —r®)==Cl (Sl +SiAq ) = C)y (Sigh, +8iuhy )+ Cod, +C i, (2.37)
(q pred — qo) = _Clq (Sla;‘r + S;a)“q ) - CTﬁq (Szﬂ)“r + S;ﬁ‘)‘q ) + Clq)‘r + qu)‘q (2.38)

Note that no approximations have been introduced thus far, so that Egs. (2.35) through (2.38) are
exact for the a priori information considered to be known (i.e., known means and covariance
matrices for the parameters and measured responses). On the other hand, these equations cannot
be used to compute the optimally predicted mean values for the parameters and responses, since

the Lagrange multipliers &, and A, are still undetermined. Two additional relations are needed to

determine these Lagrange multipliers. These relations are obtained by considering the model
responses as explicit functions of the model parameters.

To first-order in the parameter variations the model responses r (for Model A) and q (for Model

B) would be linear functions of the parameter variations of the form
r=r°(a’,p°)+8,, (a—a’)+S,, (B-B°)+higher order terms, (2.39)
q=0°(a’,p°)+S,, (a—a’)+S,, (B-B°)+ higher order terms. (2.40)

In particular, for the predicted parameter values a”® and B, the responses predicted by the

linearized models would be given the following expressions:
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pored _ po (mo,Bo)Jr S, (upred - u°) +8,, (ppfed - p°)+ higher order terms, (2.41)
q™* =0 (o",p°) + S, (0" —0)+S,, (B - B°)+ higher order terms. (2.42)

The following intermediate steps are now performed in order to eliminate the Lagrange multipliers:
(i) replace ™ and g™ from Egs.(2.41) and (2.42) into Eqgs.(2.35) through (2.38) to obtain a

system of four equations for the four unknowns (apred,ﬂpf“’,xr,xq); (if) from this system,
eliminate the quantities (a**' —a°) and (B” —p°); and (iii) re-arrange the resulting equations

to obtain the following coupled equations for the Lagrange multipliers:

D, D, 1% ] |r(a’p°
|: r rq:||: I’:|= ( B ) , (243)
Dy Do |l 2 qd (Uo,ﬁo)
where the block-matrix of known quantities on the left-side, and the block-vector of known

quantities on the right-side of the above equations are defined as follows:

D, £S,,(C..S, +C,Sl; —Cyr ) + S5 (CLsSi, + C S, —Cpr )

: T aa ronr T afSra (244)
_Carsra - Cﬁrsrﬂ + Crr’
A t t T ot t
D,y 25, (CuShy +CosSts —Cuqg ) + 515 (ClySiu +CpsShs —Cio) 0.5
t of t ot '
—Ca,Sqa - Cﬂquﬂ + er ,
A T t t ot 1
Dy 25, (CuSty +CypSty —Cor )+ 4 (CLsS1, +C Sty —Cpr) 2.6
t ot t ot 1 t '
- Caqu - Cﬂquﬁ + er = qu,
A t t t ot 1
qu - Sqa (Caasqa + Caﬁsqﬁ N Caq ) + Sqﬁ (Caﬂsqa + Cﬁﬂsqﬁ N Cﬁq ) (2.47)
t ot t ot .
_Caqsqa - Cﬂqsﬁq + qu’
rd (ao’ﬂo)érc(ao’ﬁo)_rm; qd (ao,Bo)éqc(ao’Bo)_qm. (2.48)

Note that the vectors r® (aO,BO) and q“ (u°,|3°) measure the differences (“deviations”) between
the computed and measured responses. Note also that the matrices defined in Egs. (2.44) through
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(2.47) have the following dimensions: dimD, =(N,xN,); dimD, =(N,xN,);
dim D, =D, =(Nq x Nr) ;and dim D, = (Nq x Nq), and have the following physical meanings:

(i) The matrix D,, is actually the covariance matrix of the vector of response “deviations” for
Model A, i.e.,

D, = <rd (aO,BO)[rd (a,p° )T>; (2.49)

(ii) The matrix D, is actually the covariance matrix of the vector of response “deviations™ for

Model B, i.e.,

D, =(a (a” )" (a" )] ) (250)

(iif) The matrix D, =DIq is actually the correlation matrix between the vector of response

“deviations” for Model A and Model B, i.e.,

D ={a (a8)[r* (o) ] )i Dy =(+* 0") [ (o"8°)] ). (25D

The Lagrange multipliers A and A, are obtained by solving Eq.(2.41) , which requires the inverse

of the matrix

D2 {D" D’q} (2.52)
al .
qu qu

The matrix defined in Eqg.(2.52) can be inverted by partitioning it to obtain

D, D
D é[ %rl 12} (2.53)
D, Dy
Where
D, D, +D,/D,D,,D;,D;/, (2.54)
D, = _D;rlquDzz’ (2.55)
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D, £-D,,D;,D,/,

(2.56)
A t -l )7
D,, £(Dy, —D},D;'D,, ) . (2.57)

After obtaining the expressions of A, and A, by solving Eq.(2.43), they are replaced in Eqgs.(2.35)

through (2.38) to obtain the following expressions for the optimally predicted values of model

parameters and responses:
@’ =a’ [ X, D, + Y, D], |r’ (0°,8°)-[X,D,, + Y, D,,]q" (0°,8°), (2.58)
B =p° —[X,D,, +Y,D}, |r' («°,p°) - [ X,D,, + Y,D,, |q* («’.§°), (259
rP® =r" —[X,D,, +Y,D}, [r* («°,B°) ~[X,D,, + Y,D,,]q («’,8°), (2.60)

q”* =q" —[ X,D,, + Y, D}, |r* («°,8°) - [ X, Dy, + Y, D,, [q («’,8°), (2.61)

where

X,2C,S|,+C,S,,-C, (2.62)

t t
Y,2C,S!, +C,Sl,-C... (2.63)
X,2C, Sl +C.,S,-C,, (2.64)

t t
Y,2C,Sl, +C,Sl, —C,, (2.65)
X 2Cclsl +CiSl -C,, (2.66)

T Qf T Qf
Y, 2C.S!, +C}Sl,-C,, (2.67)
X, 2Cl.S!, +C}.Sl,-Cl, (2.68)
Y, £Cl.Sl, +C}Sl, —Cq,. (2.69)

The predicted optimal covariance matrix C™ for the parameters a of Model A is obtained as:
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Cs;ed é<(a_apred )(a_apred )T>
:Caa

(2.70)
- |:Xa (Dllea + D12Y;)+ Ya (DZlXL + DzzY; )]’
The predicted covariance matrix CP™ for the responses r of Model A is obtained as:
Cfrred é< r_rpred r_I,pred 1L>
( )( ) (2.71)

=C, _[Xr (an: + D12YrT)+ Y, (D21X: + D22YrT )]’

The predicted correlation matrix C”® for the parameters a and r responses of Model A is

obtained as:

Cz:ed A <(a_apred )(r _rpred )T>

(2.72)
=Cu _|:Xa (DuXI + D12YrT)+ Y, (D21XJrr + DzerJr )]’
The predicted covariance matrix Cpred for the parameters B of Model B is obtained as:
Cpred é< B_[spred B_Bpred T>
BB
( )( ) (2.73)
=Cpy = | X, (DX} + D, Y} )+ Y, (D, X), + D, Y} ) |:
The predicted covariance matrix Cgfd for the responses q of Model B is obtained as:
Cpred é< q_qpred q_qpred T>
2 ((a-a")(a-a™) -

= Cyy [ X (DuX] + D, Y] ) + Y, (D, X} +D,, Y] ) |;

The predicted correlation matrix Cpred for the parameters B and the responses q of Model B is

obtained as:

o (b0 a-a)

(2.75)
=Cpo—[ X, (anT +D,Y])+ Y, (D, XL +D,,Y]) |;
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The predicted correlation matrix C'"e‘]I for the parameters a of Model A and the parameters p of

Model B is obtained as:

e fa-am)(p- )

=Cuy |:X (DllxT + Dle;)‘*‘ Y, (DZlXTﬂ + DZZY); )]

(2.76)

The predicted correlation matrix Cpred for the parameters a of Model A and the responses Q of

Model B is obtained as:

t
Csred < o— upred pred) >

2.77)
=C,—| X, (Dﬂx*+D12Y*)+Y (DX} +D,Y]) ]

The predicted correlation matrix Cpred for the parameters p of Model B and the responses r of

Model A is obtained as:

Cpred A< B Bpred pred )Jr>

(2.78)
=Cy = X, (DuX] + D, Y] )+ Y, (DX +D,,Y/)

The predicted correlation matrix Cpred for the responses r of Model A and the responses ( of

Model B is obtained as:

qured é<(r_rpred)(q qpred) >

(2.79)
=C, —[x, (DuX! +D,YI)+Y, (DX + DZZY;)].

The covariance matrices of the computed responses arising from the uncertainties in the model

parameters can be computed from Egs.(2.39) and (2.40), respectively, to obtain:

o & <[r —r(a’,p°) [r-r° (a°,B°)T> (2.80)

T ) t
=S,,CouSl, +25,,C.;S, +5,,C 51,
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Ca’ = <[q -a*(a"°) a-a (o p O)T> (2.81)
-s. C s 1+2s.C S +S C,8

da ~aa™ qa da ~ap™ap ag = ppTap?
comp A C Cc 1
Cim™ :<[r—r (ao,lio)}[q—q (ao,ﬁo)} > (2.82)
= SmCWSIW +SmCaﬁSEﬂ +SrﬁCLﬁS$a +SrﬁCﬂﬂSfm.

2.2.4 Construction of the A Posteriori Predicted Consistency Metrics for Model Validation

At the saddle-point (a*,g**,r"*,q"*), the functional P(a,p.r.q) defined in Eq.(2.29), and

the first-order computational model equations become

+

apred _ uo apred _aO
pred _ 0 pred _ 0
Pmln — B B C—l B B ’ (283)
rpred _ rm I,pred _ rm
qpred _qm qpred _qm

pPred _ e (‘lovBO)+Sm (apred —(10)+Srp (Bpred _Bo):rc (apred , Bpred)' (2.84)

qpred _ qc (GO,BO)+Sqa (apred _ao) +qu (Bpred _BO) _ qc (aopt ’ Bom)- (2.85)

The values (u‘”e“ PP e ,qpred) can be eliminated from the expression of by using Egs. (2.84)

and (2.85) together with Eq. (2.32) to obtain
- D D rd aO,BO
prin 2y :[(r“ ) (a° )TJ{ ; 12} (o".F") . (2.86)
D, Dy qd (aO,BO)

Note that the quadratic form on the rightmost-side of Eq.(2.86) is distributed according to a )(2

distribution with (Nr + Nq) degrees of freedom. The “validation metric” V can be evaluated

directly from the originally given data (i.e., from given parameters and responses, together with
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their original uncertainties), once the response sensitivities have been computed by either forward

or adjoint methods (see, e.g., Cacuci 1981a, 1981b, 2003). Recall that the ;(2 (chi-square)

distribution with n degrees of freedom of the continuous variable x, 0 < x < oo, is defined as

P(x<2® <x+dx)dx= X" 2dx, x>0, (n=1,2,...). (2.87)

1
2" (n/2)

The ;(2 -distribution is a measure of the deviation of a “true distribution” (in this case — the

distribution of experimental responses) from the hypothetic one (in this case — a Gaussian). Recall
that the mean and variance of x are (x)=n and var(x)=2n. The value of 7* is computed using

Eq.(2.86) to obtain

VEyi=(r —r"‘)T D,y (r*—r")+2(r" —rm)T Dy, (a°-q")+(q° —q"‘)T D, (q°-q"). (2.88)

The value of V = )(2 computed using Eqg. (2.88) provides a very valuable quantitative indicator for

investigating the agreement between the computed and experimental responses, measuring

essentially the consistency of the experimental responses with the model parameters. The value of

V' can be used as a validation metric for measuring the consistency between the computed and

experimentally measured responses.

2.3 Discussion and Particular Cases

The derivations in the previous section were carried out in the response-space because in large-

scale practical problems, the number of measured responses is smaller than the number of model

parameters. The only matrix inversion required in the response space is the computation of D" in

Eq.(2.53) which is of size (Nr + Nq)z. If this matrix is too large to be inverted directly, as has
been assumed in this work, its inversion can be performed by partitioning it as shown in Eqs (2.54)

through (2.57) . The inversion of D by partitioning requires only the inversion of the matrix D,

of size N, and the inversion of the matrix (D,, - D},D,/D,, ), which is of size N,.
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The PM-CMPS methodology can also be used if one starts with the data assimilation and model
calibration for one of the Models (either Model A or Model B), and subsequently couples the
second model to the first one. Without the PM-CMPS methodology, when the second Model (e.g.,
Model B) is coupled to the first one (e.g., Model A), both models would have to be calibrated
anew, simultaneously, and the work performed initially for calibrating Model A alone would
become useless. Using the PM-CMPS methodology, however, the work initially performed for
calibrating Model A would not become useless, but would simply be augmented by the specific
additional terms arising from Model B, thus performing predictive modeling of coupled multi-
physics systems in a sequential and more efficient way.

It is also important to note that the explicit separation, in Egs.(2.85) through (2.88), of contributions

from Model A and Model B to the overall validation metric V enables the explicit evaluation of

adding or subtracting measured responses. Large contributions to V indicate that the respective
responses may be inconsistent or discrepant, and such discrepancies warrant further investigations.

It often happens in practice that, after one has already performed a model calibration, e.g., using
Model A (involving N, model parameters @, and N, experimentally measured responses ),

additional measurements may become available and/or additional parameters (which were not
considered in the initial data assimilation/model calibration/predictive modeling procedure) may
need to be taken into account (e.g., model parameters for which quantified uncertainties became
available only after the initial data assimilation/model calibration/predictive modeling procedure
was already performed), all for the same Model A. The predictive modeling methodology
presented in Chapter 2 can also be used as a most efficient procedure for systematically adding or
subtracting responses and/or parameters for performing a subsequent data assimilation/model
calibration/predictive modeling procedure on the same model. In this interpretation/usage of the
predictive modeling methodology presented in Section 2.2, Model B is considered to be identical
to Model A (i.e., Model B and Model A represent the same physical phenomena, described by
identical mathematical equations). In this context, “efficient” means “without wasting the
information already obtained in previous predictive modeling computations involving a different
(higher or lower) number of responses and/or model parameters.” As will be shown in the next
Sub-section, the mathematical methodology for performing data assimilation/model
calibration/predictive modeling by adding and/or subtracting measurements (responses) and/or

model parameters to the same model-without needing to discard previous predictive modeling
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computations-actually amounts to considering particular cases of the general PM-CMPS

methodology presented in Section 2.2.

2.3.1 Predictive modeling for a Single Multi-Physics Model

In the case of applying the PM-CMPS methodology for the predictive modeling of a single multi-

physics model (e.g., Model A, involving N_ model parameters ¢, and N, experimentally

measured responses I;), Eq.(2.44) through (2.47) take on the following simplified forms:

D, =0, D, =0, D, =0, D, =S,C,.S!, -S,C, -CLS +C,. (2.89)
X 2C S -C., Y, 20, X 2C'S! -C_, Y =0 (2.90)

Furthermore, the predictive modeling equations (2.58) through (2.79) reduce to the final results

presented originally by Cacuci and lonescu-Bujor (2010a), namely:

a” =a’-(C,S!, -C,)[D,.] r (o), (2.91)
ree =r"—(clsl, -C,)[D,] " r (), (2.92)
Cr =C,, ~(C,8!, ~C, [P ] (C.uSL -C.r) (2.93)
¢ =c, -(cl,s!, -C,)[D,]*(CLsL, -C, ), (2.94)
¢ =C,, ~(C,S!, ~C,.)[D.]*(CLSL, ~C, ) - (2.95)

Note that if the model is perfect (i.e., C,, =0 and C,, =0), then Egs.(2.91) through (2.95) would

yield ™ =a° and rP® =r°(a’,B°), predicted “perfectly,” without any accompanying

uncertainties (i.e., C* =0, C” =0, C” =0). In other words, for a perfect model, the PM-

CMPS methodology predicts values for the responses and the parameters that coincide with the

model’s values (assumed to be perfect), and the experimental measurements would have no effect
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on the predictions (as would be expected, since imperfect measurements could not possibly

improve the “perfect” model’s predictions).
On the other hand, if the measurements were perfect, (i.e., C, =0 and C,, =0), but the model

were imperfect, then Egs. (2.91) through (2.95) would yield
@™ =’ -C,8],[8,C,8., ] (o), "™ =C,,~C,5L[S,.C.Sl ] S.Cuur 1™ =1",

aara ra oo~ ra ra =~ aa ra ~aa?

CP* =0, C™ =0. In other words, in the case of perfect measurements, the PM-CMPS predicted

values for the responses would coincide with the measured values (assumed to be perfect), but the
model’s uncertain parameters would be calibrated by taking the measurements into account to

yield improved nominal values and reduced parameters uncertainties.

2.3.2 Predictive modeling for Model A with B additional parameters, but no additional
responses

In this case, Eq. (2.44) through (2.47) become

D, =0, D, =0, D, =0, (2.96)
D, =S,,(CuSty + CoySts ~ Cur ) + 5,5 (CLsShy +C S, —Cpr ) 297
-8l -cls! +C,. '
X,2C,S! +C,S! -C,., (2.98)
X,2Cl sl +C,Sl -C,, (2.99)
X, 2Cls! +chs! -C,, (2.100)
X,%0,Y,20,Y,20,Y,20, Y, 20, (2.101)
D,=D" D,=0, D, =0, D},=0, D,, =0, (2.102)
@’ =a’-X,D,;r' (a°,p°), (2.103)
B! =B° —X,D,r’ («’,°), (2.104)
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pred

r =™ _XrDllrd (qo,ﬁo), (2105)

ch=Cc_-XD,X' (2.106)
CP =C_-X,D,X!, (2.107)
cr=C_ - X DX, (2.108)
Cy =C, —X,Dy,XJ, (2.109)
cr'=C,, —X,D;X], (2.110)
Ch =C, —X,Dy,X]. (2.111)

As the above expressions clearly demonstrate, the predictive modeling formulation in the

“response space” (as has been developed in Chapter 2) allows the consideration of additional

parameters for a model without increasing the size of the matrix D,, to be inverted.

2.3.3 Predictive modeling for Model A with g additional responses, but no additional
parameters

In this case, Eq.(2.44) through (2.47) become

D, =S,,C,.SI, -S,.C, —ClLS! +C,, Dim(D, )=(N,xN,), (2.112)
Dy =5,,C..Sty —S1Chq — CLiSh, +Cps DIM(D,)=(N, xN,), (2.113)
Dy =S4,CouSle — CheSty —SquCor + Clyy DIM(D,, ) =(N, x N, ), (2.114)
Dy = S4uCooSte —S4uCuq — ChaSt + Coqr DIM(D, )= (N, x N, ). (2.115)
X,=C,S! -C,., (2.116)
Y,2C,Sl, —C.. (2.117)
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X 2C's! —C

ar ~ra r?

Y, 2cCl st -Cl

ar¥qa

A ~t f T
Xq - Caqsra - er’
A A~ f
Yq - Caqsqa N qu’

e — o0 _I:XaDll +YaD12]l’d ((X(J,BO)_[)(O(D12 +YaD22]qd ((10,[30),
r e < [X,D, YD1 () (X Dy + YD (o ),
4™~ [X,D,+ ;0 I (a8°) -[X,D,, + X,0,, Ja* (a ),

Cit = Cou — [Xa (DllXTa t+ DlZYII ) +Y, (DZlXL * DZZY‘I )}’

CrprrEd =C, _|:Xr (an;r + D12YrT) +Y, (D21XI + D22YrT )]

ar ar

Ch? =C,. =[ X, (DuX] + DY)+ Y, (DX +D,. Y/ )|

Cl =Cyy —| X, (DX} +D,, Yy )+ Y, (DX} + Dy, Y, )

aq

Clt =Cy—| X, (DyX} +Dy, Y7 )+ Y, (Dy X} + Dy, Y] )

aq

rq rq

Ch =Cyy— [Xr (ang + DleqT)"' Ye (D21X; +DyY, )}’

red 0] red 0]
CM' =0, C%; =0, Ci* =0, C =0.

(2.118)

(2.119)
(2.120)
(2.121)
(2.122)
(2.123)
(2.124)

(2.125)

(2.126)

(2.127)

(2.128)

(2.129)

(2.130)

(2.131)

(2.132)

Note also that (to first-order in response sensitivities) the covariance matrices of the computed

responses arising from the uncertainties in the model parameters become:
t
Cﬁ?mp é <[r - rc (ao ) Bo )][r - rC (ao y BO )} > = Sracaaslal
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com 2 <[q g (a"8°) [ a-a* (o’ B’ )T> =84,CouSuu (2.134)

com & <[r —r'(ap°) [ a-q° (“O1BO)T> =81, CuuSta- (2.135)

3 PREDICTIVE MODELING OF A SIMPLE NEUTRON DIFFUSION MODEL

The results presented in this Chapter are based on the work by Cacuci (2014). Consider the
diffusion of monoenergetic neutrons due to distributed sources of strength S neutrons/ cm®-s
within a slab of material of extrapolated thickness 2a. The linear neutron diffusion equation that
models mathematically this problem is

d?p

XZ

D

-Z,0+5=0, xe(-aa), (3.1)

where ¢(x) is the neutron flux, D is the diffusion coefficient, X, is the macroscopic absorption

cross section, and S is the distributed source term. Note that, in view of the problem’s symmetry,

the origin Xx=0 has been conveniently chosen at the middle (center) of the slab. The boundary

conditions for Eq.(3.1) are that the neutron flux must vanish at the extrapolated distance, i.e.,

¢(+a)=0. (3.2)

A typical response R for the neutron diffusion problem modeled by Egs. (2.1) and (2.2) would be
the reading of a detector placed within the slab, for example, at a distance b from the slab’s

midline at x=0. Such a response is given by the reaction rate

R(e)25,p(b), 3.3)

where X, represents the detector’s equivalent reaction cross section. The system parameters for

this problem are thus the positive constants 2., D, S, and X, which will be considered to be

the components of the vector a of system parameters, defined as
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e=(2, D,S, %,). (3.4)

Consider that the components of aé(Za, D,S,Zd) are imprecisely (e.g., experimentally)

determined quantities, with mean nominal values o° £ (zg, D, s°, zg) and standard deviations
h, £(5%,,6D, 85,52, ), respectively. The vector e(x) appearing in the functional dependence

of R in Eq.(3.3) denotes the concatenation of ¢(x) with @, defined as

e2(p, a). (3.5)

The nominal value ¢° (x) of the flux is determined by solving Egs.(3.1) and (3.2) for the nominal

parameter values ¢° = (zg, D, s°, 3§ ) , to obtain

0
(po(x)zz—o(l—COSthJ, k=45°/D°, (3.6)

cosh ak

where k2 ,/2°/D° is the nominal value of the reciprocal diffusion length for our illustrative

example. Inserting Eq.(3.6) together with the nominal value 22 into Eq.(3.3) gives the nominal

value of the response:

0% 0
R(6) - S 1 ). @

Note that even though Eq.(3.1) is linear in ¢, the solution ¢(x) depends nonlinearly on a., as
evidenced by Eq.(3.6). The same is true of the response R(e). Even though R(e) is linear
separately in ¢ and in @, as shown in Eq.(3.3), R is not simultaneously linear in ¢ and a, which
leads to a nonlinear dependence of R(e) on a. This fact is confirmed by the explicit expression
of R(e) given in Eq.(3.7).

The sensitivities of the system response to the system parameters have been computed efficiently
using the Adjoint Sensitivity Analysis Methodolgy in the work of Cacuci (2014), and are

reproduced below:
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0
R _Z4 l_coshbk | (3.8)
oS X cosh ak
0
OR :S_O 1_coshbk | (3.9)
oz, X, cosh ak
oR 83 . coshbk) — 1 S°%¢ asinhak cosh bk —bsinhbk cosh ak (3.10)
oz, (22)2 coshak ) 2,/D%%° 2 (coshak )’ L
R _ 1 /22 S°%9 asinhak coshbk — bsinh bk cosh ak (3.11)
oD 2\YD’ D] (coshak)’ ' '

To illustrate with numerical values the application of these formulas, consider that the slab of

extrapolated thickness a consists of water with material properties having the following nominal
values: ) =0.0197cm™, D°=0.16 cm, containing distributed neutron sources emitting

-1

nominally S° =10"neutrons-cm™-s™. For the sake of argument, consider that all of these

parameters are uncorrelated and have the following relative standard deviations: AX) / = =5%,
AD° /D°® =5%, AS® / S° =15%.

Furthermore, consider that measurements are performed with an infinitely thin detector immersed
at different locations, X =D, in the water slab, having an indium-like nominal detector cross section
¥4 =7.438cm™, uncorrelated to the other parameters, with a standard deviation A /5 =10%.

Collecting this information (and omitting, for simplicity, the respective units), it follows that the

covariance matrix for the model parameters is

(9.85><1o-4)2 0 0 0
0 (8.0x10°)’ 0 0
C, = 2 . (3.12)
0 0 (1.5><106) 0
0 0 0 (7.44x10%)’
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To illustrate the effects of several consistent measurements, and also to test that symmetric

measurements (with respect to the vertical plane through the origin) do preserve the solution’s

symmetry, we consider four consistent ( 7° =1.21) measurements, taken at the symmetric locations

10cm, —10cm, —40cm, 40cm, and having the following values and relative standard deviations

(abbreviated as “rsd”):

" 2 r(meas.at 10cm)=3.40x10°n-cm*-sec’; rsd (rlm) = 5%
r" 2 r(meas.at —10cm)=3.59x10°n-cm™*-sec™?; rsd (rz”‘) = 6%:;
" 2 r(meas.at —40cm)=3.77x10°n-cm* -sec’; rsd (ram) = 5%

r;" £r(meas.at 40cm)=3.74x10°n-cm*-sec™; rsd (1) =5%;

Thus, the covariance matrix of the measured responses is

(1.7x10°)’ 0 0 0

. 0 (215x10°)° 0 0

' 0 0 (1.89x10°)’ 0
0 0 0 (1.87x10°)’

The nominal values of the computed responses at the above locations are as follows:

r, (comp. at 10cm)=3.77x10°n-cm ™ -sec™;

r,(comp. at —10cm)=3.77x10°n-cm™®-sec™;

r,(comp. at —40cm)=3.66x10"n-cm™>-sec™;

r,(comp. at 40cm)=3.66x10"n-cm™-sec™;
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(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)



As expected, the above computed responses confirm the problem’s symmetry. The matrices S and

S, with Aa; = std. dev. (aj), containing the nominal values of the absolute and relative

sensitivities, respectively, are:

-1.92x10"
-1.92x10"
-1.76x10"
-1.76x10"

-1.33x10°
-1.33x10°
—-1.24x10°
—-1.24x10°

3.78x10?
3.78x10?
3.66x10?
3.66x10?

5.08x108
5.08x108
4.92x10° | (3.22)

4.92x108

sé{ﬂ}:
ou;

-0.99999 -5.41x10° 1.00 1.00
o A(&Ri Aaj] ~0.99999 -5.64x10° 1.00 1.00
rel —| A_

- , (3.23)
oa, R ~9.46x10" -5.64x102 1.00 1.00

-9.46x10" -5.41x102 1.00 1.00

Using the above sensitivities together with the parameter covariance matrix given in Eq.(3.12)

yields the following value for the covariance matrix of the computed responses:

4.99 x10"
4.99 x10"
4.82 x10"
4.82 x10"

C,.=SC,S =

4.99 x10"
4.99 x10"
4.82 x10"
4.82 x10"

4.82 x10"
4.82 x10"
4.66 x10"
4.66 x10"

4.82 x10"
4.82 x10"
4.66 x10"
4.66 x10"

(3.24)

Note that the particular values (essentially either unity or zero) of the components of the sensitivity
matrix lead to a fully correlated covariance matrix for the four computed responses.
Applying the PM-CMPS to the above information leads to the following optimal best-estimate

parameter values, relative standard deviations (abbreviated as “rsd”), and covariance matrix:

£ =0.0198cm™, rsd () = 4.79%; (3.25)
D™ =0.1591 ¢m, rsd (D) =5.00%; (3.26)
$™ =9.85x10°n-cm~-s™, rsd (S™)=9.21%; (3.27)
Zy =7.388cm™, rsd(zi)=8.53%; (3.28)
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9.50x10™
Cck = 0
“ 0
0
1.0
-8.89x10™*
3.51x10*
1.67x10"

9.50x10™
0
0
0

0

7.99%x10°

0
0

-8.89x10"

1.0
1.02x102
4.84x10°

0

7.99x10°

0
0

0 6.30x10"

0 0
0 0
9.08x10° 0
0 6.30x10™
3.51x10"  1.67x10"
1.02x10%  4.84x10°
1.0 -8.24x10™
-8.24x10" 1.0
0 0
0 0
9.08x10° 0

(3.29)

Furthermore, the best estimate response values, relative standard deviations (abbreviated as “rsd”),

and covariance matrix are as follows:

at (10cm): * =3.66x10°n-cm*-sec™; rsd () = 2.59%;

at (-10cm): 1" =3.66x10°n-cm™®-sec™; rsd (1" ) = 2.59%;

at (—40cm): r* =3.56x10°n-cm*-sec™; rsd (1 ) = 2.58%;

at (40cm): r =3.56x10°n-cm™>-sec™; rsd (r,*) = 2.58%;

9.04x10" 9.04x10%"
ove _ 9.04x10" 9.04x10"

' 8.64x10"° 8.64x10"
8.64x10" 8.64x10%

8.64 x10%
8.64 x10%
8.45x10"
8.45x10"
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8.64 x10%
8.64 x10%
8.45x10"
8.45x10"

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)



The best-estimate predicted response-parameter correlation matrix is:

-7.81x10° 3.89x10" 1.38x10"° 4.57x10°
e | -7-81x10° 3.89x10* 1.38x10" 4.57x10°
“ 1 150x10° -4.13x10° 1.64x10"® 5.41x10° |

1.50x10° —4.13x10* 1.64x10"° 5.41x10°

(3.35)

Resnonsel 10° - n-co - 571

#[cm)]

Figure 3.1: Four precise consistent precise measurements ( y° =1.21)

Figure 3.1 shows the spatial variation of the original nominal computed values and standard
deviations (depicted using solid lines) together with the best estimate response values and

corresponding standard deviations (depicted using broken lines). The value of )(2 =1.21 indicates

a very good consistency among the four measurements.
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4 INVERSE PREDICTIVE MODELING OF RADIATION TRANSPORT THROUGH
OPTICALLY THICK MEDIA IN THE PRESENCE OF COUNTING
UNCERTAINTIES

Abstract

This Chapter is based on the work by Cacuci (2017), and illustrates the application of the PM-
CMPS methodology to the problem of inverse prediction, from detector responses in the presence
of counting uncertainties, of the thickness of a homogeneous slab of material containing uniformly
distributed gamma-emitting sources, for optically thin and thick slabs. For optically thin slabs, this
Section shows that both the traditional chi-square-minimization method and the PM-CMPS
methodology predict the slab’s thickness accurately. However, the PM-CMPS methodology is
considerably more efficient computationally, and a single application of the PM-CMPS
methodology predicts the thin slab’s thickness at least as precisely as the traditional chi-square-
minimization method, even though the measurements used in the PM-CMPS methodology were
ten times less accurate than the ones used for the traditional chi-square-minimization method. For
optically thick slabs, the results obtained in this work show that: (i) the traditional inverse-problem
methods based on the minimization of chi-square-type functionals fail to predict the slab’s
thickness; (i) the PM-CMPS methodology under-predicts the slab’s actual physical thickness
when imprecise experimental results are assimilated, even though the predicted responses agrees
within the imposed error criterion with the experimental results; (iii) the PM-CMPS methodology
correctly predicts the slab’s actual physical thickness when precise experimental results are
assimilated, while also predicting the physically correct response within the selected precision
criterion; and (iv) the PM-CMPS methodology is computational vastly more efficient while
yielding significantly more accurate results than the traditional chi-square-minimization

methodology.

4.1 Transport of Uncollided Photons through a Slab

Consider a one-dimensional slab of homogeneous material extending from z=0 to Z=a [Cm],

placed in air and characterized by a total interaction coefficient . [cm‘l]. The slab contains a
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uniformly distributed source of strength Q[photons/cm3sec] emitting isotropically

monoenergetic photons within the slab. It is assumed that there is no scattering into the energy
lines. Under these conditions, the angular flux of photons within the slab is described by the
Boltzmann transport equation without scattering and with *“vacuum” incoming boundary

condition, i.e.,

G)M+ﬂl/l(z,a))=2, 0<z<a, >0, 4.1)
dz 2
v (0,0)=0. (4.2)

where y/(z,a)) denotes the neutron angular flux at position z and direction o = cosé, where 6

denotes the angle between the photon’s direction and the z-axis. The solution of Egs.(4.1) and

(4.2) can be readily obtained as

w(z,w):%[l—exp(yz/a))]. (4.3)

Consider further that the leakage flux of uncollided photons is measured by an “infinite plane”

detector placed in air at some location z > a external to the slab. The detector’s response function,

denoted as [cm‘l} , Is considered to be a perfectly well-known constant. If the detection process

were a perfectly deterministic process, rather than a stochastic one, it would follow from Eq.(4.3)

that the “exact detector response”, denoted as r( ya) , would be given by the expression

r(ya)éZdJ-:t//(z,a))da):Qz—id[l—E2 (,ua)], (4.4)

where the exponential-integral function is defined as

E, (x)= jolu”’ze’x/“du, N=012,.. (4.5)
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4.2 Determination of Slab Thickness from Detector Response in the Absence of
Uncertainties

Since the focus of this work is the determination of the slab’s optical thickness from detector
measurements, the quantities 2,, 4, and Q will be considered to be perfectly well known.
Without loss of generality, these quantities can be normalized to unity, i.e.:
Q =1[ photons/cm®sec|, =, =1[cm™], wx=1[cm™ . If the detector were perfect and if its

response r( ,ua) were the consequence of an exactly-known deterministic counting process, Eq.

(4) could be “inverted” to obtain the slab’s optical thickness (@) by solving deterministically the

following nonlinear equation:

2ur(x) o

EZ(X):l W—C, X:,ua. (46)

When r(x) is known, the right-side of Eq.(4.6) is a known constant, denoted as C. Since the

function E, (x) is everywhere positive, i.e., E,(x)>0, for 0<x <o, it follows that

dE, (x)
dx

=-E (x)<0, 0<x<oo. (4.7)

The result in Eq.(4.7) indicates that E,(x) is a monotonically decreasing function of x as x>0
increases, and the “amount of decrease” increases as x increases. In other words, the value of

E,(x) decreases monotonically, at an increasingly slower rate, as x increases. Since E, (0)=1
and E,(x)—=2-0, it follows that E,(x) will take on at most once each value in the interval
1>E,(x)=C>0 as x increases monotonically in the interval 0 < x <co. Hence, despite the fact
that the axis X =0 is asymptotically tangent to Ez(x) in the limit when x — «, Eq.(4.6) admits

just a single real-valued root. Consequently, for each value of r( ya) , Which determines the value

of C, there corresponds a single, well-defined, slab optical thickness 4a=X. In other words,

Eq.(4.6) does not admit degenerate roots, in the sense that more than one distinct value of the
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slab’s optical thickness (ua=Xx) might correspond to the same value r(ua). The fact that
Eq.(4.6) admits a single real-valued root is also underscored by recalling the asymptotic

expansions for E, (x), i.e.,:

X - 2(6x* —16x + 4
E,(X) - |1+ 2+2(2 2);)+ | ; .. LA(X), x2ua>l, (48
X+2| (x+2)°  (x+2) (x+2)
X2 X3 X4
Ez(x)~1+x[log(x)—0.422784]—?+E—ﬁ+,“é B(x), x2 pa<l. (4.9)

The asymptotic expansion in Eq.(4.8) can be used to compute the real-valued root of Eq.(4.6) for
C<0.8; (ii) both asymptotic expansions given in Egs.(4.8) and (4.9) can be used to compute the
real-valued root of Eq.(4.6) when 0.2<C<0.8; (iii) the asymptotic expansion in Eg.(4.9) can be
used to compute the real-valued root of Eq.(4.6) when C>0.2. The left- and right-sides of the

equations
A(x)=C, B(x)=C, (4.10)

where A(x) and B(x) are defined in Eqgs.(4.8) and (4.9), respectively, are plotted in Figure 4.1,
below. The intersection of the horizontal line with the decreasing curve depicting the function
E, (x) provides the location of the real root of Eq.(4.6). It is also evident from Egs.(4.6), (4.8) and
(4.9) that in the limit of infinitely thin or infinitely thick slabs, respectively, the corresponding

“readings” by perfect detectors would be

r(0)=0, r(w)z%. (4.12)
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Figure 4.1. Location of the (unique) real root of Eq. (6): Left: linear-linear scale; Right: log-linear

scale.

4.3 Traditional Chi-Square Minimization Method for Determining the Slab’s Thickness
from Detector Responses in the Presence of Counting Uncertainties

It is reasonable to expect that the slab’s unknown optical thickness should be obtainable from
detector measurements, since the detector measurements implicitly “know” the exact thickness of
the slab, which is reflected in the respective number of photons reaching the detector. Also, in the
limit of infinite experimental precision and accuracy, the detector response must indicate the exact
thickness of the slab, as shown in the previous section. As is well known, the process of detecting
photons (as well as other particles) can be described by a Poisson distribution. When a sufficiently
large number of events are counted, as is usually the case with photon detection, the respective
Poisson distribution can be approximated well by a normal (Gaussian) distribution. For this

paradigm example, it suffices to consider that the k™-experimentally-measured response, which

will be denoted as %), is obtained as a random event drawn from a normal distribution having

the mean equal to the exact response, r(xa), and the standard deviation equal to Br(za), where

B is the relative standard deviation (in %), so that

r) = random normal[r, gr], k=1,..,K. (4.12)

exp

The current state-of-the-art methods for solving “inverse problems” such as determining the

optical dimension of a uniform homogeneous medium from K uncertain photon measurements
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external to the medium rely on minimizing a user-defined chi-square-type functional of the

following form:

«[r 0 T

2 A model exp

= |, 4.13
d letd.dev(r J (413)

where, for the slab considered in this Section,
A de (%)
rmodel - 2,Ll |:1_ E2 (luamodel ):| (414)

Since only counting uncertainties in the detector response will be considered in this illustrative
example, the quantities Z,, #, and Q will be considered, as in the previous Section, to be

perfectly well known and be normalized to unity, i.e., Q =1[ photons /cm*sec], %, =1[cm™ ]

7 =1[cm*1]. A direct attempt to determine the slab’s optical thickness would be by plotting

the difference

52 (Fooge — o) (4.15)

m exp

between a random realization of a detector response, I,;, and the “model response”, I , defined
in Eq.(4.14). While studying the behavior of Eq.(4.13), Mattingly (2015) has plotted the behavior
of the quantity § = (rmode, - rexp) as a function of ua, ., , for various actual slab thicknesses a .

The results in Figure 4.2 were obtained using software based on Mattingly’s program to plot the

quantity 52 (rmode, — rexp) for four values of the actual optical thickness 4@ (namely: xa=0.1,
una=1.0, na=3.0 and xa =10.0) and by considering that the corresponding detector response,
Iy IS distributed normally with a mean equal to (the exact) I, , and having a relative standard
deviation of 1% [i.e, std.dev(r,,)=(0.01)r,]. As the plots in Figure 4.2 indicate, for
measurements having a relative standard deviation of 1% (i.e., fairly accurate measurements), the

“zero-crossings” of the respective differences & £, ,, —r.,, ) are clearly identifed for optically
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thin slabs, as exemplified by the graphs for xa=0.1 and ga=1. These zeros also correctly

correspond to the values p@,. =0.1 and #a,., =1, respectively. On the other hand, for
measurements having a relative standard deviation of 1%, the plots corresponding to ua=3.0
and xa =10.0 in Figure 4.2 indicate that the “zero-crossings” of the corresponding differences

e (r odel — rexp) can no longer be identified beyond about three mean free paths (i.e., xa>3);

m

the respective “zero-crossings” appear to be multiple-valued, perhaps even degenerate.

pa=0.1|]
pa=1

pa=23

— pa=10

1073 102 101 10° 10! 10?2
Hmodel

Figure 4.2: Variation of the difference between the computed detector response, I, and a
measured (normally distributed, with a relative standard deviation of 1%) detector response, I,

as a function of the model’s optical thickness (28, ) -

Applying various minimization procedures, the value (,ua)min which yields the minimum value,
;(rim, of )(2 is considered to be the slab’s optical thickness. Mattingly (2015) has plotted the

. 2 . . . .
quantity 5% £ (1., — 1) as a function of the model’s optical thickness (4@, ), for various

values of the actual optical thickness, 4a , and by considering (as before) that the corresponding

detector response, [, is distributed normally with a mean equal to (the exact) [, . Using
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software based on Mattingly’s program (2015), Figures 4.3 through 4.6 present plots of

5% & (rmode, - r(k))2 for the same values (namely: xa=0.1, ga=1.0, ga=3.0 and xa=10.0)

exp
of the actual optical thickness, (@, as considered in Figure 4.2, for ten measurements re(fp),

k=1,...,10, which are considered to be distributed normally with a mean equal to (the exact

response) ... and a relative standard deviation of 1% [i.e., std.dev(rexp)z (0.01)r,, 1.
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Figure 4.3: Variation of 52 é(

for a slab of actual optical thickness wa = 0.1, for measurements with a relative standard deviation
of 1%.

—rl )2 as a function of the model’s optical thickness (28,4 )

rmodel exp
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Figure 4.4: Variation of 5° (rmode, - re(xkp) )2 as a function of the model’s optical thickness (28,4 )

for a slab of actual optical thickness za =1.0, for measurements with a relative standard deviation
of 1%.
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Figure 4.5: Variation of 62 £ (1,5, — 1) )2 as a function of the model’s optical thickness (4@, )

for a slab of actual optical thickness xa = 3.0, for measurements with a relative standard deviation
of 1%.
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Figure 4.6: Variation of 52 £ ( -l )2 as a function of the model’s optical thickness (28,4 )

for a slab of actual optical thickness wpa=10.0, for measurements with a relative standard
deviation of 1%.

I’model exp

Figures 4.3 and 4.4 indicate that the minimum of the quantity &2 é( - r(">)2 appears to be

uniquely corresponding to the actual value of the slab’s thickness, irrespective of the precise value

of the measurements. In other words, for slabs that are optically thin, the minimum of the quantity

5? é(rmodel —r(k)) is unique, insensitive to the precision of the respective measurements, and

exp

identifies the slab’s actual optical thickness correctly and accurately.

A very different situation becomes evident in Figure 4.5 for a slab of optical thickness pa=3.0:

depending on the value of the respective measurement, the corresponding quantity

RRE (rmode, —r% )2 displays a minimum at various locations within the interval 1.0 < za < 4.0, or

exp

may display no minimum at all. The various minima depicted in Figure 4.5 either under-predict or

over-predict, in an apparent random fashion, the actual optical slab thickness of za =3.0. Similar

conclusions can be drawn from the results depicted in Figure 4.6, for a (thick) slab of optical

thickness pa=10.0. The results in Figure 4.6 indicate that, depending on the value of the

49



respective measurement, the corresponding quantity &5* = (rmode, - re(xkp) )2 displays a minimum at

various locations within the interval 1.0 < za < 4.0, or may display no minimum at all. In this

case, however, there are no over-predictions of the slab’s correct thickness: all of the minima

under-predict, in an apparent random fashion, the actual optical slab thickness za =10.0.

Figures 4.3 and 4.4 have indicated that for optically thin slabs, the precision of measurements does

not affect the location of the unique minimum of the quantity 5% = (rmode, - r("))z, and the actual

exp

thickness of the respective slab is determined sufficiently accurately (for practical purposes) by
the unique location of this minimum. As indicated by the results depicted in Figures 4.5 and 4.6,
however, the precision of the measurements decisively affects the results for optically thick slabs.
It would be intuitively expected that more precise measurements would yield results “more tightly
grouped” around a “better defined” minimum, and hence lead to more accurate predictions of the
actual thickness for optically thick slabs. This intuitive expectation is supported by the typical

results presented in Figures 4.7 and 4.8 for a thick slab of actual optical thickness ga =10.0. The

results Figure 4.7 correspond to measurements following a normal distribution with a mean equal
to (the exact response) I, and a relative standard deviation of 10%. The results presented in
Figure 4.8 are deliberately taken for extremely (unrealistically?) precise measurements assumed
to be normally distributed with a mean equal to (the exact response) I, and having a relative

standard deviation of 0.001%, to underscore the essential role played by the measurements’

precision.
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Comparing the results depicted in Figure 4.7 with those depicted in Figure 4.6 shows that the

. 2 . . .
quantity &° é(rmode, - r(k)) corresponding to the less precise measurements (relative standard

exp

deviation of 10% for Figure 4.6) displays either no minima, or minima that depend sensitively on
the individual measurements, just as displayed by the results for the more precise measurements
(relative standard deviation of 1%) presented in Figure 4.7. Furthermore, the minima displayed by

the less precise measurements (in Figure 4.7) fall within the interval 1.0 < za < 3.0, thus being

even less indicative of the correct slab thickness than the indication provided by the more precise
measurements (in Figure 4.6). This conclusion is further strengthened by comparing all of the

results presented in Figures 4.6, 4.7 and 4.8 for a slab of optical thickness xa =10.0, namely that

the quantity &2 é( - r("))2 may display no minimum for some measurements, and when it

r.model exp

does display a minimum, they respective minimum depends sensitively on the respective
measurements. Furthermore, the more accurate the measurements (i.e., the smaller the respective
standard deviations), the tighter together grouped are the measurement values; hence, the minima
of the squared-differences 52 corresponding to the respective measurements are “grouped” more
tightly together, and the respective “group of minima” is closer to the correct slab thickness.

Since, as shown in Figures 4.5 through 4.8, some of the summands in Eq.(4.13) may not admit any

real-valued minimum while those summands that do have minima which do not coincide with one

another, it is not surprising that a numerical algorithm for minimizing the )(2 -functional may yield
some minimum value that has no physical meaning, in that the actual physical slab thickness would

differ from the value (a)_ . On the other hand, in the absence of counting uncertainties, the

detector’s response yields a unique slab thickness, as demonstrated in Section 4.2. If the
measurements are inaccurate, then any minimization of the expression in Eq.(4.13) will lead to
erroneous physical results, in that the result delivered by any minimization procedure will not be
physically correct. Furthermore, for equally precise measurements, the larger the optical thickness
of the slab, the more unphysical will likely be the result of the minimization procedure. Altogether,
therefore, the results presented in this Section indicate that the reason for the failure of the current

state-of-the-art methods to predict accurately the actual thickness of optically thicker slabs stems
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not from the numerical method used to minimize the ;(2- functional, but stems from the very

formulation of the ;(z-functional, which makes this functional to be extremely sensitive to the

random value of each measurement. In the next Section, it will be shown that Cacuci’s PM-CMPS
methodology (2014), which incorporates considerably more features of the model than the

methods based on minimizing a user-defined ;(2 -functional, alleviates the shortcomings of the

latter methods while yielding results that are physically accurate up to machine precision.

4.4  Applying the PM-CMPS Methodology for the Inverse Determination of Slab
Thickness in the Presence of Counting Uncertainties

For the paradigm system consisting of the slab and detector considered in this Section, “Model B”

reduces to a point (i.e., the point detector). Consequently, the PM-CMPS methodology reduces to

the inverse predictive modeling of a single multi-physics model (“Model A,” involving N, model

parameters ¢, and N, experimentally measured responses I;), which is governed by Egs.(2.91)

through (2.95). For easy reference, those equations a reproduced below:

«” =a’-(C,S!, -C,)[D,] ' (a°), (4.16)

re =r"—(cls!,-C,)[D,]"r*(a), (4.17)

¢ =C,, -(C,8l ~C.. )P, ]*(C.8L -C.,) (4.18)

cr =c,-(clsl,-¢,)p,.]*(cLslL ~C.) (4.19)

¢ =C,, -(C,S!, ~C,.)[D.]*(CLSL, -C, ) - (4.20)
where

D,=C_ -S,C, -Cl S +C_, (4.21)

and where the “computed response covariance matrix”, C,. , is defined as
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c,.=S,.C.S . (4.22)

ao " ra

The validation metric (or “consistency indicator”) takes on the following expression

VEy=(r —r”’)T D, (re-r"). (4.23)

When Egs. (4.16) through (4.22) are employed for forward predictive modeling, all of the
quantities on the right sides of these equations are known, and the best-estimate predicted
quantities are those on the left-side of the respective equations. Note that the detector measures,
albeit statistically, the exact response, which implicitly comprises the information about the exact
optical thickness of the medium under investigation. Each measured response represents a “point”
or “element” sampled from the counting statistical distribution characterizing the detected particles

(photons). For simplicity and without loss of generality, the counting statistics are considered to

be Gaussian, so that each measured detector response, r) . has the value

m

where K, denotes the total number of

n?

r') — random normal [r”a”, sd (rnﬂexa“))] k=1..K

experiments performed in the “batch n”. On the other hand, when Egs. (4.16) through (4.22) are
employed for inverse predictive modeling, the set of parameters a° are unknown, and the first set
of measurements is used to estimate these parameter values. Subsequent measurements are
assimilated to improve the predictions of both the response and parameter values, until the
predicted response and/or parameter values satisfy some a priori imposed accuracy criteria. The

detailed inverse predictive algorithm is as follows:

1. Perform the initial set of measurements, r"), by drawing random results from the normal

exp !

distribution % = random normal[ r***, pr* ], k =1,...,K,.

_ 1
2. Compute the initial “sample average™: r\c) :K—erﬁk).
0 k=1

Ko )
3. Compute the initial “measurement variance”: C*) = L Z[r(k)—r(m] .
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10.

11.

12.

13.

Compute the initial estimated parameter value ' by using the model, i.e., by solving the

- - Z/Jr(KO)
nonlinear equation E, [a(l)] 1 Hmae

de
Compute the initial sensitivities of the response to the uncertain (unknown) model
parameter. In general, this computation is performed by using the adjoint sensitivity
analysis methodology. For the paradigm problem under consideration, the only uncertain

model parameter is the medium’s optical thickness, so the detector response’s sensitivity

is readily obtained as: ® = 9%« E, [a(l)}
2u

1)

Define the “initial parameter standard deviation: Sd(a(l))zya and the variance

cl = [;/a(” T . The effects of this “initial parameter standard deviation” can be assessed

by considering various values for 7. In this study, however, the fixed value ¥ =10" has

been used throughout.
Use Eq.(4.22) to compute the initial “computed response covariance™ C'% =s®'cs®.

Assuming, in the absence of information to the contrary, that the measured responses are
uncorrelated to the model parameters (in this case: the slab’s optical thickness), use
Eq.(4.21) to compute the following initial value Dr(ﬂ).

Use EQ.(4.20) to compute the initial “parameter response covariance”:
el =cts D] cpe,

Since the initial parameter value was computed by solving the inverse problem using the
*average measurement”, set the initial computed response value to be the same as the initial
measurement: o) = 1) .

Commence performing experiments to be used for the “inverse predictive modeling” of the

slab’s optical thickness: perform n=1,..,N sets of measurements, r'), k=1..,K_, , by

sampling from the normal distribution r™* = random normal [r%‘“, sd (rn(fxa“) )}

For each set of experiments, K, compute the following quantities:
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14.

15.

16.

17.

18.

19.

20.

c. the “sample standard deviation” SDr(nK") = cl) .

and its covariance C" =c*).

meas m

d. the measured response, r'") = ()

! “meas m,ave !

Use Eq.(4.17) to compute the new “predicted response” values:

D = rl2), +[Cl Cé?>r5<n>f][D§:)]‘l[r<n) -7

pred meas meas comp meas

Use Eq.(4.16) to compute the new “predicted parameter” values:

ol = + [l Cg“)s““][Dfr”)]_ [0, —ro,];

pred comp meas

Use Eq.(4.18) to compute the new “predicted parameter covariances:
C(”+1 C(n [C(“)S(“)T _C(”)][D(“) Il [C(“)S(“)T _C(”):|T;

Use Eq.(4.19) to compute the new “predicted response covariances”:

civh =cl, ~[crs™ ¢l o | [cl's™ —cl, Twith €Y %0

r, pred meas meas r meas

Use Eq.(4.20) to compute the new “predicted response-parameter covariances”:

C'Hl) C(”) [Cif;)s(”)'f_Cg)J[DS‘)J_l[Cg)Ts(” —_cm J

meas

Use Eq.(4.23) to compute the predicted “consistency indicator” (or “validation metric”):

(e =, el ] [ ] [ e, —riek. |

Optionally: to quantify the possible effects of nonlinearities, perform the new (n +1)th

computation with the “calibrated model parameters”:

o - e ()]

comp pred

Y7,
g _ QX4 E( (n+1)),

2,Ll pred 1
C£:+1) _ S(n+1)‘rcl(ln+1)s(n+l);
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21.

22,

(n+1)

(n+1)
24 pred

=

(n+1)

Note: the recomputed matrix C,, may differ from C"*), because of model

r,pred

nonlinearities; the later matrix is used as the current best-estimate for the covariance matrix
of the experimental measurements, to compute the matrix below.

Prepare for the next batch of experiments by using computing the quantity

D(n+1) _ C(n+1) _ S(n+l)C(n+l) _C(n+l)TS(n+1)T +C(n+1) .

™ ar r,pred ?

(n+1) (n+1)

comp r-pred
(n+1)
comp

Stop when < ¢. Recall that the experimentally measured detector results

reflect the physics of the situations in that the experimental results represent random
realizations of a distribution that has the exact response, rexact, as its mean. Thus, the
detector results embody (i.e., “know”) the exact slab thickness, even though this thickness
IS unknown to the experimentalist who is attempting to determine it from the model and
the experimental results, using the PM-CMPS methodology described in the previous
Section. Since the successively predicted responses contain directly the effects of all of the
measured responses (which reflect the actual physics of the problem) while the
successively computed responses contain indirectly the effects of the successively
predicted slab thicknesses, the convergence stopping criterion for the PM-CMPS iterations
is imposed on the convergence between the predicted and computed responses, rather than
on the convergence of the computationally predicted slab optical thickness. It is logical to
strive towards attaining agreement between computational results and experimental

measurements as directly as possible, whenever possible.

For demonstration purposes, the distribution of response measurements is considered to be the

normal distribution with mean equal to rexact and with relative standard deviation g, the value of

which will be varied to study its influence on the accuracy of the prediction of the unknown optical
thickness of the slab under consideration. Simulated experimental results drawn from a normal

distribution with a relative standard deviation of 10% (B=10") will be considered to be

“imprecise;” the experimental results drawn from a normal distribution with a relative standard

deviation of 0.1%(,3=10*3) will be considered as being “precise” and the experimental results
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drawn from a normal distribution with a relative standard deviation of 0.001% ( B =10‘5) will be

considered as being “very precise.”

4.4.1 Prediction of Optically Very Thin Slab (Exact Optical Thickness=0.1)
a) Imprecise measurements ( i =10*1)

The exact detector response stemming from a slab of optical thickness ga =0.1 iS rexact =

1.387275x10°* photons/cm?sec, as shown in the last row of Table 4.1. Consider a set K, =100 of
rather imprecise measurements, characterized by a relative standard deviation 8 =10%, drawn

from a random normal distribution with the mean taken to be the exact response, rexact. The results
predicted by the PM-CMPS methodology are: (i) the “predicted response value”; (ii) the “predicted
response standard deviation”; (iii) the “predicted slab thickness (parameter)”; and (iv) the
“predicted standard deviation of the slab thickness”. These results are shown in columns 2 through
5 of Table 4.1. It is seen that the first (n=1) set of imprecise measurements predicts the exact
response within a standard deviation of 0.01 photons/cm?sec, and the exact optical slab thickness
within a standard deviation of 8.89x107. Assimilating the second (n=2) set of 100 measurements,
which are just as imprecise as the first set, nevertheless improves even further the prediction of the
exact response and slab thickness while reducing even further the respective standard deviations.
This reduction in the predicted standard deviations accompanying the predicted response and
parameter (slab thickness), respectively, is a consequence of the properties of the PM-CMPS
methodology.

Table 4.1: Results predicted by PM-CMPS methodology for a slab of exact thickness xa =0.1
after successively assimilating 2 batches of 100 imprecise experiments (5 =10")

pa=0.1;p=10"; £=10"°;K,=100; Measured response = Normal (Fexact, /3 Feract)
n | Experimental Predicted Predicted Predicted Predicted
Response Response Response SD Parameter Parameter SD
Mean Value
1.405016x10? 1.395441x10? 1.002145x10? 9.98860x1072 8.896069x10°
1.401943x10? 1.389812x10* | 7.129884x10° 1.00278x10! 7.818043x10*
Exact Response | Exact Response Exact
SD Parameter
1.387275x10? 1.387275x10? 0.1
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b) Very precise measurements ( B =10*5)

Consider aset K, =100 of very precise measurements (relative standard deviation 4 =10) drawn

from the same random normal distribution, i.e., with the distribution’s mean taken to be rexact =
1.387275x10! photons/cm?sec. Using these very precise measurements, the PM-CMPS
methodology predicts the exact response value within a standard deviation of 1.3x10 and the slab
thickness within a standard deviation of 2x10°, respectively, as shown in Table 4.2. These results
clearly indicate the important consequences of precise measurements, which enable the PM-CMPS
methodology to produce considerably more precise predictions than when less precise experiments
are assimilated.

Table 4.2: Results predicted by PM-CMPS methodology for a slab of exact thickness xa =0.1

after assimilating one batch of 100 very precise experiments (5 = 10'5)

ua=0.1;p =10°; £=10"%;K,=100; Measured response = Normal (Fexact, L Fexact)
n | Experimental Predicted Predicted Predicted Predicted
Response Response Response SD Parameter Parameter SD
Mean Value
1 | 1.387274x10% 1.387277x10* 1.303206x10° 1.00002x10! 2.003542x10°
Exact Response | Exact Response Exact
SD Parameter
1.387275x10? 1.387275x10? 0.1

The results presented in Table 4.2 indicate that a single application of the PM-CMPS methodology
using very precise measurements predicts the slab thickness within 6 significant digits. The
response is also predicted within 6 significant digits. The measurements’ precision is the most
important factor that affects the accuracy of the prediction of the slab’s thickness using the PM-
CMPS methodology.

4.4.2 Prediction of Optically Thin Slab (Exact Optical Thickness =1.0)
a) Measurements with 10% relative standard deviation ( B =10‘1)
Consider a set K, =100 of rather imprecise measurements (relative standard deviation 5 =107)

drawn from the random normal distribution with the mean taken to be the exact response (rexact =
4.257522x10 photons/cm?sec). The results predicted by the PM-CMPS methodology are

presented in columns 2 through 5 of Table 4.3. It is seen that the first (n=1) set of imprecise
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measurements predicts the exact response within a standard deviation of 2.85x1072, and the exact
optical slab thickness is predicted within a standard deviation of 9.65x102. As expected from the
properties of the PM-CMPS methodology, the assimilation of the second (n=2) set of 100
measurements further improves the prediction of the exact response and slab thickness and reduces
further the respective standard deviations, even though the second set of experiments is just as

imprecise as the first set.

Table 4.3: Results predicted by PM-CMPS methodology for a slab of exact thickness pa =1 after
assimilating two batches of 100 experiments with =107,

ua=1;p =10": £=107;K, =100; Measured response = Normal (Fexact , B Texact)
n | Experimental Predicted Predicted Predicted Predicted
Response Response Response SD Parameter Parameter SD
Mean Value

4.311969x10" | 4.276684x10" | 2.854158x10% | 9.867036x10* 9.655633x10
4.302537x10" | 4.245931x10! | 1.054078x102 | 9.895185x10* 9.397102x107

Exact Exact Response Exact

Response SD Parameter
4.257522 x10* | 4.257522x10% 1.00

b) Measurements with 0.001% relative standard deviation ( Yij =10‘5)

Consider a set K, =100 of precise measurements (relative standard deviation #=10") drawn

from the same random normal distribution, with rexact = 4.257522x10 photons/cm?sec as the
distribution’s mean. As shown in Table 4.4, using these precise measurements, the PM-CMPS
methodology predicts the response within 7 significant digits. These results indicate, as before, the
important consequences of precise measurements, which enable the PM-CMPS to produce

considerably more precise predictions than when less precise experiments are assimilated.

Table 4.4: Results predicted by PM-CMPS methodology for a slab of exact thickness pa =1 after

assimilating one batch of 100 experiments with /3 =107,

ua=1;p =10°; £=10"°;K,=100; Measured response = Normal (Fexact, L Fexact)
n Experimental Predicted Predicted Predicted Predicted
Response Response Response SD Parameter Parameter SD
Mean Value
1| 4.257528 x10" | 4.257528 x10? | 3.999515x10° 1.000005 5.106484 x10°
Exact Exact Response Exact
Response SD Parameter
4.257522x10 | 4.257522x10°° 1.00
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The results presented in Table 4.4 indicate that a single application of the PM-CMPS methodology
using very precise measurements predicts the slab thickness within 6 significant digits. The
response is also predicted within 6 significant digits. Once again, the measurements’ precision is
the most important factor that affects the accuracy of the prediction of the slab’s thickness using
the PM-CMPS methodology.

4.4.3 Prediction of Optically Thick Slab (Exact Optical Thickness=3.0)

a) Measurements with 10% relative standard deviation ( B =10‘1)

Consider a set K, =100 of rather imprecise measurements (relative standard deviation =10")

drawn from the random normal distribution with the mean taken to be the exact response (rexact =
4.94679x10! photons/cm?sec). The results predicted by the PM-CMPS methodology are shown in
columns 2 through 5 of Table 4.5. It is seen that the first (n=1) set of imprecise measurements
predicts the exact response within a standard deviation of 3.25x107, and the exact optical slab
thickness is predicted within a standard deviation of 0.273. Assimilating the second (n=2) set of
100 measurements, which are just as imprecise as the first set, improves only slightly the prediction

of the exact response and of the slab thickness.

Table 4.5: Results predicted by PM-CMPS methodology for a slab of exact thickness pa =3 after
assimilating batches of 100 experiments with f=10".

ua=3;p =10"; £=107;K, =100; Measured response = Normal (Fecact L Fexact)
n | Experimental Predicted Predicted Predicted Predicted
Response Response Response SD Parameter Parameter SD
Mean Value

1 | 5.010051x10" | 4.967511x10* 3.255519x107 2.739635 2.736269x10!
2 | 4.999093x101 | 4.926791x10* 2.490237x10°3 2.741372 2.733279 x10!

Exact Exact Response Exact

Response SD Parameter
4.94679x10! 4.94679x107 3.00
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b) Measurements with 0.001% relative standard deviation ( Yij =10‘5)

Consider a set K, =100 of precise measurements (relative standard deviation #=10"") drawn

from the same random normal distribution, with rexact = 4.94679x10 photons/cm?sec as the

distribution’s mean. Using these precise measurements, the PM-CMPS methodology predicts the
response within a standard deviation of 4.65x10® photons/cm?sec, and predicts the slab thickness
within six significant digits, respectively, as shown in Table 4.6. As before, these results again
indicate that precise measurements enable the PM-CMPS to produce considerably more precise

predictions than when less precise experiments are assimilated.

Table 4.6: Results predicted by PM-CMPS methodology for a slab of exact thickness pa =3 after
assimilating batches of 100 experiments with =107

ua=3;p =10°; £=10"°;K,=100; Measured response = Normal (e, 3 Texact)
n | Experimental Predicted Predicted Predicted Predicted
Response Response Response SD Parameter Parameter SD
Mean Value

4.946797x10" | 4.946797x10! | 4.647000x10° 3.000097 9.973716 x10°

Exact Exact Response Exact

Response SD Parameter
4.94679x10* 4.94679x10° 3.00

4.4.4 Prediction of Optically Very Thick Slab (Exact Optical Thickness=7.0)

a) Measurements with 10% relative standard deviation ( B =10‘1)

Consider a set K, =100 of rather imprecise measurements (relative standard deviation 3 =107)

drawn from the random normal distribution with the mean taken to be the exact response (rexact =
4.999482x10* photons/cm?sec). The results predicted by the PM-CMPS methodology are shown
in columns 2 through 5 of Table 4.7. It is seen that the first (n=1) set of imprecise measurements
predicts the exact response within a standard deviation of 9.41x10*, but the exact optical slab
thickness is severely under-predicted. Assimilating the second (n=2) set of 100 measurements,
which are just as imprecise as the first set, improves significantly the prediction of the exact
response, but improves just marginally the prediction of the slab thickness. Additional imprecise

experiments would not improve significantly the prediction of the slab thickness.
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Table 4.7: Results predicted by PM-CMPS methodology for a slab of exact thickness pa =7 after

assimilating batches of 100 experiments with =10,

pua=7;$=10"; £=10";K,=100; Measured response = Normal (Fexcct, L Texact)
n | Experimental Predicted Response Predicted Predicted Parameter
Response Response SD
Mean Value

1 | 5.063417x10% 5.020369x101 3.288029x107 3.770365

2 | 5.052342x10* 4.979026x101 9.418037x10* 3.771262
Exact Response Exact Response SD Exact Parameter
4.999482x10! 4.999482x10 7.00

b) Measurements with 0.001% relative standard deviation ( Yij =10‘5)

Consider a set K, =100 of precise measurements (relative standard deviation #=10") drawn

from the same random normal distribution, with rexact = 4.999482x101 photons/cm?sec
photons/cm?se as the distribution’s mean. It is seen from the results presented in Table 4.8 that the
first (n=1) set of precise measurements predicts the exact response within a standard deviation of
4.66x10°. In addition, the PM-CMPS methodology predicts the slab’s thickness within a standard
deviation of 0.112. The second (n=2) set of precise measurements further improve the predicted
values of both the response and the slab’s thickness. As before, these results again indicate that
precise measurements enable the PM-CMPS methodology to produce considerably more precise

predictions than when less precise experiments are assimilated.

Table 4.8: Results predicted by PM-CMPS methodology for a slab of exact thickness ya =7 after
assimilating batches of 100 experiments with =107

pa="71;p =10°; £=10"°;K, =100; Measured response = Normal (Fexact , B Texact)
n | Experimental Predicted Predicted Predicted Predicted
Response Response Response SD Parameter Parameter SD
Mean Value
1| 4.99948x10" | 4.999489x10* 4.665733x10° 7.010649 1.11982x10?
2 | 4.9994x107 4.999488x101 4.117474x10° 7.009803 7.217122x10°
Exact Response | Exact Response Exact
SD Parameter
4.999482x101 4.999482x10° 7.00

The results presented in Tables 4.7 and 4.8 for the slab having the exact optical thickness pa =7

reinforce the conclusions drawn from Tables 4.5 and 4.6 for the slab having the exact optical

thickness na =3, namely that: (i) the PM-CMPS methodology under-predicts the slab’s actual
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physical thickness when imprecise experimental results are assimilated, even though the predicted
responses agrees within the imposed error criterion with the experimental results; and (ii) the PM-
CMPS methodology correctly predicts the slab’s actual physical thickness when precise
experimental results are assimilated, while also predicting the physically correct response within

the selected precision criterion.

445 Prediction of Extremely Thick Slab (Exact Optical Thickness=10.0)

a) Measurements with 10% relative standard deviation ( B =10‘1)
Table 4.9 presents results predicted by the PM-CMPS methodology when sets comprising
increasingly more experiments, all having relative standard deviations of 10%, are being
assimilated. After assimilating a set of K, =5 experiments, the PM-CMPS methodology predicts

the correct value of the response with 2 digits of accuracy, but the slab’s thickness is under-

predicted by a factor of 5. Increasing the numbers of similarly imprecise measurements from
K, =5 experiments to K, =100 experiments per set does not appreciably increase the precision
of the predicted response, but increases the accuracy of the predicted value of the slab thickness
by a factor of about two, although the exact value remains severely under-predicted, due to the
relatively large standard deviation (3 :10_1) considered for the experimental responses.

Table 4.9: Results predicted by PM-CMPS methodology for a slab of exact thickness wa =10
after assimilating batches of experiments with =107

ua=10;4=10"; £=102;K, =5;
n | Experimental Response Predicted Response Predicted Predicted
Mean Value Value Response SD ParameterValue
1 4.959541 x10* 4.920234 x10* 1.644221 x107 2.022075
una=10 ;ﬂ=1071; e=10"°;K, =10;
1] 5.079625 x10* | 4960152 x10" | 2.033668 x10? | 2.406645
ua=10 ;ﬁ:lO‘l; £=10" ;K =50
1] 4.993500 x10* | 4.977449 x10' | 3.236887 x102 | 3.355578
pa=10 f=10": £ =102 ;K, =100;
1 5.063922x10* 5.020869x10* 3.288343x10 3.790445
2 5.052846x10* 4.979521x10* 0.238754x10* 3.791330
Exact Response Exact Response Exact Parameter
Value SD Value
4.999981x10* 4.999981x1072 10.0
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b) Measurements with 1% relative standard deviation (8 =10")

Table 4.10 presents results predicted by the PM-CMPS methodology when sets comprising
increasingly more experiments, all having relative standard deviations of 1%, are being

assimilated.

Table 4.10: Results predicted by PM-CMPS methodology for a slab of exact thickness pa =10
after assimilating batches of experiments with =107

ua=10;p=10"; £=10"°;K, =5;
n | Experimental Response Predicted Response Predicted Predicted
Mean Value Value Response SD ParameterValue
1 4.995937x10* 4.992142x10* 1.654840 x10° 3.910644
ua=10;4=107; £ =10" ;K =10;
1| 5.007945x10™! | 4.996136x10* | 2.052874x10° | 4.322908
pa=10 ;,6'21072; =107 Kn =50
1] 4.999333x10* | 4.997729x10* | 3.238153x103 | 5.315490
ua=10;4=107; £ =10" ;K =100;
1 5.006375x10*! 5.020869x10* 3.288731x10° 5.769938
2 5.005267x10* 4.997939x10* 1.352363x10* 5.771909
Exact Response Exact Response Exact Parameter
Value SD Value
4.999981x10*! 4.999981x102 10.0

After assimilating a set of K, =5 such experiments, the results presented in Table 4.10 indicate
that the PM-CMPS methodology predicts the correct value of the response with 3 digits of
accuracy, but the slab’s thickness is under-predicted by a factor of 2.5. Increasing the numbers of

similar measurements from K. =5 experimentsto K, =100 experiments per set does not increase

significantly the precision of the predicted response, but increases the accuracy of the predicted
value of the slab thickness, although the exact value remains under-predicted by about 40%, which
is the prediction limit for the experimental responses drawn from a normal distribution with a

relative standard deviation of 1%.
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c) Measurements with 0.1% relative standard deviation ( Yij =10‘3)

Table 4.11 presents results predicted by the PM-CMPS methodology when sets comprising
increasingly more experiments, all having relative standard deviations of 0.1%, are being
assimilated.

Table 4.11: Results predicted by PM-CMPS methodology for a slab of exact thickness pa =10

after assimilating batches of experiments with f =107,

pua=10;$=10"; £=10"°;K, =5;
n | Experimental Response Predicted Response Predicted Predicted
Mean Value Value Response SD ParameterValue
1 4.999576x10*! 4.999218x10* 1.67085 x10* 5.929063
ua=10;4=10"; £ =10" ;K =10;
1| 5.000777 x10 | 4.999618 x10* | 2.082969 x10* | 6.345481
ua=10 ;ﬂ=1073; £=10"; Kn =50
1] 4.999916x10* | 4.999756x10* | 3.240331x10* | 7.316728
ua=10;=10"; ¢ =10" ;K =100;
1 5.000620x10* 5.000190 x10* 3.289465 x10* 7.756322
2 5.000509x10* 4.999778 x10* 1.913978 x10° 7.760068
Exact Response Exact Response Exact Parameter
Value SD Value
4.999981x10* 4.999981x10* 10.0

After assimilating a set of K, =5 such experiments, the results presented in Table 4.11 indicate

that the PM-CMPS methodology predicts the correct value of the response with 4 digits of

accuracy, but the slab’s thickness is under-predicted by 40%. Increasing the numbers of
measurements having the same standard deviation from K, =5 experiments to K, =100

experiments per set does not increase significantly the precision of the predicted response, but
increases the accuracy of the predicted value of the slab thickness, although the exact value remains
under-predicted by about 20%, which is the prediction limit for the experimental responses drawn

from a normal distribution with a relative standard deviation of 0.1%.

d) Measurements with 0.01% relative standard deviation (,3 =10*4)

Table 4.12 presents results predicted by the PM-CMPS methodology when sets comprising

increasingly more experiments, all having relative standard deviations of 0.01%, are being
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assimilated. After assimilating a set of K. =5 such experiments, the results presented in Table

4.12 indicate that the PM-CMPS methodology predicts the correct value of the response with 5

digits of accuracy, but the slab’s thickness is under-predicted by 20%. Increasing the numbers of
measurements from K, =5 experiments to K, =100 experiments per set increases the accuracy

of the predicted value of the slab thickness, although the exact value remains under-predicted by
about 7%, which is the prediction limit for the experimental responses drawn from a normal

distribution with a relative standard deviation of 0.01%.

Table 4.12: Results predicted by PM-CMPS methodology for a slab of exact thickness pa =10

after assimilating batches of experiments with =10

pa=10;4=10"; £=10"°K, =5;
n | Experimental Response Predicted Response Predicted Predicted
Mean Value Value Response SD ParameterValue
1 4.999940x10* 4.999908x10* 1.697100x10°° 7.959722
ua=10 ;ﬁ=10_4; £=10"°; Kn =10;
1| 5.000060x10*" 4.999949x10! 2.146285x10° | 8.334934
pa=10;4=10"; £=10"°;K, =50
1] 4.999974x10* | 4.999958x10* | 3.250068x10° | 9.056938
ua=10;f=10"; ¢=10"° ;K =100;
1 5.000045x10*! 5.000002x10* 3.294413x10° 9.338401
Exact Response Exact Response Exact Parameter
Value SD Value
4.999981x10* 4.999981x10° 10.0

e) Measurements with 0.001% relative standard deviation ( Yij =10‘5)

Table 4.13 presents results predicted by the PM-CMPS methodology when sets comprising
increasingly more experiments, all having relative standard deviations of 0.001%, are being
assimilated. After assimilating a set of K. =5 such experiments, the results presented in Table

4.13 indicate that the PM-CMPS methodology predicts the correct value of the response with 5

digits of accuracy, while the slab’s thickness is under-predicted by 5%. Increasing the numbers of
measurements from K, =5 experiments to K, =100 experiments per set enables the PM-CMPS

methodology to predict practically the exact value of the response, and also enables the prediction

of the slab thickness within a (negative) difference of 0.02 (2%) of the exact value.
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Table 4.13: Results predicted by PM-CMPS methodology for a slab of exact thickness na =10

after assimilating batches of experiments with f =107,

pa=10;4=10"; £=10"%K, =5;

n Experimental Predicted Predicted Predicted Predicted
Response Response Response SD Parameter Parameter SD
Mean Value
1| 4.999977x10* 4.999975x10! 1.796069x10°° 9.563645 6.465910x10*

,ua=lO;,B=10_5; £=107"%; Kn =10:

1| 4.999989x10!

4.999981x10* | 2.566375x10° | 9.786590

7.628210x10*

,ua:10;ﬂ=1075; e=10"%;K, =50;

1| 4.999980x10* 4.999979x10! 3.486978x10° 9.861132 9.236508x10*
2 | 4.999986x10"* 4.999981x10* 1.680819x10°® 9.987424 7.737391x10*
ua=10 f=10"; £=102 ; K, =100;
1| 4.999987x10* 4.999983x101 3.466796x10° 9.945714 9.359559x10*
2 | 4.999986x10* 4.999981x10! 1.927486x10° 9.983171 8.739583x10*
Exact Exact Exact
Response Response SD Parameter
4.999981x101 4.999981x10° 10.0

f) Discussion

The results presented in Tables 4.9 through 4.13 for the slab having the exact optical thickness
ua =10 reinforce the conclusions previously drawn from the analysis of the slabs of exact optical
thickness pa =3 and pa =7, respectively, namely that: (i) the PM-CMPS methodology under-
predicts the slab’s actual physical thickness when imprecise experimental results are assimilated,
even though the predicted responses agrees within the imposed error criterion with the
experimental results; (ii) the PM-CMPS methodology correctly predicts the slab’s actual physical
thickness when precise experimental results are assimilated, while also predicting the physically
correct response within the selected precision criterion.
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4.4.6 Prediction Limit for Single-Precision Computations: Slab of Exact Optical
Thickness=10.0

For single precision computations, the limits of prediction accuracy when applying the PM-CMPS
methodology are illustrated by the results presented in Table 4.14 for a slab of exact optical

thickness wa =15. Assimilating 169 extremely precise experiments, distributed normally with a

relative standard deviation f =10"around the exact response value, the PM-CMPS methodology

predicts the exact response value with 10 significant digits and the exact thickness within 0.2%.
This is a remarkable achievement for such a “deep penetration” paradigm problem, in which

exponentially fewer gamma rays originating deeply within the slab escape to its surface.

Table 4.14: Prediction limit for single-precision computations using the PM-CMPS methodology

pa=15;4=10"; £=10";K, =169;
n Experimental Predicted Response | Predicted Response SD Predicted Parameter
Response Mean Value
Value
1 | 5.000000x10% 5.000000x10* 3.498662x10° 15.41315
Exact Response Exact Response SD Exact Parameter
4.999999909x10! 4.999999909x10® 15.0

The results in this Section indicate that for optically thin slabs, both the traditional chi-square-
minimization method and the PM-CMPS methodology predict the slab’s thickness accurately. For
optically thick slabs, the results obtained in this work have led to following conclusions: (i) the
traditional inverse-problem methods based on the minimization of chi-square-type functionals fail
to predict the slab’s thickness; (ii) the PM-CMPS methodology under-predicts the slab’s actual
physical thickness when imprecise experimental results are assimilated, even though the predicted
responses agrees within the imposed error criterion with the experimental results; (iii) the PM-
CMPS methodology correctly predicts the slab’s actual physical thickness when precise
experimental results are assimilated, while also predicting the physically correct response within
the selected precision criterion. For single precision computations, the limits of prediction

accuracy when applying the PM-CMPS methodology were illustrated by assimilating 169

extremely precise experiments, distributed normally with a relative standard deviation ,B=10’7

around the exact response value, and showing that the PM-CMPS methodology predicts the exact
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response value with 10 significant digits and the exact thickness within 0.2%, --a remarkable
achievement for such a “deep penetration” paradigm problem. Most of the results obtained in this
work correspond to realistic measured standard deviations, obtainable routinely in gamma-ray
measurements. The “very precise” measurements were used for illustrative purposes, to highlight
the fact that the accuracy of the results predicted by using the PM-CMPS methodology in the
“inverse predictive” mode is limited by the precision of the measurements, not by the PM-CMPS

methodology or by its underlying computational algorithm.

5 PREDICTIVE MODELING APPLICATION TO SAVANNAH RIVER NATIONAL
LABORATORY'’S F-AREA COOLING TOWERS

Abstract:

This Chapter illustrates the application of the PM-CMPS methodology to the SRNL F-AREA
cooling towers model and actually measured data to obtain predicted optimal nominal values for
the model responses and parameters, along with reduced predicted standard deviations for the
predicted model parameters and responses. The results presented in this chapter demonstrate that
the PM-CMPS methodology reduces the predicted standard deviations to values that are smaller
than either the computed or the experimentally measured ones, even for responses (e.g., the outlet
water flow rate) for which no measurements are available. These improvements stem from the
global characteristics of the PM-CMPS methodology, which combines all of the available
information simultaneously in phase-space, as opposed to combining it sequentially, as in current

data assimilation procedures.

5.1 Introduction

A mechanical draft cooling tower (MDCT) discharges waste heat from an industrial process into
the atmosphere. Using a numerical simulation model of the cooling tower together with
measurements of outlet air relative humidity, outlet air and water temperatures enables the
quantification of the rate of thermal energy dissipation removed from the respective process. In
addition to computing the temperature drop of the cooling water as it passes through the tower, a
MDCT model that derives heat dissipation rates from thermal imagery needs to convert the
remotely measured cooling tower throat or area-weighted temperature to a cooling water inlet

temperature. Therefore, a MDCT model comprises two main components, namely: (i) an inner
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model which computes the amount of cooling undergone by the water as it passes through the
tower as a function of inlet cooling water temperature and ambient weather conditions (air
temperature and humidity); and (ii) an outer model which uses a remotely measured throat or area-
weighted temperature and adjusts the inlet water temperature to match the target temperature of
interest. The MDCT model produces an estimate of the rate at which energy is being discharged
to the atmosphere by evaporation and sensible heat transfer. The sensible heat transfer is estimated
using the computed change in air or water enthalpy as it passes through the MDCT. If the MDCT
fans are on, a prescribed mass flow rate of air and water is used. If the MDCT fans are off, an
additional mechanical energy equation is iteratively solved to determine the mass flow rate of air.
The flow regime in the fill section of a cooling tower, which can be cross-flow or counter-flow,
determines the type of the respective cooling tower.

This Section illustrates the application of the PM-CMPS methodology to the MDCT model
developed by Aleman and Sebastian (2015) and extended by Cacuci and Fang (2016) for
computing the steady-state thermal performance of the F-AREA cooling towers at the Savannah
River National Laboratory. The MDCT model is presented in Section 5.2. Using as inputs the
temperature and mass flow rate of the incoming water together with the temperature and humidity
ratio of the incoming ambient air, this model computes the temperature and mass flow rate of the
effluent water, as well as the temperature and water vapor content of the exhaust air. The air mass
flow rate is specified when the cooling tower operates in the mechanical draft mode. When the fan
is turned-off, the cooling tower operates in the natural draft/wind-aided mode, in which case the
air mass flow rate is calculated using the numerical model.

During the period from April, 2004 through August, 2004, a total of 8079 measured benchmark
data sets for the F-area cooling towers (fan-on case) were recorded every fifteen minutes at SRNL.
These measured quantities provide the basis for choosing the state functions underlying the
mathematical modeling of the cooling tower. Section 5.3 presents the results for the sensitivity
analysis of responses of interest, using the cooling tower adjoint sensitivity model which was
developed by applying the general adjoint sensitivity analysis methodology (ASAM) for nonlinear
systems, which was originally developed by Cacuci (1981). The response sensitivities are needed
for (i) ranking the parameters in the order of their importance for contributing to response
uncertainties; (ii) propagating the uncertainties (variances and covariances) in the model

parameters to quantify the uncertainties (variances and covariances) in the model responses; (iii)
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performing predictive modeling, which includes assimilation of experimental measurements and
calibration of model parameters to produce optimally predicted nominal values for both model
parameters and responses, with reduced predicted uncertainties. in Section 5.4 presents the results
of applying the PM-CMPS methodology to reduce the uncertainties in the predicted results. At the
locations where measurements of outlet air relative humidity, outlet air temperature, and outlet
water temperature were available, the PM-CMPS methodology is shown to reduce the predicted
standard deviations of predicted responses to values that are smaller than either the computed or
the experimentally measured responses. Section 5.4 also shows that the PM-CMPS methodology
reduces the predicted uncertainties for responses (such as the distributions of the air and water
temperatures, and the air humidity inside the fill section of the cooling tower) for which no direct

measurements are available.

5.2 Mathematical Model of the Counter-Flow Cooling Tower

The counter-flow cooling tower is schematically presented in Figure 5.1, which indicates that
forced air flow enters the tower through the “rain section” above the water basin, flows upward
through the fill section and the drift eliminator, and exits at the tower’s top through an exhaust that
encloses a fan. Hot water enters above the fill section and is sprayed onto the top of the fill section
to create a uniform, downward falling, film flow through the fill’s numerous meandering vertical
passages. Film fills are designed to maximize the water free surface area and the residence time
inside of the fill section. Heat and mass transfer occurs at the falling film’s free surface between
the water film and the upward air flow. The drift eliminator above the spray zone removes
entrained water droplets from the upward flowing air. Below the fill section, the water droplets
fall into a collection basin, placed at the bottom of the cooling tower. The heat and mass transfer
processes occur overwhelmingly in the fill section. Modeling the heat and mass transfer processes
between falling water film and rising air in the cooling tower’s fill section is accomplished solving
the following balance equations: (A) liquid continuity; (B) liquid energy balance; (C) water vapor
continuity; (D) air/water vapor energy balance. The assumptions used in deriving these equations

are as follows:

1. the air and/or water temperatures are uniform throughout each stream at any cross section;
2. the cooling tower has uniform cross-sectional area;
3. the heat and mass transfer occur solely in the direction normal to flows;
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the heat and mass transfer through tower walls to the environment is negligible;
the heat transfer from the cooling tower fan and motor assembly to the air is negligible;

the air and water vapor mix as ideal gasses;

N o a s

the flow between flat plates is unsaturated through the fill section.
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Figure 5.1. Flow through a counter-flow cooling tower.

The fill section is modeled by discretizing it in vertically stacked control volumes as depicted in
Figure 5.2. In mechanical draft mode, the mass flow rate of dry air is specified. With the fan off
and hot water flowing through the cooling tower, air will continue to flow through the tower due
to buoyancy. Wind pressure at the air inlet into the cooling tower will also enhance air flow through
the tower. The air flow rate is determined from the overall mechanical energy equation for the dry
air flow. The heat and mass transfer between the falling water film and the rising air in a typical

control volume of the cooling tower’s fill section is presented in Figure 5.3.
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Figure 5.2. Control volumes (i =1..,1 ) comprising the counter-flow cooling tower, together with
the symbols denoting the forward state functions (mx),Tvg‘),T;‘),a;“), i=1.., I) and the adjoint

state functions (yx’,rv(v‘),r;‘),o“); i=1.,1 ) respectively.
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Figure 5.3. Heat and mass transfer between falling water film and rising air in a typical control
volume of the cooling tower’s fill section.
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The state functions underlying the cooling tower model (cf., Figures 5.1 through 5.3) are as

follows:
1. the water mass flow rates, denoted as m" (i = 2,...,50), at the exit of each control volume,
i, along the height of the fill section of the cooling tower;
2. the water temperatures, denoted as T." (i = 2,...,50), at the exit of each control volume, i,

along the height of the fill section of the cooling tower;

3. the air temperatures, denoted as T” (i =1,...,49) , at the exit of each control volume, i,
along the height of the fill section of the cooling tower; and

4, the humidity ratios, denoted as @" (i =1,...,49), at the exit of each control volume, i,

along the height of the fill section of the cooling tower.
It is convenient to consider the above state functions to be components of the following (column)

vectors:

m 2 [, ] T, [T, T T 210 70T 020, 6

w

The governing conservation equations within the total of 1=49 control volumes represented in

Figure 5.2 are as follows:

A. Liguid continuity equations:

(i) Control Volume i=1:

Nl(l)(mW,TW,Ta,m;a)é

m® —m, .

i R T® 790622+ 0Y)

(ii) Control Volumes i=2,..., I-1:
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(iii) Control Volume i=lI:
N (m,, T, T, 0a)2

m(l+1) _m(l) + M(rlaaa) Pv(sHl)(TV\(/Hl)’a) (D(I)Patm -0 (54)
w w R T(|+l) ’

- TM(0.622+ ")
B. Liquid energy balance equations:

(i) Control Volume i=1:

Nz (m,,. T, Ty ora) 2m, 0y (T, 0, 0) = (7,7 = T,7)H(m, @) (5.5)
- (12 )~ ~ M (T2, 0) =0 |

(if) Control Volumes i=2,..., I-1:

NS (M, T, T, i) 2mOPhO (10,0 - (T6 - TO)H(m, )

_ _ _ _ _ i _ (5.6)
—m‘s\:ﬂ)h?H) (Tv\(l|+1),a) _ (m\s\;) _ m\s\;+1))h§(1|’:-vl) (Tv\(l|+1),u) — O,
(iii) Control Volume i=I:

N (m,, T, T, @;a) 2mPh" (T8, a) - (T -TL)H (M, , ) 5.7)

_ mévl+l)hil+1) (TV§I+1)|(’«) _ (mévl) _ m\s\,l+l))hé!vtl) (TV\SHl),a): O, .
C. Water vapor continuity equations:

(i) Control Volume i=1:
N®(m,, T, T, 00)20? - + W"|” | v =0 (5.8)
ma

(ii) Control Volumes i=2,..., I-1:
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(iii) Control Volume i=I:

M (1+1)
—0)“) + m,,~ —m,

N (m,,T,. T, 0a)2o ]

n

D. The air/water vapor energy balance equations:

(i) Control Volume i=1:

(€)
N (m,, T, T, 00) 2 (10 - T)CH (22138

(1 T H(m, ) (M, ~mONET )
| ma | |ma |

(if) Control Volumes i=2,..., I-1:

T +273.15
o

NG (M, T T 050) 2 (T - TC (2———,

LW -TO)H(m, o)
m, |
(my” —my g’ T 0)

m,|

_(D(i)hg(;i,)a (Ta(i),(l)

(i+1) pa (i+1) 7 (i+1) A
@ DRI (TID g) =0;

,a

(iii) Control Volume i=I:

A T
N (m,, T, T,.0a)2 (T, -TM)C, 02 .
—ohO(TW, a) +(Tv5'+1)—T;'))H(ma,‘1)+
gal'a
m, |
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( w w ) g.w ( w )+C\)inhg,a(Ta,in’a):0'

m.|

77

)— 0¥ (T,°,a)

DR (T2 :
+0?h? (T2 a)=0;

(N 4 273.15
—’a

(5.9)

(5.10)

(5.11)

(5.12)

5.13



The components of the vector a, which appears in Egs. (5.2) through (5.13) comprise the model

parameters, which are generically denoted as «;, i.e.,

a2 (ayay ). (5.14)

where N_ denotes the total number of model parameters. These model parameters are

experimentally derived quantities, and their complete distributions parameters are not known;
however, we have determined the first four moments (means, variance/covariance, skewness, and
kurtosis) of each of these parameter distributions, as detailed in Section 5.4. Equations (5.2)
through (5.13) are solved by Newton’s method together with the GMRES linear iterative solver
for sparse matrices (Saad, Y. and Schultz, M.H. 1986) provided in the NSPCG package (Oppe et
al, 1988). This GMRES solver approximates the exact solution-vector of a linear system by using
the Arnoldi iteration to find the approximate solution-vector by minimizing the norm of the

residual vector over a Krylov subspace. The specific computational steps are as follows:

(@  Write Egs.(5.2) through (5.13) in vector form as

N(u)=0, (5.15)

where the following definitions are used:

N2(ND, LN ND L NDY U (m,, T, T, 0)'; (5.16)

(b)  Set the initial guess, U,, to be the inlet boundary conditions;

(c)  Start outer iteration loop: Steps d through g, below, constitute the outer iteration
loop; for n=0,1,2,..., iterate over the following steps until convergence:

(d)  Start inner iteration loop: for m=1,2,...,use the iterative GMRES linear solver
with the Modified Incomplete Cholesky (MIC) preconditioner, with restarts, to solve, until

convergence, the following system to compute the vector oU :

J(u,)6u=-N(u,), (5.17)
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where n is the current outer loop iteration number, and the Jacobian matrix of derivatives of Egs.

(5.3) through (5.13) with respect to the state functions is following the block-matrix:

Al Bl Cl Dl
J(u,)= A B, G Dy (5.18)
A3 BS C3 D3
A, B, C, D,
The components of the matrices appearing in Eq.(5.18) are defined as follows:
s ONY .
a;’ J+l),£ 1,2,3,4;i=1,...,1; j=1..,1; (5.19)
o N i 5.20
bl & i (=123 4T =115 j=1 s (5.20)
c;JAaN 0=1,234i=1..1; j=1..,1; (5.21)
oty
d"iAaN) =1..,1; j=1...1; 5.22
A j=L.0; (5.22)
Computing the derivatives of the “liquid continuity equations” with respect to m y|elds
1
-1 1 .
A=l 629
0 0 1 0
0O 0. 11

Computing the derivatives of the “liquid continuity equations” with respect to Tvsj) yields:
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bt 0 0 0
0 b2 . 0 0
B.2(b) = . . . . ] (5.24)
0 b1|—1,|—1 0
0 0 b
where
ii A M (ma’u) Pv(si+l) (Tv5i+l)1a) a
by & -2 S e L (5.25)

Computing the derivatives of the “liquid continuity equations” with respect to Ta“) yields:

¢t 0 0 0
0 c? 0 0
Clé(c{’)mz . Lo : p (5.26)
0 0 ¢, ¥t 0
0 0 0o
where
iiaM(Mm  a oVP
oyt 2 M) o (5.27)

R 19T (0622+0)

Computing the derivatives of the “liquid continuity equations” with respect to »'? yields:

d* 0 . 0 0
0 d?2 . 0 0
Dlé(dl'")m= S L (5.28)
0 0 . d* o0
o o0 . 0 d

Where
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M (m,, P )
(_a (l) atm -1\ (5.29)

R 0622+ [TV |[0622+0" |

@

d)' -

Computing the derivatives of the liquid energy balance equations with respect to mévj) yields:

a' 0 0 0

N >oakt . 0 0
Ax@) = . (5.30)

0 0 a0

0 0 a'™t a)!

Where

a;“l 2 hﬁ‘)(ij",a) — hé”l) (TVS””,a), i=2,...,1; j=i-1 (5.31)
a‘z'i £ hé‘*” (Tv§‘+1’,a) — h?*l) (TM(,M),a), i=1..,1; j=Ii. (5.32)

Computing the derivatives of the liquid energy balance equations with respect to T yields:

b 0 . 0 0
b2 b2 . 0 0
B,2(k’) =| . . . . . (5.33)
0 0 .Mt o0
0 0 . bt b

Where
e M i
2 _mw a_l_(,)! 1=2Z..,1; J—I_, (534)
. 8h(l+l) ) ) 6h(l+1)
A (i+1) f _ (|)_ (i+1) gw C i C i1
b, =-m, T (W W )8TV§”1) H(m,,0); i=1..1; j=1.  (5.35)

Computing the derivatives of the liquid energy balance equations with respect to Ta(” yields:

81



¢t 0 0 0
0 ci? 0 0
C, =(c}’ )M = . , (5.36)
0 0 o™t 0
0 0 0 c
where
(5.37)

¢'EH(mM,,a); i=1..,1; j=i

Computing the derivatives of the liquid energy balance equations with respect to o' yields:
(5.38)

D, = I:d;j:lm =0.

Computing the derivatives of the water vapor continuity equations with respect to mévj) yields:

10 .0 0
1 1.0 0
A3é(a;i)mzmi o (5.39)
“l'0 0 . -1 0
0 0 1 -1

Computing the derivatives of the water vapor continuity equations with respect to Tvé‘) yields:

B,2[by']| =0 (5.40)

Computing the derivatives of the water vapor continuity equations with respect to Ta(j) yields:

C,2[c’] =0 (5.41)

Computing the derivatives of the water vapor continuity equations with respect to o' yields:
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0 -1. 0

D,2(dy’) = . . . . .| (5.42)
0 0 . -11
0 0 0 -1

Computing the derivatives of the air/water vapor energy balance equations with respect to mévj)

yields:
at 0 0 0
o2 . 0 0
A7) = . C (5.43)
0 0 a0
0 o0 a,' ™t ay
where

B U+ -|-(i+1),
arralon (w00 5o g (5.44)
m

a

héi;/l) (TVSiJrl) , (1) .
m ’

a

a;' = - i=1..,1; j=i. (5.45)

Computing the derivatives of the air/water vapor energy balance equations with respect T.”

yields:
byt 0 . 0
0 b2 . 0
B.2(W) = . . . ., (5.46)
0 0 . b™* 0
0o 0 . 0 b,
where
ia Tl w ey O . o
L, (my) —m )Wm(ma,a), =115 j=i.. (5:47)
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Computing the derivatives of the air/water vapor energy balance equations with respect to Ta(”

yields:
¢t ¢’ 0 0
0 c2? 0 0
C,2(ci’) = , (5.48)
0 0 Czll_l 1-1 CJ' 1,1
0 0 0o
where
acy g . oh®
o & (10 1 0) S oo e 2R gy o Tae HM® 5y 4o (5.49)
ot 2 ot m,
(i) ah(|+1)
||+1 Ac(l)(w a)+m(l+l)aTT. i:].,...,l _1, J—i+1- (550)

Computing the derivatives of the air/water vapor energy balance equations with respect to o'”

yields:
di* d* . 0 0
0 d2? 0 0
D, £(d)'),, = . 50
0 0 dl 1,1-1 dl—l,l
4 4
0 0 0 d,’
where
di A (n) hO T @) i=1..1; j=i; (5.52)
d' i+l A h(l+1) (T('+1) a);, i=1..,1-1 j=i+1. (5.53)

In view of Egs. (5.19) through (5.53) , the Jacobian represented by Eq. (5.18) is a non-symmetric
sparse matrix of order 196 by 196, with 14 nonzero diagonals. The non-symmetric diagonal storage
format is used to store the respective 14 nonzero diagonals, so that the “condensed” Jacobian
matrix has dimensions 196 by 14. Since the Jacobian is highly non-symmetric, the cost of the

iterations of the GMRES solver grows as O(m? ), where m is the iteration number within the
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GMRES solver. To reduce this computational cost, the GMRES solver is configured to run with
the restart feature. The optimized value for the restart frequency is 10 for this specific application.
The MIC preconditioner can speed up the convergence of the GMRES solver using the parameters
OMEGA and LVFILL in the modified incomplete factorization methods for the MIC
preconditioner; for this application the following values were found to be optimal: OMEGA =
0.000000001 and LVFILL = 1. The Jacobian is not updated inside the sparse GMRES solver. The
default convergence of GMRES is tested with the following criterion ,

L (2,2) >]§ . 650

where Z™ denotes the pseudo-residual at m™-iteration of the GMRES solver, su™ is the solution

of Eq. (5.17) at m"-iteration, and ¢ denotes the stopping test value for the GMRES solver.
(e)  Set the next step:

U, =Uu, +ou, (5.55)

where n is the current outer loop iteration number, and update the Jacobian.
(f)  test for convergence of the outer loop until the error in the solution is less than a
specified maximum value. For solving Egs. (5.2) through (5.13), the following error

criterion has been used:

(i) (i) (i) i
jom?] Jo1.] JoT,| |560()|J <10° (5.56)

(i (i ’ (i (i)
m,, T T, w

w

error = max(

(g) Set n=n+1, thus closing the outer iteration loop, and go to step (d).
The solution strategy described above in steps (a) through (g), cf. Egs.(5.15) through (5.56) for
solving Eqgs. (5.2) through (5.13) converged successfully for all the 8079 benchmark data sets,
which will be described in Section 5.4. For each of these benchmark data sets, the outer loop
iterations described above (i.e., steps ¢ through g) converge in 4 iterations; for each outer loop

iteration, the GMRES solver used for solving Eq. (5.17) converges in 12 iterations. The “zero-to-
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zero” verification of the solution’s accuracy using Egs. (5.2) through (5.13) gives an error of the
order of 107".

The responses that correspond to the measurements to be described in Section 5.4, below, are as
follows:

2
w

.
(a) thevector m, = [m ),ml! *1)] of water mass flow rates at the exit of each control

volume i, (i =1,...,49);

;
(b)  the vector T, = [TVSZ),...,TVS'”)] of water temperatures at the exit of each control

volume i, (i =1,...,49);

;
(c) thevector T, = [Ta(l),...,Ta(”] of air temperatures at the exit of each control volume

A f . . . .-
(d)  the vector RH= [RH @ . RH “)} , having as components the air relative humidity

at the exit of each control volume i, (i =1,...,49).
While the water mass flow rates, the water temperatures, and the air temperatures are obtained

directly as the solutions of Egs.(5.2) through (5.13), the air relative humidity, RH® , is computed

for each control volume using the expression :

() ( Q)(i)Patm j
P lo" a 0)
RH(')—ﬁxloo—m(Jr—({fzleOO (5.57)
Vs a ! e 0 Ta(i))

The bar plots, showing the respective values of the water mass flow rates, the water temperatures,
the air temperatures, and the air relative humidity, at the exit of each control volume, are presented

in Figures 5.4 through 5.7, below.
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Figure 5.4. Bar plot of the water mass flow rates mx) , (i=2,...,50), at the exit of each control
volume along the height of the fill section of the cooling tower.
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Figure 5.5. Bar plot of the water temperatures Tvsi) , (i=2,...,60), at the exit of each control
volume along the height of the fill section of the cooling tower.
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Figure 5.6. Bar plot of the air temperatures T", (i=1,...,49), at the exit of each control
volume along the height of the fill section of the cooling tower.
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Figure 5.7. Bar plot of the air relative humidity RH™ , (i =1,...,49),, at the exit of each control
volume along the height of the fill section of the cooling tower.
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5.3 Adjoint Sensitivity Analysis of Cooling Tower Model

All of the responses of interest in this section, e.g., the experimentally measured and/or computed
responses discussed in the previous Sections, can be generally represented in the functional form

R(m,, T, T, @a), where R is a known functional of the model’s state functions and parameters.
As generally shown by Cacuci (1981), the sensitivity of such a response to arbitrary variations in
the model’s parameters sa 2 (50:1,...,50:Na ) and state functions om,,,0T,,0T,,00 is provided by
the response’s Gateaux (G-) differential DR(mSV,Tjj,Tf,mO;a°;5mW,5TW,5Ta,5co;5a), which is

defined as follows:

DR(m), T, T;,0%;a’;0m,,,5T,, 8T, 60;50) £

i[R(mSV +eom,, T2 +&0T,, T +&0T,,0° + edm; 0’ + 55(1)] (5.58)
de ¢ £=0
=DRj.« + DR,

direct indirect ?

where the “direct effect” term, DR,.., and the “indirect effect” term, DR .., are defined,

respectively, as follows:

oq,

OR i OR i OR i OR i
DR 23| " _smi™ 4 = 5100 L Z0 5710 4 7 540
indirect — (6m5\:+1) w aTVEH-l) w oT (i) a aa)(l)

a

N(Z

DRdirect = Z[ﬁé‘al J’ (559)
i=1
|

(5.60)
=R,-6m, +R,-6T,+R,-0T, +R, - So.

The components of the vectors R, = (r}l),..., rﬁ(')), ?=1,2,3,4, which appear in Eq.(5.60) are defined as

follows:

=1l (5.61)
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Since the model parameters are related to the model’s state functions via Egs. (5.2) through (5.13)
, it follows that variations in the model parameter will induce variations in the state variables,

which can be computed by solving the G-differentiated model equations, namely:
d 0 .0 _
E[N(u +&ou;a. +35a)l=0 =0 (5.62)

Performing the above G-differentiation on Egs. (5.2) through (5.13) yields the following forward

sensitivity system:

A, B, C, D,\(ém,) (Q,
A, B, C, D,||oT, | |Q, (5.63)
A, B, C, D,|| T, | | Q,
A, B, C, D,| o) (O,

A

where the components of the vectors Q, = (qgl),..., qﬁ')), 0 =1,2,3,4, are defined as follows:

Nll

| ()
q" EZL%&%]; i=1..1; (=1234, (5.64)

j=1 80(1

and where the matrices A, ,B,,C,,D,, (=1,2,3,4, have been defined in Section 5.2.
The system represented by Eq. (5.63) is called the forward sensitivity system, which can be solved,

in principle, to compute the variations in the state functions for every variation in the model

parameters. In turn, the solution of Eq. (5.63) can be used in Eq. (5.60) to compute the “indirect

effect” term, DR, ;... However, since there are many parameter variations to consider, solving
Eq. (5.63) repeatedly to compute DR, ;.. becomes computationally impracticable. The need for

solving Eq. (5.63) repeatedly to compute DR, ., can be circumvented by applying the Adjoint
Sensitivity Analysis Methodology (Cacuci, 1981), which proceeds by forming the inner-product

of Eq. (5.63) with a yet unspecified vector of the form [uw,rw,ra,o]T, having the same structure

as the vector u=(m,,T,, Ta,(o)T, transposing the resulting scalar equation and subsequently

using Eq. (5.60). By requiring the vector [uw,rw,r‘,ﬂ,o]T to satisfy the following adjoint sensitivity

system:
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Al Al Al Al n, R,
cl cl c! ci|n, R, |
D! D) D] D!\ o R,

the “indirect effect” term can be expressed in the following form

DRindirect =Ry 'Q1+Tw 'Qz T, 'QS +0'Q4- (5.66)

The system represented by Eq. (5.65) is called the adjoint sensitivity system, which —notably— is

independent of parameter variations. Therefore, the adjoint sensitivity system needs to be solved

only once, to compute the adjoint functions [pw,rw,ra,o]T . In turn, the adjoint functions are used

to compute DR, ..., efficiently and exactly, using Eq. (5.66). The units of the adjoint functions

are determined from Eq. (5.66) through dimensional analysis:

()= s [0 )= [a] = [o]= (557

where ”[R]” denotes the unit of the response R, and where the units for the respective equations

are as follows:

0 [Ng]=[-1; [N,]=—". (5.68)

Table 5.1, below, lists the units of the adjoint functions for four responses:R=T” R=T
R2RH®and R=m®™ respectively, in which, T” denotes exit air temperature; T.** denotes

exit water temperature; RH® denotes exit air relative humidity; and mV(VSO’ denotes exit water mass

flow rate.
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Table 5.1. Units of the adjoint functions for different responses.

Responses [ﬂfﬂ [T\E\:)] [rf)] [o(i)]
R=TX K/(kg/s) | K/Q/s) K K/(J/kg)
RETS | Kflgfs) | KGOS | K K/(3/kq)

RERH® | (kg/s)" (3/s)” - (3/kg)”
R=m® - (3/kg)" kg/s (kg/s)/(3/kg)

Note that the adjoint sensitivity system represented by Eq. (5.65) is linear in the adjoint state
functions, so it can be solved by using numerical methods appropriate for large-scale sparse linear
systems. In particular, we solved it by using NSPCG, (Oppe et al.1988); 12 to 18 iterations sufficed
for solving the adjoint system within convergence criterion of ¢ =10 Bar plots of the adjoint
functions corresponding to the four measured responses of interest, namely: (i) the exit air
temperature R =T"; (ii) the outlet (exit) water temperature R =T (iii) the exit air humidity

)

ratio R 2 RH®; and (iv) the outlet (exit) water mass flow rate R=m®" are presented by Cacuci

and Fang (2016).
The model responses of interest in this work are the following quantities: (i) the outlet air

temperature, T.”; (ii) the outlet water temperature, T.*; (iii) the outlet water flow rate, m'*”;

and (iv) the outlet air relative humidity, RH® . The analytical expressions of these sensitivities
are presented by Cacuci and Fang (2016), and their respective numerical values and rankings, in
descending order, are reproduced in Tables 5.2 through 5.5, below. Note that the relative

sensitivity, RS(e;), of a response R(e;) to a parameter «; is defined as
RS(o ) 2[dR(e;)/de; [ & /R(a;)]- Thus, the relative sensitivities are unit less numbers that are

very useful in ranking the sensitivities to highlight their relative importance for the respective
response. For example, a relative sensitivity of 1.00 indicates that a change of 1% in the respective
parameter will induce a 1% change in a response that is linear in the respective sensitivity. The
higher the relative sensitivity, the more important the respective parameter to the respective

response.
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The numerical results and ranking of the relative sensitivities of the air outlet temperature with

respect to all of the model’s parameters are provided, in descending order of their respective

magnitudes, in Table 5.2, below, along with their respective relative standard deviations.

Table 5.2. Ranked relative sensitivities of the outlet air temperature, Ta(l) .

Rel. Sens.

Rank Parameter (ai ) Nominal Rel. std.
# Value RS(e;) | dev. (%)
1 Inlet air temperature, Ta,in 299.11 K 0.4858 1.39
2 Air temperature (dry bulb) , Tdb 299.11 K 0.4829 1.39
3 Inlet water temperature, Tw,in 298.79 K 0.2756 0.57
4 Dew point temperature , po 292.05 K 0.1834 0.81
5 Pus(T) parameter, @, 25.5943 -0.0945 0.04
6 Pus(T) parameter, & 5229.89 0.0618 0.08
7 Inlet air humidity ratio, o, 0.0138 0.0100 14.93
8 Fan shroud inner diameter, D, 41m -0.0056 1.00
9 Water enthalpy he(T) parameter, @, ; 4186.51 0.0050 0.04
10 Wetted fraction of fill surface area, W, 1.0 -0.0049 0.00
11 Nusselt number, NU 14.94 -0.0049 34.0
12 Fill section surface area, A, 14221 m? -0.0049 25.0
13 Dynamic viscosity of air at T=300K, [l | 1.983E-5 kg/(ms) 0.0045 4.88
14 Nu parameter, a, , 0.0031498 -0.0045 31.75
15 Reynolds number, Re, 4428 -0.0045 15.17
16 Fill section flow area, Ay, 67.29 m? 0.0045 10.0
17 Cpa(T) parameter, a, ., 1030.5 0.0032 0.03
18 Inlet water mass flow rate, M, ;, 44.02 kg/s 0.0031 5.0
19 hy(T) parameter, @, 2005744 -0.0030 0.05
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20 Dav(T) parameter, a 4,, 2.65322 0.0028 0.11
21 Exit air speed at the shroud, Vi 10.0 m/s -0.0028 10.0
22 Inlet air mass flow rate, M, 155.07 kg/s -0.0028 10.26
23 Heat transfer coefficient multiplier, f,, 1.0 -0.0026 50.0
Thermal conductivity of air at T=300K,

24 kair 0.02624 W/(m K) -0.0026 6.04
25 Mass transfer coefficient multiplier, f, 1.0 -0.0022 50.0
26 Sherwood number, Sh 14.13 -0.0022 34.25
27 Da(T) parameter, a, 4., -6.1681E-3 -0.0019 0.37
28 h¢(T) parameter, a,; 1143423 -0.0017 0.05
29 Da(T) parameter, @, 4, 7.06085E-9 -0.0015 0

30 Atmospheric pressure, Py 100586 Pa -0.0013 0.40
31 Kinematic viscosity of air at 300 K, v 1.568E-5 m?/s -0.00074 12.09
32 Prandlt number of air at T=80 C, Pr 0.708 0.00074 0.71
33 Schmidt number, SC 0.60 -0.00074 12.41
34 he(T) parameter, 1815.437 -0.00074 0.19
35 Dav(T) parameter, a; ,, 6.55265E-6 0.00063 0.58
36 Nu parameter, @, y, 0.9902987 -0.00032 33.02
37 Fill section equivalent diameter, Dh 0.0381 m 0.00032 1.0

38 Cpa(T) parameter, a, ., -0.19975 -0.00018 1.0

39 Cra (T) parameter, @, ., 3.9734E-4 0.00010 0.84
40 Sum of loss coefficients above fill, Ky, 10.0 0.000 50.0
41 Fill section frictional loss multiplier, f 4.0 0.000 50.0
42 Nu parameter, @, y, 8.235 0.000 25.0
43 Nu parameter, as y, 0.023 0.000 38.26
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44 Cooling tower deck width in x-dir, W, 8.5m 0.000 1.0
45 Cooling tower deck width in y-dir, W, 8.5m 0.000 1.0
Cooling tower deck height above ground,
46 Ade 10.0 m 0.000 1.0
47 Fan shroud height, Az, 3.0m 0.000 1.0
48 Fill section height, Az, 2.013m 0.000 1.0
49 Rain section height, AZ,;, 1.633m 0.000 1.0
50 Basin section height, AZ, 1.168 m 0.000 1.0
51 Drift eliminator thickness, Az, 0.1524 m 0.000 1.0
52 wind speed, V,, 1.80 m/s 0.000 51.1

As the results in Table 5.2 indicate, the first 5 parameters (i.e., T,;,, Tgp, T,

w,in 1

Ty, 8g) have
relative sensitivities between ca. 10% and 50%, and are therefore the most important for the air

outlet temperature response, Ta(l) . The two largest sensitivities have values of 48%, which means

that a 1% change in T,;, or Ty would induce a 0.48% change in Ta(l). The next two parameters

in
(i.e., @ and o) have relative sensitivities between 1% and 6%, and are therefore somewhat

important. Parameters #8 through #16 (i.e.,. Dy, a,¢, Wi, NU, A ¢, 1, a,,, Re;, Ay, ) have

relative sensitivities of the order of 0.5%. The remaining 36 parameters are relatively unimportant

for this response, having relative sensitivities smaller than 1% of the largest relative sensitivity

(with respect toT, ;,) for this response. Positive sensitivities imply that a positive change in the

respective parameter would cause an increase in the response, while negative sensitivities imply
that a positive change in the respective parameter would cause a decrease in the response.
The results and ranking of the relative sensitivities of the outlet water temperature with respect to

the most important 12 parameters for this response are listed in Table 5.3. The largest sensitivity

of T is to the parameter T, and has the value of 0.548; this means that a 1% increase in Ty,
would induce a 0.548% increase in TV§5°) The sensitivities to the remaining 40 model parameters
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have not been listed since they are smaller than 1% of the largest sensitivity (with respect to T, )

for this response.

Table 5.3. Most important relative sensitivities of the outlet water temperature, TVS

50)

Rank Nominal Rel. Sens. Rel. std.
4 Parameter (ai) value RS (Ofi) dev.(%)
1 Dew point temperature , Ty, 292.05 K 0.5482 0.81
2 Inlet air temperature, T, ;, 299.11 K 0.2318 1.39
3 Air temperature (dry bulb) , T, 299.11 K 0.2244 1.39
4 Pus(T) parameters, d, 25.5943 -0.1949 0.04
5 Pus(T) parameters, d, -5229.89 0.1282 0.08
6 Inlet water temperature, Tw,in 298.79 K 0.1066 0.57
7 Inlet air humidity ratio, @, 0.0138 0.0299 14.93
8 Fan shroud inner diameter, D, 41m -0.0085 1.00
9 Water enthalpy hf(T) parameter, a,; 4186.51 0.0082 0.04
10 Dav(Taw) parameter, a, 4,, 2.653 0.0071 0.11
11 Enthalpy hy(T) parameter, Ayg 2005744 -0.0062 0.05
12 Sherwood number, Sh 14.13 -0.0056 34.25

The results and ranking of the relative sensitivities of the outlet water mass flow rate with respect

to the most important 10 parameters for this response are listed in Table 5.4. This response is most

sensitive to m,,;, (a 1% increase in this parameter would cause a 1.01% increase in the response)

and the second largest sensitivity is to the parameter T, (a 1% increase in this parameter would

cause a 0.447% decrease in the response). The sensitivities to the remaining 42 model parameters

have not been listed since they are smaller than 1% of the largest sensitivity (namely, with respect

to m,,;,) for this response.
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(50)
w

Table 5.4. Most important relative sensitivities of the outlet water mass flow rate, m

Rank parameter (a,) Nominal Rel. Sens. Rel. std. dev.

# value RS () (%)
1 Inlet water mass flow rate, M, ;, 44.02 kg/s 1.0060 5.00
2 Inlet water temperature, Tw,in 298.79 K -0.4474 0.57
3 Dew point temperature , po 292.05 K 0.3560 0.81
4 Pvs(T) parameters, Q, 25.5943 -0.1416 0.04
5 Air temperature (dry bulb) , Ty, 299.11 K -0.1184 1.39
6 Inlet air temperature, T, ;, 299.11 K -0.1134 1.39
7 Pvs(T) parameters, & 5229.89 0.0930 0.08
8 Inlet air humidity ratio, 0.0138 0.0195 14.93
9 Fan shroud inner diameter, D, 41m -0.0117 1.00
10 Inlet air mass flow rate, M, 155.07 kg/s -0.0058 10.26

The results and ranking of the relative sensitivities of the outlet air relative humidity with respect
to the most important 20 parameters for this response are listed in Table 5.5. The first three

sensitivities of this response are quite large (relative sensitivities larger than unity are customarily
considered to be very significant). In particular, an increase of 1% in T, or T, would cause a
decrease in the response of 6.66% or 6.525%, respectively. On the other hand, an increase of 1%
in T, would cause an increase of 5.75% in the response. The sensitivities to the remaining 32

model parameters have not been listed since they are smaller than 1% of the largest sensitivity

(with respect to T, ;) for this response.
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Table 5.5. Most important relative sensitivities of the outlet air relative humidity, RH® .

Rel. Sens.

Nominal Rel. std. dev.
Rank # Parameter (¢ )
value RS (o) (%)
1 Inlet air temperature, T, ;, 299.11 K -6.660 1.39
2 Air temperature (dry bulb) , T, 299.11 K -6.525 1.39
3 Dew point temperature , Ty, 292.05 K 5.750 0.81
4 Inlet water temperature, Tw,in 298.79 K 0.747 0.57
5 Inlet air humidity ratio, @, 0.0138 0.3141 14.93
6 Pus(T) parameters, d, 25.5943 -0.3123 0.04
Wetted fraction of fill surface area,
7 1.0 0.1487 0.00
Wtsa
8 Fill section surface area, A, 14221 m? 0.1487 25.0
9 Nusselt number, NU 14.94 0.1487 34.0
Dynamic viscosity of air at T=300
10 1.983E-5 kg/(m s) -0.1388 4.88
K, U
11 Nu parameters, a, y, 0.0031498 0.1388 31.75
12 Fill section flow area, Ag, 67.29 m? -0.1388 10.0
13 Reynold’s number, Re 4428 0.1388 15.17
14 Dav(Taw) parameter, a, 4,, 2.65322 -0.1297 0.11
Mass transfer coefficient multiplier,
15 1.0 0.1023 50.0
fmt
16 Sherwood number, Sh 14.13 0.1023 34.25
17 Atmosphere pressure, P, 100586 Pa 0.0992 0.40
18 Da(Taw) parameter, a, 4, -6.1681E-3 0.0902 0.37
19 Dav(Taw) parameter, @, 4, 7.06085E-9 0.0682 0.00
20 Pus(T) parameters, &, -5229.89 0.0681 0.08
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Overall, the outlet air relative humidity, RH® , displays the largest sensitivities, so this response
is the most sensitive to parameter variations. The other responses, namely the outlet air
temperature, the outlet water temperature, and the outlet water mass flow rate display sensitivities
of comparable magnitudes.

5.4 Predictive Modeling: Optimal Best-Estimate Results with Reduced Predicted
Uncertainties

A total of 7668 measured data sets fall into the “unsaturated” case presented in this illustrative

example. The measured outlet (exit) air relative humidity, RH™* , was obtained using Hobo
humidity sensors. The accuracy of these sensors is depicted in Figure 5.7, which indicates the
following tolerances (standard deviations): +2.5% for relative humidity from 10 to 90%; between
+2.5% and £3.5% for relative humidity from 90% to 95%; and +3.5% ~ +4.0% from 95 to 100%.
However, when exposed to relative humidity above 95%, the maximum sensor error may
temporally increase by an additional 1%, so that the error can reach values between +4.5% to
+5.0% for relative humidity from 95 to 100%.

Al
J

Absolute Accuracy (%

0 20 40 60 80 100
Relative Humidity (%)

Figure 5.7: Humidity sensor accuracy plot (adopted from the specification of HOBO Pro v2).

The 7668 measured values of the outlet (exit) air relative humidity, RH™®*, considered to be

“unsaturated,” are presented in the histogram plot shown in Figure 5.8. As shown in this figure,
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although the computed relative humidity for each of the 7668 data sets is less than 100%, the
measured relative humidity RH™* actually spans the range from 33.0% to 104.1%; in this range,
6975 data sets have their respective RH™® less than 100% while the other 693 data sets have their

respective RH™® over 100%. This situation is nevertheless consistent with the range of the

sensors when their tolerances (standard deviations) are taken into account, which would make it

possible for a measurement with RH™* =105% to be nevertheless “unsaturated”. Consequently,
all the 7668 benchmark data sets plotted in Figure 5.8 were considered as “unsaturated”, since

their respective RH™* was less than 105%. This plot, as well as all of the other histogram plots

in this work, have their total respective areas normalized to unity.

Measured Air Outlet Relative Humidity Histogram Plot

0034

Relaive )
Frequency

0014

40 30 60 0 §0 0 100
Relative Humidity (%)

Figure 5.8: Histogram plot of the measured air outlet relative humidity, within the 7688 data sets
collected by SRNL from F-Area cooling towers (unsaturated conditions).

The statistical properties of the (measured air outlet relative humidity) distribution shown in
Figures 5.8 have been computed using standard packages, and are presented in Table 5.6. These
statistical properties will be needed for the uncertainty quantification and predictive modeling
computations presented in the main body of this work.

Table 5.6. Statistics of the air outlet relative humidity distribution [%].

Minimum | Maximum | Range | Mean | Std. Dev. | Variance Skewness Kurtosis
33.0 104.1 71.1 81.98 15.63 244.44 -0.60 2.55

The histogram plots and their corresponding statistical characteristics of the 7668 data sets for the

other measurements, namely for: the outlet air temperature [T, mgiy] Measured using the

100



“Tidbit” sensors; the outlet air temperature [T, ;om0 ] Measured using the “Hobo” sensors; and

the outlet water temperature [T ] are reported below in Figures 5.9 through 5.11, and Tables

w,out

5.7 through 5.9, respectively.

Air Outlet Temperature (Tidbit) Histogram Plot

0.104

Relative  0.084
Frequency

2927 2% 296 298 00 0 302 304 306
Temperature (K)

Figure 5.9. Histogram plot of the air outlet temperature measured using “Tidbit” sensors, within
the 7688 data sets collected by SRNL from F-Area cooling towers (unsaturated conditions).

Table 5.7. Statistics of the air outlet temperature distribution [K], measured using “Tidbit” sensors.

Minimum | Maximum Range Mean Std. Dev. Variance | Skewness | Kurtosis

290.06 307.89 17.83 298.42 3.42 11.71 0.34 2.52

Air Outlet Temperature (Hobo) Histogram Plot

0.104

Relaive 0987

F .
tequency |

292 2% 2% 298 300 302 4 306
Temperature (K)

Figure 5.10. Histogram plot of the air outlet temperature measured using “Hobo” sensors, within
the 7688 data sets collected by SRNL from F-Area cooling towers (unsaturated conditions).
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Table 5.8. Air outlet temperature distribution statistics [K], measured using “Hobo” sensors.

Minimum | Maximum | Range Mean Std. Dev. Variance Skewness | Kurtosis
290.17 307.13 16.96 298.27 3.30 10.88 0.36 2.56
Qutlet Water Temperature Histogram Plot
03
021
Relative
Frequency

0.14

90 1% 219 1% 2% 1% 19T 1% 1%
Temperature (K)

Figure 5.11. Histogram plot of water outlet temperature measurements, within the 7688 data sets
collected by SRNL from F-Area cooling towers (unsaturated conditions).

Table 5.9. Water outlet temperature distribution statistics [K].
Std. Dev.
1.58

Kurtosis
2.72

Skewness
-0.41

Variance
2.48

Mean
295.68

Maximum
299.57

Minimum
290.67

Range
8.90

Ordering the above-mentioned four measured responses as follows: (i) outlet air temperature

T ourrioniny » (1) outlet air temperature T, 00y » (i) OUtlet water temperature T2 ; and (iv) outlet

w,out ?

meas
out 7

air relative humidity RH yields the following “measured response covariance matrix”,

denOtEd as COV (Ta,out(Tidbit) ’Ta,out(Hobo) ’Twn?gﬁf’ RHS:JGt}aS) :
11.71  11.23 357 -44.76
Cov(T T T RHI) < 11.23 1088 352 —42.94 (5.69)
a,out(Tidbit) * " a,out(Hobo) ' " w,out ! out - 357 352 248 _531 '
—44.76 -42.94 531 244.44

For the purposes of uncertainty quantification, data assimilation, model calibration and predictive

modeling, the temperatures measurements provided by the “Tidbit” and “Hobo” sensors can be
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combined into an “averaged” data set of measured air outlet temperatures, which will be denoted
as T, - The histogram plot and corresponding statistical characteristics of this averaged air outlet

temperature are presented in Figure 5.12 and Table 5.10, respectively.

Air Outlet Temperature (averaged data set) Histogram Plot

o 008
Relative
Frequency ) g6

0.04+

0.024

0

292 2% 29 298 300 0 302 34 306
Temperaure (K)

Figure 5.12. Histogram plot of air outlet temperatures

Table 5.10. Statistics of the averaged air outlet temperature distribution [K].

Minimum | Maximum | Range Mean Std. Dev. Variance Skewness | Kurtosis
290.12 307.41 17.30 298.34 3.36 11.27 0.35 2.54

Computing the covariance matrix, denoted as [COV(Tmeas T RH meas)]dt , for all of the

a,out ? "w,out ! out

relevant experimental data for the averaged outlet air temperature [Tme‘”], the outlet water

a,out

temperature [T me‘”] and the outlet air relative humidity [RH;”‘*’S] , yields the following result:

w,out ut

1127 355 -4385
| Cov(T e Tuees RH=) | =| 355 248 531 | (5.70)
4385 531 244.44

Comparing the results in Egs. (5.69) and (5.70) shows that eliminating the second column and
second row in Eq. (5.69) yields a 3-by-3 matrix which has entries essentially equivalent to the

covariance matrix in Eq. (5.70). In turn, this result indicates that the temperature distributions
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measured by the “Tidbit” and “Hobo” sensors, respectively, need not be treated as separate data

sets for the purposes of uncertainty quantification and predictive modeling.

The sensors’ standard deviations (namely: o, =0.2K for each of the responses T” and T.*%,

and O, =2.8% for the response RH™®) have been taken into account for the data at the 100%-
saturation point, by including the 693 data sets that have their respective measured relative

humidity, RH™* , between 100% and 104.1%. In addition, the respective sensors’ uncertainties

(standard deviations) must also be taken into account for the 6975 data sets that have their

respective RH™* less than 100%. Since the various measuring methods and devices are

independent of each other, the standard deviation, 0., Stemming from the statistical analysis

of the 7668 benchmark data sets and the standard deviation, O, , Stemming from the

instrument’s uncertainty are to be combined according to the well-known formula “addition of the

variances of uncorrelated variates”, namely:

O = \/O-statistic2 + O z (571)

sensor !

Using Eqg. (5.71) in conjunction with the result presented in Eq.(5.70) will lead to an increase of

the variances on the diagonal of the respective “measured covariance matrix”, which will be

denoted as Cov(T meas T meas P meas) . The final result thus obtained is

a,out ' "w,out ? out

11.29 355 -43.85
Cov (T, Tyew RHIw)=| 355 253 -531 | (5.72)
~43.85 -5.31 252.49

The correlation matrix between the measured parameters and responses, denoted as

a,out ' 'w,out ?

Cov (T meas T meas D | meas al’__,asz) , is presented below:

1296 351 2.33 -447.09 0 - 0
Cov(T, e, Toew RH™, ,...,2, ) = 335 3.05 1.89 -9358 0 - 0|
-54.16 1.73 —2.27 1831.03 0 - 0

(5.73)
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Parameters «; through &, (i.e., the dry bulb air temperature, dew point temperature, inlet water

temperature, and atmospheric pressure) were also measured at the F-area SRNL site. Among the
8079 measured benchmark data sets, 7688 data sets are considered to represent “unsaturated
conditions”, which have been used to derive the statistical properties (means, variance and
covariance, skewness and kurtosis) for these model parameters, as shown below in Figures 5.13
through 5.16 and Tables 5.11 through 5.14.

Dry-Bulb Air Temperature Histogram Plot
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0027
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Figure 5.13. Histogram plot of dry-bulb air temperature data collected by SRNL from F-Area
cooling towers (unsaturated conditions).

Table 5.11. Statistics of the dry-bulb temperature (set to air inlet temperature) distribution [K].

Minimum | Maximum | Range | Mean | Std. Dev. | Variance | Skewness Kurtosis
289.50 309.91 20.41 | 299.11 4.17 17.37 0.25 2.18

Dew-Point Air Temperature Histogram Plot
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Figure 5.14. Histogram plot of dew-point air temperature data collected by SRNL from F-
Area cooling towers (unsaturated conditions).
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Table 5.12. Statistics of the dew-point temperature distribution [K].

Minimum | Maximum | Range Mean Std. Dev. | Variance | Skewness | Kurtosis
282.58 298.06 15.48 292.05 2.36 5.57 -0.66 3.10
Inlet Water Temperature Histogram Plot

Relative

Frequency
0.104

294295 2% 297 298 299 300 301 302 33
Temperaure (K)

Figure 5.15. Histogram plot of inlet water temperature data collected by SRNL from F-Area
cooling towers (unsaturated conditions).

Table 5.13. Statistics of the inlet water temperature distribution [K].

Minimum | Maximum | Range | Mean | Std. Dev. | Variance | Skewness | Kurtosis
293.93 303.39 9.46 298.79 1.70 2.90 -0.12 2.84
Atmospheric Pressure Histogram Plot
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Figure 5.16. Histogram plot of atmospheric pressure data collected by SRNL from F-Area cooling
towers (unsaturated conditions).
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Table 5.14. Statistics of the atmospheric pressure distribution [Pa].

Minimum | Maximum | Range | Mean | Std. Dev. | Variance | Skewness Kurtosis
99617 101677 2060 | 100586 401 160597 0.10 2.58

Using the results presented in Tables 5.11 through 5.14, and ordering these from model parameters

as follows: the dry-bulb air temperature, T, ; the dew-point air temperature, Ty, the inlet water

temperature T,;,, and atmospheric air pressure P, yields the following 4-by-4 covariance

matrix:

17.37 2.83 1.81 —529.26

2.83 5.56 2.31 —-87.16
COV (Tdb ;po ;Tw,in ; Patm ) = ' (574)
1.81 2.31 2.90 —47.22

—529.26 -87.16 —-47.22 160597.01

The covariance matrix computed in Eq.(5.74) neglects the uncertainty associated with sensor
readings throughout the data collection period. When combining uncertainties by adding variances,
the contribution from the sensors is 0.04 K for each of the first three parameters, which accounts
for a maximum of ca. 1% of the total variance (for the inlet water temperature, specifically). The

uncertainty in the atmospheric pressure sensor is negligibly small. The matrix presented in

Eq.(5.74) is used to obtain the following “a priori” parameter covariance matrix, C_,:

Var(ey)  Cov(ey,c,) o Cov(ey,a,)
c 2 Cov(e,, ) Var(a,) e Cov(e,,as,)
[} [ ] [ ] [ ]
Cov(a,, ;) o e Var(a,)
17.37 2.83 1.81 —-529.26 0 e 0
283 556 231 8716 0 e 0 (5.75)
1.81 2.31 2.90 4722 0 e 0
=|-529.26 -87.16 -47.22 160597.01 0O e 0
0 0 0 0 o o 0
. . . . e o o
0 0 0 0 0 e 2581
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The a priori covariance matrix of the computed responses, C;"", is obtained by using Egs.(4.22)

and (5.75) together with the sensitivity results presented in Tables 5.2 through 5.4; the final result

is given below:

Cy™ £ Cov(T

a ' 'w

T, RHY)=s C_S]

ra ao " ra

oT (1) oT (1) oT (1) oT (€]
ooy "-"aaNa Var(a,) Cov(ay, ;) o Cov(ay,ay,))| Oy ’“l,aaNa

~ T aT Cov(a,, ) Var(a,) o Cov(a,ay)| oTf® T

) oy " Oay, ¢ i o ° ooy, ' Oy,
ORH®  6RH® |\ Cov(ay, a;) . e Var(ay,) )| oRH®  6RH®
oo, ' Oay, oo, ' Oay,
10.87 719 -34.81

= 7.19 772 -13.97|.
-34.81 -13.97 221.88

(5.76)

The a priori covariance matrix, (:ov(Tmeas T meas RHmeaS)éc

a,out 7 “w,out ! out

of the measured responses

rr’?

T meas ':-I- @

measured
a,out a ]

(namely: the outlet air temperature, ; the outlet water temperature,

measured measured
T = [T . and the outlet air relative humidity, RH=* =[RH® | ) is given

w,out w out

below:

11.29 355 -43.85
Cov(T, e, Ty RHyw*)2C,, =| 355 253 531 |. (5.77)
~43.85 -5.31 252.49

The best-estimate nominal parameter values have been computed using Eq.(4.16) in conjunction
with the a priori matrices given in Egs.(5.73), (5.75) and (5.76) together with the sensitivities
presented in Tables 5.2 through 5.5. The resulting best-estimate nominal values are listed in Table
5.15, below. The corresponding best-estimate absolute standard deviations for these parameters
are also presented in this table. These values are the square-roots of the diagonal elements of the

matrix CP®

aa !

which is computed using Eq.(4.18) in conjunction with the a priori matrices given in
Egs.(5.73), (5.75) and (5.76) and the sensitivities presented in Tables 5.2 through 5.5. For
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comparison, the original nominal parameter values and original absolute standard deviations are
also listed. As the results in Table 5.15 indicate, the predicted best-estimate standard deviations
are all smaller or at most equal to (i.e., left unaffected) the original standard deviations. The
parameters are affected proportionally to the magnitudes of their corresponding sensitivities: the
parameters experiencing the largest reductions in their predicted standard deviations are those

having the largest sensitivities.

Table 5.15. Best-estimated nominal parameter values and their standard deviations.

Scalar Original Original Best- I?%est-

j | Parameter Symbol Nominal Absolute Std. estimated estimated
() Value Dev. Nominal Value Abso[l)ifle std
Air

1 | temperature T, 299.11 4.17 299.37 3.44
(dry bulb), (K)
Dew point

2 | temperature po 292.05 2.36 292.23 2.28
(K)
Inlet water

3 | temperature Toin 298.79 1.70 298.77 1.70
(K)

4 Atmospheric P 100586 401 100576 389
pressure (Pa)
Wetted

5 | fraction of fill Wi, 1 0 1 0
surface area
Sum of loss

6 | coefficients Koy 10 5 10 5
above fill
Dynamic

7 viscosity of ar n 1.983x10° 9.676E-7 1.984 x10°° 9.668E-7
at T=300 K
(kg/m s)
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Kinematic

viscosity of air

8 v 1.568x10° 1.895 x10° 1.564 x10° 1.893 x10°
at T=300 K
(m~2/s)
Thermal
conductivity of
9 | K 0.02624 1.584 x103 0.02625 1.583 x1073
airat T=300 K
(W/m K)
Heat transfer
10 | coefficient f, 1 0.5 1.0316 0.47
multiplier
Mass transfer
11 | coefficient f 1 05 0.882 0.41
multiplier
Fill section
12 | frictional loss f 4 2 4 2.00
multiplier
13 | pT) a, 25.5943 0.01 25.5943 0.01
14 | parameters a, -5229.89 4.4 -5229.92 4.40
15 3y e 1030.5 0.2940 1030.5 0.294
Cra(T)
16 I, -0.19975 0.0020 -0.19975 0.0020
parameters '
17 2, cpa 3.9734x104 3.345x10° 3.9734x10* 3.345 x10°6
7.06085
18 ) gay 7.0608x10° 0 0
’ x107°
19 | Day(T) 8, gy 2.65322 0.003 2.65322 0.003
parameters -6.1681 -6.16806
20 ) 4o 2.3x10°% 2.3x10°
’ X103 x10°3
6.552659
21 a3 4oy 3.8 x10°8 6.552688 x10°6 3.8 x 108
' x10¢
22 | d(T) a,, -1143423.8 543 -1143423.7 543
parameters
23 a 4186.50768 1.8 4186.50818 1.8




24 hy(T) Ay 2005743.99 1046 2005743.80 1046
25 | Parameters a,, 1815.437 35 1815.436 35
26 Ay Ny 8.235 2.059 8.235 2.059
27 A 0.00314987 0.001 0.0030475 0.001
Nu parameters
28 a, ny 0.9902987 0.327 0.987827 0.327
29 As \y 0.023 0.0088 0.023 0.088
Cooling tower
30 | deck width in W, 8.5 0.085 8.5 0.085
x-dir. (m)
Cooling tower
31 | deck width in dey 8.5 0.085 8.5 0.085
y-dir. (m)
Cooling tower
deck height
32 Az, 10 0.1 10 0.1
above ground
(m)
Fan shroud
33 ] Az, 3.0 0.03 3.0 0.03
height (m)
Fan shroud
34 | inner diameter D, 4.1 0.041 4.1 0.041
(m)
Fill section
35 ] Az, 2.013 0.02013 2.013 0.02013
height (m)
Rain section
36 ] Az 1.633 0.01633 1.633 0.01633
height (m)
Basin section
37 ] Az, 1.168 0.01168 1.168 0.01168
height (m)
Drift
38 | eliminator Az, 0.1524 0.001524 0.1524 0.001524

thickness (m)
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Fill section

39 | equivalent Dh 0.0381 0.000381 0.0381 0.000381
diameter (m)
Fill section
40 A 67.29 6.729 67.507 6.705
flow area (m?)
Fill section
41 | surface area A 14221 3555.3 13914 3463
(m?)
Prandtl number
42 | of air at T=80 F’r 0.708 0.005 0.708 0.005
C
Wind speed
43 VW 1.80 0.92 1.80 0.92
(m/s)
Exit air speed
44 | at the shroud Vexit 10.0 1.0 9.978 1.0
(m/s)
o Best-
Boundary Original Best- ]
. Absolute Std. . estimated
Param. Symbol Nominal estimated
Dev. ) Absolute Std.
Value Nominal Value
Dev.
Inlet water
45 mass flow rate My, in 44,02 2.201 44.05 2.199
(kg/s)
Inlet air
46 temperature Ta’in , 299.11 4.17 300.14 2.64
(K)
Inlet air mass
47 m, 155.07 15.91 154.70 15.87
flow rate (kg/s)
Inlet air
48 (0} 0.0138 0.00206 0.0142 0.00137

humidity ratio
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) o Best-
Special Original Best- .
) Absolute Std. ) estimated
Dependent Symbol Nominal estimated
Dev. ) Absolute Std.
Parameter Value Nominal Value
Dev.
Reynold's
49 Re, 4428 671.6 4395 666.1
number
Schmidt
50 Sc 0.60 0.074 0.5986 0.0739
number
Sherwood
51 Sh 14.13 4.84 13.35 4.44
number
Nusselt
52 Nu 14.94 5.08 14.34 4.83
number

Using the a priori matrices given in the a priori matrices given in Eqgs.(5.73), (5.75) and (5.76)
together with the sensitivities presented in Tables 5.2 through 5.5 in Eq.(4.19) yields the following

predicted response covariance matrix, C""* :

671 273 -22.80
cr 2oov([TOT [T T [RHOT)=| 273 237 -179 | (5.78)
2280 -1.79 145.19

pred
ar

The best-estimate response-parameter correlation matrix, C is obtained using Eq.(4.20)

together with the a priori matrices given in EQs.(5.73), (5.75) and (5.76) together with the
sensitivities presented in Tables 5.2 through 5.5. The non-zero elements with the largest

magnitudes are as follows:

rel. cor.(R,,a,) = —0.278; rel. cor.(R,,a,,) = —0.070;

rel. cor.(R;, &,y) = —0.039;

rel. cor.(R,,a,) =-0.108; rel.cor.(R,,,,) =—-0.019; (5.79)
rel. cor.(R;,er,) =0.232; rel.cor.(R;,r,,) =0.127;

rel. cor.(R;,@,,) = 0.072.
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The notation used in Eq. (5.79) is as follows: R =T® R, =T™ R ZRH®: @, =P,
A A

a41 = A&urf ' and a49 = Red '

The best-estimate nominal values of the (model responses) outlet air temperature, T”; outlet

water temperature T.°%; and outlet air relative humidity, RH®, have been computed using

Eq.(4.17) together with the a priori matrices given in Eqs.(5.73), (5.75) and (5.76) together with
the sensitivities presented in Tables 5.2 through 5.5. The resulting best-estimate predicted nominal
values are summarized in Table 5.16. To facilitate comparison, the corresponding measured and
computed nominal values are also presented in this table. Note that there are no direct

measurements for the outlet water flow rate, mv‘fo). For this response, therefore, the predicted best-

estimate nominal value has been obtained by a forward re-computation using the best-estimate
nominal parameter values listed in Table 5.15, while the predicted best estimate standard deviation

for this response has been computed by using “best-estimate” values in Eq.(4.22), to obtain:

(e T =[s,,]*[C..]*[sL]". (5.80)

Table 5.16. Computed, measured, and optimal best-estimate nominal values and standard
deviations for the outlet air temperature, outlet water temperature, outlet air relative humidity, and
outlet water flow rate responses.

Nominal Values and T® T RH® m®
Standard Deviations [K] [K] [%6] [kg/s]
Measured
nominal value 298.34 295.68 81.98
standard deviation +3.36 +1.59 +15.89
Computed
nominal value 297.46 294.58 86.12 43.60
standard deviation +3.30 +2.78 +14.90 +2.21
Best-estimate
nominal value 298.45 295.67 82.12 43.67
standard deviation +2.59 +1.54 +12.05 +2.20

114



The results presented in Table 5.16 indicate that the predicted standard deviations are smaller than
either the computed or the experimentally measured ones. This is indeed the consequence of using
the PM-CMPS methodology in conjunction with consistent (as opposed to discrepant)
computational and experimental information. Often, however, the information is inconsistent,
usually due to the presence of unrecognized errors. Solutions for addressing such situations have
been proposed by Cacuci and lonescu-Bujor (2010b). It is also important to note that the PM-
CMPS methodology has improved (i.e., reduced, albeit not by a significant amount) the predicted
standard deviation for the outlet water flow rate response, for which no measurements were
available.

As mentioned in the foregoing, measurements are available only for the three outlet responses:

T® T and RH® . Otherwise, there are no direct measurements for the internal responses along

W

the height of the fill section, namely: (i) the air temperature, Ta(i), i=2,..,1, at the exit of each
control volume; (ii) the water temperature, TVS”l), i=1,..,1-1,at the exit of each control volume;
and (iii) the air relative humidity, RH",i=2,...,1, at the exit of each control volume. For these

responses, therefore, the predicted best-estimate nominal value has been obtained by a forward re-

computation using the best-estimate nominal parameter values, ", as listed in Table 5.15.

Furthermore, the predicted best estimate standard deviation for these responses have been obtained

pred

by using “best-estimate” values in Eq.(5.80), in which the matrix of sensitivities [S ,]™ has been

obtained for each of the responses T.",i=2,..1, T i=1..,1-1,and RH"i=2,.,1 by

performing adjoint sensitivity computations using the best-estimate parameter values, rather than
at the nominal parameter values. The resulting best-estimate nominal parameter values and
standard deviations for these responses are plotted in Figs. 5.17 through 5.19, which depict the

computed (black), best-estimate (red), and re-computed (green) nominal values and standard

deviations for the air temperature Ta®™ , (i =1,...,49) ; water temperature Tw® , (i=2,...,50) ; and

air humidity RH® | (i =1,...,49), respectively, along the height of the fill section of the cooling

tower.
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Figure 5.17. Computed (black), best-estimate (red), and re-computed (green; using best-estimate
parameter values) nominal values and standard deviations for the air temperature, Ta"”,
(i=1,...,49), at the exit of each control volume along the height of the fill section of the cooling

tower.

® Computed nominal values and
standard deviations for Tw(i) .: .

A Best-estimate nominal value and ——eo—
standard deviation for Tw(50)
——eoc—i

0 Re-computed (with best estimated ——ec—i
parameters) nominal values and
standard deviations for Tw(i)

Fill section control volume
AW WWMNDNDNDNREFEPREPRE
P O UOINOOOWONDMRELOOON

i

H

273 283 293 303
Tw®

Figure 5.18. Computed (black), best-estimate (red), and re-computed (green; using best-estimate
parameter values) nominal values and standard deviations for the water temperature, Tw®,
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(i=2,...,50), at the exit of each control volume along the height of the fill section of the cooling

tower.
1 ' A=
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Figure 5.19. Computed (black), best-estimate (red), and re-computed (green; using best-estimate

parameter values) nominal values and standard deviations for the air relative humidity, RH®
(i=1,...,49), at the exit of each control volume along the height of the fill section of the cooling

tower.
The following major conclusions can be drawn from the results presented in this Section:

(i) The results presented in Table 5.16 indicate that the standard deviations predicted by the
PM-CMPS are smaller than either the computed or the experimentally measured ones at the

locations where measurements are available.
(i) The results presented in Figs. 5.17 through 5.19 indicate that the PM-CMPS methodology

has also improved the predicted standard deviations for the responses inside and along the
height of the fill section at locations, for which no measurements were available. As Figs. 5.17
through 5.19 indicate, the PM-CMPS methodology has reduced the uncertainties of the
predicted internal responses well below the uncertainties in the computed responses due to

uncertainties in the model parameters.
(iii) As depicted in Figs. 5.17 through 5.19, the maximum reductions of uncertainties are

always at the boundaries where direct measurements are available, and the amount of

reductions decreases toward the inlets along the height of the fill section. For instance, as
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shown in Fig. 5.17, a maximum of 19% reduction of the uncertainty is achieved for the

response Ta(l) at the air exit of the fill section, and this reduction gradually decreases to 14%
for the response Ta(49) near the air inlet of the fill section. Similarly, in Fig. 5.18, the maximum
reduction of the uncertainty is around 45%, for the response T.*” at the water exit of the fill

section, and this reduction gradually diminishes to nearly 1% for the response TVSZ) near the
water inlet of the fill section. Lastly, for the humidity responses shown in Fig. 5, a maximum
of 16% reduction is achieved for the response RH™ at the air exit of the fill section; this

reduction gradually diminishes to around 7% for the response RH “® near the inlet of the fill

section.
Figures 5.17 through 5.19 also indicate that for the internal responses that have no measurements,
the assimilation of available experimental information at the boundaries by the PM-CMPS
methodology also reduces the predicted uncertainties to be significantly smaller than their
computed ones. The maximum reductions of uncertainties occurs at the locations where direct
measurements are available (the tower’s outlet, in the case considered in this work) and the amount
of reductions gradually decrease further away from the locations of the measurements (toward the

inlets along the height of the fill section, in the case considered in this work).
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7 MULTI-PRED CODE MODULE

The equations expressing the results of the PM-CMPS methodology developed by Cacuci (2014),
namely Egs. (2.58) through (2.82), which underlie the general case of “two multi-physics models,
as well as Egs. (2.89) through (2.135), which underlie particular situations, have been programed
in the computational software module MULTI-PRED. All routines in MULTI-PRED are written
in Fortran 90 and are compatible with most Linux systems, performing predictive modelling

computations for the following four cases:

CASE 1: "One Multi-Physics Model": predictive modeling solely for Model A with N, model

parameters and N, measured responses.

CASE 2: "One Multi-Physics Model with Additional Model Parameters”: predictive modeling for

Model A with N, additional model parameters, but no additional responses.

CASE 3: "One Multi-Physics Model with Additional Model Responses”: predictive modeling for

Model A with N, additional responses, but no additional parameters.

CASE 4: "Two Multi-Physics Models”: predictive modelling for Model A coupled with Model B.

7.1 Directories

The computational software module MULTI-PRED comprises the following directories:

(1) multi-pred/source/
This folder contains the source codes.

(2) multi-pred/examples/
This folder contains 5 examples specified in the following subfolders.
(i) ../Neutron_Diffusion_Model_Case_1/
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This folder contains the input/output files for Multi-Pred Case 1 for the neutron diffusion
model presented in Chapter 3.
(if) ../Cooling_Tower_Model_Case_1/
This folder contains the input/output files for Multi-Pred Case 1 for the cooling tower
model presented in Chapter 5.
(iii) ../Cooling_Tower_Model_Case_2/
This folder contains the input/output files for Multi-Pred Case 2 for the cooling tower
model presented in Chapter 5.
(iv) ../Cooling_Tower_Model_Case_3/
This folder contains the input/output files for Multi-Pred Case 3 for the cooling tower
model presented in Chapter 5.
(v) ../Cooling_Tower_Model_Case_4/
This folder contains the input/output files for Multi-Pred Case 4 for the cooling tower
model presented in Chapter 5.
(3) multi-pred/matrix_positive_definite_test/
This folder contains the source code for a stand-alone program used to test if a symmetric matrix

is positive definite (SPD). Note that the covariance matrices C,,(N,xN,),C (N, xN,),

Cyp (N, xN,) and C, (N, xN_) must be SPD matrices. This program computes the Cholesky

factorization of the matrix being tested. If it can be factorized, the program returns a flag
indicating that the tested matrix is SPD. Running this test stand-alone program is optional, since
the Cholesky factorization has also been implemented in MULTI-PRED.

Also included in this folder is an large-scale matrix used for the SPD test. This matrix is a large
symmetric positive definite matrix, with seemingly random sparsity pattern. It has a dimension
of 60,000 by 60,000 with 410077 nonzero elements. Refer to the following website

http://www.cise.ufl.edu/research/sparse/matrices/Andrews/Andrews for detailed information

about this matrix.
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7.2 Code Compilation and Execution

(1) Compile the software program in Linux
Enter the multi-pred/source/ directory, and use the command make, an executable named
multi-pred will be generated under the source directory.
The compiler used in the makefile is ifort (version 12.1.6 and above). It can also be
compiled with gfortran (version 4.47 and above). An example makefile with the gfortran

compiler, named makefile.gfortran, is also included in the source directory.

(2) Run the program
To run the program, copy the executable multi-pred into the example directories, then use
the command:
Jmulti-pred superfile.inp
where the argument superfile.inp contains all the input/output files names. Output files will

be generated in the respective example folders.

7.3 Input and Output File Organization
This Section describes the input and output files within the MULTI-PRED module.

7.3.1  Super File

The MULTI-PRED super-file is a text file that contains the names of input/output files and
organizes the individual files for input and output operations. This super-file is read from the
command line (UNIT=5) as an argument. The first line of the super-file is reserved for an identifier
card, “MultiPredSup”. After the identifier line, each subsequent line is preceded by a category
code and a filename. The category code and filename have to be enclosed in single quotes. The
filenames can be changed by the user. The second line of the super-file is also reserved for the
“dims” category; the corresponding input file defines the dimensions of the matrices and vectors
used in MULTI-PRED. The lines after the second line are for data files. There are no restrictions
regarding the order of the data files and their corresponding categories. Tables 7.1 through 7.4
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show the format and complete list of super files for the MULTI-PRED Case 1, Case 2, Case 3

and Case 4, respectively.

Table 7.1. Super File Format for Multi-Pred Case 1

Category File Name
MultiPredSup

‘dims' ‘dimensions.inp'
‘a_nom' ‘a.inp’

'r_mea' ‘rm.inp’
'r_com' ‘rc.inp'

'C_aa' 'Caa.inp'
'C_ar ‘Car.inp'
‘C_rr 'Crr.inp’

'S ra' ‘Sra.inp’

'‘a_ BE' ‘aBE.out’

T BE' 'rBE.out’
'C_aaBE' 'CaaBE.out'
'C_rrBE' 'CrrBE.out’
'C_arBE' 'CarBE.out'
'Crr_comp' "Crrcomp.out’
‘chi2' ‘chi2.out'

Table 7.2. Super File Format for Multi-Pred Case 2

Category File Name
MultiPredSup

‘dims' ‘dimensions.inp'
‘a_nom' ‘a.inp’
'r_mea' ‘rm.inp’
'r_com' 'rc.inp'
'C_aa' 'Caa.inp'
'C_ar ‘Car.inp'
‘C_rr 'Crr.inp’

'S ra' ‘Sra.inp’
'b_nom'’ 'b.inp’
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'C_bb' 'Chb.inp’
'C_ab' 'Cab.inp'
'C_br' 'Chr.inp'

'S rb' 'Srb.inp'
'‘a_BE' ‘aBE.out'
'T_BE' 'TBE.out'
'C_aaBE' '‘CaaBE.out'
'C_rrBE' 'CrrBE.out’
'C_arBE' '‘CarBE.out'
'Crr_comp' "Crrcomp.out’
'b_BE' 'bBE.out'
'C_bbBE' 'CbbBE.out'
'C_abBE' 'CabBE.out'
'C_brBE' 'CbrBE.out'
‘chi2' ‘chi2.out'

Table 7.3. Super File Format for Multi-Pred Case 3

Category File Name
MultiPredSup

‘dims' ‘dimensions.inp'
‘a_nom' ‘a.inp’
'r_mea' ‘rm.inp’
'r_com' ‘rc.inp'
'C_aa' 'Caa.inp'
'C_ar ‘Car.inp'
‘C_rr' 'Crr.inp’

'S ra' ‘Sra.inp’
'q_mea’ ‘gqm.inp’
'q_com' ‘qc.inp’
'C_qq ‘Cqq.inp’
'C_aq' 'Cag.inp'
'S _ga' 'Sqa.inp’
'‘a_ BE' ‘aBE.out’
T BE' 'rBE.out’
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'C_aaBE' '‘CaaBE.out'
'C_rrBE' 'CrrBE.out’
'C_arBE' '‘CarBE.out'
'Crr_comp' "Crrcomp.out’
'q_BE' 'qBE.out"
'C_qQgBE' 'CqqBE.out'
'Cqq_comp’ "Cgqgcomp.out’
'C_aqBE' '‘CagBE.out’
'C_rgBE' 'CrgBE.out’
'Crg_comp’ "Crgcomp.out’
‘chi2' ‘chi2.out'

Table 7.4. Super File Format for Multi-Pred Case 4

Category File Name
MultiPredSup

'dims' ‘dimensions.inp’
'a_nom' ‘a.inp'
'T_mea’ 'rm.inp'
'T_com' 're.inp’
'C_aa' 'Caa.inp'
'C_ar 'Car.inp'
'Crr 'Crr.inp'
'S ra' 'Sra.inp’'
'b_nom' 'b.inp’
'q_mea' '‘qm.inp'
'q_com' 'qc.inp’
'C_bb' 'Chb.inp'
'C_bq' 'Chqg.inp'
'C_qq' 'Cqq.inp’
'S _gb’ 'Sgb.inp’
'C_ab' 'Cab.inp'
'C aq' 'Cag.inp'
'C_br' 'Chr.inp'
'C rq 'Crq.inp'
'S rb' 'Srb.inp'
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'S ga' 'Sqa.inp’
'‘a_BE' ‘aBE.out'
'T_BE' 'TBE.out'
'C_aaBE' '‘CaaBE.out'
'C_rrBE' 'CrrBE.out’
'C_arBE' '‘CarBE.out'
'Crr_comp' "Crrcomp.out’
'b_BE' 'bBE.out'
'q_BE’ 'qBE.out'
'C_bbBE' 'CbbBE.out'
'C_qgBE' 'CqqBE.out'
'C_bgBE' 'CbqBE.out'
'Cqq_comp’ "Cgqgcomp.out’
'C_abBE' 'CabBE.out'
'C_aqBE' '‘CagBE.out’
'C_brBE' 'CbrBE.out'
'C_rgBE' 'CrgBE.out’
'Crg_comp’ "Crgcomp.out’
‘chi2' ‘chi2.out'

7.3.2 File “dimensions.inp”

The file dimensions.inp defines the following important control variables:
CaseNumber — Multi-Pred Case selection;

N, : number of parameters for Model A;
N, : number of responses for Model A;

N, : number of additional parameters for Model A (Case 2) or the
of parameters of Model B (Case 4);
Nq : number of additional responses for Model A (Case 3) or the

of responses of Model B (Case 4);

129

number

number



The following is an example of dimensions.inp for the Cooling Tower Model Case 4. For this test
case, Cooling Tower Model is separated into Model A and Model B. Model A comprises the first
42 parameters (of the total 52 model parameters) and the first 2 responses (of the total 3 model
responses). Thus: for Model A, Na =42 and Nr = 2. Model B comprises the last 10 parameters (of
the total 52 model parameters) and the 3rd response (of the total 3 model responses of the Cooling
Tower Model). Thus: for Model B, Nb = 10 and Nq =1.

/ Case options:

/ = 1 "One-Model" Case: predictive modeling solely for Model A with Na

/ model parameters and Nr measured responses;

/ = 2 "One-Model" Case: predictive modeling for Model A with Nb additional
/ parameters, but no additional responses;

/ = 3 "One-Model" Case: predictive modeling for Model A with Ng additional
/ responses, but no additional parameters;

/ = 4 "Two-Model" Case: predictive modeling for Model A coupled with Model B.
/ Case selection (CaseNumber):

4

/Na -- number of parameters for model A

42

/Nr -- number of responses for model A

2

/Nb -- number of additional parameters:

/ -- for case 1: not used

/ -- for case 2: number of parameters added to the Na parameters for model A
/ -- for case 3: not used

/ -- for case 4: number of parameters of model B

10

/Nq -- number of additional responses:

/ -- for case 1: not used

/ -- for case 2: not used

/ -- for case 3: number of responses added to the Nr responses for model A
/ -- for case 4: number of responses for model B

1

The format of dimensions.inp is fixed as shown above. The user can change the numbers
corresponding to the control variables, namely: CaseNumber, Na, Nr, Nb and Nq, respectively.
7.3.3 Contents and Organization of Input and Output Files

Tables 7.5 through 7.8 describe the contents of the input and output (1/O) files specified within the
MULTI-PRED super-files listed in Tables 7.1 through 7.4, respectively. The vectors / matrices

corresponding to each data file are also listed in Tables 7.5 through 7.8.

130



Table 7.5. Summary of Input and Output Files for MULTI-PRED Case 1

File Unit | 1/0 Sgg[giﬂ%g?:&g Descriptions
superfile.inp 5 input File organization
dimensions.inp | 20 input Defines the Case selection and dimensions control
a.inp 21 input | a(N,) Nominal values of Na parameters of model A
rm.inp 22 input r.(N,) Nominal values of Nr measured responses of model A
rc.inp 23 input r.(N,) Nominal values of Nr computed responses of model A
Caa.inp 24 input | C_(N,xN,) Covariance matrix of Na parameters of model A
Car.inp 25 input | C, (N, xN,) &c:)r(;zlla;i\ons between Na parameters and Nr responses of
Crr.inp 26 input C,(N,xN,) Covariance matrix of Nr responses of model A
Srainp 27 input | S,.(N, xN.,) ,:abrsécr)rllléirsseg]fi&\gi(tji;s':f Nr responses of Model A w.r.t Na
aBE.out 51 output | @™ (N,) Best-estimate nominal values of parameters of Model A
rBE.out 52 output | r(N,) Best-estimate nominal values of responses of Model A
CaaBE.out 53 output | C* (N, xN,) Predicted covariance matrix of Na parameters of Model A
CrrBE.out 54 output | C*(N, xN,) Predicted covariance matrix of Nr responses of Model A
CarBE out 55 output | C¥ (N, xN.) :r:zd,i\;:rtergS(I:J(z)rr:tseg;tio(}nmrg%tg:2\ between the Na parameters
Crrcomp.out 56 output | C™ (N, xN,) | Covariance matrix of Nr computed responses of model A
chi2.out 76 output | x*, scalar Value of the consistency indicator

Table 7.6. Summary of Input and Output Files for MULTI-PRED Case 2

File Unit | 1/0 c\:/zggifrﬁg?:&g Descriptions
superfile.inp 5 input File organization
dimensions.inp | 20 input Defines the Case selection and dimensions control
a.inp 21 Input | a(N,) Nominal values of Na parameters of model A
rm.inp 22 Input | r,(N,) Nominal values of Nr measured responses of model A
rc.inp 23 Input | r.(N,) Nominal values of Nr computed responses of model A
Caa.inp 24 Input | C,(N,xN,) Covariance matrix of Na parameters of model A
Car.inp 25 Input | C, (N, xN.) I(\:ﬂ(z)r(;(;:agons between Na parameters and Nr responses of
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Corresponding

File Unit | 1/0 . Descriptions
vector/matrix
Crr.inp 26 Input | C,,(N,xN,) Covariance matrix of Nr responses of model A
. Absolute sensitivities of Nr responses of Model A w.r.t Na
Sra.inp 27 Input | S (N, xN,) parameters of Model A
b.inp 31 Input | b(N,) Nominal values of Nb additional parameters for model A
Cbb.inp 34 Input | C,, (N, xN,) Covariance matrix of Nb additional parameters
. Correlations between Na parameters of Model A and Nb
Cab.inp 4l Input | Cqy (N, x N, ) additional parameters for Model A
. Correlations between Nb additional parameters for Model
Cbr.inp 43 Input | C, (N, xN,) A and Nr responses of Model A
. . Absolute sensitivities of Nr responses of Model A w.r.t Nb
Srb.inp 45 input | S, (N, xN,) additional parameters for model A
aBE.out 51 output | @™ (N,) Best-estimate nominal values of Na parameters of Model A
rBE.out 52 output | r*(N,) Best-estimate nominal values of Nr responses of Model A
CaaBE.out 53 output | C%(N,xN,) Predicted covariance matrix of Na parameters of Model A
CrrBE.out 54 output | C*(N, xN,) Predicted covariance matrix of Nr responses of Model A
CarBE out 55 output | C¥ (N, xN.) Predicted correlation matrix between the Na parameters
and Nr responses of model A
Crrcomp.out 56 output | CX™ (N, xN,) | Covariance matrix of Nr computed responses of model A
bBE.out 61 output | b™(N,) Best-estimate nominal values of Nb additional parameters
CbbBE.out 63 output | CX (N, xN,) Predicted covariance matrix of Nb parameters of Model A
be Predicted correlation matrix between the Na parameters of
CabBE.out n output | Cg (N, xN, ) Model A and the Nb additional parameters for Model A
be Predicted correlation matrix between the Nb additional
CbrBE.out 3 output | Cy; (N, xN,) parameters for Model A and Nr responses of model A
chi2.out 76 output | x?, scalar Value of the consistency indicator
Table 7.7. Summary of Input and Output Files for MULTI-PRED Case 3
File Unit | 1/0 Correspondl_ng Descriptions
vector/matrix
superfile.inp 5 input File organization
dimensions.inp | 20 input Defines the Case selection and dimensions control
a.inp 21 input | a(N,) Nominal values of Na parameters of model A
rm.inp 22 input r.(N,) Nominal values of Nr measured responses of model A
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Corresponding

File Unit | 1/0 . Descriptions
vector/matrix
rc.inp 23 input r.(N,) Nominal values of Nr computed responses of model A
Caa.inp 24 input | C_(N,xN,) Covariance matrix of Na parameters of model A
Car.inp 25 input | C, (N, xN,) &(Lr(;zllazons between Na parameters and Nr responses of
Crr.inp 26 input C,(N,xN,) Covariance matrix of Nr responses of model A
. . Absolute sensitivities of Nr responses of Model A w.r.t Na
Sra.inp 27 input | S, (N, xN,) parameters of Model A P
qm.inp 32 input | a0, (N,) rl\rllt())gglnﬂ values of Nq additional measured responses for
qc.inp 33 input | . (N,) rl\rllt())gglnﬂ values of Nq additional computed responses for
Cqga.inp 36 input | Cg (N xN,) Covariance matrix of Ng additional responses for Model A
. . Correlations between Na parameters of Model A and Ng
C..(N_,xN .
Cag.inp 42 Input s (Na>No) additional responses for Model A
. . Correlations between Nr responses of Model A and Ng
C. (N, xN .
Cra.inp a4 Input a(Ne > Ng) additional responses for Model A
. . Absolute sensitivities of Ng additional responses for Model
S, (N, xN
Sqa.inp 46 Input aa (N >Ny A w.r.t Na parameters of Model A
aBE.out 51 output | @™ (N,) Best-estimate nominal values of parameters of Model A
rBE.out 52 output | r(N,) Best-estimate nominal values of responses of Model A
CaaBE.out 53 output | C% (N, xN,) Predicted covariance matrix of Na parameters of Model A
CrrBE.out 54 output | C*(N, xN,) Predicted covariance matrix of Nr responses of Model A
. Predicted correlation matrix between the Na parameters
CarBE.out 5 output | Cy7 (N, xN,) and Nr responses of model A i
Crrcomp.out 56 output | C™ (N, xN,) | Covariance matrix of Nr computed responses of model A
qBE.out 62 output | g™ (N,) E)?s;%z[;rlnzte nominal values of Nqg additional responses
CqoBE.out 64 output | C (N, xN,) ;rggétl:tzd covariance matrix of Nq additional responses for
Cagcomp.out 66 output | C2™ (N, xN,) %;v;ggg::;matnx of Nq additional computed responses
Predicted correlation matrix between the Na parameters
C2™ (N, xN .
CagBE.out 72 output - (NaxNo) and of Model A and Nq additional responses for model A
Predicted correlation matrix of between Nr responses of
CX%(N, xN o
CrqBE.out 4 output (N Ng) Model A and Nq additional responses for model A
Crgcomp.out 75 output | CZ™(N, xN,) Correlation matrix of Nr computed responses of Model A

and Nq additional computed responses for model A
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File Unit | 1/0 Correspondl_ng Descriptions
vector/matrix
chi2.out 76 output | x?, scalar Value of the consistency indicator
Table 7.8. Summary of Input and Output Files for MULTI-PRED Case 4
File Unit | 1/0 Correspondl_ng Descriptions
vector/matrix
superfile.inp 5 input File organization
dimensions.inp | 20 input Defines the Case selection and dimensions control
a.inp 21 input | a(N,) Nominal values of Na parameters of model A
rm.inp 22 input r.(N,) Nominal values of Nr measured responses of model A
rc.inp 23 input r.(N,) Nominal values of Nr computed responses of model A
Caa.inp 24 input | C,,(N,xN,) Covariance matrix of Na parameters of model A
Car.inp 25 input | C,, (N, xN,) Correlations between Na parameters and Nr responses of
Model A
Crr.inp 26 input | C,_.(N,xN,) Covariance matrix of Nr responses of model A
. . Absolute sensitivities of Nr responses of Model A w.r.t Na
Sra.inp 27 input | Sry (N, xN,) parameters of Model A
b.inp 31 input | b(N,) Nominal values of Na parameters of model B
gm.inp 32 input | d,,(Ng) Nominal values of Ng measured responses of model B
gc.inp 33 input | d.(N,) Nominal values of Ng computed responses of model B
Chb.inp 34 input | C,, (N, xN,) Covariance matrix of Nb parameters of model B
Cha.inp 35 input | Cag (Ny xN,) Correlations between Nb parameters and Nq responses of
Model B
Cqg.inp 36 input | Cg(NyxN,) Covariance matrix of Nq responses of model B
. . Absolute sensitivities of Ng responses of Model B w.r.t Nb
S, (N, xN
Sqb.inp 37 nput w (N> N,) parameters of Model B
. . Correlation matrix between the Na parameters of Model A
Cab.inp 4l input | Cgy (N, xN, ) and the Nb parameters of Model B
. . Correlation matrix between the Na parameters and of
C,(N,xN
Caq.inp 42 Input a(Na Ny Model A and Nq responses of model B
. . Correlation matrix between the Nb parameters of Model B
Cbr.inp 43 input | Cy (N, x N, ) and Nr responses of model A
. . Correlation matrix of between Nr responses of Model A
C.,(N,xN
Cra.inp a4 Input a(Ne > Ng) and Nq responses of model B
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Corresponding

File Unit | 1/0 . Descriptions
vector/matrix
. . Absolute sensitivities of Nr responses of Model A w.r.t Nb
Srb.inp 45 input | S, (N, xN,) parameters of model B
. . Absolute sensitivities of Ng responses of Model B w.r.t Na
S..(N,xN
Sqa.inp 46 Input aa (N > Ny) parameters of Model A
aBE.out 51 output | @™ (N,) Best-estimate nominal values of parameters of Model A
rBE.out 52 output | r™(N,) Best-estimate nominal values of responses of Model A
CaaBE.out 53 output | C% (N, xN,) Predicted covariance matrix of Na parameters of Model A
CrrBE.out 54 output | C*(N, xN,) Predicted covariance matrix of Nr responses of Model A
CarBE out 55 output | C% (N, xN.) Predicted correlation matrix between the Na parameters
and Nr responses of model A
Crrcomp.out 56 output | C;™ (N, xN,) | Covariance matrix of Nr computed responses of model A
bBE.out 61 output | b*™(N,) Best-estimate nominal values of parameters of Model B
gBE.out 62 output | 9™ (N,) Best-estimate nominal values of responses of Model B
CbbBE.out 63 output | CX (N, xN,) Predicted covariance matrix of Nb parameters of Model B
CqgBE.out 64 output | Cge(NyxN,) Predicted covariance matrix of Ng responses of Model B
Predicted correlation matrix between the Nb parameters
CX®(N, xN
ChqgBE.out 65 output g (N X Ng) and Nq responses of model B
Cqggcomp.out 66 output | CH™(N,xN,) | Covariance matrix of Nq computed responses of model B
be Predicted correlation matrix between the Na parameters of
CabBE.out 1 output | Cg; (N, x N, ) Model A and the Nb parameters for Model B
e Predicted correlation matrix between the Na parameters
C% (N, xN
CaqBE.out 2 output a (Na > Ng) and of Model A and Nq responses of model B
be Predicted correlation matrix between the Nb parameters of
CbrBE.out 3 output | Cy; (N, xN,) Model B and Nr responses of model A
Predicted correlation matrix of between Nr responses of
C*%(N, xN
CrqBE.out 4 output (N xNg) Model A and Nq responses of model B
com Correlation matrix of Nr computed responses of Model A
C2™ (N, xN
Crqcomp.out 5 output a (NexNg) and Ng computed responses of model B
chi2.out 76 output | x?, scalar Value of the consistency indicator

135




7.4 Input Data Files

This Section describes in detail the input files (and their contents) that were listed in Table 7.8. All
the data files are in the “sparse triplet matrix” file format, which is a commonly used ASCII file

format for storing sparse matrices and compatible with most files in the Matrix Market format.

The sparse triplet data structure simply