UC Berkeley

UC Berkeley Previously Published Works

Title

MULTI-PRED: A Software Module for Predictive Modeling of Coupled Multi-Physics Systems - User Manual

Permalink

https://escholarship.org/uc/item/35g8f29z

Authors

Cacuci, Dan G Fang, Ruixian Badea, Madalina C

Publication Date

2023-12-12

Peer reviewed

MULTI-PRED: A Software Module for Predictive Modeling of Coupled Multi-Physics Systems

MULTI-PRED User's Manual

February 28, 2018

Dan G. Cacuci, Ruixian Fang, Madalina C. Badea

Center for Nuclear Science and Energy University of South Carolina 541 Main Street, Columbia, SC 29208, USA cacuci@cec.sc.edu fang@cec.sc.edu badea@cec.sc.edu

1	INTRODUCTION					
2	PREDICTIVE MODELING OF COUPLED MULTI-PHYSICS SYSTEMS (PM-CMPS)					
	2.1 Introduction					
	2.2	Matl	Mathematical Framework			
		2.2.1	A Priori Information for Two Multi-Physics Models	10		
		2.2.2	Construction of the A Priori Distribution Function $p(\alpha,\beta,r,q)$ as the			
			Maximum Entropy Principle Approximation of the True but Unknown A Priori Distribution Function $P(\alpha,\beta,r,q)$	14		
		2.2.3	Construction of the A Posteriori Predicted Mean Values and Covariances for the Given Models (Likelihood Function) and Maximum Entropy Prior Distribution	18		
		2.2.4	Construction of the A Posteriori Predicted Consistency Metrics for Model Validation	26		
	2.3	Disc	cussion and Particular Cases	27		
		2.3.1	Predictive modeling for a Single Multi-Physics Model	29		
		2.3.2	Predictive modeling for Model A with β additional parameters, but no additional responses	30		
		2.3.3	Predictive modeling for Model A with q additional responses, but no additional parameters	31		
3	PR	EDICT	TIVE MODELING OF A SIMPLE NEUTRON DIFFUSION MODEL	33		
4	INVERSE PREDICTIVE MODELING OF RADIATION TRANSPORT THROUGH OPTICALLY THICK MEDIA IN THE PRESENCE OF COUNTING UNCERTAINTIES					
	4.1		nsport of Uncollided Photons through a Slab			
	4.2	Dete	ermination of Slab Thickness from Detector Response in the Absence of ertainties			
	4.3		litional Chi-Square Minimization Method for Determining the Slab's ekness from Detector Responses in the Presence of Counting Uncertainties	44		
	4.4		lying the PM-CMPS Methodology for the Inverse Determination of Slab ekness in the Presence of Counting Uncertainties	53		
		4.4.1	Prediction of Optically Very Thin Slab (Exact Optical Thickness=0.1)	58		
		4.4.2	Prediction of Optically Thin Slab (Exact Optical Thickness = 1.0)	59		
			Prediction of Optically Thick Slab (Exact Optical Thickness=3.0)	61		
		4.4.3	Treatetion of Optically Thick state (Exact Optical Thickness=5.0)	0 1		
		4.4.3 4.4.4	Prediction of Optically Very Thick Slab (Exact Optical Thickness=7.0)			

		4.4.6	Prediction Limit for Single-Precision Computations: Slab of Exact Optical Thickness=10.0	69		
5	PREDICTIVE MODELING APPLICATION TO SAVANNAH RIVER NATIONAL LABORATORY'S F-AREA COOLING TOWERS					
	5.1	Intro	oduction	70		
	5.2	Matl	nematical Model of the Counter-Flow Cooling Tower	72		
	5.3		oint Sensitivity Analysis of Cooling Tower Model			
	5.4 Predictive Modeling: Optimal Best-Estimate Results with Reduced Predicted Uncertainties					
6	REF		ICES			
7	MU	MULTI-PRED CODE MODULE				
	7.1	Dire	ctories	123		
	7.2	Code	e Compilation and Execution	125		
	7.3	Inpu	t and Output File Organization	125		
		7.3.1	Super File	125		
		7.3.2	File "dimensions.inp"	129		
		7.3.3	Contents and Organization of Input and Output Files	130		
	7.4	Inpu	t Data Files	136		
		7.4.1	Input Data Files for MULTI-PRED Case 1	136		
		7.4.2	Input Data Files for MULTI-PRED Case 2	141		
		7.4.3	Input Data Files for MULTI-PRED Case 3	141		
		7.4.4	Input Data Files for MULTI-PRED Case 4	142		
	7.5	7.5 Output Data Files				
		7.5.1	Output Data Files for MULTI-PRED Case 1	143		
		7.5.2	Output Data Files for MULTI-PRED Case 2	148		
		7.5.3	Output Data Files for MULTI-PRED Case 3	148		
		7.5.4	Output Data Files for MULTI-PRED Case 4	149		
8	FOF	FORTRAN Source Code for the Program Multi-Pred				
	8.1	8.1 Main program multi-pred.f90				
	8.2	8.2 Module ModuleGlobalParameters.f90				
	8.3	8.3 Module ModuleIO.f90				
	8.4	8.4 Module ModuleErrors.f90				
	8.5	5 Subroutine Files.f90				

8.6	Module ModuleFiles.f90	159
8.7	Subroutine ReadInput.f90	177
8.8	Module ModuleReadWrite.f90	184
8.9	Subroutine MultiPredSolver.f90	190
8.10	Module ModuleMultiPred.f90	190
8.11	Module ModuleLapack.f90	210
8.12	makefile	289

Abstract

This User's Manual describes the code module MULTI-PRED, written in FORTRAN which implements the methodology for "predictive modeling of coupled multi-physics systems (PM-CMPS)" formulated by Cacuci (2014). This methodology fully takes into account the coupling terms between the systems but requires only the computational resources that would be needed to perform predictive modeling on each system separately. The PM-CMPS methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution based on a priori known mean values and uncertainties characterizing the experimental and computational parameters and results of interest responses, called for the multi-physics models under consideration. This "maximum entropy" a priori distribution is combined, using Bayes' theorem, with the "likelihood" provided by the multi-physics simulation models to obtain a formal posterior distribution. Subsequently, the posterior distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the multi-physics models parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PM-CMPS methodology presented in this work sequentially and without any loss of generality or information, requiring just the resources that would be needed if the systems were treated sequentially. Three illustrative demonstration problems are also provided. The first problem presents the application of the PM-CMPS methodology to a simple particle diffusion problem which admits a closed-form analytical solution which facilitates a rapid understanding of this methodology and its predicted results. The second demonstration problem presents the application of the PM-CMPS methodology to the problem of inverse prediction, from detector responses in the presence of counting uncertainties, of the thickness of a homogeneous slab of material containing uniformly distributed gamma-emitting sources, for optically thin and thick slabs. This problem highlights the essential role played by the relative uncertainties (or, conversely, accuracies) of measured and computed responses. The third demonstration problem presents the application of the PM-CMPS methodology to the F-area cooling towers at the Savannah River National Lab. This problem demonstrates that the PM-CMPS

methodology reduces the predicted response uncertainties not only at locations where measurements are available, but also at locations where measurements are not available.

Results of measurements inevitably reflect the influence of experimental errors, imperfect

1 INTRODUCTION

instruments, and imperfectly known calibration standards. Around any reported experimental value, therefore, there always exists a range of values that may also be plausibly representative of the true but unknown value of the measured quantity. On the other hand, computations are also imperfect, since they are afflicted by errors stemming from numerical procedures, uncertain model parameters, boundary and initial conditions, and/or imperfectly known physical processes or problem geometry. Therefore, nominal values for experimentally measured or computed quantities are insufficient, by themselves, for applications. The quantitative uncertainties accompanying the measurements and computations are also needed, along with the respective nominal values. Extracting "best estimate" values for model parameters and predicted results (responses), together with "best estimate" uncertainties for these parameters and responses requires the combination of experimental and computational data and their uncertainties. This combination process often requires reasoning from incomplete, error-afflicted, and occasionally discrepant information. The discrepancies between experimental and computational results provide the basic motivation for performing quantitative model verification, validation, qualification and predictive estimation. Loosely speaking, "code verification" means "are you solving the mathematical model correctly?" "Code validation" means "does the model represent reality?" "Code qualification" means certifying that a proposed simulation/design methodology/system satisfies all performance and safety specifications. Model validation addresses issues of (a) assessing model accuracy when several system response quantities have been measured and compared and (b) comparing system

Predictive modeling commences with the identification and characterization of uncertainties from all steps in the sequence of modeling and simulation processes that leads to a computational model prediction. This includes: (a) data error or uncertainty (input data such as cross sections, model

response quantities from multiple realizations of the experiment with computational results that

are characterized by probability distributions. Model validation and qualification require selected

benchmarking, including sensitivity and uncertainty analyses.

parameters such as reaction-rate coefficients, initial conditions, boundary conditions, and forcing functions such as external loading), (b) numerical discretization error, and (c) uncertainty in (e.g., lack of knowledge of) the processes being modeled. The result of the predictive modeling analysis is a probabilistic description of possible future outcomes based on all recognized errors and uncertainties.

Predictive modeling combines/assimilates computational and experimental information using response sensitivities to perform model calibration, model extrapolation, and estimation of the validation domain. Model calibration addresses the integration of experimental data for the purpose of updating the data of the computer model. Important components include the estimation of discrepancies in the data, and of the biases between model predictions and experimental data. The state-of-the-art of model calibration is fairly well developed, but current methods are still hampered in practice by the significant computational effort required. Reducing the computational effort is paramount, and methods based on adjoint models show great promise in his regard. Model extrapolation addresses the prediction uncertainty in new environments or conditions of interest, including both untested parts of the parameter space and higher levels of system complexity in the validation hierarchy. Extrapolation of models and the resulting increase of uncertainty are poorly understood, particularly the estimation of uncertainty that results from nonlinear coupling of two or more physical phenomena that were not coupled in the existing validation database. The quantification of the validation domain underlying the models of interest requires estimation of contours of constant uncertainty in the high-dimensional space that characterizes the application of interest. In practice, this involves the identification of areas where the predictive estimation of uncertainty meets specified requirements for the performance, reliability, or safety of the system of interest.

Cacuci and Ionescu-Bujor (2010a) have recently published a comprehensive methodology for predicting best-estimate values for model responses and parameters (following the assimilation experimental data and simultaneous calibration of model parameters and responses), along with reduced predicted uncertainties, for large-scale nonlinear time-dependent systems. This predictive modeling methodology generalizes and significantly extends the "data adjustment" methods customarily used in nuclear engineering, as well as those underlying the so-called 4D-VAR data assimilation procedures in the geophysical sciences (see, e.g., Lahoz et al, 2010, and Cacuci et al., 2013), and also provides a quantitative indicator, constructed from sensitivity and covariance

matrices, for determining the consistency (agreement or disagreement) among the a priori computational and experimental data (parameters and responses). This consistency indicator measures (in the corresponding metric) the deviations between the experimental and nominally computed responses. Note that this consistency indicator can be evaluated directly from the originally given data (i.e., given parameters and responses, together with their original uncertainties), once the response sensitivities have been computed by either the forward or the adjoint sensitivity analysis procedure, as developed by Cacuci (1981a, 1981b, 2003; see also: Cacuci et al, 1980). When the numerical value of this consistency indicator is close to unity (per degrees of freedom), the respective data is considered to be consistent "within the respective error norms" (usually under quadratic loss). However, when the numerical value of this consistency indicator differs considerably from unity, which usually occurs when the distance between the mean values of two (sets of) measurements or two (sets of) computations of the same quantity are larger than the sum of the two accompanying standard deviations, the respective (measured of computed) data points are considered to be inconsistent or discrepant. This means that there is a nonzero probability that two non-discrepant (i.e. belonging to the same distribution) measurements that are separated by more than 2 standard deviations (thus giving the appearance of being discrepant!) could actually occur in practice. Recall that for a Gaussian sampling distribution, the probability that two equally precise measurements would be separated by more than two standard deviations is 15.7%. However, this probability is rather small; therefore it is much more likely that apparently discrepant data actually indicate the presence of unrecognized errors. Methods for treating unrecognized errors have been developed by Cacuci and Ionescu-Bujor (2010b), by applying the maximum entropy principle under quadratic loss to the discrepant data. Once the inconsistent data, if any, is discarded, the predictive modeling methodology by Cacuci and Ionescu-Bujor (2010a) predicts best-estimate values for parameters and predicted responses, as well as best-estimate reduced uncertainties (i.e., "smaller" values for the variance-covariance matrices) for the predicted best-estimate parameters and responses.

The predictive modeling methodology of Cacuci and Ionescu-Bujor (2010a) has been successfully applied by M.C. Badea et al (2012), and by Cacuci and Arslan (2014) to calibrate time-dependent model parameters and boundary conditions for a large-scale LWR core thermal-hydraulics simulations models codes using the BFBT international benchmark measurements. Furthermore, Arslan and Cacuci (2014) have also applied the predictive modeling methodology by Cacuci and

Ionescu-Bujor (2010a) to calibrate selected parameters in commercial CFD codes for predictive modeling of liquid-sodium experiments.

The predictive modeling methodology of Cacuci and Ionescu-Bujor (2010a) has been generalized from a single multi-physics system to two or more coupled multi-physics systems by Cacuci (2014). Noteworthy, the mathematical methodology underlying this "predictive modeling of coupled multi-physics systems (PM-CMPS)" is constructed such that the systems can be treated sequentially rather than simultaneously, while preserving exactly the same results as if the systems had been treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PM-CMPS methodology sequentially, without any loss of generality or information, requiring just the resources that would be needed if the systems were treated simultaneously. This new PM-CMPS methodology is presented in Chapter 2. We use the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution for the a priori known mean values and uncertainties characterizing the parameters and responses for both multi-physics models. This approximate a priori distribution is subsequently combined using Bayes' theorem with the "likelihood" provided by the multi-physics computational models. Finally, the posterior distribution is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the parameters and responses of both multi-physics models, along with corresponding reduced uncertainties. Chapter 3 discusses the significance and new possible applications of the new methodology, while Chapter 4 offers a summary and conclusions.

2 PREDICTIVE MODELING OF COUPLED MULTI-PHYSICS SYSTEMS (PMCMPS)

2.1 Introduction

This Chapter presents the mathematical formalism underlying the *Predictive Modeling of Coupled Multi-Physics Systems* PM-CMPS methodology conceived by Cacuci (2014). The general mathematical framework of the PM-CMPS methodology is presented in the following sequence: Subsection 2.2.1 models the a priori information for two multi-physics models; Subsection 2.2.2 presents the application of the Maximum Entropy Principle to construct an optimal approximation

of the unknown a priori distribution from the a priori known mean values and uncertainties characterizing the parameters and responses for both multi-physics models. This approximate a priori distribution is subsequently combined using Bayes' theorem with the "likelihood" provided by the multi-physics computational models, as presented in Subsection 2.2.3. This Subsection also presents the application of the saddle-point method on the posterior distribution to obtain analytical expressions for the optimally predicted values for the parameters and responses of both multi-physics models, along with corresponding reduced uncertainties. Section 2.3 presents several important particular cases of the PM-CMPS methodology, which are often encountered in practice.

2.2 Mathematical Framework

2.2.1 A Priori Information for Two Multi-Physics Models

Consider a multi-physics model, henceforth called "Model A" comprising N_{α} system (model) parameters α_n . Model A is used to compute results, henceforth called responses, which can also be measured experimentally. Consider now a second physical system, henceforth called "Model B," comprising N_{β} system (model) parameters β_m , and which is also used to compute responses that can be measured experimentally. Model A and Model B are considered to be coupled. In reactor analysis and design, for example, Model A may comprise the neutron transport and depletion equations which are coupled to Model B which computes the thermal-hydraulics conservation (mass, momentum, energy) equations.

Consider next that there are N_r experimentally measured responses r_i associated mostly, but not necessarily exclusively, with Model A. Furthermore, consider also that there are N_q experimentally measured responses q_j associated mostly, but not necessarily exclusively, with Model B. For example, measurement of reaction rates and power (or flux) distributions could be considered to be responses of type r_i , while measurements of flow rates and temperature distributions could be considered responses of type q_j . In the same spirit, cross sections can be considered to be model parameters of type α_n , while heat transfer correlations can be considered model parameters of type β_m . Parameters modeling the geometry of the system (e.g., rod and

assembly dimensions, core dimensions), for example, could be considered to belong to either type of model parameters (i.e., either α_n or β_m), since they affect both the neutron transport equation and the thermal-hydraulics conservation equations.

In practice, the values of the parameters α_n and β_m are determined experimentally. Therefore, these parameters cannot be known exactly, but can be considered to behave stochastically, obeying some probability distribution function which is seldom known. Such stochastic quantities will be called *variates* in this work; thus, the parameters α_n and β_m , as well as the measured responses r_i and q_j are variates. To simplify the mathematical derivations to follow in this section, the model parameters α_n will be considered to constitute the components of the (column) vector α , defined as

$$\mathbf{\alpha} \triangleq \left(\alpha_1, ..., \alpha_{N_a}\right),\tag{2.1}$$

while the model parameters β_m will be considered to constitute the components of the (column) vector β defined as

$$\boldsymbol{\beta} \triangleq \left(\beta_1, \dots, \beta_{N_{\beta}}\right). \tag{2.2}$$

By convention, all of the vectors considered in this work (e.g., α and β) are column vectors. A dagger (†) will be used to denote "transposition;" thus the quantities α^{\dagger} and β^{\dagger} are row vectors; Similarly, the N_r experimentally measured responses r_i will be considered to be components of the column vector

$$\mathbf{r} \triangleq (r_1, \dots, r_{N_r}),\tag{2.3}$$

while the N_q experimentally measured responses q_j will be considered to be components of the column vector

$$\mathbf{q} \triangleq \left(q_1, \dots, q_{N_q}\right). \tag{2.4}$$

Most generally, the parameters α_n and β_m , as well as the responses r_i and q_j can be considered to obey some a priori probability distribution function $P(\alpha, \beta, r, q)$. For large-scale systems, as customarily encountered in practice, the probability distribution $P(\alpha, \beta, r, q)$ cannot possibly be known. The information usually available in practice comprises the mean values of the model parameters and responses together with the corresponding uncertainties (standard deviations and, occasionally, correlations) about the respective mean values. For notational simplicity, angular brackets, $\langle f \rangle$, will be used to denote the integral of the quantity $f(\alpha, \beta, r, q)$ over the joint probability distribution $P(\alpha, \beta, r, q)$, i.e.,

$$\langle f \rangle \triangleq \int f(\alpha, \beta, r, q) P(\alpha, \beta, r, q) d\alpha d\beta dr dq.$$
 (2.5)

Using the above convention, the mean values of the model parameters α_n will be denoted using the superscript "zero", i.e., as $\alpha_n^0 \triangleq \langle \alpha_n \rangle$; these mean values are considered to constitute the components of the vector $\mathbf{\alpha}^0$ defined as

$$\boldsymbol{\alpha}^0 \triangleq \left(\alpha_1^0, \dots, \alpha_{N_n}^0\right). \tag{2.6}$$

Similarly, the mean values of the parameters β_n are considered to be known, and will be denoted as $\beta_n^0 \triangleq \langle \beta_n \rangle$. These mean values are considered to be the components of the vector $\boldsymbol{\beta}^0$ defined as

$$\boldsymbol{\beta}^0 \triangleq \left(\beta_1^0, ..., \beta_{N_\beta}^0\right). \tag{2.7}$$

The parameters' second-order central moments, namely the standard deviations and correlations, are also considered to be known. For the parameters α_n , the second-order central moments are the components of covariance matrices $\mathbf{C}_{\alpha\alpha}^{(N_a \times N_a)}$ defined as

$$\mathbf{C}_{\alpha\alpha}^{(N_{\alpha}\times N_{\alpha})} \triangleq \left[\operatorname{cov}\left(\alpha_{i}, \alpha_{j}\right) \right]_{N_{\alpha}\times N_{\alpha}} \triangleq \left\langle \left(\alpha_{i} - \alpha_{i}^{0}\right) \left(\alpha_{j} - \alpha_{j}^{0}\right) \right\rangle_{N_{\alpha}\times N_{\alpha}}; \quad i, j = 1, \dots, N_{\alpha},$$
(2.8)

while the second-order central moments (i.e., the standard deviations and correlations) for the parameters β_m form covariance matrices $\mathbf{C}_{\beta\beta}^{(N_{\beta}\times N_{\beta})}$ defined as

$$\mathbf{C}_{\beta\beta}^{\left(N_{\beta}\times N_{\beta}\right)} \triangleq \left[\operatorname{cov}\left(\beta_{i},\beta_{j}\right)\right]_{N_{\beta}\times N_{\beta}} \triangleq \left\langle \left(\beta_{i}-\beta_{i}^{0}\right)\left(\beta_{j}-\beta_{j}^{0}\right)\right\rangle_{N_{\beta}\times N_{\beta}}; \quad i,j=1,...,N_{\beta}.$$
(2.9)

In general, the components of the vectors α and β may be correlated. The correlations among the parameters α and β are quantified by correlation matrices $\mathbf{C}_{\alpha\beta}^{(N_{\alpha}\times N_{\beta})}$ defined as

$$\mathbf{C}_{\alpha\beta}^{(N_{\alpha}\times N_{\beta})} \triangleq \left\langle \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{0}\right) \left(\boldsymbol{\beta} - \boldsymbol{\beta}^{0}\right)^{\dagger} \right\rangle \triangleq \left[\mathbf{C}_{\beta\alpha}^{(N_{\beta}\times N_{\alpha})}\right]^{\dagger}.$$
 (2.10)

The experimentally measured responses are also considered to be characterized by known mean measured values and measured variances and covariances. Thus, for the N_r experimentally measured responses r_i , the mean measured values will be denoted as r_i^m , and will be considered to constitute the components of the vector \mathbf{r}^m defined as

$$\mathbf{r}^m \triangleq \left(r_1^m, \dots, r_{N_r}^m\right), \quad r_i^m \triangleq \left\langle r_i \right\rangle, i = 1, \dots, N_r, \tag{2.11}$$

while the corresponding measured covariance matrix, denoted as $\mathbf{C}_{rr}^{(N_r \times N_r)}$, is defined as

$$\mathbf{C}_{rr}^{(N_r \times N_r)} \triangleq \left\langle \left(r_i - r_i^m \right) \left(r_j - r_j^m \right) \right\rangle_{N \times N}, \quad i, j = 1, \dots, N_r.$$
 (2.12)

Similarly, the N_q experimentally measured responses q_j are characterized by mean measured values, denoted as q_j^m , and constituting the components of the vector \mathbf{q}^m defined as

$$\mathbf{q}^{m} \triangleq \left(q_{1}^{m}, \dots, q_{N_{q}}^{m}\right), \quad q_{j}^{m} \triangleq \left\langle q_{j} \right\rangle, \quad j = 1, \dots, N_{q}, \tag{2.13}$$

and by the measured covariance matrix $\mathbf{C}_{qq}^{(N_q \times N_q)}$ defined as

$$\mathbf{C}_{qq}^{\left(N_q \times N_q\right)} \triangleq \left\langle \left(q_i - q_i^m\right) \left(q_j - q_j^m\right) \right\rangle_{N_q \times N_q}, \quad i, j = 1, \dots, N_q. \tag{2.14}$$

Furthermore, the responses \mathbf{r} and \mathbf{q} may also be correlated; such correlations would be quantified by correlation matrices defined as

$$\mathbf{C}_{rq}^{\left(N_{r}\times N_{q}\right)} \triangleq \left\langle \left(\mathbf{r} - \mathbf{r}^{m}\right)\left(\mathbf{q} - \mathbf{q}^{m}\right)^{\dagger}\right\rangle \triangleq \left[\mathbf{C}_{qr}^{\left(N_{q}\times N_{r}\right)}\right]^{\dagger}.$$
(2.15)

In the most general case, correlations my also exist among all parameters and responses. Such correlations would be quantified through matrices defined as follows:

$$\mathbf{C}_{\alpha r}^{(N_{\alpha} \times N_{r})} \triangleq \left\langle \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{0} \right) \left(\mathbf{r} - \mathbf{r}^{m} \right)^{\dagger} \right\rangle \triangleq \left[\mathbf{C}_{r\alpha}^{(N_{r} \times N_{\alpha})} \right]^{\dagger}, \tag{2.16}$$

$$\mathbf{C}_{\alpha q}^{\left(N_{\alpha} \times N_{q}\right)} \triangleq \left\langle \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{0}\right) \left(\mathbf{q} - \mathbf{q}^{m}\right)^{\dagger} \right\rangle \triangleq \left[\mathbf{C}_{q\alpha}^{\left(N_{q} \times N_{\alpha}\right)}\right]^{\dagger}, \tag{2.17}$$

$$\mathbf{C}_{\beta_r}^{(N_{\beta} \times N_r)} \triangleq \left\langle \left(\mathbf{\beta} - \mathbf{\beta}^0 \right) \left(\mathbf{r} - \mathbf{r}^m \right)^{\dagger} \right\rangle \triangleq \left[\mathbf{C}_{r\beta}^{(N_r \times N_{\beta})} \right]^{\dagger}, \tag{2.18}$$

$$\mathbf{C}_{\beta q}^{\left(N_{\beta} \times N_{q}\right)} \triangleq \left\langle \left(\mathbf{\beta} - \mathbf{\beta}^{0}\right) \left(\mathbf{q} - \mathbf{q}^{m}\right)^{\dagger} \right\rangle \triangleq \left[\mathbf{C}_{q\beta}^{\left(N_{q} \times N_{\beta}\right)}\right]^{\dagger}.$$
 (2.19)

2.2.2 Construction of the A Priori Distribution Function $p(\alpha, \beta, r, q)$ as the Maximum Entropy Principle Approximation of the True but Unknown A Priori Distribution Function $P(\alpha, \beta, r, q)$

The quantities defined in Eqs. (2.1) through (2.19) constitute the prior information regarding the uncertain parameters and measured responses in the two-model multi-physics system considered in the previous section. This prior information prescribes the means (i.e., the first-order moments) and covariances (i.e., the second-order moments) of an otherwise unknown distribution function $p(\alpha, \beta, r, q)$. Mathematically, these means and covariances are functionals of $p(\alpha, \beta, r, q)$, having the generic form

$$\langle F_k \rangle \triangleq \int p(\mathbf{x}) F_k(\mathbf{x}) d\mathbf{x}, \quad \mathbf{x} \triangleq (\alpha, \beta, \mathbf{r}, \mathbf{q}), \quad d\mathbf{x} \triangleq d\alpha d\beta d\mathbf{r} d\mathbf{q}, \quad k = 1, 2, ..., K,$$
 (2.20)

with $F_k(\mathbf{x})$ representing, in turn, the quantities: $(\alpha_n - \alpha_n^0)$, $(\beta_n - \beta_n^0)$, $(r_n - r_n^m)$, $(q_n - q_n^m)$, $(\alpha_i - \alpha_i^0)(\alpha_j - \alpha_j^0)$, $(\beta_i - \beta_i^0)(\beta_j - \beta_j^0)$, $(r_i - r_i^m)(r_j - r_j^m)$, $(q_i - q_i^m)(q_j - q_j^m)$, $(\alpha_i - \alpha_i^0)(\beta_j - \beta_j^0)$, $(\alpha_i - \alpha_i^0)(r_j - r_j^m)$, $(\alpha_i - \alpha_i^0)(q_j - q_j^m)$, $(\beta_i - \beta_i^0)(q_j - q_j^m)$, and $(r_i - r_i^m)(q_j - q_j^m)$.

The total number of first- and second-order moments is

$$K \triangleq N_{\alpha} + N_{\beta} + N_{r} + N_{q} + N_{\alpha}^{2} + N_{\beta}^{2} + N_{r}^{2} + N_{q}^{2} + \left(N_{\alpha} \times N_{\beta}\right) + \left(N_{\alpha} \times N_{r}\right) + \left(N_{\alpha} \times N_{q}\right) + \left(N_{\beta} \times N_{r}\right) + \left(N_{\beta} \times N_{q}\right) + \left(N_{r} \times N_{q}\right).$$

$$(2.21)$$

An optimal way to approximate the true but unknown probability distribution function $P(\mathbf{x})$ using the information given in Eq. (2.20) is to apply the *maximum entropy formalism*. The maximum entropy formalism enables the determination of an approximate probability distribution function, denoted here as $p(\mathbf{x})$, which approximates the exact but unknown distribution $P(\mathbf{x})$ by maximizing over $p(\mathbf{x})$ the Shannon information entropy, defined as

$$S \triangleq -\int d\mathbf{x} \, p(\mathbf{x}) \ln \frac{p(\mathbf{x})}{m(\mathbf{x})},\tag{2.22}$$

where $m(\mathbf{x})$ is a prior density that ensures form invariance under change of variable, while satisfying the constraints given in Eq.(2.20). This maximum entropy principle insures that the approximate distribution function $p(\mathbf{x})$ maximizes the optimal compatibility with the available information, namely the constraints given in Eq.(2.20), while simultaneously ensuring minimal spurious information content.

Maximizing the information entropy S over $p(\mathbf{x})$ subject to the constraints expressed by Eq.(2.20) constitutes a variational problem that can be solved by using the method of Lagrange multipliers to obtain a member of the exponential family, namely

$$p(\mathbf{x}) = \frac{1}{Z} m(\mathbf{x}) \exp \left[-\sum_{k} \lambda_{k} F_{k}(\mathbf{x}) \right], \qquad (2.23)$$

where the quantities λ_k are the Lagrange multipliers. The normalization constant Z in Eq (2.23). is defined as

$$Z = \int d\mathbf{x} \, m(\mathbf{x}) \exp \left[-\sum_{k} \lambda_{k} F_{k}(\mathbf{x}) \right]. \tag{2.24}$$

The Lagrange multipliers λ_k must be found directly from the constraints [i.e., using Eqs. (2.20). and (2.23) or from the equivalent equations

$$\langle F_k \rangle = -\frac{\partial}{\partial \lambda_k} \ln Z, \qquad k = 1, 2, \dots, K,$$
 (2.25)

which are more convenient if Z can be expressed as an analytic function of the Lagrange parameters.

In the case of discrete distributions, if only the alternatives can be enumerated but the macroscopic data $\langle F_k \rangle$ are not known, then $m(\mathbf{x})=1$, and the maximum entropy algorithm described in the foregoing yields the uniform distribution, as would be required by the principle of insufficient reason. Therefore, the maximum entropy principle can be considered as a far-reaching generalization of the principle of insufficient reason, ranging from discrete alternatives with no other information given, to cases with given global or macroscopic information, and also encompassing continuous distributions. Physicists will recognize the maximum entropy algorithm described above as the essence of the Gibbs-formalism for statistical mechanics, where Z is the partition function (or sum over states), carrying all information about the possible states of the system, from which the expected macroscopic parameters can be obtained by differentiation with respect to the Lagrange multipliers. If only the possible energies of a system and the average energy (i.e., the temperature) are given, one finds Gibbs' canonical ensemble, with probabilities proportional to the Boltzmann factors $\exp(-\lambda E_j)$, the Lagrange multiplier λ being essentially the inverse temperature. If, in addition, the average particle number is given, one finds the grand-canonical ensemble, with a second Lagrange multiplier equal to the chemical potential, etc.

Performing the (lengthy but straightforward) computations indicated in Eq (2.25) solving the resulting system of equation for the Lagrange multipliers λ_k , and replacing the resulting expressions in Eq. (2.23) leads to the following expression for $p(\mathbf{x})$:

$$p(\mathbf{x} | \langle \mathbf{x} \rangle, \mathbf{C}) d\mathbf{x} = \frac{\exp\left[-\frac{1}{2}(\mathbf{x} - \langle \mathbf{x} \rangle)^{\dagger} \mathbf{C}^{-1}(\mathbf{x} - \langle \mathbf{x} \rangle)\right] d\mathbf{x},}{\sqrt{\det(2\pi \mathbf{C})}}, -\infty < x_{j} < \infty,$$
(2.26)

where the dagger (\dagger) denotes transposition (Hermitian conjugation of real vectors and matrices), and the matrix \mathbf{C} is defined as

$$\mathbf{C} \triangleq \begin{pmatrix} \mathbf{C}_{\alpha\alpha} & \mathbf{C}_{\alpha\beta} & \mathbf{C}_{\alpha r} & \mathbf{C}_{\alpha q} \\ \mathbf{C}_{\beta\alpha} & \mathbf{C}_{\beta\beta} & \mathbf{C}_{\beta r} & \mathbf{C}_{\beta q} \\ \mathbf{C}_{r\alpha} & \mathbf{C}_{r\beta} & \mathbf{C}_{rr} & \mathbf{C}_{rq} \\ \mathbf{C}_{q\alpha} & \mathbf{C}_{q\beta} & \mathbf{C}_{qr} & \mathbf{C}_{qq} \end{pmatrix}, with \ \mathbf{x} \triangleq \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \\ \mathbf{r} \\ \mathbf{q} \end{pmatrix}, \ \langle \mathbf{x} \rangle \triangleq \begin{pmatrix} \boldsymbol{\alpha}^{0} \\ \boldsymbol{\beta}^{0} \\ \mathbf{r}^{m} \\ \mathbf{q}^{m} \end{pmatrix}.$$
(2.27)

Thus, the foregoing considerations show that, when only mean values and covariances are known, the maximum entropy algorithm yields the Gaussian probability distribution shown in Eq.(2.27) as the most objective probability distribution consistent with the available information. Although all of the above results are valid for $-\infty < x_j < \infty$, these results can also be used for $0 < x_j < \infty$ after introduction of a logarithmic scale (which leads to lognormal distributions on the original scale).

Gaussian distributions are often considered appropriate only if many independent random deviations act together so that the central limit theorem is applicable. At other times, Gaussian distributions are invoked for mere convenience, with accompanying warnings about consequences if the true distribution is not Gaussian. The maximum entropy principle cannot eliminate these consequences, but it reassures the data user who is given only mean values and their (co)variances that the corresponding Gaussian is the best choice for all further inferences, whatever the unknown true distribution may happen to be. In contrast to the central limit theorem, the maximum entropy principle is also valid for correlated data.

2.2.3 Construction of the A Posteriori Predicted Mean Values and Covariances for the Given Models (Likelihood Function) and Maximum Entropy Prior Distribution

Consider next that the coupled Models A and B are used to compute the $(N_r + N_q)$ experimentally measured responses. These computed responses will be considered to be the components of two vectors, denoted as $\mathbf{r}^c(\alpha, \boldsymbol{\beta}) \triangleq (r_1^c, ..., r_{N_r}^c)$ and $\mathbf{q}^c(\alpha, \boldsymbol{\beta}) \triangleq (q_1^c, ..., q_{N_q}^c)$, respectively, where the superscript "c" indicates "computed." In principle, the computed responses may depend on some or all of the components of $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$. Consequently, $\mathbf{r}^c(\alpha, \boldsymbol{\beta})$ and $\mathbf{q}^c(\alpha, \boldsymbol{\beta})$ are also variates, characterized by probability distribution functions, which cannot, in general, be obtained in explicitly closed forms.

The next step is to combine the experimental and computational information in order to obtain the posterior distribution of $\mathbf{x} \triangleq (\alpha, \beta, \mathbf{r}, \mathbf{q})$. This combination is rigorously performed by using Bayes' theorem, in which the (maximum entropy) prior is the Gaussian distribution computed in Eq. (2.26), while the likelihood is provided by the computational models $\mathbf{r}^c(\alpha, \beta)$ and $\mathbf{q}^c(\alpha, \beta)$. When the numerical and/or modeling errors are not explicitly taken into account, but are considered to be amenable to treatment via uncertain model parameters that are included among the components of α , the computational models are considered to be "hard constraints" of the form

$$\mathbf{r} = \mathbf{r}^{c} (\alpha, \beta), \ \mathbf{q} = \mathbf{q}^{c} (\alpha, \beta).$$
 (2.28)

Needless to say the posterior distribution, which consists of the prior given in Eq (2.26) together with the likelihood expressed by Eq.(2.28), cannot be computed exactly. Nevertheless, the main contribution to the posterior distribution, and, in particular, the main contributions to the posterior distribution's means and covariances, can be obtained by applying the saddle-point method to evaluate the Gaussian prior in Eq.(2.26) subject to the constraints expressed by Eq.(2.28). As is well known, the saddle-point is the point where the gradient of exponent of the Gaussian prior in Eq.(2.26) vanishes subject to the constraints in Eq.(2.28). The method of Lagrange multipliers can be used to determine this saddle-point, by setting to zero the (partial) gradients with respect to α, β, r, q of the following functional:

$$P(\boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{r}, \mathbf{q}) \triangleq -\frac{1}{2} (\mathbf{x} - \langle \mathbf{x} \rangle)^{\dagger} \mathbf{C}^{-1} (\mathbf{x} - \langle \mathbf{x} \rangle) + \lambda_r^{\dagger} [\mathbf{r} - \mathbf{r}^c (\boldsymbol{\alpha}, \boldsymbol{\beta})] + \lambda_q^{\dagger} [\mathbf{q} - \mathbf{q}^c (\boldsymbol{\alpha}, \boldsymbol{\beta})], \quad (2.29)$$

where λ_r and λ_q are vectors of (yet undetermined) Lagrange multipliers of sizes N_r and N_q , respectively. Thus, the saddle point of $P(\alpha, \beta, r, q)$ is attained at $\mathbf{x}^{pred} \triangleq (\alpha^{pred}, \beta^{pred}, r^{pred}, q^{pred})$ where the following conditions are simultaneously fulfilled:

$$\nabla_{\lambda_{c}} P = \mathbf{r} - \mathbf{r}^{c} (\boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathbf{0}; \quad \nabla_{\lambda_{c}} P = \mathbf{q} - \mathbf{q}^{c} (\boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathbf{0};$$
 (2.30)

$$\nabla_{\alpha} P = \mathbf{0}; \ \nabla_{\beta} P = \mathbf{0}; \ \nabla_{r} P = \mathbf{0}; \ \nabla_{\alpha} P = \mathbf{0}. \tag{2.31}$$

The conditions expressed in Eq.(2.30) simply ensure that the saddle-point will satisfy the constraints imposed by the numerical simulation Models A and B. On the other hand, the conditions imposed in Eq.(2.31) can be written in block-matrix form as

$$\begin{pmatrix}
\mathbf{q}^{pred} - \mathbf{q}^{0} \\
\mathbf{\beta}^{pred} - \mathbf{\beta}^{0} \\
\mathbf{r}^{pred} - \mathbf{r}^{m} \\
\mathbf{q}^{pred} - \mathbf{q}^{m}
\end{pmatrix} = \begin{pmatrix}
\mathbf{C}_{\alpha\alpha} & \mathbf{C}_{\alpha\beta} & \mathbf{C}_{\alpha r} & \mathbf{C}_{\alpha q} \\
\mathbf{C}_{\alpha\beta}^{\dagger} & \mathbf{C}_{\beta\beta} & \mathbf{C}_{\beta r} & \mathbf{C}_{\beta q} \\
\mathbf{C}_{\alpha r}^{\dagger} & \mathbf{C}_{\beta r}^{\dagger} & \mathbf{C}_{r r} & \mathbf{C}_{r q} \\
\mathbf{C}_{\alpha q}^{\dagger} & \mathbf{C}_{\beta q}^{\dagger} & \mathbf{C}_{r q}^{\dagger} & \mathbf{C}_{q q}
\end{pmatrix} \begin{pmatrix}
-\mathbf{S}_{r\alpha}^{\dagger} \boldsymbol{\lambda}_{r} - \mathbf{S}_{q\alpha}^{\dagger} \boldsymbol{\lambda}_{q} \\
-\mathbf{S}_{r\beta}^{\dagger} \boldsymbol{\lambda}_{r} - \mathbf{S}_{q\beta}^{\dagger} \boldsymbol{\lambda}_{q} \\
\boldsymbol{\lambda}_{r} \\
\boldsymbol{\lambda}_{q}
\end{pmatrix}$$
(2.32)

where the matrices $\mathbf{S}_{r\alpha}(\boldsymbol{\alpha}^0,\boldsymbol{\beta}^0)$, $\mathbf{S}_{r\beta}(\boldsymbol{\alpha}^0,\boldsymbol{\beta}^0)$, $\mathbf{S}_{q\alpha}(\boldsymbol{\alpha}^0,\boldsymbol{\beta}^0)$, and $\mathbf{S}_{q\beta}(\boldsymbol{\alpha}^0,\boldsymbol{\beta}^0)$ comprise first-order response-derivatives with respect to the model parameters, computed at the nominal parameter values $(\boldsymbol{\alpha}^0,\boldsymbol{\beta}^0)$, and are defined as follows:

$$\mathbf{S}_{r\alpha}^{N_{r}\times N_{\alpha}} \equiv \begin{bmatrix} \frac{\partial r_{1}}{\partial \alpha_{1}} & \cdots & \frac{\partial r_{1}}{\partial \alpha_{N_{\alpha}}} \\ \vdots & \ddots & \vdots \\ \frac{\partial r_{N_{r}}}{\partial \alpha_{1}} & \cdots & \frac{\partial r_{N_{r}}}{\partial \alpha_{N_{\alpha}}} \end{bmatrix}, \quad \mathbf{S}_{r\beta}^{N_{r}\times N_{\beta}} \equiv \begin{bmatrix} \frac{\partial r_{1}}{\partial \beta_{1}} & \cdots & \frac{\partial r_{1}}{\partial \beta_{N_{\beta}}} \\ \vdots & \ddots & \vdots \\ \frac{\partial r_{N_{r}}}{\partial \beta_{1}} & \cdots & \frac{\partial r_{N_{r}}}{\partial \beta_{N_{\beta}}} \end{bmatrix},$$

$$(2.33)$$

$$\mathbf{S}_{q\alpha}^{N_{q}\times N_{\alpha}} \equiv \begin{bmatrix} \frac{\partial q_{1}}{\partial \alpha_{1}} & \cdots & \frac{\partial q_{1}}{\partial \alpha_{N_{\alpha}}} \\ \vdots & \ddots & \vdots \\ \frac{\partial q_{N_{q}}}{\partial \alpha_{1}} & \cdots & \frac{\partial q_{N_{q}}}{\partial \alpha_{N_{\alpha}}} \end{bmatrix}, \quad \mathbf{S}_{q\beta}^{N_{q}\times N_{\beta}} \equiv \begin{bmatrix} \frac{\partial q_{1}}{\partial \beta_{1}} & \cdots & \frac{\partial q_{1}}{\partial \beta_{N_{\beta}}} \\ \vdots & \ddots & \vdots \\ \frac{\partial q_{N_{q}}}{\partial \beta_{1}} & \cdots & \frac{\partial q_{N_{q}}}{\partial \beta_{N_{\beta}}} \end{bmatrix}. \tag{2.34}$$

When written in component form, Eq.(2.32) yields the following relations:

$$\left(\boldsymbol{\alpha}^{pred} - \boldsymbol{\alpha}^{0}\right) = -\mathbf{C}_{\alpha\alpha}\left(\mathbf{S}_{r\alpha}^{\dagger}\boldsymbol{\lambda}_{r} + \mathbf{S}_{q\alpha}^{\dagger}\boldsymbol{\lambda}_{q}\right) - \mathbf{C}_{\alpha\beta}\left(\mathbf{S}_{r\beta}^{\dagger}\boldsymbol{\lambda}_{r} + \mathbf{S}_{q\beta}^{\dagger}\boldsymbol{\lambda}_{q}\right) + \mathbf{C}_{\alpha r}\boldsymbol{\lambda}_{r} + \mathbf{C}_{\alpha q}\boldsymbol{\lambda}_{q}$$
(2.35)

$$\left(\boldsymbol{\beta}^{pred} - \boldsymbol{\beta}^{0}\right) = -\mathbf{C}_{\alpha\beta}^{\dagger} \left(\mathbf{S}_{r\alpha}^{\dagger} \boldsymbol{\lambda}_{r} + \mathbf{S}_{q\alpha}^{\dagger} \boldsymbol{\lambda}_{q}\right) - \mathbf{C}_{\beta\beta} \left(\mathbf{S}_{r\beta}^{\dagger} \boldsymbol{\lambda}_{r} + \mathbf{S}_{q\beta}^{\dagger} \boldsymbol{\lambda}_{q}\right) + \mathbf{C}_{\beta r} \boldsymbol{\lambda}_{r} + \mathbf{C}_{\beta q} \boldsymbol{\lambda}_{q}$$
(2.36)

$$\left(\mathbf{r}^{pred} - \mathbf{r}^{0}\right) = -\mathbf{C}_{\alpha r}^{\dagger} \left(\mathbf{S}_{r\alpha}^{\dagger} \lambda_{r} + \mathbf{S}_{q\alpha}^{\dagger} \lambda_{q}\right) - \mathbf{C}_{\beta r}^{\dagger} \left(\mathbf{S}_{r\beta}^{\dagger} \lambda_{r} + \mathbf{S}_{q\beta}^{\dagger} \lambda_{q}\right) + \mathbf{C}_{rr} \lambda_{r} + \mathbf{C}_{rq} \lambda_{q}$$
(2.37)

$$\left(\mathbf{q}^{pred} - \mathbf{q}^{0}\right) = -\mathbf{C}_{\alpha q}^{\dagger} \left(\mathbf{S}_{r\alpha}^{\dagger} \lambda_{r} + \mathbf{S}_{q\alpha}^{\dagger} \lambda_{q}\right) - \mathbf{C}_{\beta q}^{\dagger} \left(\mathbf{S}_{r\beta}^{\dagger} \lambda_{r} + \mathbf{S}_{q\beta}^{\dagger} \lambda_{q}\right) + \mathbf{C}_{rq}^{\dagger} \lambda_{r} + \mathbf{C}_{qq} \lambda_{q}$$
(2.38)

Note that no approximations have been introduced thus far, so that Eqs. (2.35) through (2.38) are exact for the a priori information considered to be known (i.e., known means and covariance matrices for the parameters and measured responses). On the other hand, these equations cannot be used to compute the optimally predicted mean values for the parameters and responses, since the Lagrange multipliers λ_r and λ_q are still undetermined. Two additional relations are needed to determine these Lagrange multipliers. These relations are obtained by considering the model responses as explicit functions of the model parameters.

To first-order in the parameter variations the model responses \mathbf{r} (for Model A) and \mathbf{q} (for Model B) would be linear functions of the parameter variations of the form

$$\mathbf{r} = \mathbf{r}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) + \mathbf{S}_{r\alpha} \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{0} \right) + \mathbf{S}_{r\beta} \left(\boldsymbol{\beta} - \boldsymbol{\beta}^{0} \right) + higher \ order \ terms, \tag{2.39}$$

$$\mathbf{q} = \mathbf{q}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) + \mathbf{S}_{q\alpha} \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{0} \right) + \mathbf{S}_{q\beta} \left(\boldsymbol{\beta} - \boldsymbol{\beta}^{0} \right) + higher \ order \ terms. \tag{2.40}$$

In particular, for the predicted parameter values α^{pred} and β^{pred} , the responses predicted by the linearized models would be given the following expressions:

$$\mathbf{r}^{pred} = \mathbf{r}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) + \mathbf{S}_{r\alpha} \left(\boldsymbol{\alpha}^{pred} - \boldsymbol{\alpha}^{0} \right) + \mathbf{S}_{r\beta} \left(\boldsymbol{\beta}^{pred} - \boldsymbol{\beta}^{0} \right) + higher order terms, \tag{2.41}$$

$$\mathbf{q}^{pred} = \mathbf{q}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) + \mathbf{S}_{q\alpha} \left(\boldsymbol{\alpha}^{pred} - \boldsymbol{\alpha}^{0} \right) + \mathbf{S}_{q\beta} \left(\boldsymbol{\beta}^{pred} - \boldsymbol{\beta}^{0} \right) + higher \ order \ terms. \tag{2.42}$$

The following intermediate steps are now performed in order to eliminate the Lagrange multipliers: (i) replace \mathbf{r}^{pred} and \mathbf{q}^{pred} from Eqs.(2.41) and (2.42) into Eqs.(2.35) through (2.38) to obtain a system of four equations for the four unknowns $(\boldsymbol{\alpha}^{pred}, \boldsymbol{\beta}^{pred}, \boldsymbol{\lambda}_r, \boldsymbol{\lambda}_q)$; (ii) from this system, eliminate the quantities $(\boldsymbol{\alpha}^{pred} - \boldsymbol{\alpha}^0)$ and $(\boldsymbol{\beta}^{pred} - \boldsymbol{\beta}^0)$; and (iii) re-arrange the resulting equations to obtain the following coupled equations for the Lagrange multipliers:

$$\begin{bmatrix} \mathbf{D}_{rr} & \mathbf{D}_{rq} \\ \mathbf{D}_{qr} & \mathbf{D}_{qq} \end{bmatrix} \begin{bmatrix} \boldsymbol{\lambda}_{r} \\ \boldsymbol{\lambda}_{q} \end{bmatrix} = \begin{bmatrix} \mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \\ \mathbf{q}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \end{bmatrix}, \tag{2.43}$$

where the block-matrix of known quantities on the left-side, and the block-vector of known quantities on the right-side of the above equations are defined as follows:

$$\mathbf{D}_{rr} \triangleq \mathbf{S}_{r\alpha} \left(\mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\alpha\beta} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{\alpha r} \right) + \mathbf{S}_{r\beta} \left(\mathbf{C}_{\alpha\beta}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\beta\beta} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{\beta r} \right) - \mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\beta r}^{\dagger} \mathbf{S}_{r\beta}^{\dagger} + \mathbf{C}_{rr},$$

$$(2.44)$$

$$\mathbf{D}_{rq} \triangleq \mathbf{S}_{r\alpha} \left(\mathbf{C}_{\alpha\alpha} \mathbf{S}_{q\alpha}^{\dagger} + \mathbf{C}_{\alpha\beta} \mathbf{S}_{q\beta}^{\dagger} - \mathbf{C}_{\alpha q} \right) + \mathbf{S}_{r\beta} \left(\mathbf{C}_{\alpha\beta}^{\dagger} \mathbf{S}_{q\alpha}^{\dagger} + \mathbf{C}_{\beta\beta} \mathbf{S}_{q\beta}^{\dagger} - \mathbf{C}_{\beta q} \right) - \mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{q\alpha}^{\dagger} - \mathbf{C}_{\beta r}^{\dagger} \mathbf{S}_{q\beta}^{\dagger} + \mathbf{C}_{rq},$$

$$(2.45)$$

$$\mathbf{D}_{qr} \triangleq \mathbf{S}_{q\alpha} \left(\mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\alpha\beta} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{\alpha r} \right) + \mathbf{S}_{q\beta} \left(\mathbf{C}_{\alpha\beta}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\beta\beta} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{\beta r} \right) - \mathbf{C}_{\alpha\alpha}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\beta\alpha}^{\dagger} \mathbf{S}_{r\beta}^{\dagger} + \mathbf{C}_{r\alpha}^{\dagger} = \mathbf{D}_{r\alpha}^{\dagger},$$

$$(2.46)$$

$$\mathbf{D}_{qq} \triangleq \mathbf{S}_{q\alpha} \left(\mathbf{C}_{\alpha\alpha} \mathbf{S}_{q\alpha}^{\dagger} + \mathbf{C}_{\alpha\beta} \mathbf{S}_{q\beta}^{\dagger} - \mathbf{C}_{\alpha q} \right) + \mathbf{S}_{q\beta} \left(\mathbf{C}_{\alpha\beta}^{\dagger} \mathbf{S}_{q\alpha}^{\dagger} + \mathbf{C}_{\beta\beta} \mathbf{S}_{q\beta}^{\dagger} - \mathbf{C}_{\beta q} \right)$$

$$- \mathbf{C}_{\alpha\alpha}^{\dagger} \mathbf{S}_{\alpha\alpha}^{\dagger} - \mathbf{C}_{\beta\alpha}^{\dagger} \mathbf{S}_{\beta\alpha}^{\dagger} + \mathbf{C}_{\alpha\alpha},$$

$$(2.47)$$

$$\mathbf{r}^{d}\left(\boldsymbol{\alpha}^{0},\boldsymbol{\beta}^{0}\right) \triangleq \mathbf{r}^{c}\left(\boldsymbol{\alpha}^{0},\boldsymbol{\beta}^{0}\right) - \mathbf{r}^{m}; \qquad \mathbf{q}^{d}\left(\boldsymbol{\alpha}^{0},\boldsymbol{\beta}^{0}\right) \triangleq \mathbf{q}^{c}\left(\boldsymbol{\alpha}^{0},\boldsymbol{\beta}^{0}\right) - \mathbf{q}^{m}. \tag{2.48}$$

Note that the vectors $\mathbf{r}^d \left(\boldsymbol{\alpha}^0, \boldsymbol{\beta}^0 \right)$ and $\mathbf{q}^d \left(\boldsymbol{\alpha}^0, \boldsymbol{\beta}^0 \right)$ measure the differences ("deviations") between the computed and measured responses. Note also that the matrices defined in Eqs. (2.44) through

(2.47) have the following dimensions: $\dim \mathbf{D}_{rr} = (N_r \times N_r)$; $\dim \mathbf{D}_{rq} = (N_r \times N_q)$; $\dim \mathbf{D}_{qq} = (N_q \times N_q)$; and $\dim \mathbf{D}_{qq} = (N_q \times N_q)$, and have the following physical meanings: (i) The matrix \mathbf{D}_{rr} is actually the covariance matrix of the vector of response "deviations" for Model A, i.e.,

$$\mathbf{D}_{rr} = \left\langle \mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \left[\mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right]^{\dagger} \right\rangle; \tag{2.49}$$

(ii) The matrix \mathbf{D}_{qq} is actually the covariance matrix of the vector of response "deviations" for Model B, i.e.,

$$\mathbf{D}_{qq} = \left\langle \mathbf{q}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \left[\mathbf{q}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right]^{\dagger} \right\rangle; \tag{2.50}$$

(iii) The matrix $\mathbf{D}_{rq} = \mathbf{D}_{rq}^{\dagger}$ is actually the correlation matrix between the vector of response "deviations" for Model A and Model B, i.e.,

$$\mathbf{D}_{rq} = \left\langle \mathbf{q}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \left[\mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right]^{\dagger} \right\rangle; \qquad \mathbf{D}_{qr} = \left\langle \mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \left[\mathbf{q}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right]^{\dagger} \right\rangle. \tag{2.51}$$

The Lagrange multipliers λ_r and λ_q are obtained by solving Eq.(2.41), which requires the inverse of the matrix

$$\mathbf{D} \triangleq \begin{bmatrix} \mathbf{D}_{rr} & \mathbf{D}_{rq} \\ \mathbf{D}_{rq}^{\dagger} & \mathbf{D}_{qq} \end{bmatrix}$$
 (2.52)

The matrix defined in Eq.(2.52) can be inverted by partitioning it to obtain

$$\mathbf{D}^{-1} \triangleq \begin{bmatrix} \mathbf{D}_{11} & \mathbf{D}_{12} \\ \mathbf{D}_{12}^{\dagger} & \mathbf{D}_{22} \end{bmatrix},\tag{2.53}$$

Where

$$\mathbf{D}_{11} \triangleq \mathbf{D}_{rr}^{-1} + \mathbf{D}_{rr}^{-1} \mathbf{D}_{rq} \mathbf{D}_{22} \mathbf{D}_{rq}^{\dagger} \mathbf{D}_{rr}^{-1}, \tag{2.54}$$

$$\mathbf{D}_{12} \triangleq -\mathbf{D}_{rr}^{-1}\mathbf{D}_{rq}\mathbf{D}_{22},\tag{2.55}$$

$$\mathbf{D}_{12}^{\dagger} \triangleq -\mathbf{D}_{22} \mathbf{D}_{ra}^{\dagger} \mathbf{D}_{rr}^{-1}, \tag{2.56}$$

$$\mathbf{D}_{22} \triangleq \left(\mathbf{D}_{qq} - \mathbf{D}_{rq}^{\dagger} \mathbf{D}_{rr}^{-1} \mathbf{D}_{rq}\right)^{-1}.$$
 (2.57)

After obtaining the expressions of λ_r and λ_q by solving Eq.(2.43), they are replaced in Eqs.(2.35) through (2.38) to obtain the following expressions for the optimally predicted values of model parameters and responses:

$$\boldsymbol{\alpha}^{pred} = \boldsymbol{\alpha}^{0} - \left[\mathbf{X}_{\alpha} \mathbf{D}_{11} + \mathbf{Y}_{\alpha} \mathbf{D}_{12}^{\dagger} \right] \mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) - \left[\mathbf{X}_{\alpha} \mathbf{D}_{12} + \mathbf{Y}_{\alpha} \mathbf{D}_{22} \right] \mathbf{q}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right), \quad (2.58)$$

$$\boldsymbol{\beta}^{pred} = \boldsymbol{\beta}^{0} - \left[\mathbf{X}_{\beta} \mathbf{D}_{11} + \mathbf{Y}_{\beta} \mathbf{D}_{12}^{\dagger} \right] \mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) - \left[\mathbf{X}_{\beta} \mathbf{D}_{12} + \mathbf{Y}_{\beta} \mathbf{D}_{22} \right] \mathbf{q}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right), \quad (2.59)$$

$$\mathbf{r}^{pred} = \mathbf{r}^{m} - \left[\mathbf{X}_{r}\mathbf{D}_{11} + \mathbf{Y}_{r}\mathbf{D}_{12}^{\dagger}\right]\mathbf{r}^{d}\left(\boldsymbol{\alpha}^{0},\boldsymbol{\beta}^{0}\right) - \left[\mathbf{X}_{r}\mathbf{D}_{12} + \mathbf{Y}_{r}\mathbf{D}_{22}\right]\mathbf{q}^{d}\left(\boldsymbol{\alpha}^{0},\boldsymbol{\beta}^{0}\right), \tag{2.60}$$

$$\mathbf{q}^{pred} = \mathbf{q}^{m} - \left[\mathbf{X}_{q} \mathbf{D}_{11} + \mathbf{Y}_{q} \mathbf{D}_{12}^{\dagger} \right] \mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) - \left[\mathbf{X}_{q} \mathbf{D}_{12} + \mathbf{Y}_{q} \mathbf{D}_{22} \right] \mathbf{q}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right), \quad (2.61)$$

where

$$\mathbf{X}_{\alpha} \triangleq \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\alpha\beta} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{\alpha r}, \tag{2.62}$$

$$\mathbf{Y}_{\alpha} \triangleq \mathbf{C}_{\alpha\alpha} \mathbf{S}_{q\alpha}^{\dagger} + \mathbf{C}_{\alpha\beta} \mathbf{S}_{q\beta}^{\dagger} - \mathbf{C}_{\alpha q}, \tag{2.63}$$

$$\mathbf{X}_{\beta} \triangleq \mathbf{C}_{\alpha\beta}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\beta\beta} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{\beta r}, \tag{2.64}$$

$$\mathbf{Y}_{\beta} \triangleq \mathbf{C}_{\beta\alpha} \mathbf{S}_{\alpha\alpha}^{\dagger} + \mathbf{C}_{\beta\beta} \mathbf{S}_{\alpha\beta}^{\dagger} - \mathbf{C}_{\beta\alpha}, \tag{2.65}$$

$$\mathbf{X}_{r} \triangleq \mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\beta r}^{\dagger} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{rr}, \qquad (2.66)$$

$$\mathbf{Y}_{r} \triangleq \mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{q\alpha}^{\dagger} + \mathbf{C}_{\beta r}^{\dagger} \mathbf{S}_{q\beta}^{\dagger} - \mathbf{C}_{rq}, \qquad (2.67)$$

$$\mathbf{X}_{q} \triangleq \mathbf{C}_{\alpha q}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\beta q}^{\dagger} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{rq}^{\dagger}, \tag{2.68}$$

$$\mathbf{Y}_{q} \triangleq \mathbf{C}_{\alpha q}^{\dagger} \mathbf{S}_{q \alpha}^{\dagger} + \mathbf{C}_{\beta q}^{\dagger} \mathbf{S}_{q \beta}^{\dagger} - \mathbf{C}_{q q}. \tag{2.69}$$

The predicted optimal covariance matrix $\mathbf{C}^{\textit{pred}}_{\alpha\alpha}$ for the parameters α of Model A is obtained as:

$$\mathbf{C}_{\alpha\alpha}^{pred} \triangleq \left\langle \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{pred} \right) \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{pred} \right)^{\dagger} \right\rangle \\
= \mathbf{C}_{\alpha\alpha} - \left[\mathbf{X}_{\alpha} \left(\mathbf{D}_{11} \mathbf{X}_{\alpha}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{\alpha}^{\dagger} \right) + \mathbf{Y}_{\alpha} \left(\mathbf{D}_{21} \mathbf{X}_{\alpha}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{\alpha}^{\dagger} \right) \right]; \tag{2.70}$$

The predicted covariance matrix \mathbf{C}_{rr}^{pred} for the responses \mathbf{r} of Model A is obtained as:

$$\mathbf{C}_{rr}^{pred} \triangleq \left\langle \left(\mathbf{r} - \mathbf{r}^{pred}\right) \left(\mathbf{r} - \mathbf{r}^{pred}\right)^{\dagger} \right\rangle \\
= \mathbf{C}_{rr} - \left[\mathbf{X}_{r} \left(\mathbf{D}_{11} \mathbf{X}_{r}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{r}^{\dagger}\right) + \mathbf{Y}_{r} \left(\mathbf{D}_{21} \mathbf{X}_{r}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{r}^{\dagger}\right) \right];$$
(2.71)

The predicted correlation matrix $\mathbf{C}_{\alpha r}^{pred}$ for the parameters $\boldsymbol{\alpha}$ and \mathbf{r} responses of Model A is obtained as:

$$\mathbf{C}_{\alpha r}^{pred} \triangleq \left\langle \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{pred} \right) \left(\mathbf{r} - \mathbf{r}^{pred} \right)^{\dagger} \right\rangle
= \mathbf{C}_{\alpha r} - \left[\mathbf{X}_{\alpha} \left(\mathbf{D}_{11} \mathbf{X}_{r}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{r}^{\dagger} \right) + \mathbf{Y}_{\alpha} \left(\mathbf{D}_{21} \mathbf{X}_{r}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{r}^{\dagger} \right) \right];$$
(2.72)

The predicted covariance matrix $C^{\it pred}_{\beta\beta}$ for the parameters β of Model B is obtained as:

$$\mathbf{C}_{\beta\beta}^{pred} \triangleq \left\langle \left(\mathbf{\beta} - \mathbf{\beta}^{pred} \right) \left(\mathbf{\beta} - \mathbf{\beta}^{pred} \right)^{\dagger} \right\rangle \\
= \mathbf{C}_{\beta\beta} - \left[\mathbf{X}_{\beta} \left(\mathbf{D}_{11} \mathbf{X}_{\beta}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{\beta}^{\dagger} \right) + \mathbf{Y}_{\beta} \left(\mathbf{D}_{21} \mathbf{X}_{\beta}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{\beta}^{\dagger} \right) \right]; \tag{2.73}$$

The predicted covariance matrix $\mathbf{C}_{qq}^{\mathit{pred}}$ for the responses \mathbf{q} of Model B is obtained as:

$$\mathbf{C}_{qq}^{pred} \triangleq \left\langle \left(\mathbf{q} - \mathbf{q}^{pred}\right) \left(\mathbf{q} - \mathbf{q}^{pred}\right)^{\dagger} \right\rangle
= \mathbf{C}_{qq} - \left[\mathbf{X}_{q} \left(\mathbf{D}_{11} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{q}^{\dagger}\right) + \mathbf{Y}_{q} \left(\mathbf{D}_{21} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{q}^{\dagger}\right) \right];$$
(2.74)

The predicted correlation matrix $\mathbf{C}_{\beta q}^{pred}$ for the parameters $\boldsymbol{\beta}$ and the responses \mathbf{q} of Model B is obtained as:

$$\mathbf{C}_{\beta q}^{opt} \triangleq \left\langle \left(\mathbf{\beta} - \mathbf{\beta}^{pred} \right) \left(\mathbf{q} - \mathbf{q}^{pred} \right)^{\dagger} \right\rangle \\
= \mathbf{C}_{\beta q} - \left[\mathbf{X}_{\beta} \left(\mathbf{D}_{11} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{q}^{\dagger} \right) + \mathbf{Y}_{\beta} \left(\mathbf{D}_{21} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{q}^{\dagger} \right) \right]; \tag{2.75}$$

The predicted correlation matrix $\mathbf{C}_{\alpha\beta}^{pred}$ for the parameters $\boldsymbol{\alpha}$ of Model A and the parameters $\boldsymbol{\beta}$ of Model B is obtained as:

$$\mathbf{C}_{\alpha\beta}^{pred} \triangleq \left\langle \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{pred} \right) \left(\boldsymbol{\beta} - \boldsymbol{\beta}^{pred} \right)^{\dagger} \right\rangle
= \mathbf{C}_{\alpha\beta} - \left[\mathbf{X}_{\alpha} \left(\mathbf{D}_{11} \mathbf{X}_{\beta}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{\beta}^{\dagger} \right) + \mathbf{Y}_{\alpha} \left(\mathbf{D}_{21} \mathbf{X}_{\beta}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{\beta}^{\dagger} \right) \right];$$
(2.76)

The predicted correlation matrix $\mathbf{C}_{\alpha q}^{pred}$ for the parameters $\boldsymbol{\alpha}$ of Model A and the responses \mathbf{q} of Model B is obtained as:

$$\mathbf{C}_{\alpha q}^{pred} \triangleq \left\langle \left(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{pred} \right) \left(\mathbf{q} - \mathbf{q}^{pred} \right)^{\dagger} \right\rangle \\
= \mathbf{C}_{\alpha q} - \left[\mathbf{X}_{\alpha} \left(\mathbf{D}_{11} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{q}^{\dagger} \right) + \mathbf{Y}_{\alpha} \left(\mathbf{D}_{21} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{q}^{\dagger} \right) \right]; \tag{2.77}$$

The predicted correlation matrix $\mathbf{C}_{\beta r}^{pred}$ for the parameters $\boldsymbol{\beta}$ of Model B and the responses \mathbf{r} of Model A is obtained as:

$$\mathbf{C}_{\beta r}^{pred} \triangleq \left\langle \left(\mathbf{\beta} - \mathbf{\beta}^{pred} \right) \left(\mathbf{r} - \mathbf{r}^{pred} \right)^{\dagger} \right\rangle
= \mathbf{C}_{\beta r} - \left[\mathbf{X}_{\beta} \left(\mathbf{D}_{11} \mathbf{X}_{r}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{r}^{\dagger} \right) + \mathbf{Y}_{\beta} \left(\mathbf{D}_{21} \mathbf{X}_{r}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{r}^{\dagger} \right) \right];$$
(2.78)

The predicted correlation matrix \mathbf{C}_{rq}^{pred} for the responses \mathbf{r} of Model A and the responses \mathbf{q} of Model B is obtained as:

$$\mathbf{C}_{rq}^{pred} \triangleq \left\langle \left(\mathbf{r} - \mathbf{r}^{pred}\right) \left(\mathbf{q} - \mathbf{q}^{pred}\right)^{\dagger} \right\rangle \\
= \mathbf{C}_{rq} - \left[\mathbf{X}_{r} \left(\mathbf{D}_{11} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{q}^{\dagger}\right) + \mathbf{Y}_{r} \left(\mathbf{D}_{21} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{q}^{\dagger}\right) \right]. \tag{2.79}$$

The covariance matrices of the computed responses arising from the uncertainties in the model parameters can be computed from Eqs.(2.39) and (2.40), respectively, to obtain:

$$\mathbf{C}_{rr}^{comp} \triangleq \left\langle \left[\mathbf{r} - \mathbf{r}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right] \left[\mathbf{r} - \mathbf{r}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right]^{\dagger} \right\rangle
= \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} + 2 \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\beta} \mathbf{S}_{r\beta}^{\dagger} + \mathbf{S}_{r\beta} \mathbf{C}_{\beta\beta} \mathbf{S}_{r\beta}^{\dagger}, \tag{2.80}$$

$$\mathbf{C}_{qq}^{comp} \triangleq \left\langle \left[\mathbf{q} - \mathbf{q}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right] \left[\mathbf{q} - \mathbf{q}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right]^{\dagger} \right\rangle
= \mathbf{S}_{q\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{q\alpha}^{\dagger} + 2 \mathbf{S}_{q\alpha} \mathbf{C}_{\alpha\beta} \mathbf{S}_{q\beta}^{\dagger} + \mathbf{S}_{q\beta} \mathbf{C}_{\beta\beta} \mathbf{S}_{q\beta}^{\dagger}, \tag{2.81}$$

$$\mathbf{C}_{rq}^{comp} \triangleq \left\langle \left[\mathbf{r} - \mathbf{r}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right] \left[\mathbf{q} - \mathbf{q}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right]^{\dagger} \right\rangle
= \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{q\alpha}^{\dagger} + \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\beta} \mathbf{S}_{q\beta}^{\dagger} + \mathbf{S}_{r\beta} \mathbf{C}_{\alpha\beta}^{\dagger} \mathbf{S}_{q\alpha}^{\dagger} + \mathbf{S}_{r\beta} \mathbf{C}_{\beta\beta} \mathbf{S}_{q\beta}^{\dagger}.$$
(2.82)

2.2.4 Construction of the A Posteriori Predicted Consistency Metrics for Model Validation

At the saddle-point $(\alpha^{pred}, \beta^{pred}, \mathbf{r}^{pred}, \mathbf{q}^{pred})$, the functional $P(\alpha, \beta, \mathbf{r}, \mathbf{q})$ defined in Eq.(2.29), and the first-order computational model equations become

$$P^{\min} = \begin{pmatrix} \boldsymbol{\alpha}^{pred} - \boldsymbol{\alpha}^{0} \\ \boldsymbol{\beta}^{pred} - \boldsymbol{\beta}^{0} \\ \boldsymbol{r}^{pred} - \boldsymbol{r}^{m} \\ \boldsymbol{q}^{pred} - \boldsymbol{q}^{m} \end{pmatrix}^{\dagger} \mathbf{C}^{-1} \begin{pmatrix} \boldsymbol{\alpha}^{pred} - \boldsymbol{\alpha}^{0} \\ \boldsymbol{\beta}^{pred} - \boldsymbol{\beta}^{0} \\ \boldsymbol{r}^{pred} - \boldsymbol{r}^{m} \\ \boldsymbol{q}^{pred} - \boldsymbol{q}^{m} \end{pmatrix}, \tag{2.83}$$

$$\mathbf{r}^{pred} = \mathbf{r}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) + \mathbf{S}_{r\alpha} \left(\boldsymbol{\alpha}^{pred} - \boldsymbol{\alpha}^{0} \right) + \mathbf{S}_{r\beta} \left(\boldsymbol{\beta}^{pred} - \boldsymbol{\beta}^{0} \right) = \mathbf{r}^{c} \left(\boldsymbol{\alpha}^{pred}, \boldsymbol{\beta}^{pred} \right), \tag{2.84}$$

$$\mathbf{q}^{pred} = \mathbf{q}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) + \mathbf{S}_{aa} \left(\boldsymbol{\alpha}^{pred} - \boldsymbol{\alpha}^{0} \right) + \mathbf{S}_{aB} \left(\boldsymbol{\beta}^{pred} - \boldsymbol{\beta}^{0} \right) = \mathbf{q}^{c} \left(\boldsymbol{\alpha}^{opt}, \boldsymbol{\beta}^{opt} \right). \tag{2.85}$$

The values $(\boldsymbol{\alpha}^{pred}, \boldsymbol{\beta}^{pred}, \mathbf{r}^{pred}, \mathbf{q}^{pred})$ can be eliminated from the expression of by using Eqs. (2.84) and (2.85) together with Eq. (2.32) to obtain

$$P^{\min} \triangleq V = \left[\begin{pmatrix} \mathbf{r}^d \end{pmatrix}^{\dagger}, \begin{pmatrix} \mathbf{q}^d \end{pmatrix}^{\dagger} \right] \begin{bmatrix} \mathbf{D}_{11} & \mathbf{D}_{12} \\ \mathbf{D}_{12}^{\dagger} & \mathbf{D}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{r}^d \begin{pmatrix} \boldsymbol{\alpha}^0, \boldsymbol{\beta}^0 \end{pmatrix} \\ \mathbf{q}^d \begin{pmatrix} \boldsymbol{\alpha}^0, \boldsymbol{\beta}^0 \end{pmatrix} \end{bmatrix}.$$
(2.86)

Note that the quadratic form on the rightmost-side of Eq.(2.86) is distributed according to a χ^2 distribution with $(N_r + N_q)$ degrees of freedom. The "validation metric" V can be evaluated directly from the originally given data (i.e., from given parameters and responses, together with

their original uncertainties), once the response sensitivities have been computed by either forward or adjoint methods (see, e.g., Cacuci 1981a, 1981b, 2003). Recall that the χ^2 (chi-square) distribution with n degrees of freedom of the continuous variable x, $0 \le x < \infty$, is defined as

$$P(x < \chi^{2} < x + dx)dx = \frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}dx, \ x > 0, \ (n = 1, 2, ...).$$
 (2.87)

The χ^2 -distribution is a measure of the deviation of a "true distribution" (in this case – the distribution of experimental responses) from the hypothetic one (in this case – a Gaussian). Recall that the mean and variance of x are $\langle x \rangle = n$ and var(x) = 2n. The value of χ^2 is computed using Eq.(2.86) to obtain

$$V \triangleq \chi^{2} = (\mathbf{r}^{c} - \mathbf{r}^{m})^{\dagger} \mathbf{D}_{11} (\mathbf{r}^{c} - \mathbf{r}^{m}) + 2(\mathbf{r}^{c} - \mathbf{r}^{m})^{\dagger} \mathbf{D}_{12} (\mathbf{q}^{c} - \mathbf{q}^{m}) + (\mathbf{q}^{c} - \mathbf{q}^{m})^{\dagger} \mathbf{D}_{22} (\mathbf{q}^{c} - \mathbf{q}^{m}). \quad (2.88)$$

The value of $V = \chi^2$ computed using Eq. (2.88) provides a very valuable quantitative indicator for investigating the agreement between the computed and experimental responses, measuring essentially the consistency of the experimental responses with the model parameters. The value of V can be used as a validation metric for measuring the consistency between the computed and experimentally measured responses.

2.3 Discussion and Particular Cases

The derivations in the previous section were carried out in the response-space because in large-scale practical problems, the number of measured responses is smaller than the number of model parameters. The only matrix inversion required in the response space is the computation of \mathbf{D}^{-1} in Eq.(2.53) which is of size $\left(N_r + N_q\right)^2$. If this matrix is too large to be inverted directly, as has been assumed in this work, its inversion can be performed by partitioning it as shown in Eqs (2.54) through (2.57). The inversion of \mathbf{D} by partitioning requires only the inversion of the matrix \mathbf{D}_{rr} of size N_r , and the inversion of the matrix $\left(\mathbf{D}_{qq} - \mathbf{D}_{rq}^{\dagger} \mathbf{D}_{rr}^{-1} \mathbf{D}_{rq}\right)$, which is of size N_q .

The PM-CMPS methodology can also be used if one starts with the data assimilation and model calibration for one of the Models (either Model A or Model B), and subsequently couples the second model to the first one. Without the PM-CMPS methodology, when the second Model (e.g., Model B) is coupled to the first one (e.g., Model A), both models would have to be calibrated anew, simultaneously, and the work performed initially for calibrating Model A alone would become useless. Using the PM-CMPS methodology, however, the work initially performed for calibrating Model A would not become useless, but would simply be augmented by the specific additional terms arising from Model B, thus performing predictive modeling of coupled multiphysics systems in a sequential and more efficient way.

It is also important to note that the explicit separation, in Eqs. (2.85) through (2.88), of contributions from Model A and Model B to the overall validation metric V enables the explicit evaluation of adding or subtracting measured responses. Large contributions to V indicate that the respective responses may be inconsistent or discrepant, and such discrepancies warrant further investigations. It often happens in practice that, after one has already performed a model calibration, e.g., using Model A (involving N_{α} model parameters α_n and N_r experimentally measured responses r_i), additional measurements may become available and/or additional parameters (which were not considered in the initial data assimilation/model calibration/predictive modeling procedure) may need to be taken into account (e.g., model parameters for which quantified uncertainties became available only after the initial data assimilation/model calibration/predictive modeling procedure was already performed), all for the same Model A. The predictive modeling methodology presented in Chapter 2 can also be used as a most efficient procedure for systematically adding or subtracting responses and/or parameters for performing a subsequent data assimilation/model calibration/predictive modeling procedure on the same model. In this interpretation/usage of the predictive modeling methodology presented in Section 2.2, Model B is considered to be identical to Model A (i.e., Model B and Model A represent the same physical phenomena, described by identical mathematical equations). In this context, "efficient" means "without wasting the information already obtained in previous predictive modeling computations involving a different (higher or lower) number of responses and/or model parameters." As will be shown in the next Sub-section, the mathematical methodology for performing data assimilation/model calibration/predictive modeling by adding and/or subtracting measurements (responses) and/or model parameters to the same model-without needing to discard previous predictive modeling

computations-actually amounts to considering particular cases of the general PM-CMPS methodology presented in Section 2.2.

2.3.1 Predictive modeling for a Single Multi-Physics Model

In the case of applying the PM-CMPS methodology for the predictive modeling of a single multiphysics model (e.g., Model A, involving N_{α} model parameters α_n and N_r experimentally measured responses r_i), Eq.(2.44) through (2.47) take on the following simplified forms:

$$\mathbf{D}_{ra} = \mathbf{0}, \ \mathbf{D}_{ar} = \mathbf{0}, \ \mathbf{D}_{aa} = \mathbf{0}, \ \mathbf{D}_{rr} = \mathbf{S}_{ra} \mathbf{C}_{\alpha a} \mathbf{S}_{ra}^{\dagger} - \mathbf{S}_{ra} \mathbf{C}_{\alpha r} - \mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{ra}^{\dagger} + \mathbf{C}_{rr}.$$
(2.89)

$$\mathbf{X}_{\alpha} \triangleq \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\alpha r}, \quad \mathbf{Y}_{\alpha} \triangleq 0, \quad \mathbf{X}_{r} \triangleq \mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{rr}, \quad \mathbf{Y}_{r} = \mathbf{0}. \tag{2.90}$$

Furthermore, the predictive modeling equations (2.58) through (2.79) reduce to the final results presented originally by Cacuci and Ionescu-Bujor (2010a), namely:

$$\boldsymbol{\alpha}^{pred} = \boldsymbol{\alpha}^{0} - \left(\mathbf{C}_{\alpha\alpha}\mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\alpha r}\right)\left[\mathbf{D}_{rr}\right]^{-1}\mathbf{r}^{d}\left(\boldsymbol{\alpha}^{0}\right),\tag{2.91}$$

$$\mathbf{r}^{pred} = \mathbf{r}^{m} - \left(\mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{rr}\right) \left[\mathbf{D}_{rr}\right]^{-1} \mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}\right), \tag{2.92}$$

$$\mathbf{C}_{\alpha\alpha}^{pred} = \mathbf{C}_{\alpha\alpha} - \left(\mathbf{C}_{\alpha\alpha}\mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\alpha r}\right) \left[\mathbf{D}_{rr}\right]^{-1} \left(\mathbf{C}_{\alpha\alpha}\mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\alpha r}\right)^{\dagger}, \tag{2.93}$$

$$\mathbf{C}_{rr}^{pred} = \mathbf{C}_{rr} - \left(\mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{rr}\right) \left[\mathbf{D}_{rr}\right]^{-1} \left(\mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{rr}\right)^{\dagger}, \tag{2.94}$$

$$\mathbf{C}_{\alpha r}^{pred} = \mathbf{C}_{\alpha r} - \left(\mathbf{C}_{\alpha \alpha} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\alpha r}\right) \left[\mathbf{D}_{rr}\right]^{-1} \left(\mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{rr}\right)^{\dagger}.$$
(2.95)

Note that if the model is perfect (i.e., $\mathbf{C}_{\alpha\alpha} = \mathbf{0}$ and $\mathbf{C}_{\alpha r} = \mathbf{0}$), then Eqs.(2.91) through (2.95) would yield $\mathbf{\alpha}^{pred} = \mathbf{\alpha}^0$ and $\mathbf{r}^{pred} = \mathbf{r}^c \left(\mathbf{\alpha}^0, \mathbf{\beta}^0 \right)$, predicted "perfectly," without any accompanying uncertainties (i.e., $\mathbf{C}_{rr}^{pred} = \mathbf{0}$, $\mathbf{C}_{\alpha\alpha}^{pred} = \mathbf{0}$). In other words, for a perfect model, the PM-CMPS methodology predicts values for the responses and the parameters that coincide with the model's values (assumed to be perfect), and the experimental measurements would have no effect

on the predictions (as would be expected, since imperfect measurements could not possibly improve the "perfect" model's predictions).

On the other hand, if the measurements were perfect, (i.e., $\mathbf{C}_{rr} = \mathbf{0}$ and $\mathbf{C}_{\alpha r} = \mathbf{0}$), but the model were imperfect, then Eqs. (2.91) through (2.95) would yield $\mathbf{\alpha}^{pred} = \mathbf{\alpha}^0 - \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} \left[\mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} \right]^{-1} \mathbf{r}^d \left(\mathbf{\alpha}^0 \right), \quad \mathbf{C}_{\alpha\alpha}^{pred} = \mathbf{C}_{\alpha\alpha} - \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} \left[\mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} \right]^{-1} \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\alpha}, \quad \mathbf{r}^{pred} = \mathbf{r}^m,$

 $\mathbf{C}_{rr}^{pred} = \mathbf{0}$, $\mathbf{C}_{\alpha r}^{pred} = \mathbf{0}$. In other words, in the case of perfect measurements, the PM-CMPS predicted values for the responses would coincide with the measured values (assumed to be perfect), but the model's uncertain parameters would be calibrated by taking the measurements into account to yield improved nominal values and reduced parameters uncertainties.

2.3.2 Predictive modeling for Model A with β additional parameters, but no additional responses

In this case, Eq. (2.44) through (2.47) become

$$\mathbf{D}_{rq} = \mathbf{0}, \ \mathbf{D}_{qr} = \mathbf{0}, \ \mathbf{D}_{qq} = \mathbf{0},$$
 (2.96)

$$\mathbf{D}_{rr} = \mathbf{S}_{r\alpha} \left(\mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\alpha\beta} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{\alpha r} \right) + \mathbf{S}_{r\beta} \left(\mathbf{C}_{\alpha\beta}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\beta\beta} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{\beta r} \right)$$

$$- \mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\beta r}^{\dagger} \mathbf{S}_{r\beta}^{\dagger} + \mathbf{C}_{rr}.$$

$$(2.97)$$

$$\mathbf{X}_{\alpha} \triangleq \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\alpha\beta} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{\alpha r}, \tag{2.98}$$

$$\mathbf{X}_{\beta} \triangleq \mathbf{C}_{\alpha\beta}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\beta\beta} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{\beta r}, \tag{2.99}$$

$$\mathbf{X}_{r} \triangleq \mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{\beta r}^{\dagger} \mathbf{S}_{r\beta}^{\dagger} - \mathbf{C}_{rr}, \qquad (2.100)$$

$$\mathbf{X}_{a} \triangleq \mathbf{0}, \ \mathbf{Y}_{a} \triangleq \mathbf{0}, \ \mathbf{Y}_{r} \triangleq \mathbf{0}, \ \mathbf{Y}_{b} \triangleq \mathbf{0}, \ \mathbf{Y}_{a} \triangleq \mathbf{0},$$
 (2.101)

$$\mathbf{D}_{11} \triangleq \mathbf{D}_{rr}^{-1}, \ \mathbf{D}_{12} = \mathbf{0}, \ \mathbf{D}_{12}^{\dagger} = \mathbf{0}, \ \mathbf{D}_{12}^{\dagger} = \mathbf{0}, \ \mathbf{D}_{22} = \mathbf{0},$$
 (2.102)

$$\boldsymbol{\alpha}^{pred} = \boldsymbol{\alpha}^0 - \mathbf{X}_{\alpha} \mathbf{D}_{11} \mathbf{r}^d \left(\boldsymbol{\alpha}^0, \boldsymbol{\beta}^0 \right), \tag{2.103}$$

$$\boldsymbol{\beta}^{pred} = \boldsymbol{\beta}^0 - \mathbf{X}_{\beta} \mathbf{D}_{11} \mathbf{r}^d \left(\boldsymbol{\alpha}^0, \boldsymbol{\beta}^0 \right), \tag{2.104}$$

$$\mathbf{r}^{pred} = \mathbf{r}^m - \mathbf{X}_r \mathbf{D}_{11} \mathbf{r}^d \left(\boldsymbol{\alpha}^0, \boldsymbol{\beta}^0 \right), \tag{2.105}$$

$$\mathbf{C}_{\alpha\alpha}^{pred} = \mathbf{C}_{\alpha\alpha} - \mathbf{X}_{\alpha} \mathbf{D}_{11} \mathbf{X}_{\alpha}^{\dagger}, \tag{2.106}$$

$$\mathbf{C}_{rr}^{pred} = \mathbf{C}_{rr} - \mathbf{X}_r \mathbf{D}_{11} \mathbf{X}_r^{\dagger}, \tag{2.107}$$

$$\mathbf{C}_{\alpha r}^{pred} = \mathbf{C}_{\alpha r} - \mathbf{X}_{\alpha} \mathbf{D}_{11} \mathbf{X}_{r}^{\dagger}, \tag{2.108}$$

$$\mathbf{C}_{\beta\beta}^{opt} = \mathbf{C}_{\beta\beta} - \mathbf{X}_{\beta} \mathbf{D}_{11} \mathbf{X}_{\beta}^{\dagger}, \tag{2.109}$$

$$\mathbf{C}_{\alpha\beta}^{pred} = \mathbf{C}_{\alpha\beta} - \mathbf{X}_{\alpha} \mathbf{D}_{11} \mathbf{X}_{\beta}^{\dagger}, \tag{2.110}$$

$$\mathbf{C}_{\beta r}^{pred} = \mathbf{C}_{\beta r} - \mathbf{X}_{\beta} \mathbf{D}_{11} \mathbf{X}_{r}^{\dagger}. \tag{2.111}$$

As the above expressions clearly demonstrate, the predictive modeling formulation in the "response space" (as has been developed in Chapter 2) allows the consideration of additional parameters for a model without increasing the size of the matrix \mathbf{D}_{rr} to be inverted.

2.3.3 Predictive modeling for Model A with q additional responses, but no additional parameters

In this case, Eq.(2.44) through (2.47) become

$$\mathbf{D}_{rr} = \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha r} - \mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{rr}, Dim(\mathbf{D}_{rr}) = (N_r \times N_r),$$
(2.112)

$$\mathbf{D}_{rq} = \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{q\alpha}^{\dagger} - \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha q} - \mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{q\alpha}^{\dagger} + \mathbf{C}_{rq}, \ Dim(\mathbf{D}_{rq}) = (N_r \times N_q), \tag{2.113}$$

$$\mathbf{D}_{qr} = \mathbf{S}_{q\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\alpha q}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{S}_{q\alpha} \mathbf{C}_{\alpha r} + \mathbf{C}_{rq}^{\dagger}, \ Dim(\mathbf{D}_{qr}) = (N_q \times N_r), \tag{2.114}$$

$$\mathbf{D}_{qq} = \mathbf{S}_{q\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{q\alpha}^{\dagger} - \mathbf{S}_{q\alpha} \mathbf{C}_{\alpha q} - \mathbf{C}_{\alpha q}^{\dagger} \mathbf{S}_{q\alpha}^{\dagger} + \mathbf{C}_{qq}, \ Dim(\mathbf{D}_{qq}) = (N_q \times N_q). \tag{2.115}$$

$$\mathbf{X}_{\alpha} \stackrel{\triangle}{=} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\alpha r}, \tag{2.116}$$

$$\mathbf{Y}_{\alpha} \triangleq \mathbf{C}_{\alpha\alpha} \mathbf{S}_{q\alpha}^{\dagger} - \mathbf{C}_{\alpha q}, \tag{2.117}$$

$$\mathbf{X}_{\beta} \triangleq \mathbf{0}, \ \mathbf{Y}_{\beta} \triangleq \mathbf{0}, \tag{2.118}$$

$$\mathbf{X}_{r} \triangleq \mathbf{C}_{qr}^{\dagger} \mathbf{S}_{rq}^{\dagger} - \mathbf{C}_{rr}, \tag{2.119}$$

$$\mathbf{Y}_{r} \triangleq \mathbf{C}_{ar}^{\dagger} \mathbf{S}_{aa}^{\dagger} - \mathbf{C}_{rq}^{\dagger} \tag{2.120}$$

$$\mathbf{X}_{a} \stackrel{\triangle}{=} \mathbf{C}_{aa}^{\dagger} \mathbf{S}_{ra}^{\dagger} - \mathbf{C}_{ra}^{\dagger}, \tag{2.121}$$

$$\mathbf{Y}_{q} \triangleq \mathbf{C}_{qq}^{\dagger} \mathbf{S}_{qq}^{\dagger} - \mathbf{C}_{qq}, \tag{2.122}$$

$$\boldsymbol{\alpha}^{pred} = \boldsymbol{\alpha}^{0} - \left[\mathbf{X}_{\alpha} \mathbf{D}_{11} + \mathbf{Y}_{\alpha} \mathbf{D}_{12}^{\dagger} \right] \mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) - \left[\mathbf{X}_{\alpha} \mathbf{D}_{12} + \mathbf{Y}_{\alpha} \mathbf{D}_{22} \right] \mathbf{q}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right), \tag{2.123}$$

$$\mathbf{r}^{pred} = \mathbf{r}^{m} - \left[\mathbf{X}_{r} \mathbf{D}_{11} + \mathbf{Y}_{r} \mathbf{D}_{12}^{\dagger} \right] \mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) - \left[\mathbf{X}_{r} \mathbf{D}_{12} + \mathbf{Y}_{r} \mathbf{D}_{22} \right] \mathbf{q}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right), \tag{2.124}$$

$$\mathbf{q}^{pred} = \mathbf{q}^{m} - \left[\mathbf{X}_{q} \mathbf{D}_{11} + \mathbf{Y}_{q} \mathbf{D}_{12}^{\dagger} \right] \mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) - \left[\mathbf{X}_{q} \mathbf{D}_{12} + \mathbf{Y}_{q} \mathbf{D}_{22} \right] \mathbf{q}^{d} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right), \quad (2.125)$$

$$\mathbf{C}_{\alpha\alpha}^{pred} = \mathbf{C}_{\alpha\alpha} - \left[\mathbf{X}_{\alpha} \left(\mathbf{D}_{11} \mathbf{X}_{\alpha}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{\alpha}^{\dagger} \right) + \mathbf{Y}_{\alpha} \left(\mathbf{D}_{21} \mathbf{X}_{\alpha}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{\alpha}^{\dagger} \right) \right], \tag{2.126}$$

$$\mathbf{C}_{rr}^{pred} = \mathbf{C}_{rr} - \left[\mathbf{X}_r \left(\mathbf{D}_{11} \mathbf{X}_r^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_r^{\dagger} \right) + \mathbf{Y}_r \left(\mathbf{D}_{21} \mathbf{X}_r^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_r^{\dagger} \right) \right], \tag{2.127}$$

$$\mathbf{C}_{\alpha r}^{pred} = \mathbf{C}_{\alpha r} - \left[\mathbf{X}_{\alpha} \left(\mathbf{D}_{11} \mathbf{X}_{r}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{r}^{\dagger} \right) + \mathbf{Y}_{\alpha} \left(\mathbf{D}_{21} \mathbf{X}_{r}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{r}^{\dagger} \right) \right], \tag{2.128}$$

$$\mathbf{C}_{qq}^{pred} = \mathbf{C}_{qq} - \left[\mathbf{X}_{q} \left(\mathbf{D}_{11} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{q}^{\dagger} \right) + \mathbf{Y}_{q} \left(\mathbf{D}_{21} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{q}^{\dagger} \right) \right], \tag{2.129}$$

$$\mathbf{C}_{\alpha q}^{pred} = \mathbf{C}_{\alpha q} - \left[\mathbf{X}_{\alpha} \left(\mathbf{D}_{11} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_{q}^{\dagger} \right) + \mathbf{Y}_{\alpha} \left(\mathbf{D}_{21} \mathbf{X}_{q}^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_{q}^{\dagger} \right) \right], \tag{2.130}$$

$$\mathbf{C}_{rq}^{pred} = \mathbf{C}_{rq} - \left[\mathbf{X}_r \left(\mathbf{D}_{11} \mathbf{X}_q^{\dagger} + \mathbf{D}_{12} \mathbf{Y}_q^{\dagger} \right) + \mathbf{Y}_r \left(\mathbf{D}_{21} \mathbf{X}_q^{\dagger} + \mathbf{D}_{22} \mathbf{Y}_q^{\dagger} \right) \right], \tag{2.131}$$

$$\mathbf{C}_{\alpha\beta}^{pred} = \mathbf{0}, \ \mathbf{C}_{\beta\beta}^{opt} = \mathbf{0}, \ \mathbf{C}_{\beta r}^{pred} = \mathbf{0}, \ \mathbf{C}_{\beta a}^{opt} = \mathbf{0}.$$
 (2.132)

Note also that (to first-order in response sensitivities) the covariance matrices of the computed responses arising from the uncertainties in the model parameters become:

$$\mathbf{C}_{rr}^{comp} \triangleq \left\langle \left[\mathbf{r} - \mathbf{r}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right] \left[\mathbf{r} - \mathbf{r}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right]^{\dagger} \right\rangle = \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger}, \tag{2.133}$$

$$\mathbf{C}_{qq}^{comp} \triangleq \left\langle \left[\mathbf{q} - \mathbf{q}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right] \left[\mathbf{q} - \mathbf{q}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right]^{\dagger} \right\rangle = \mathbf{S}_{q\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{q\alpha}^{\dagger}, \tag{2.134}$$

$$\mathbf{C}_{rq}^{comp} \triangleq \left\langle \left[\mathbf{r} - \mathbf{r}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right] \left[\mathbf{q} - \mathbf{q}^{c} \left(\boldsymbol{\alpha}^{0}, \boldsymbol{\beta}^{0} \right) \right]^{\dagger} \right\rangle = \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{q\alpha}^{\dagger}. \tag{2.135}$$

3 PREDICTIVE MODELING OF A SIMPLE NEUTRON DIFFUSION MODEL

The results presented in this Chapter are based on the work by Cacuci (2014). Consider the diffusion of monoenergetic neutrons due to distributed sources of strength S neutrons/cm³·s within a slab of material of extrapolated thickness 2a. The linear neutron diffusion equation that models mathematically this problem is

$$D\frac{d^2\varphi}{dx^2} - \Sigma_a \varphi + S = 0, \quad x \in (-a, a), \tag{3.1}$$

where $\varphi(x)$ is the neutron flux, D is the diffusion coefficient, Σ_a is the macroscopic absorption cross section, and S is the distributed source term. Note that, in view of the problem's symmetry, the origin x=0 has been conveniently chosen at the middle (center) of the slab. The boundary conditions for Eq.(3.1) are that the neutron flux must vanish at the extrapolated distance, i.e.,

$$\varphi(\pm a) = 0. \tag{3.2}$$

A typical response R for the neutron diffusion problem modeled by Eqs. (2.1) and (2.2) would be the reading of a detector placed within the slab, for example, at a distance b from the slab's midline at x = 0. Such a response is given by the reaction rate

$$R(e) \triangleq \Sigma_d \varphi(b),$$
 (3.3)

where Σ_d represents the detector's equivalent reaction cross section. The system parameters for this problem are thus the positive constants Σ_a , D, S, and Σ_d , which will be considered to be the components of the vector α of system parameters, defined as

$$\mathbf{\alpha} \triangleq (\Sigma_a, D, S, \Sigma_d). \tag{3.4}$$

Consider that the components of $\mathbf{\alpha} \triangleq (\Sigma_a, D, S, \Sigma_d)$ are imprecisely (e.g., experimentally) determined quantities, with mean nominal values $\mathbf{\alpha}^0 \triangleq (\Sigma_a^0, D^0, S^0, \Sigma_d^0)$ and standard deviations $\mathbf{h}_{\alpha} \triangleq (\delta \Sigma_a, \delta D, \delta S, \delta \Sigma_d)$, respectively. The vector $\mathbf{e}(x)$ appearing in the functional dependence of R in Eq.(3.3) denotes the concatenation of $\varphi(x)$ with $\mathbf{\alpha}$, defined as

$$e \triangleq (\varphi, \alpha). \tag{3.5}$$

The nominal value $\varphi^0(x)$ of the flux is determined by solving Eqs.(3.1) and (3.2) for the nominal parameter values $\boldsymbol{\alpha}^0 = \left(\Sigma_a^0, D^0, S^0, \Sigma_d^0\right)$, to obtain

$$\varphi^{0}(x) = \frac{S^{0}}{\Sigma_{a}^{0}} \left(1 - \frac{\cosh xk}{\cosh ak} \right), \quad k = \sqrt{\Sigma_{a}^{0}/D^{0}}, \quad (3.6)$$

where $k \triangleq \sqrt{\Sigma_a^0/D^0}$ is the nominal value of the reciprocal diffusion length for our illustrative example. Inserting Eq.(3.6) together with the nominal value Σ_d^0 into Eq.(3.3) gives the nominal value of the response:

$$R(\mathbf{e}^{0}) = \frac{S^{0} \Sigma_{d}^{0}}{\Sigma_{a}^{0}} \left(1 - \frac{\cosh bk}{\cosh ak} \right), \quad \mathbf{e}^{0} \triangleq (\varphi^{0}, \mathbf{\alpha}^{0}).$$
 (3.7)

Note that even though Eq.(3.1) is linear in φ , the solution $\varphi(x)$ depends nonlinearly on α , as evidenced by Eq.(3.6). The same is true of the response R(e). Even though R(e) is linear separately in φ and in α , as shown in Eq.(3.3), R is not simultaneously linear in φ and α , which leads to a nonlinear dependence of R(e) on α . This fact is confirmed by the explicit expression of R(e) given in Eq.(3.7).

The sensitivities of the system response to the system parameters have been computed efficiently using the Adjoint Sensitivity Analysis Methodolgy in the work of Cacuci (2014), and are reproduced below:

$$\frac{\partial R}{\partial S} = \frac{\sum_{d}^{0}}{\sum_{a}^{0}} \left(1 - \frac{\cosh bk}{\cosh ak} \right),\tag{3.8}$$

$$\frac{\partial R}{\partial \Sigma_d} = \frac{S^0}{\Sigma_a^0} \left(1 - \frac{\cosh bk}{\cosh ak} \right),\tag{3.9}$$

$$\frac{\partial R}{\partial \Sigma_a} = -\frac{S^0 \Sigma_d^0}{\left(\Sigma_a^0\right)^2} \left(1 - \frac{\cosh bk}{\cosh ak}\right) + \frac{1}{2\sqrt{D^0 \Sigma_a^0}} \frac{S^0 \Sigma_d^0}{\Sigma_a^0} \frac{a \sinh ak \cosh bk - b \sinh bk \cosh ak}{\left(\cosh ak\right)^2}, \quad (3.10)$$

$$\frac{\partial R}{\partial D} = -\frac{1}{2} \sqrt{\frac{\sum_{a}^{0}}{D^{0}}} \frac{S^{0} \Sigma_{d}^{0}}{D^{0} \Sigma_{a}^{0}} \frac{a \sinh ak \cosh bk - b \sinh bk \cosh ak}{\left(\cosh ak\right)^{2}}.$$
 (3.11)

To illustrate with numerical values the application of these formulas, consider that the slab of extrapolated thickness a consists of water with material properties having the following nominal values: $\Sigma_a^0 = 0.0197 \, cm^{-1}$, $D^0 = 0.16 \, cm$, containing distributed neutron sources emitting nominally $S^0 = 10^7 \, neutrons \cdot cm^{-3} \cdot s^{-1}$. For the sake of argument, consider that all of these parameters are uncorrelated and have the following relative standard deviations: $\Delta \Sigma_a^0 / \Sigma_a^0 = 5\%$, $\Delta D^0 / D^0 = 5\%$, $\Delta S^0 / S^0 = 15\%$.

Furthermore, consider that measurements are performed with an infinitely thin detector immersed at different locations, x = b, in the water slab, having an indium-like nominal detector cross section $\Sigma_d^0 = 7.438\,cm^{-1}$, uncorrelated to the other parameters, with a standard deviation $\Delta\Sigma_d^0/\Sigma_d^0 = 10\%$. Collecting this information (and omitting, for simplicity, the respective units), it follows that the covariance matrix for the model parameters is

$$\mathbf{C}_{\alpha} = \begin{pmatrix} \left(9.85 \times 10^{-4}\right)^{2} & 0 & 0 & 0\\ 0 & \left(8.0 \times 10^{-3}\right)^{2} & 0 & 0\\ 0 & 0 & \left(1.5 \times 10^{6}\right)^{2} & 0\\ 0 & 0 & 0 & \left(7.44 \times 10^{-1}\right)^{2} \end{pmatrix}. \tag{3.12}$$

To illustrate the effects of several consistent measurements, and also to test that symmetric measurements (with respect to the vertical plane through the origin) do preserve the solution's symmetry, we consider four consistent ($\chi^2 = 1.21$) measurements, taken at the symmetric locations $10\,cm$, $-10\,cm$, $-40\,cm$, and having the following values and relative standard deviations (abbreviated as "rsd"):

$$r_1^m \triangleq r(meas.at \ 10 cm) = 3.40 \times 10^9 \, n \cdot cm^{-3} \cdot sec^{-1}; \ rsd(r_1^m) = 5\%;$$
 (3.13)

$$r_2^m \triangleq r(meas.at - 10cm) = 3.59 \times 10^9 n \cdot cm^{-3} \cdot sec^{-1}; rsd(r_2^m) = 6\%;$$
 (3.14)

$$r_3^m \triangleq r(meas.at - 40cm) = 3.77 \times 10^9 \, n \cdot cm^{-3} \cdot sec^{-1}; \, rsd(r_3^m) = 5\%;$$
 (3.15)

$$r_4^m \triangleq r(meas.at \ 40 cm) = 3.74 \times 10^9 \, n \cdot cm^{-3} \cdot \text{sec}^{-1}; \ rsd(r_4^m) = 5\%;$$
 (3.16)

Thus, the covariance matrix of the measured responses is

$$\mathbf{C}_{m} = \begin{pmatrix} \left(1.7 \times 10^{8}\right)^{2} & 0 & 0 & 0\\ 0 & \left(2.15 \times 10^{8}\right)^{2} & 0 & 0\\ 0 & 0 & \left(1.89 \times 10^{8}\right)^{2} & 0\\ 0 & 0 & 0 & \left(1.87 \times 10^{8}\right)^{2} \end{pmatrix}$$
(3.17)

The nominal values of the computed responses at the above locations are as follows:

$$r_1(comp. at 10 cm) = 3.77 \times 10^9 n \cdot cm^{-3} \cdot sec^{-1};$$
 (3.18)

$$r_2(comp. at -10 cm) = 3.77 \times 10^9 n \cdot cm^{-3} \cdot sec^{-1};$$
 (3.19)

$$r_3(comp. at -40cm) = 3.66 \times 10^9 n \cdot cm^{-3} \cdot sec^{-1};$$
 (3.20)

$$r_4(comp. at 40 cm) = 3.66 \times 10^9 \, n \cdot cm^{-3} \cdot sec^{-1};$$
 (3.21)

As expected, the above computed responses confirm the problem's symmetry. The matrices S and S_{rel} , with $\Delta \alpha_j \triangleq std. dev. (\alpha_j)$, containing the nominal values of the absolute and relative sensitivities, respectively, are:

$$\mathbf{S} \triangleq \left(\frac{\partial R_i}{\partial \alpha_j}\right) = \begin{pmatrix} -1.92 \times 10^{11} & -1.33 \times 10^5 & 3.78 \times 10^2 & 5.08 \times 10^8 \\ -1.92 \times 10^{11} & -1.33 \times 10^5 & 3.78 \times 10^2 & 5.08 \times 10^8 \\ -1.76 \times 10^{11} & -1.24 \times 10^9 & 3.66 \times 10^2 & 4.92 \times 10^8 \\ -1.76 \times 10^{11} & -1.24 \times 10^9 & 3.66 \times 10^2 & 4.92 \times 10^8 \end{pmatrix},$$
(3.22)

$$\mathbf{S}_{rel} \triangleq \left(\frac{\partial R_i}{\partial \alpha_j} \frac{\Delta \alpha_j}{R_i}\right) = \begin{pmatrix} -0.99999 & -5.41 \times 10^{-6} & 1.00 & 1.00 \\ -0.99999 & -5.64 \times 10^{-6} & 1.00 & 1.00 \\ -9.46 \times 10^{-1} & -5.64 \times 10^{-2} & 1.00 & 1.00 \\ -9.46 \times 10^{-1} & -5.41 \times 10^{-2} & 1.00 & 1.00 \end{pmatrix}.$$
(3.23)

Using the above sensitivities together with the parameter covariance matrix given in Eq.(3.12) yields the following value for the covariance matrix of the computed responses:

$$\mathbf{C}_{rc} = \mathbf{S}\mathbf{C}_{\alpha}\mathbf{S}^{\dagger} = \begin{pmatrix} 4.99 \times 10^{17} & 4.99 \times 10^{17} & 4.82 \times 10^{17} & 4.82 \times 10^{17} \\ 4.99 \times 10^{17} & 4.99 \times 10^{17} & 4.82 \times 10^{17} & 4.82 \times 10^{17} \\ 4.82 \times 10^{17} & 4.82 \times 10^{17} & 4.66 \times 10^{17} & 4.66 \times 10^{17} \\ 4.82 \times 10^{17} & 4.82 \times 10^{17} & 4.66 \times 10^{17} & 4.66 \times 10^{17} \end{pmatrix}$$
(3.24)

Note that the particular values (essentially either unity or zero) of the components of the sensitivity matrix lead to a fully correlated covariance matrix for the four computed responses.

Applying the PM-CMPS to the above information leads to the following optimal best-estimate parameter values, relative standard deviations (abbreviated as "rsd"), and covariance matrix:

$$\Sigma_a^{be} = 0.0198 \, cm^{-1}, \, rsd\left(\Sigma_a^{be}\right) = 4.79\%;$$
 (3.25)

$$D^{be} = 0.1591 \ cm, \ rsd\left(D^{be}\right) = 5.00\%;$$
 (3.26)

$$S^{be} = 9.85 \times 10^{6} \, n \cdot cm^{-3} \cdot s^{-1}, \, rsd\left(S^{be}\right) = 9.21\%; \tag{3.27}$$

$$\Sigma_d^{be} = 7.388 \, cm^{-1}, \quad rsd\left(\Sigma_d^{be}\right) = 8.53\%;$$
(3.28)

$$\mathbf{C}_{\alpha}^{be} = \begin{pmatrix} 9.50 \times 10^{-4} & 0 & 0 & 0 \\ 0 & 7.99 \times 10^{-3} & 0 & 0 \\ 0 & 0 & 9.08 \times 10^{5} & 0 \\ 0 & 0 & 0 & 6.30 \times 10^{-1} \end{pmatrix}$$

$$\times \begin{pmatrix} 1.0 & -8.89 \times 10^{-4} & 3.51 \times 10^{-1} & 1.67 \times 10^{-1} \\ -8.89 \times 10^{-4} & 1.0 & 1.02 \times 10^{-2} & 4.84 \times 10^{-3} \\ 3.51 \times 10^{-1} & 1.02 \times 10^{-2} & 1.0 & -8.24 \times 10^{-1} \\ 1.67 \times 10^{-1} & 4.84 \times 10^{-3} & -8.24 \times 10^{-1} & 1.0 \end{pmatrix}$$

$$\times \begin{pmatrix} 9.50 \times 10^{-4} & 0 & 0 & 0 \\ 0 & 7.99 \times 10^{-3} & 0 & 0 \\ 0 & 0 & 9.08 \times 10^{5} & 0 \\ 0 & 0 & 0 & 6.30 \times 10^{-1} \end{pmatrix},$$

$$(3.29)$$

Furthermore, the best estimate response values, relative standard deviations (abbreviated as "rsd"), and covariance matrix are as follows:

at
$$(10cm)$$
: $r_1^{be} = 3.66 \times 10^9 \, n \cdot cm^{-3} \cdot sec^{-1}$; $rsd(r_1^{be}) = 2.59\%$; (3.30)

at
$$(-10cm)$$
: $r_2^{be} = 3.66 \times 10^9 \, n \cdot cm^{-3} \cdot sec^{-1}$; $rsd\left(r_2^{be}\right) = 2.59\%$; (3.31)

at
$$(-40 cm)$$
: $r_3^{be} = 3.56 \times 10^9 \, n \cdot cm^{-3} \cdot \sec^{-1}$; $rsd\left(r_3^{be}\right) = 2.58\%$; (3.32)

at
$$(40 cm)$$
: $r_4^{be} = 3.56 \times 10^9 \, n \cdot cm^{-3} \cdot sec^{-1}$; $rsd(r_4^{be}) = 2.58\%$; (3.33)

$$\mathbf{C}_{r}^{be} = \begin{pmatrix} 9.04 \times 10^{15} & 9.04 \times 10^{15} & 8.64 \times 10^{15} & 8.64 \times 10^{15} \\ 9.04 \times 10^{15} & 9.04 \times 10^{15} & 8.64 \times 10^{15} & 8.64 \times 10^{15} \\ 8.64 \times 10^{15} & 8.64 \times 10^{15} & 8.45 \times 10^{15} & 8.45 \times 10^{15} \\ 8.64 \times 10^{15} & 8.64 \times 10^{15} & 8.45 \times 10^{15} & 8.45 \times 10^{15} \end{pmatrix}$$
(3.34)

The best-estimate predicted response-parameter correlation matrix is:

$$\mathbf{C}_{r\alpha}^{be} = \begin{pmatrix} -7.81 \times 10^{3} & 3.89 \times 10^{4} & 1.38 \times 10^{13} & 4.57 \times 10^{6} \\ -7.81 \times 10^{3} & 3.89 \times 10^{4} & 1.38 \times 10^{13} & 4.57 \times 10^{6} \\ 1.50 \times 10^{3} & -4.13 \times 10^{4} & 1.64 \times 10^{13} & 5.41 \times 10^{6} \\ 1.50 \times 10^{3} & -4.13 \times 10^{4} & 1.64 \times 10^{13} & 5.41 \times 10^{6} \end{pmatrix}.$$
(3.35)

Figure 3.1: Four precise consistent precise measurements ($\chi^2 = 1.21$)

Figure 3.1 shows the spatial variation of the original nominal computed values and standard deviations (depicted using solid lines) together with the best estimate response values and corresponding standard deviations (depicted using broken lines). The value of $\chi^2 = 1.21$ indicates a very good consistency among the four measurements.

4 INVERSE PREDICTIVE MODELING OF RADIATION TRANSPORT THROUGH OPTICALLY THICK MEDIA IN THE PRESENCE OF COUNTING UNCERTAINTIES

Abstract

This Chapter is based on the work by Cacuci (2017), and illustrates the application of the PM-CMPS methodology to the problem of inverse prediction, from detector responses in the presence of counting uncertainties, of the thickness of a homogeneous slab of material containing uniformly distributed gamma-emitting sources, for optically thin and thick slabs. For optically thin slabs, this Section shows that both the traditional chi-square-minimization method and the PM-CMPS methodology predict the slab's thickness accurately. However, the PM-CMPS methodology is considerably more efficient computationally, and a single application of the PM-CMPS methodology predicts the thin slab's thickness at least as precisely as the traditional chi-squareminimization method, even though the measurements used in the PM-CMPS methodology were ten times less accurate than the ones used for the traditional chi-square-minimization method. For optically thick slabs, the results obtained in this work show that: (i) the traditional inverse-problem methods based on the minimization of chi-square-type functionals fail to predict the slab's thickness; (ii) the PM-CMPS methodology under-predicts the slab's actual physical thickness when imprecise experimental results are assimilated, even though the predicted responses agrees within the imposed error criterion with the experimental results; (iii) the PM-CMPS methodology correctly predicts the slab's actual physical thickness when precise experimental results are assimilated, while also predicting the physically correct response within the selected precision criterion; and (iv) the PM-CMPS methodology is computational vastly more efficient while yielding significantly more accurate results than the traditional chi-square-minimization methodology.

4.1 Transport of Uncollided Photons through a Slab

Consider a one-dimensional slab of homogeneous material extending from z = 0 to z = a [cm], placed in air and characterized by a total interaction coefficient $\mu \lceil cm^{-1} \rceil$. The slab contains a

uniformly distributed source of strength $Q[photons/cm^3 sec]$ emitting isotropically monoenergetic photons within the slab. It is assumed that there is no scattering into the energy lines. Under these conditions, the angular flux of photons within the slab is described by the Boltzmann transport equation without scattering and with "vacuum" incoming boundary condition, i.e.,

$$\omega \frac{d\psi(z,\omega)}{dz} + \mu \psi(z,\omega) = \frac{Q}{2}, \quad 0 < z \le a, \quad \omega > 0, \tag{4.1}$$

$$\psi(0,\omega) = 0. \tag{4.2}$$

where $\psi(z,\omega)$ denotes the neutron angular flux at position z and direction $\omega \triangleq \cos \theta$, where θ denotes the angle between the photon's direction and the z-axis. The solution of Eqs.(4.1) and (4.2) can be readily obtained as

$$\psi(z,\omega) = \frac{Q}{2\mu} \Big[1 - \exp(\mu z/\omega) \Big]. \tag{4.3}$$

Consider further that the leakage flux of uncollided photons is measured by an "infinite plane" detector placed in air at some location z > a external to the slab. The detector's response function, denoted as $\Sigma_d \left[cm^{-1} \right]$, is considered to be a perfectly well-known constant. If the detection process were a perfectly deterministic process, rather than a stochastic one, it would follow from Eq.(4.3) that the "exact detector response", denoted as $r(\mu a)$, would be given by the expression

$$r(\mu a) \triangleq \Sigma_d \int_0^1 \psi(z, \omega) d\omega = \frac{Q\Sigma_d}{2\mu} \left[1 - E_2(\mu a) \right], \tag{4.4}$$

where the exponential-integral function is defined as

$$E_n(x) = \int_0^1 u^{n-2} e^{-x/u} du, \quad n = 0, 1, 2, \dots$$
 (4.5)

4.2 Determination of Slab Thickness from Detector Response in the Absence of Uncertainties

Since the focus of this work is the determination of the slab's optical thickness from detector measurements, the quantities Σ_d , μ , and Q will be considered to be perfectly well known. Without loss of generality, these quantities can be normalized to unity, i.e.: $Q = 1 \left[photons / cm^3 \sec \right], \quad \Sigma_d = 1 \left[cm^{-1} \right], \quad \mu = 1 \left[cm^{-1} \right].$ If the detector were perfect and if its response $r(\mu a)$ were the consequence of an exactly-known deterministic counting process, Eq. (4) could be "inverted" to obtain the slab's optical thickness (μa) by solving deterministically the following nonlinear equation:

$$E_2(x) = 1 - \frac{2\mu r(x)}{Q\Sigma_d} \triangleq C, \quad x \triangleq \mu a. \tag{4.6}$$

When r(x) is known, the right-side of Eq.(4.6) is a known constant, denoted as C. Since the function $E_1(x)$ is everywhere positive, i.e., $E_1(x) > 0$, for $0 < x < \infty$, it follows that

$$\frac{dE_2(x)}{dx} = -E_1(x) < 0, \ 0 < x < \infty.$$
 (4.7)

The result in Eq.(4.7) indicates that $E_2(x)$ is a monotonically decreasing function of x as $x \ge 0$ increases, and the "amount of decrease" increases as x increases. In other words, the value of $E_2(x)$ decreases monotonically, at an increasingly slower rate, as x increases. Since $E_2(0) = 1$ and $E_2(x) \xrightarrow{x \to \infty} 0$, it follows that $E_2(x)$ will take on at most once each value in the interval $1 \ge E_2(x) = C > 0$ as x increases monotonically in the interval $0 \le x < \infty$. Hence, despite the fact that the axis x = 0 is asymptotically tangent to $E_2(x)$ in the limit when $x \to \infty$, Eq.(4.6) admits just a *single real-valued root*. Consequently, for each value of $F(\mu a)$, which determines the value of $F(\mu a)$, which determines the value of $F(\mu a)$, there corresponds a single, well-defined, slab optical thickness $\mu a = x$. In other words, F(a) = 1 and F(a) = 1 a

slab's optical thickness ($\mu a = x$) might correspond to the same value $r(\mu a)$. The fact that Eq.(4.6) admits a single real-valued root is also underscored by recalling the asymptotic expansions for $E_2(x)$, i.e.,:

$$E_{2}(x) \sim \frac{e^{-x}}{x+2} \left[1 + \frac{2}{(x+2)^{2}} + \frac{2(2-2x)}{(x+2)^{4}} + \frac{2(6x^{2}-16x+4)}{(x+2)^{6}} + \dots \right] \triangleq A(x), \quad x \triangleq \mu a > 1, \quad (4.8)$$

$$E_2(x) \sim 1 + x \left[\log(x) - 0.422784\right] - \frac{x^2}{2} + \frac{x^3}{12} - \frac{x^4}{72} + \dots \triangleq B(x), \ x \triangleq \mu a < 1.$$
 (4.9)

The asymptotic expansion in Eq.(4.8) can be used to compute the real-valued root of Eq.(4.6) for C<0.8; (ii) both asymptotic expansions given in Eqs.(4.8) and (4.9) can be used to compute the real-valued root of Eq.(4.6) when 0.2< C<0.8; (iii) the asymptotic expansion in Eq.(4.9) can be used to compute the real-valued root of Eq.(4.6) when C>0.2. The left- and right-sides of the equations

$$A(x) = C, B(x) = C,$$
 (4.10)

where A(x) and B(x) are defined in Eqs.(4.8) and (4.9), respectively, are plotted in Figure 4.1, below. The intersection of the horizontal line with the decreasing curve depicting the function $E_2(x)$ provides the location of the real root of Eq.(4.6). It is also evident from Eqs.(4.6), (4.8) and (4.9) that in the limit of infinitely thin or infinitely thick slabs, respectively, the corresponding "readings" by perfect detectors would be

$$r(0) = 0, \quad r(\infty) = \frac{Q\Sigma_d}{2u}.$$
 (4.11)

Figure 4.1. Location of the (unique) real root of Eq. (6): Left: linear-linear scale; Right: log-linear scale.

4.3 Traditional Chi-Square Minimization Method for Determining the Slab's Thickness from Detector Responses in the Presence of Counting Uncertainties

It is reasonable to expect that the slab's unknown optical thickness should be obtainable from detector measurements, since the detector measurements implicitly "know" the exact thickness of the slab, which is reflected in the respective number of photons reaching the detector. Also, in the limit of infinite experimental precision and accuracy, the detector response must indicate the exact thickness of the slab, as shown in the previous section. As is well known, the process of detecting photons (as well as other particles) can be described by a Poisson distribution. When a sufficiently large number of events are counted, as is usually the case with photon detection, the respective Poisson distribution can be approximated well by a normal (Gaussian) distribution. For this paradigm example, it suffices to consider that the k^{th} -experimentally-measured response, which will be denoted as $r_{\rm exp}^{(k)}$, is obtained as a random event drawn from a normal distribution having the mean equal to the exact response, $r(\mu a)$, and the standard deviation equal to $\beta r(\mu a)$, where β is the relative standard deviation (in %), so that

$$r_{\text{exp}}^{(k)} = random \, normal \left[r, \, \beta r \right], \quad k = 1, ..., K. \tag{4.12}$$

The current state-of-the-art methods for solving "inverse problems" such as determining the optical dimension of a uniform homogeneous medium from K uncertain photon measurements

external to the medium rely on minimizing a user-defined chi-square-type functional of the following form:

$$\chi^{2} \triangleq \sum_{k=1}^{K} \left[\frac{r_{\text{model}} - r_{\text{exp}}^{(k)}}{std.dev(r_{\text{exp}})} \right]^{2}, \tag{4.13}$$

where, for the slab considered in this Section,

$$r_{\text{model}} \triangleq \frac{Q\Sigma_d}{2\mu} \left[1 - E_2 \left(\mu a_{\text{model}}^{(k)} \right) \right] \tag{4.14}$$

Since only counting uncertainties in the detector response will be considered in this illustrative example, the quantities Σ_d , μ , and Q will be considered, as in the previous Section, to be perfectly well known and be normalized to unity, i.e., $Q = 1 \left[photons / cm^3 \sec \right]$, $\Sigma_d = 1 \left[cm^{-1} \right]$, $\mu = 1 \left[cm^{-1} \right]$. A direct attempt to determine the slab's optical thickness would be by plotting the difference

$$\delta \triangleq (r_{\text{model}} - r_{\text{exp}}), \tag{4.15}$$

between a random realization of a detector response, $r_{\rm exp}$, and the "model response", $r_{\rm model}$, defined in Eq.(4.14). While studying the behavior of Eq.(4.13), Mattingly (2015) has plotted the behavior of the quantity $\delta \triangleq \left(r_{\rm model} - r_{\rm exp}\right)$ as a function of $\mu a_{\rm model}$, for various actual slab thicknesses μa . The results in Figure 4.2 were obtained using software based on Mattingly's program to plot the quantity $\delta \triangleq \left(r_{\rm model} - r_{\rm exp}\right)$ for four values of the actual optical thickness μa (namely: $\mu a = 0.1$, $\mu a = 1.0$, $\mu a = 3.0$ and $\mu a = 10.0$) and by considering that the corresponding detector response, $r_{\rm exp}$, is distributed normally with a mean equal to (the exact) $r_{\rm model}$, and having a relative standard deviation of 1% [i.e., $std.dev\left(r_{\rm exp}\right) = (0.01)r_{\rm exp}$]. As the plots in Figure 4.2 indicate, for measurements having a relative standard deviation of 1% (i.e., fairly accurate measurements), the "zero-crossings" of the respective differences $\delta \triangleq \left(r_{\rm model} - r_{\rm exp}\right)$ are clearly identifed for optically

thin slabs, as exemplified by the graphs for $\mu a = 0.1$ and $\mu a = 1$. These zeros also correctly correspond to the values $\mu a_{\text{model}} = 0.1$ and $\mu a_{\text{model}} = 1$, respectively. On the other hand, for measurements having a relative standard deviation of 1%, the plots corresponding to $\mu a = 3.0$ and $\mu a = 10.0$ in Figure 4.2 indicate that the "zero-crossings" of the corresponding differences $\delta \triangleq (r_{\text{model}} - r_{\text{exp}})$ can no longer be identified beyond about three mean free paths (i.e., $\mu a > 3$); the respective "zero-crossings" appear to be multiple-valued, perhaps even degenerate.

Figure 4.2: Variation of the difference between the computed detector response, $r_{\rm model}$, and a measured (normally distributed, with a relative standard deviation of 1%) detector response, $r_{\rm exp}$, as a function of the model's optical thickness ($\mu a_{\rm model}$).

Applying various minimization procedures, the value $(\mu a)_{\min}$ which yields the minimum value, χ^2_{\min} , of χ^2 is considered to be the slab's optical thickness. Mattingly (2015) has plotted the quantity $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ as a function of the model's optical thickness (μa_{model}) , for various values of the actual optical thickness, μa , and by considering (as before) that the corresponding detector response, r_{exp} , is distributed normally with a mean equal to (the exact) r_{model} . Using

software based on Mattingly's program (2015), Figures 4.3 through 4.6 present plots of $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ for the same values (namely: $\mu a = 0.1$, $\mu a = 1.0$, $\mu a = 3.0$ and $\mu a = 10.0$) of the actual optical thickness, μa , as considered in Figure 4.2, for ten measurements $r_{\text{exp}}^{(k)}$, k=1,...,10, which are considered to be distributed normally with a mean equal to (the exact response) r_{model} and a relative standard deviation of 1% [i.e., $std.dev(r_{\text{exp}}) = (0.01)r_{\text{exp}}$].

Figure 4.3: Variation of $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ as a function of the model's optical thickness $\left(\mu a_{\text{model}}\right)$ for a slab of actual optical thickness $\mu a = 0.1$, for measurements with a relative standard deviation of 1%.

Figure 4.4: Variation of $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ as a function of the model's optical thickness $\left(\mu a_{\text{model}}\right)$ for a slab of actual optical thickness $\mu a = 1.0$, for measurements with a relative standard deviation of 1%.

Figure 4.5: Variation of $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ as a function of the model's optical thickness $\left(\mu a_{\text{model}}\right)$ for a slab of actual optical thickness $\mu a = 3.0$, for measurements with a relative standard deviation of 1%.

Figure 4.6: Variation of $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ as a function of the model's optical thickness $\left(\mu a_{\text{model}}\right)$ for a slab of actual optical thickness $\mu a = 10.0$, for measurements with a relative standard deviation of 1%.

Figures 4.3 and 4.4 indicate that the minimum of the quantity $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ appears to be uniquely corresponding to the actual value of the slab's thickness, irrespective of the precise value of the measurements. In other words, for slabs that are optically thin, the minimum of the quantity $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ is unique, insensitive to the precision of the respective measurements, and identifies the slab's actual optical thickness correctly and accurately.

A very different situation becomes evident in Figure 4.5 for a slab of optical thickness $\mu a = 3.0$: depending on the value of the respective measurement, the corresponding quantity $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ displays a minimum at various locations within the interval $1.0 < \mu a < 4.0$, or may display no minimum at all. The various minima depicted in Figure 4.5 either under-predict or over-predict, in an apparent random fashion, the actual optical slab thickness of $\mu a = 3.0$. Similar conclusions can be drawn from the results depicted in Figure 4.6, for a (thick) slab of optical thickness $\mu a = 10.0$. The results in Figure 4.6 indicate that, depending on the value of the

respective measurement, the corresponding quantity $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ displays a minimum at various locations within the interval $1.0 < \mu a < 4.0$, or may display no minimum at all. In this case, however, there are no over-predictions of the slab's correct thickness: all of the minima under-predict, in an apparent random fashion, the actual optical slab thickness $\mu a = 10.0$. Figures 4.3 and 4.4 have indicated that for optically thin slabs, the precision of measurements does

Figures 4.3 and 4.4 have indicated that for optically thin stabs, the precision of measurements does not affect the location of the unique minimum of the quantity $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$, and the actual thickness of the respective slab is determined sufficiently accurately (for practical purposes) by the unique location of this minimum. As indicated by the results depicted in Figures 4.5 and 4.6, however, the precision of the measurements decisively affects the results for optically thick slabs. It would be intuitively expected that more precise measurements would yield results "more tightly grouped" around a "better defined" minimum, and hence lead to more accurate predictions of the actual thickness for optically thick slabs. This intuitive expectation is supported by the typical results presented in Figures 4.7 and 4.8 for a thick slab of actual optical thickness $\mu a = 10.0$. The results Figure 4.7 correspond to measurements following a normal distribution with a mean equal to (the exact response) r_{model} and a relative standard deviation of 10%. The results presented in Figure 4.8 are deliberately taken for extremely (unrealistically?) precise measurements assumed to be normally distributed with a mean equal to (the exact response) r_{model} and having a relative standard deviation of 0.001%, to underscore the essential role played by the measurements" precision.

Figure 4.7: Variation of $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ as a function of the model's optical thickness $\left(\mu a_{\text{model}}\right)$ for a slab of actual optical thickness $\mu a = 10.0$, for measurements with a relative standard deviation of 10%.

Figure 4.8: Variation of $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ as a function of the model's optical thickness $\left(\mu a_{\text{model}}\right)$ for a slab of actual optical thickness $\mu a = 10.0$, for extremely precise measurements with a relative standard deviation of 0.001%.

Comparing the results depicted in Figure 4.7 with those depicted in Figure 4.6 shows that the quantity $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ corresponding to the less precise measurements (relative standard deviation of 10% for Figure 4.6) displays either no minima, or minima that depend sensitively on the individual measurements, just as displayed by the results for the more precise measurements (relative standard deviation of 1%) presented in Figure 4.7. Furthermore, the minima displayed by the less precise measurements (in Figure 4.7) fall within the interval $1.0 < \mu a < 3.0$, thus being even less indicative of the correct slab thickness than the indication provided by the more precise measurements (in Figure 4.6). This conclusion is further strengthened by comparing all of the results presented in Figures 4.6, 4.7 and 4.8 for a slab of optical thickness $\mu a = 10.0$, namely that the quantity $\delta^2 \triangleq \left(r_{\text{model}} - r_{\text{exp}}^{(k)}\right)^2$ may display no minimum for some measurements, and when it does display a minimum, they respective minimum depends sensitively on the respective measurements. Furthermore, the more accurate the measurements (i.e., the smaller the respective standard deviations), the tighter together grouped are the measurement values; hence, the minima of the squared-differences δ^2 corresponding to the respective measurements are "grouped" more tightly together, and the respective "group of minima" is closer to the correct slab thickness. Since, as shown in Figures 4.5 through 4.8, some of the summands in Eq.(4.13) may not admit any real-valued minimum while those summands that do have minima which do not coincide with one another, it is not surprising that a numerical algorithm for minimizing the χ^2 -functional may yield some minimum value that has no physical meaning, in that the actual physical slab thickness would differ from the value $(\mu a)_{\min}$. On the other hand, in the absence of counting uncertainties, the detector's response yields a unique slab thickness, as demonstrated in Section 4.2. If the measurements are inaccurate, then any minimization of the expression in Eq.(4.13) will lead to erroneous physical results, in that the result delivered by any minimization procedure will not be physically correct. Furthermore, for equally precise measurements, the larger the optical thickness of the slab, the more unphysical will likely be the result of the minimization procedure. Altogether, therefore, the results presented in this Section indicate that the reason for the failure of the current state-of-the-art methods to predict accurately the actual thickness of optically thicker slabs stems

not from the numerical method used to minimize the χ^2 - functional, but stems from the very formulation of the χ^2 -functional, which makes this functional to be extremely sensitive to the random value of each measurement. In the next Section, it will be shown that Cacuci's PM-CMPS methodology (2014), which incorporates considerably more features of the model than the methods based on minimizing a user-defined χ^2 -functional, alleviates the shortcomings of the latter methods while yielding results that are physically accurate up to machine precision.

4.4 Applying the PM-CMPS Methodology for the Inverse Determination of Slab Thickness in the Presence of Counting Uncertainties

For the paradigm system consisting of the slab and detector considered in this Section, "Model B" reduces to a point (i.e., the point detector). Consequently, the PM-CMPS methodology reduces to the inverse predictive modeling of a single multi-physics model ("Model A," involving N_{α} model parameters α_n and N_r experimentally measured responses r_i), which is governed by Eqs.(2.91) through (2.95). For easy reference, those equations a reproduced below:

$$\boldsymbol{\alpha}^{pred} = \boldsymbol{\alpha}^{0} - \left(\mathbf{C}_{\alpha\alpha}\mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\alpha r}\right)\left[\mathbf{D}_{rr}\right]^{-1}\mathbf{r}^{d}\left(\boldsymbol{\alpha}^{0}\right),\tag{4.16}$$

$$\mathbf{r}^{pred} = \mathbf{r}^{m} - \left(\mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{rr}\right) \left[\mathbf{D}_{rr}\right]^{-1} \mathbf{r}^{d} \left(\boldsymbol{\alpha}^{0}\right), \tag{4.17}$$

$$\mathbf{C}_{\alpha\alpha}^{pred} = \mathbf{C}_{\alpha\alpha} - \left(\mathbf{C}_{\alpha\alpha}\mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\alpha r}\right) \left[\mathbf{D}_{rr}\right]^{-1} \left(\mathbf{C}_{\alpha\alpha}\mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{\alpha r}\right)^{\dagger}, \tag{4.18}$$

$$\mathbf{C}_{rr}^{pred} = \mathbf{C}_{rr} - \left(\mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{rr}\right) \left[\mathbf{D}_{rr}\right]^{-1} \left(\mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} - \mathbf{C}_{rr}\right)^{\dagger}, \tag{4.19}$$

$$\mathbf{C}_{\alpha r}^{pred} = \mathbf{C}_{\alpha r} - \left(\mathbf{C}_{\alpha \alpha} \mathbf{S}_{r \alpha}^{\dagger} - \mathbf{C}_{\alpha r}\right) \left[\mathbf{D}_{r r}\right]^{-1} \left(\mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r \alpha}^{\dagger} - \mathbf{C}_{r r}\right)^{\dagger}.$$
(4.20)

where

$$\mathbf{D}_{rr} \triangleq \mathbf{C}_{rc} - \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha r} - \mathbf{C}_{\alpha r}^{\dagger} \mathbf{S}_{r\alpha}^{\dagger} + \mathbf{C}_{rr}, \tag{4.21}$$

and where the "computed response covariance matrix", \mathbf{C}_{rc} , is defined as

$$\mathbf{C}_{rc} \triangleq \mathbf{S}_{r\alpha} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{r\alpha}^{\dagger} \,. \tag{4.22}$$

The validation metric (or "consistency indicator") takes on the following expression

$$V \triangleq \chi^2 = (\mathbf{r}^c - \mathbf{r}^m)^{\dagger} \mathbf{D}_{rr}^{-1} (\mathbf{r}^c - \mathbf{r}^m). \tag{4.23}$$

When Eqs. (4.16) through (4.22) are employed for forward predictive modeling, all of the quantities on the right sides of these equations are known, and the best-estimate predicted quantities are those on the left-side of the respective equations. Note that the detector measures, albeit statistically, the exact response, which implicitly comprises the information about the exact optical thickness of the medium under investigation. Each measured response represents a "point" or "element" sampled from the counting statistical distribution characterizing the detected particles (photons). For simplicity and without loss of generality, the counting statistics are considered to be Gaussian, so that each measured detector response, $r_m^{(k)}$, has the value $r_m^{(k)} = random \, normal \left[r^{exact}, sd \left(r_m^{(exact)} \right) \right], \ k = 1,...,K_n$, where K_n denotes the total number of experiments performed in the "batch n". On the other hand, when Eqs. (4.16) through (4.22) are employed for inverse predictive modeling, the set of parameters α^0 are unknown, and the first set of measurements is used to estimate these parameter values. Subsequent measurements are assimilated to improve the predictions of both the response and parameter values, until the predicted response and/or parameter values satisfy some a priori imposed accuracy criteria. The detailed inverse predictive algorithm is as follows:

- 1. Perform the *initial set* of measurements, $r_{\text{exp}}^{(k)}$, by drawing random results from the normal distribution $r_m^{(k)} = random \, normal \left[r^{exact}, \beta r^{exact} \right], \ k = 1,...,K_0$.
- 2. Compute the initial "sample average": $r_{m,ave}^{(K_0)} = \frac{1}{K_0} \sum_{k=1}^{K_0} r_m^{(k)}$.
- 3. Compute the initial "measurement variance": $C_{rr}^{(K_0)} = \frac{1}{K_0 1} \sum_{k=1}^{K_0} \left[r_m^{(k)} r_{m,ave}^{(K_0)} \right]^2$.
- 4. Compute the initial "sample standard deviation" $SD_m^{(K_0)} = \sqrt{C_{rr}^{(K_0)}}$.

- 5. Compute the initial estimated parameter value $\alpha^{(1)}$ by using the model, i.e., by solving the nonlinear equation $E_2\left[\alpha^{(1)}\right] = 1 \frac{2\mu r_{m,ave}^{(K_0)}}{Q\Sigma_d}$.
- 6. Compute the initial sensitivities of the response to the uncertain (unknown) model parameter. In general, this computation is performed by using the *adjoint sensitivity* analysis methodology. For the paradigm problem under consideration, the only uncertain model parameter is the medium's optical thickness, so the detector response's sensitivity is readily obtained as: $S^{(1)} = \frac{Q\Sigma_d}{2\mu} E_1 \left[\alpha^{(1)}\right]$.
- 7. Define the "initial parameter standard deviation": $sd\left(\alpha^{(1)}\right) = \gamma\alpha^{(1)}$ and the variance $C_{\alpha\alpha}^{(1)} = \left[\gamma\alpha^{(1)}\right]^2$. The effects of this "initial parameter standard deviation" can be assessed by considering various values for γ . In this study, however, the fixed value $\gamma = 10^{-1}$ has been used throughout.
- 8. Use Eq.(4.22) to compute the initial "computed response covariance": $C_{rc}^{(1)} = S^{(1)\dagger}C_{\alpha}^{(1)}S^{(1)}$.
- 9. Assuming, in the absence of information to the contrary, that the measured responses are uncorrelated to the model parameters (in this case: the slab's optical thickness), use Eq.(4.21) to compute the following initial value $D_{rr}^{(1)}$.
- 10. Use Eq.(4.20) to compute the initial "parameter response covariance": $C_{\alpha r}^{(1)} = C_{\alpha \alpha}^{(1)} S^{(1)\dagger} \left[D_{rr}^{(1)} \right]^{-1} C_{rr}^{(K_0)}.$
- 11. Since the initial parameter value was computed by solving the inverse problem using the "average measurement", set the initial computed response value to be the same as the initial measurement: $r_{comp}^{(1)} = r_{m,ave}^{(K_0)}$.
- 12. Commence performing experiments to be used for the "inverse predictive modeling" of the slab's optical thickness: perform n = 1,...,N sets of measurements, $r_m^{(k)}$, $k = 1,...,K_n$, , by sampling from the normal distribution $r_m^{(k)} = random \ normal \left[r^{exact}, sd\left(r_m^{(exact)}\right) \right]$.
- 13. For each set of experiments, K_n , compute the following quantities:

- a. the "sample average": $r_{m,ave}^{(K_n)} = \frac{1}{K_n} \sum_{k=1}^{K_n} r_m^{(k)}$;
- b. the "measurement variance": $C_{rr}^{(K_n)} = \frac{1}{K_1 1} \sum_{k=1}^{K_1} \left[r_m^{(k)} r_{m,ave}^{(K_n)} \right]^2$;
- c. the "sample standard deviation" $SD_m^{(K_n)} = \sqrt{C_{rr}^{(K_n)}}$;
- d. the measured response, $r_{meas}^{(n)} \equiv r_{m,ave}^{(K_n)}$, and its covariance $C_{meas}^{(n)} \equiv C_m^{(K_n)}$.
- 14. Use Eq.(4.17) to compute the new "predicted response" values:

$$r_{pred}^{(n+1)} = r_{meas}^{(n)} + \left[C_{meas}^{(n)} - C_{\alpha r}^{(n)\dagger} S^{(n)\dagger} \right] \left[D_{rr}^{(n)} \right]^{-1} \left[r_{comp}^{(n)} - r_{meas}^{(n)} \right];$$

15. Use Eq.(4.16) to compute the new "predicted parameter" values:

$$\alpha_{pred}^{(n+1)} = \alpha^{(n)} + \left\lceil C_{\alpha r}^{(n)} - C_{\alpha}^{(n)} S^{(n)\dagger} \right\rceil \left\lceil D_{rr}^{(n)} \right\rceil^{-1} \left\lceil r_{comp}^{(n)} - r_{meas}^{(n)} \right\rceil;$$

16. Use Eq.(4.18) to compute the new "predicted parameter covariances:

$$C_{\alpha}^{(n+1)} = C_{\alpha\alpha}^{(n)} - \left[C_{\alpha\alpha}^{(n)}S^{(n)\dagger} - C_{\alpha r}^{(n)}\right] \left[D_{rr}^{(n)}\right]^{-1} \left[C_{\alpha\alpha}^{(n)}S^{(n)\dagger} - C_{\alpha r}^{(n)}\right]^{\dagger};$$

17. Use Eq.(4.19) to compute the new "predicted response covariances":

$$C_{r,pred}^{(n+1)} = C_{meas}^{(n)} - \left[C_{\alpha r}^{(n)\dagger} S^{(n)\dagger} - C_{meas}^{(n)} \right] \left[D_r^{(n)} \right]^{-1} \left[C_{\alpha r}^{(n)\dagger} S^{(n)\dagger} - C_{meas}^{(n)} \right]^{\dagger} \text{ with } C_{\alpha r}^{(n)} \neq 0$$

18. Use Eq.(4.20) to compute the new "predicted response-parameter covariances":

$$C_{lpha r}^{(n+1)} = C_{lpha r}^{(n)} - \left[C_{lpha lpha}^{(n)} S^{(n)\dagger} - C_{lpha r}^{(n)} \right] \left[D_{rr}^{(n)} \right]^{-1} \left[C_{lpha r}^{(n)\dagger} S^{(n)\dagger} - C_{meas}^{(n)} \right]^{\dagger}$$

19. Use Eq.(4.23) to compute the predicted "consistency indicator" (or "validation metric"):

$$\left(CI\right)^{n+1} = \left[r_{comp}^{(n)} - r_{meas}^{(n)}\right]^{\dagger} \left[D_{rr}^{(n)}\right]^{-1} \left[r_{comp}^{(n)} - r_{meas}^{(n)}\right]$$

20. Optionally: to quantify the possible effects of nonlinearities, perform the new $(n+1)^{th}$ computation with the "calibrated model parameters":

$$r_{comp}^{(n+1)} = \frac{Q\Sigma_d}{2\mu} \left[1 - E_2 \left(\alpha_{pred}^{(n+1)} \right) \right];$$

$$S^{(n+1)} = \frac{Q\Sigma_d}{2\mu} E_1 \left(\alpha_{pred}^{(n+1)}\right);$$

$$C_{rc}^{(n+1)} = S^{(n+1)\dagger} C_{\alpha}^{(n+1)} S^{(n+1)};$$

$$\alpha^{(n+1)} \equiv \alpha_{pred}^{(n+1)}$$

Note: the recomputed matrix $C_{rc}^{(n+1)}$ may differ from $C_{r,pred}^{(n+1)}$ because of model nonlinearities; the later matrix is used as the current best-estimate for the covariance matrix of the experimental measurements, to compute the matrix below.

21. Prepare for the next batch of experiments by using computing the quantity

$$D_{rr}^{(n+1)} = C_{rr}^{(n+1)} - S_{\alpha r}^{(n+1)} C_{\alpha r}^{(n+1)} - C_{\alpha r}^{(n+1)\dagger} S_{\alpha r}^{(n+1)\dagger} + C_{r,pred}^{(n+1)};$$

22. Stop when
$$\left| \frac{r_{comp}^{(n+1)} - r_{pred}^{(n+1)}}{r_{comp}^{(n+1)}} \right| < \varepsilon$$
. Recall that the experimentally measured detector results

reflect the physics of the situations in that the experimental results represent random realizations of a distribution that has the exact response, r_{exact} , as its mean. Thus, the detector results embody (i.e., "know") the exact slab thickness, even though this thickness is unknown to the experimentalist who is attempting to determine it from the model and the experimental results, using the PM-CMPS methodology described in the previous Section. Since the successively predicted responses contain *directly* the effects of all of the measured responses (which reflect the actual physics of the problem) while the successively computed responses contain indirectly the effects of the successively predicted slab thicknesses, the convergence stopping criterion for the PM-CMPS iterations *is imposed on the convergence between the predicted and computed responses*, rather than on the convergence of the computationally predicted slab optical thickness. It is logical to strive towards attaining agreement between computational results and experimental measurements as directly as possible, whenever possible.

For demonstration purposes, the distribution of response measurements is considered to be the normal distribution with mean equal to r_{exact} and with relative standard deviation β , the value of which will be varied to study its influence on the accuracy of the prediction of the unknown optical thickness of the slab under consideration. Simulated experimental results drawn from a normal distribution with a relative standard deviation of 10% ($\beta = 10^{-1}$) will be considered to be "imprecise;" the experimental results drawn from a normal distribution with a relative standard deviation of 0.1% ($\beta = 10^{-3}$) will be considered as being "precise" and the experimental results

drawn from a normal distribution with a relative standard deviation of 0.001% $(\beta = 10^{-5})$ will be considered as being "very precise."

4.4.1 Prediction of Optically Very Thin Slab (Exact Optical Thickness=0.1)

a) Imprecise measurements $(\beta = 10^{-1})$

The exact detector response stemming from a slab of optical thickness $\mu a = 0.1$ is $r_{exact} = 1.387275x10^{-1}$ photons/cm²sec, as shown in the last row of Table 4.1. Consider a set $K_1 = 100$ of rather imprecise measurements, characterized by a relative standard deviation $\beta = 10\%$, drawn from a random normal distribution with the mean taken to be the exact response, r_{exact} . The results predicted by the PM-CMPS methodology are: (i) the "predicted response value"; (ii) the "predicted response standard deviation"; (iii) the "predicted slab thickness (parameter)"; and (iv) the "predicted standard deviation of the slab thickness". These results are shown in columns 2 through 5 of Table 4.1. It is seen that the first (n=1) set of imprecise measurements predicts the exact response within a standard deviation of 0.01 photons/cm²sec, and the exact optical slab thickness within a standard deviation of $8.89x10^{-3}$. Assimilating the second (n=2) set of 100 measurements, which are just as imprecise as the first set, nevertheless improves even further the prediction of the exact response and slab thickness while reducing even further the respective standard deviations. This reduction in the predicted standard deviations accompanying the predicted response and parameter (slab thickness), respectively, is a consequence of the properties of the PM-CMPS methodology.

Table 4.1: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 0.1$ after successively assimilating 2 batches of 100 imprecise experiments ($\beta = 10^{-1}$)

	$\mu a = 0.1$; $\beta = 10^{-1}$; $\varepsilon = 10^{-3}$; $K_n = 100$; Measured response = Normal (r_{exact} , βr_{exact})						
n	Experimental	Predicted	Predicted	Predicted	Predicted		
	Response	Response	Response SD	Parameter	Parameter SD		
	Mean Value						
1	1.405016x10 ⁻¹	1.395441x10 ⁻¹	1.002145x10 ⁻²	9.98860x10 ⁻²	8.896069x10 ⁻³		
2	1.401943x10 ⁻¹	1.389812x10 ⁻¹	7.129884x10 ⁻³	1.00278x10 ⁻¹	7.818043x10 ⁻⁴		
		Exact Response	Exact Response	Exact			
			SD	Parameter			
		1.387275x10 ⁻¹	1.387275x10 ⁻²	0.1			

b) Very precise measurements $(\beta = 10^{-5})$

Consider a set $K_1 = 100$ of very precise measurements (relative standard deviation $\beta = 10^{-5}$) drawn from the same random normal distribution, i.e., with the distribution's mean taken to be $r_{exact} = 1.387275x10^{-1}$ photons/cm²sec. Using these very precise measurements, the PM-CMPS methodology predicts the exact response value within a standard deviation of $1.3x10^{-6}$ and the slab thickness within a standard deviation of $2x10^{-6}$, respectively, as shown in Table 4.2. These results clearly indicate the important consequences of precise measurements, which enable the PM-CMPS methodology to produce considerably more precise predictions than when less precise experiments are assimilated.

Table 4.2: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 0.1$ after assimilating one batch of 100 very precise experiments ($\beta = 10^{-5}$)

	$\mu a = 0.1$; $\beta = 10^{-5}$; $\varepsilon = 10^{-8}$; $K_n = 100$; Measured response = Normal (r _{exact} , β r _{exact})						
n	Experimental	Predicted	Predicted	Predicted	Predicted		
	Response	Response	Response SD	Parameter	Parameter SD		
	Mean Value						
1	1.387274x10 ⁻¹	1.387277x10 ⁻¹	1.303206x10 ⁻⁶	1.00002x10 ⁻¹	2.003542x10 ⁻⁶		
		Exact Response	Exact Response	Exact			
		_	SD	Parameter			
_		1.387275x10 ⁻¹	1.387275x10 ⁻²	0.1			

The results presented in Table 4.2 indicate that a single application of the *PM-CMPS* methodology using very precise measurements predicts the slab thickness within 6 significant digits. The response is also predicted within 6 significant digits. The measurements' precision is the most important factor that affects the accuracy of the prediction of the slab's thickness using the PM-CMPS methodology.

4.4.2 Prediction of Optically Thin Slab (Exact Optical Thickness =1.0)

a) Measurements with 10% relative standard deviation $(\beta = 10^{-1})$

Consider a set $K_1 = 100$ of rather imprecise measurements (relative standard deviation $\beta = 10^{-1}$) drawn from the random normal distribution with the mean taken to be the exact response ($r_{exact} = 4.257522x10^{-1}$ photons/cm²sec). The results predicted by the PM-CMPS methodology are presented in columns 2 through 5 of Table 4.3. It is seen that the first (n=1) set of imprecise

measurements predicts the exact response within a standard deviation of $2.85x10^{-2}$, and the exact optical slab thickness is predicted within a standard deviation of $9.65x10^{-2}$. As expected from the properties of the PM-CMPS methodology, the assimilation of the second (n=2) set of 100 measurements further improves the prediction of the exact response and slab thickness and reduces further the respective standard deviations, even though the second set of experiments is just as imprecise as the first set.

Table 4.3: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 1$ after assimilating two batches of 100 experiments with $\beta = 10^{-1}$.

	$\mu a = 1$; $\beta = 10^{-1}$; $\varepsilon = 10^{-3}$; $K_n = 100$; Measured response = Normal (r_{exact} , βr_{exact})						
n	Experimental	Predicted	Predicted	Predicted	Predicted		
	Response	Response	Response SD	Parameter	Parameter SD		
	Mean Value	_					
1	4.311969x10 ⁻¹	4.276684x10 ⁻¹	2.854158x10 ⁻²	9.867036x10 ⁻¹	9.655633x10 ⁻²		
2	4.302537x10 ⁻¹	4.245931x10 ⁻¹	1.054078x10 ⁻²	9.895185x10 ⁻¹	9.397102x10 ⁻²		
		Exact	Exact Response	Exact			
		Response	SD	Parameter			
		4.257522 x10 ⁻¹	4.257522x10 ⁻²	1.00			

b) Measurements with 0.001% relative standard deviation ($\beta = 10^{-5}$)

Consider a set $K_1 = 100$ of precise measurements (relative standard deviation $\beta = 10^{-5}$) drawn from the same random normal distribution, with $r_{exact} = 4.257522x10^{-1}$ photons/cm²sec as the distribution's mean. As shown in Table 4.4, using these precise measurements, the PM-CMPS methodology predicts the response within 7 significant digits. These results indicate, as before, the important consequences of precise measurements, which enable the PM-CMPS to produce considerably more precise predictions than when less precise experiments are assimilated.

Table 4.4: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 1$ after assimilating one batch of 100 experiments with $\beta = 10^{-5}$.

	$\mu a = 1$; $\beta = 10^{-5}$; $\varepsilon = 10^{-8}$; $K_n = 100$; Measured response = Normal (r_{exact} , βr_{exact})						
n	Experimental	Predicted	Predicted	Predicted	Predicted		
	Response	Response	Response SD	Parameter	Parameter SD		
	Mean Value						
1	4.257528 x10 ⁻¹	4.257528 x10 ⁻¹	3.999515x10 ⁻⁶	1.000005	5.106484 x10 ⁻⁶		
		Exact	Exact Response	Exact			
		Response	SD	Parameter			
		4.257522x10 ⁻¹	4.257522x10 ⁻⁶	1.00			

The results presented in Table 4.4 indicate that a single application of the PM-CMPS methodology using very precise measurements predicts the slab thickness within 6 significant digits. The response is also predicted within 6 significant digits. Once again, the measurements' precision is the most important factor that affects the accuracy of the prediction of the slab's thickness using the PM-CMPS methodology.

4.4.3 Prediction of Optically Thick Slab (Exact Optical Thickness=3.0)

a) Measurements with 10% relative standard deviation $(\beta = 10^{-1})$

Consider a set $K_1 = 100$ of rather imprecise measurements (relative standard deviation $\beta = 10^{-1}$) drawn from the random normal distribution with the mean taken to be the exact response ($r_{exact} = 4.94679x10^{-1}$ photons/cm²sec). The results predicted by the PM-CMPS methodology are shown in columns 2 through 5 of Table 4.5. It is seen that the first (n=1) set of imprecise measurements predicts the exact response within a standard deviation of $3.25x10^{-2}$, and the exact optical slab thickness is predicted within a standard deviation of 0.273. Assimilating the second (n=2) set of 100 measurements, which are just as imprecise as the first set, improves only slightly the prediction of the exact response and of the slab thickness.

Table 4.5: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 3$ after assimilating batches of 100 experiments with $\beta = 10^{-1}$.

	$\mu a = 3$; $\beta = 10^{-1}$; $\varepsilon = 10^{-3}$; $K_n = 100$; Measured response = Normal (r_{exact} , βr_{exact})						
n	Experimental	Predicted	Predicted	Predicted	Predicted		
	Response	Response	Response SD	Parameter	Parameter SD		
	Mean Value	_					
1	5.010051x10 ⁻¹	4.967511x10 ⁻¹	3.255519x10 ⁻²	2.739635	2.736269x10 ⁻¹		
2	4.999093x10 ⁻¹	4.926791x10 ⁻¹	2.490237x10 ⁻³	2.741372	2.733279 x10 ⁻¹		
		Exact	Exact Response	Exact			
		Response	SD	Parameter			
		4.94679x10 ⁻¹	4.94679x10 ⁻²	3.00			

b) Measurements with 0.001% relative standard deviation $(\beta = 10^{-5})$

Consider a set $K_1 = 100$ of precise measurements (relative standard deviation $\beta = 10^{-5}$) drawn from the same random normal distribution, with $r_{exact} = 4.94679x10^{-1}$ photons/cm²sec as the distribution's mean. Using these precise measurements, the PM-CMPS methodology predicts the response within a standard deviation of $4.65x10^{-6}$ photons/cm²sec, and predicts the slab thickness within six significant digits, respectively, as shown in Table 4.6. As before, these results again indicate that precise measurements enable the PM-CMPS to produce considerably more precise predictions than when less precise experiments are assimilated.

Table 4.6: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 3$ after assimilating batches of 100 experiments with $\beta = 10^{-5}$.

	$\mu a = 3$; $\beta = 10^{-5}$; $\varepsilon = 10^{-8}$; $K_n = 100$; Measured response = Normal (r_{exact} , βr_{exact})						
n	Experimental	Predicted	Predicted	Predicted	Predicted		
	Response	Response	Response SD	Parameter	Parameter SD		
	Mean Value		_				
1	4.946797x10 ⁻¹	4.946797x10 ⁻¹	4.647000x10 ⁻⁶	3.000097	9.973716 x10 ⁻⁵		
		Exact	Exact Response	Exact			
		Response	SD	Parameter			
		4.94679x10 ⁻¹	4.94679x10 ⁻⁶	3.00			

4.4.4 Prediction of Optically Very Thick Slab (Exact Optical Thickness=7.0)

a) Measurements with 10% relative standard deviation $(\beta = 10^{-1})$

Consider a set $K_1 = 100$ of rather imprecise measurements (relative standard deviation $\beta = 10^{-1}$) drawn from the random normal distribution with the mean taken to be the exact response ($r_{exact} = 4.999482x10^{-1}$ photons/cm²sec). The results predicted by the PM-CMPS methodology are shown in columns 2 through 5 of Table 4.7. It is seen that the first (n=1) set of imprecise measurements predicts the exact response within a standard deviation of $9.41x10^{-4}$, but the exact optical slab thickness is severely under-predicted. Assimilating the second (n=2) set of 100 measurements, which are just as imprecise as the first set, improves significantly the prediction of the exact response, but improves just marginally the prediction of the slab thickness. Additional imprecise experiments would not improve significantly the prediction of the slab thickness.

Table 4.7: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 7$ after assimilating batches of 100 experiments with $\beta = 10^{-1}$.

	$\mu a = 7 ; \beta =$	$\epsilon 10^{-1}$; $\varepsilon = 10^{-3}$; $K_n = 100$;	Measured response = Norm	nal $(r_{exact}, \beta r_{exact})$
n	Experimental	Predicted Response	Predicted	Predicted Parameter
	Response	_	Response SD	
	Mean Value			
1	5.063417x10 ⁻¹	5.020369x10 ⁻¹	3.288029x10 ⁻²	3.770365
2	5.052342x10 ⁻¹	4.979026x10 ⁻¹	9.418037x10 ⁻⁴	3.771262
		Exact Response	Exact Response SD	Exact Parameter
		4.999482x10 ⁻¹	4.999482x10 ⁻⁶	7.00

b) Measurements with 0.001% relative standard deviation ($\beta = 10^{-5}$)

Consider a set $K_1 = 100$ of precise measurements (relative standard deviation $\beta = 10^{-5}$) drawn from the same random normal distribution, with $r_{exact} = 4.999482x10^{-1}$ photons/cm² sec photons/cm² se as the distribution's mean. It is seen from the results presented in Table 4.8 that the first (n=1) set of precise measurements predicts the exact response within a standard deviation of $4.66x10^{-6}$. In addition, the PM-CMPS methodology predicts the slab's thickness within a standard deviation of 0.112. The second (n=2) set of precise measurements further improve the predicted values of both the response and the slab's thickness. As before, these results again indicate that precise measurements enable the PM-CMPS methodology to produce considerably more precise predictions than when less precise experiments are assimilated.

Table 4.8: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 7$ after assimilating batches of 100 experiments with $\beta = 10^{-5}$.

	$\mu a = 7$; $\beta = 10^{-5}$; $\varepsilon = 10^{-8}$; $K_n = 100$; Measured response = Normal (r_{exact} , βr_{exact})						
n	Experimental	Predicted	Predicted	Predicted	Predicted		
	Response	Response	Response SD	Parameter	Parameter SD		
	Mean Value		_				
1	4.99948x10 ⁻¹	4.999489x10 ⁻¹	4.665733x10 ⁻⁶	7.010649	1.11982x10 ⁻²		
2	4.9994x10 ⁻¹	4.999488x10 ⁻¹	4.117474x10 ⁻⁶	7.009803	7.217122x10 ⁻³		
		Exact Response	Exact Response	Exact			
			SD	Parameter			
		4.999482x10 ⁻¹	4.999482x10 ⁻⁶	7.00			

The results presented in Tables 4.7 and 4.8 for the slab having the exact optical thickness $\mu a = 7$ reinforce the conclusions drawn from Tables 4.5 and 4.6 for the slab having the exact optical thickness $\mu a = 3$, namely that: (i) the *PM-CMPS* methodology under-predicts the slab's actual

physical thickness when imprecise experimental results are assimilated, even though the predicted responses agrees within the imposed error criterion with the experimental results; and (ii) the PM-CMPS methodology correctly predicts the slab's actual physical thickness when precise experimental results are assimilated, while also predicting the physically correct response within the selected precision criterion.

4.4.5 Prediction of Extremely Thick Slab (Exact Optical Thickness=10.0)

a) Measurements with 10% relative standard deviation $(\beta = 10^{-1})$

Table 4.9 presents results predicted by the PM-CMPS methodology when sets comprising increasingly more experiments, all having relative standard deviations of 10%, are being assimilated. After assimilating a set of $K_n = 5$ experiments, the PM-CMPS methodology predicts the correct value of the response with 2 digits of accuracy, but the slab's thickness is underpredicted by a factor of 5. Increasing the numbers of similarly imprecise measurements from $K_n = 5$ experiments to $K_n = 100$ experiments per set does not appreciably increase the precision of the predicted response, but increases the accuracy of the predicted value of the slab thickness by a factor of about two, although the exact value remains severely under-predicted, due to the relatively large standard deviation ($\beta = 10^{-1}$) considered for the experimental responses.

Table 4.9: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 10$ after assimilating batches of experiments with $\beta = 10^{-1}$

	$\mu a = 10$; $\beta = 10^{-1}$; $\varepsilon = 10^{-3}$; $K_n = 5$;						
n	Experimental Response	Predicted Response	Predicted	Predicted			
	Mean Value	Value	Response SD	ParameterValue			
1	4.959541 x10 ⁻¹	4.920234 x10 ⁻¹	1.644221 x10 ⁻²	2.022075			
	$\mu a = 10; \beta = 10^{-1}; \ \varepsilon = 10^{-3}; K_n = 10;$						
1	5.079625 x10 ⁻¹	4.960152 x10 ⁻¹	2.033668 x10 ⁻²	2.406645			
	$\mu a = 10$; $\beta = 10^{-1}$; $\varepsilon = 10^{-3}$; $K_n = 50$						
1	4.993500 x10 ⁻¹	4.977449 x10 ⁻¹	3.236887 x10 ⁻²	3.355578			
	μа	$=10; \beta = 10^{-1}; \ \varepsilon = 10^{-3}$	$K_n = 100;$				
1	5.063922x10 ⁻¹	5.020869x10 ⁻¹	3.288343x10 ⁻²	3.790445			
2	5.052846x10 ⁻¹	4.979521x10 ⁻¹	9.238754x10 ⁻⁴	3.791330			
		Exact Response	Exact Response	Exact Parameter			
		Value	SD	Value			
		4.999981x10 ⁻¹	4.999981x10 ⁻²	10.0			

b) Measurements with 1% relative standard deviation $(\beta = 10^{-2})$

Table 4.10 presents results predicted by the PM-CMPS methodology when sets comprising increasingly more experiments, all having relative standard deviations of 1%, are being assimilated.

Table 4.10: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 10$ after assimilating batches of experiments with $\beta = 10^{-2}$.

		•					
	$\mu a = 10$; $\beta = 10^{-2}$; $\varepsilon = 10^{-5}$; $K_n = 5$;						
n	Experimental Response	Predicted Response	Predicted	Predicted			
	Mean Value	Value	Response SD	ParameterValue			
1	4.995937x10 ⁻¹	4.992142x10 ⁻¹	1.654840 x10 ⁻³	3.910644			
	$\mu a = 10$; $\beta = 10^{-2}$; $\varepsilon = 10^{-5}$; $K_n = 10$;						
1	5.007945x10 ⁻¹	4.996136x10 ⁻¹	2.052874x10 ⁻³	4.322908			
	$\mu a = 10$; $\beta = 10^{-2}$; $\varepsilon = 10^{-5}$; $K_n = 50$						
1	4.999333x10 ⁻¹	4.997729x10 ⁻¹	3.238153x10 ⁻³	5.315490			
	$\mu a = 10$; $\beta = 10^{-2}$; $\varepsilon = 10^{-5}$; $K_n = 100$;						
1	5.006375x10 ⁻¹	5.020869x10 ⁻¹	3.288731x10 ⁻³	5.769938			
2	5.005267x10 ⁻¹	4.997939x10 ⁻¹	1.352363x10 ⁻⁴	5.771909			
		Exact Response	Exact Response	Exact Parameter			
		Value	SD	Value			
		4.999981x10 ⁻¹	4.999981x10 ⁻³	10.0			

After assimilating a set of $K_n = 5$ such experiments, the results presented in Table 4.10 indicate that the PM-CMPS methodology predicts the correct value of the response with 3 digits of accuracy, but the slab's thickness is under-predicted by a factor of 2.5. Increasing the numbers of similar measurements from $K_n = 5$ experiments to $K_n = 100$ experiments per set does not increase significantly the precision of the predicted response, but increases the accuracy of the predicted value of the slab thickness, although the exact value remains under-predicted by about 40%, which is the prediction limit for the experimental responses drawn from a normal distribution with a relative standard deviation of 1%.

c) Measurements with 0.1% relative standard deviation ($\beta = 10^{-3}$)

Table 4.11 presents results predicted by the PM-CMPS methodology when sets comprising increasingly more experiments, all having relative standard deviations of 0.1%, are being assimilated.

Table 4.11: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 10$ after assimilating batches of experiments with $\beta = 10^{-3}$.

	<u>*</u>	<u>'</u>					
	$\mu a = 10$; $\beta = 10^{-3}$; $\varepsilon = 10^{-5}$; $K_n = 5$;						
n	Experimental Response	Predicted Response	Predicted	Predicted			
	Mean Value	Value	Response SD	ParameterValue			
1	4.999576x10 ⁻¹	4.999218x10 ⁻¹	1.67085 x10 ⁻⁴	5.929063			
	$\mu a = 10$; $\beta = 10^{-3}$; $\varepsilon = 10^{-5}$; $K_n = 10$;						
1	5.000777 x10 ⁻¹	4.999618 x10 ⁻¹	2.082969 x10 ⁻⁴	6.345481			
	$\mu a = 10$; $\beta = 10^{-3}$; $\varepsilon = 10^{-5}$; $K_n = 50$						
1	4.999916x10 ⁻¹	4.999756x10 ⁻¹	3.240331x10 ⁻⁴	7.316728			
	$\mu a = 10; \beta = 10^{-3}; \ \varepsilon = 10^{-5}; K_n = 100;$						
1	5.000620×10^{-1}	5.000190 x10 ⁻¹	3.289465 x10 ⁻⁴	7.756322			
2	5.000509×10^{-1}	4.999778 x10 ⁻¹	1.913978 x10 ⁻⁵	7.760068			
		Exact Response	Exact Response	Exact Parameter			
		Value	SD	Value			
	•	4.999981x10 ⁻¹	4.999981x10 ⁻⁴	10.0			

After assimilating a set of $K_n = 5$ such experiments, the results presented in Table 4.11 indicate that the PM-CMPS methodology predicts the correct value of the response with 4 digits of accuracy, but the slab's thickness is under-predicted by 40%. Increasing the numbers of measurements having the same standard deviation from $K_n = 5$ experiments to $K_n = 100$ experiments per set does not increase significantly the precision of the predicted response, but increases the accuracy of the predicted value of the slab thickness, although the exact value remains under-predicted by about 20%, which is the prediction limit for the experimental responses drawn from a normal distribution with a relative standard deviation of 0.1%.

d) Measurements with 0.01% relative standard deviation $(\beta = 10^{-4})$

Table 4.12 presents results predicted by the PM-CMPS methodology when sets comprising increasingly more experiments, all having relative standard deviations of 0.01%, are being

assimilated. After assimilating a set of $K_n = 5$ such experiments, the results presented in Table 4.12 indicate that the PM-CMPS methodology predicts the correct value of the response with 5 digits of accuracy, but the slab's thickness is under-predicted by 20%. Increasing the numbers of measurements from $K_n = 5$ experiments to $K_n = 100$ experiments per set increases the accuracy of the predicted value of the slab thickness, although the exact value remains under-predicted by about 7%, which is the prediction limit for the experimental responses drawn from a normal distribution with a relative standard deviation of 0.01%.

Table 4.12: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 10$ after assimilating batches of experiments with $\beta = 10^{-4}$.

	$\mu a = 10$; $\beta = 10^{-4}$; $\varepsilon = 10^{-5}$; $K_n = 5$;						
n	Experimental Response	Predicted Response	Predicted	Predicted			
	Mean Value	Value	Response SD	ParameterValue			
1	4.999940x10 ⁻¹	4.999908x10 ⁻¹	1.697100x10 ⁻⁵	7.959722			
	$\mu a = 10$; $\beta = 10^{-4}$; $\varepsilon = 10^{-5}$; $K_n = 10$;						
1	5.000060x10 ⁻¹	4.999949x10 ⁻¹	2.146285x10 ⁻⁵	8.334934			
	$\mu a = 10$; $\beta = 10^{-4}$; $\varepsilon = 10^{-5}$; $K_n = 50$						
1	4.999974x10 ⁻¹	4.999958x10 ⁻¹	3.250068x10 ⁻⁵	9.056938			
	$\mu a = 10$; $\beta = 10^{-4}$; $\varepsilon = 10^{-5}$; $K_n = 100$;						
1	5.000045×10^{-1}	5.000002×10^{-1}	3.294413x10 ⁻⁵	9.338401			
		Exact Response	Exact Response	Exact Parameter			
		Value	SD	Value			
		4.999981x10 ⁻¹	4.999981x10 ⁻⁵	10.0			

e) Measurements with 0.001% relative standard deviation $(\beta = 10^{-5})$

Table 4.13 presents results predicted by the PM-CMPS methodology when sets comprising increasingly more experiments, all having relative standard deviations of 0.001%, are being assimilated. After assimilating a set of $K_n = 5$ such experiments, the results presented in Table 4.13 indicate that the PM-CMPS methodology predicts the correct value of the response with 5 digits of accuracy, while the slab's thickness is under-predicted by 5%. Increasing the numbers of measurements from $K_n = 5$ experiments to $K_n = 100$ experiments per set enables the PM-CMPS methodology to predict practically the exact value of the response, and also enables the prediction of the slab thickness within a (negative) difference of 0.02 (2%) of the exact value.

Table 4.13: Results predicted by PM-CMPS methodology for a slab of exact thickness $\mu a = 10$ after assimilating batches of experiments with $\beta = 10^{-5}$.

$\mu a = 10; \beta = 10^{-5}; \varepsilon = 10^{-8}; K_n = 5;$								
n	Experimental	Predicted	Predicted	Predicted	Predicted			
	Response	Response	Response SD	Parameter	Parameter SD			
	Mean Value	_	_					
1	4.999977x10 ⁻¹	4.999975x10 ⁻¹	1.796069x10 ⁻⁶	9.563645	6.465910x10 ⁻¹			
$\mu a = 10$; $\beta = 10^{-5}$; $\varepsilon = 10^{-8}$; $K_n = 10$;								
1	4.999989x10 ⁻¹	4.999981x10 ⁻¹	2.566375x10 ⁻⁶	9.786590	7.628210x10 ⁻¹			
$\mu a = 10$; $\beta = 10^{-5}$; $\varepsilon = 10^{-8}$; $K_n = 50$;								
1	4.999980x10 ⁻¹	4.999979x10 ⁻¹	3.486978x10 ⁻⁶	9.861132	9.236508x10 ⁻¹			
2	4.999986x10 ⁻¹	4.999981x10 ⁻¹	1.680819x10 ⁻⁶	9.987424	7.737391x10 ⁻¹			
$\mu a = 10 \; ; \beta = 10^{-5} \; ; \; \varepsilon = 10^{-8} \; ; K_n = 100 \; ;$								
1	4.999987x10 ⁻¹	4.999983x10 ⁻¹	3.466796x10 ⁻⁶	9.945714	9.359559x10 ⁻¹			
2	4.999986x10 ⁻¹	4.999981x10 ⁻¹	1.927486x10 ⁻⁶	9.983171	8.739583x10 ⁻¹			
		Exact	Exact	Exact				
		Response	Response SD	Parameter				
		4.999981x10 ⁻¹	4.999981x10 ⁻⁶	10.0				

f) Discussion

The results presented in Tables 4.9 through 4.13 for the slab having the exact optical thickness $\mu a = 10$ reinforce the conclusions previously drawn from the analysis of the slabs of exact optical thickness $\mu a = 3$ and $\mu a = 7$, respectively, namely that: (i) the PM-CMPS methodology underpredicts the slab's actual physical thickness when imprecise experimental results are assimilated, even though the predicted responses agrees within the imposed error criterion with the experimental results; (ii) the PM-CMPS methodology correctly predicts the slab's actual physical thickness when precise experimental results are assimilated, while also predicting the physically correct response within the selected precision criterion.

4.4.6 Prediction Limit for Single-Precision Computations: Slab of Exact Optical Thickness=10.0

For single precision computations, the limits of prediction accuracy when applying the PM-CMPS methodology are illustrated by the results presented in Table 4.14 for a slab of exact optical thickness $\mu a = 15$. Assimilating 169 extremely precise experiments, distributed normally with a relative standard deviation $\beta = 10^{-7}$ around the exact response value, the PM-CMPS methodology predicts the exact response value with 10 significant digits and the exact thickness within 0.2%. This is a remarkable achievement for such a "deep penetration" paradigm problem, in which exponentially fewer gamma rays originating deeply within the slab escape to its surface.

Table 4.14: Prediction limit for single-precision computations using the PM-CMPS methodology

$\mu a = 15$; $\beta = 10^{-7}$; $\varepsilon = 10^{-9}$; $K_n = 169$;								
n	Experimental	Predicted Response	Predicted Response SD	Predicted Parameter				
	Response Mean			Value				
	Value							
1	5.000000x10 ⁻¹	5.000000x10 ⁻¹	3.498662x10 ⁻⁸	15.41315				
		Exact Response	Exact Response SD	Exact Parameter				
		4.999999999x10 ⁻¹	4.9999999909x10 ⁻⁸	15.0				

The results in this Section indicate that for optically thin slabs, both the traditional chi-square-minimization method and the PM-CMPS methodology predict the slab's thickness accurately. For optically thick slabs, the results obtained in this work have led to following conclusions: (i) the traditional inverse-problem methods based on the minimization of chi-square-type functionals fail to predict the slab's thickness; (ii) the PM-CMPS methodology under-predicts the slab's actual physical thickness when imprecise experimental results are assimilated, even though the predicted responses agrees within the imposed error criterion with the experimental results; (iii) the PM-CMPS methodology correctly predicts the slab's actual physical thickness when precise experimental results are assimilated, while also predicting the physically correct response within the selected precision criterion. For single precision computations, the limits of prediction accuracy when applying the PM-CMPS methodology were illustrated by assimilating 169 extremely precise experiments, distributed normally with a relative standard deviation $\beta = 10^{-7}$ around the exact response value, and showing that the PM-CMPS methodology predicts the exact

response value with 10 significant digits and the exact thickness within 0.2%, --a remarkable achievement for such a "deep penetration" paradigm problem. Most of the results obtained in this work correspond to realistic measured standard deviations, obtainable routinely in gamma-ray measurements. The "very precise" measurements were used for illustrative purposes, to highlight the fact that the accuracy of the results predicted by using the PM-CMPS methodology in the "inverse predictive" mode is limited by the precision of the measurements, not by the PM-CMPS methodology or by its underlying computational algorithm.

5 PREDICTIVE MODELING APPLICATION TO SAVANNAH RIVER NATIONAL LABORATORY'S F-AREA COOLING TOWERS

Abstract:

This Chapter illustrates the application of the PM-CMPS methodology to the SRNL F-AREA cooling towers model and actually measured data to obtain predicted optimal nominal values for the model responses and parameters, along with reduced predicted standard deviations for the predicted model parameters and responses. The results presented in this chapter demonstrate that the PM-CMPS methodology reduces the predicted standard deviations to values that are smaller than either the computed or the experimentally measured ones, even for responses (e.g., the outlet water flow rate) for which no measurements are available. These improvements stem from the global characteristics of the PM-CMPS methodology, which combines all of the available information simultaneously in phase-space, as opposed to combining it sequentially, as in current data assimilation procedures.

5.1 Introduction

A mechanical draft cooling tower (MDCT) discharges waste heat from an industrial process into the atmosphere. Using a numerical simulation model of the cooling tower together with measurements of outlet air relative humidity, outlet air and water temperatures enables the quantification of the rate of thermal energy dissipation removed from the respective process. In addition to computing the temperature drop of the cooling water as it passes through the tower, a MDCT model that derives heat dissipation rates from thermal imagery needs to convert the remotely measured cooling tower throat or area-weighted temperature to a cooling water inlet temperature. Therefore, a MDCT model comprises two main components, namely: (i) an inner

model which computes the amount of cooling undergone by the water as it passes through the tower as a function of inlet cooling water temperature and ambient weather conditions (air temperature and humidity); and (ii) an outer model which uses a remotely measured throat or area-weighted temperature and adjusts the inlet water temperature to match the target temperature of interest. The MDCT model produces an estimate of the rate at which energy is being discharged to the atmosphere by evaporation and sensible heat transfer. The sensible heat transfer is estimated using the computed change in air or water enthalpy as it passes through the MDCT. If the MDCT fans are on, a prescribed mass flow rate of air and water is used. If the MDCT fans are off, an additional mechanical energy equation is iteratively solved to determine the mass flow rate of air. The flow regime in the fill section of a cooling tower, which can be cross-flow or counter-flow, determines the type of the respective cooling tower.

This Section illustrates the application of the PM-CMPS methodology to the MDCT model developed by Aleman and Sebastian (2015) and extended by Cacuci and Fang (2016) for computing the steady-state thermal performance of the F-AREA cooling towers at the Savannah River National Laboratory. The MDCT model is presented in Section 5.2. Using as inputs the temperature and mass flow rate of the incoming water together with the temperature and humidity ratio of the incoming ambient air, this model computes the temperature and mass flow rate of the effluent water, as well as the temperature and water vapor content of the exhaust air. The air mass flow rate is specified when the cooling tower operates in the mechanical draft mode. When the fan is turned-off, the cooling tower operates in the natural draft/wind-aided mode, in which case the air mass flow rate is calculated using the numerical model.

During the period from April, 2004 through August, 2004, a total of 8079 measured benchmark data sets for the F-area cooling towers (fan-on case) were recorded every fifteen minutes at SRNL. These measured quantities provide the basis for choosing the state functions underlying the mathematical modeling of the cooling tower. Section 5.3 presents the results for the sensitivity analysis of responses of interest, using the *cooling tower adjoint sensitivity model* which was developed by applying the general *adjoint sensitivity analysis methodology* (ASAM) *for nonlinear systems*, which was originally developed by Cacuci (1981). The response sensitivities are needed for (i) ranking the parameters in the order of their importance for contributing to response uncertainties; (ii) propagating the uncertainties (variances and covariances) in the model parameters to quantify the uncertainties (variances and covariances) in the model responses; (iii)

performing predictive modeling, which includes assimilation of experimental measurements and calibration of model parameters to produce optimally predicted nominal values for both model parameters and responses, with reduced predicted uncertainties. in Section 5.4 presents the results of applying the PM-CMPS methodology to reduce the uncertainties in the predicted results. At the locations where measurements of outlet air relative humidity, outlet air temperature, and outlet water temperature were available, the PM-CMPS methodology is shown to reduce the predicted standard deviations of predicted responses to values that are smaller than either the computed or the experimentally measured responses. Section 5.4 also shows that the PM-CMPS methodology reduces the predicted uncertainties for responses (such as the distributions of the air and water temperatures, and the air humidity inside the fill section of the cooling tower) for which no direct measurements are available.

5.2 Mathematical Model of the Counter-Flow Cooling Tower

The counter-flow cooling tower is schematically presented in Figure 5.1, which indicates that forced air flow enters the tower through the "rain section" above the water basin, flows upward through the fill section and the drift eliminator, and exits at the tower's top through an exhaust that encloses a fan. Hot water enters above the fill section and is sprayed onto the top of the fill section to create a uniform, downward falling, film flow through the fill's numerous meandering vertical passages. Film fills are designed to maximize the water free surface area and the residence time inside of the fill section. Heat and mass transfer occurs at the falling film's free surface between the water film and the upward air flow. The drift eliminator above the spray zone removes entrained water droplets from the upward flowing air. Below the fill section, the water droplets fall into a collection basin, placed at the bottom of the cooling tower. The heat and mass transfer processes occur overwhelmingly in the fill section. Modeling the heat and mass transfer processes between falling water film and rising air in the cooling tower's fill section is accomplished solving the following balance equations: (A) liquid continuity; (B) liquid energy balance; (C) water vapor continuity; (D) air/water vapor energy balance. The assumptions used in deriving these equations are as follows:

- 1. the air and/or water temperatures are uniform throughout each stream at any cross section;
- 2. the cooling tower has uniform cross-sectional area;
- 3. the heat and mass transfer occur solely in the direction normal to flows;

- 4. the heat and mass transfer through tower walls to the environment is negligible;
- 5. the heat transfer from the cooling tower fan and motor assembly to the air is negligible;
- 6. the air and water vapor mix as ideal gasses;
- 7. the flow between flat plates is unsaturated through the fill section.

Figure 5.1. Flow through a counter-flow cooling tower.

The fill section is modeled by discretizing it in vertically stacked control volumes as depicted in Figure 5.2. In mechanical draft mode, the mass flow rate of dry air is specified. With the fan off and hot water flowing through the cooling tower, air will continue to flow through the tower due to buoyancy. Wind pressure at the air inlet into the cooling tower will also enhance air flow through the tower. The air flow rate is determined from the overall mechanical energy equation for the dry air flow. The heat and mass transfer between the falling water film and the rising air in a typical control volume of the cooling tower's fill section is presented in Figure 5.3.

Figure 5.2. Control volumes (i=1,..,I) comprising the counter-flow cooling tower, together with the symbols denoting the forward state functions $(m_w^{(i)}, T_w^{(i)}, T_a^{(i)}, \omega^{(i)}, i=1,..,I)$ and the adjoint state functions $(\mu_w^{(i)}, \tau_w^{(i)}, \tau_a^{(i)}, \sigma_a^{(i)}, i=1,..,I)$, respectively.

Figure 5.3. Heat and mass transfer between falling water film and rising air in a typical control volume of the cooling tower's fill section.

The state functions underlying the cooling tower model (cf., Figures 5.1 through 5.3) are as follows:

- 1. the water mass flow rates, denoted as $m_w^{(i)}$ (i = 2,...,50), at the exit of each control volume, i, along the height of the fill section of the cooling tower;
- 2. the water temperatures, denoted as $T_w^{(i)}$ (i = 2,...,50), at the exit of each control volume, i, along the height of the fill section of the cooling tower;
- 3. the air temperatures, denoted as $T_a^{(i)}$ (i = 1,...,49), at the exit of each control volume, i, along the height of the fill section of the cooling tower; and
- 4. the humidity ratios, denoted as $\omega^{(i)}$ (i = 1,...,49), at the exit of each control volume, i, along the height of the fill section of the cooling tower.

It is convenient to consider the above state functions to be components of the following (column) vectors:

$$\mathbf{m}_{w} \triangleq \left[m_{w}^{(2)}, ..., m_{w}^{(I+1)} \right]^{\dagger}, \mathbf{T}_{w} \triangleq \left[T_{w}^{(2)}, ..., T_{w}^{(I+1)} \right]^{\dagger}, \mathbf{T}_{a} \triangleq \left[T_{a}^{(1)}, ..., T_{a}^{(I)} \right]^{\dagger}, \boldsymbol{\omega} \triangleq \left[\boldsymbol{\omega}^{(1)}, ..., \boldsymbol{\omega}^{(I)} \right]^{\dagger}, \tag{5.1}$$

The governing conservation equations within the total of I=49 control volumes represented in Figure 5.2 are as follows:

A. Liquid continuity equations:

(i) Control Volume i=1:

$$N_{1}^{(1)}\left(\mathbf{m}_{w}, \mathbf{T}_{w}, \mathbf{T}_{a}, \boldsymbol{\omega}; \boldsymbol{\alpha}\right) \triangleq m_{w,in}^{(2)} - m_{w,in} + \frac{M(m_{a}, \boldsymbol{\alpha})}{R} \left[\frac{P_{vs}^{(2)}(T_{w}^{(2)}, \boldsymbol{\alpha})}{T_{w}^{(2)}} - \frac{\omega^{(1)}P_{atm}}{T_{a}^{(1)}(0.622 + \omega^{(1)})} \right] = 0;$$
(5.2)

(ii) Control Volumes i=2,..., I-1:

$$N_{1}^{(i)}(\mathbf{m}_{w}, \mathbf{T}_{u}, \mathbf{T}_{a}, \boldsymbol{\omega}; \boldsymbol{\alpha}) \triangleq m_{w}^{(i+1)} - m_{w}^{(i)} + \frac{M(m_{a}, \boldsymbol{\alpha})}{\overline{R}} \left[\frac{P_{vs}^{(i+1)}(T_{w}^{(i+1)}, \boldsymbol{\alpha})}{T_{w}^{(i+1)}} - \frac{\boldsymbol{\omega}^{(i)}P_{atm}}{T_{a}^{(i)}(0.622 + \boldsymbol{\omega}^{(i)})} \right] = 0;$$
(5.3)

(iii) Control Volume i=I:

$$N_{1}^{(I)}\left(\mathbf{m}_{w}, \mathbf{T}_{w}, \mathbf{T}_{a}, \mathbf{\omega}; \mathbf{\alpha}\right) \triangleq m_{w}^{(I+1)} - m_{w}^{(I)} + \frac{M(m_{a}, \mathbf{\alpha})}{\overline{R}} \left[\frac{P_{vs}^{(I+1)}(T_{w}^{(I+1)}, \mathbf{\alpha})}{T_{w}^{(I+1)}} - \frac{\omega^{(I)}P_{atm}}{T_{a}^{(I)}(0.622 + \omega^{(I)})} \right] = 0;$$
(5.4)

B. Liquid energy balance equations:

(i) Control Volume i=1:

$$N_{2}^{(1)}\left(\mathbf{m}_{w}, \mathbf{T}_{w}, \mathbf{T}_{a}, \boldsymbol{\omega}; \boldsymbol{\alpha}\right) \triangleq m_{w,in} h_{f}\left(T_{w,in}, \boldsymbol{\alpha}\right) - \left(T_{w}^{(2)} - T_{a}^{(1)}\right) H\left(m_{a}, \boldsymbol{\alpha}\right) - m_{w}^{(2)} h_{f}^{(2)}\left(T_{w}^{(2)}, \boldsymbol{\alpha}\right) - \left(m_{w,in} - m_{w}^{(2)}\right) h_{g,w}^{(2)}\left(T_{w}^{(2)}, \boldsymbol{\alpha}\right) = 0;$$

$$(5.5)$$

(ii) Control Volumes i=2,..., I-1:

$$N_{2}^{(i)}(\mathbf{m}_{w}, \mathbf{T}_{w}, \mathbf{T}_{a}, \mathbf{\omega}; \mathbf{\alpha}) \triangleq m_{w}^{(i)} h_{f}^{(i)}(T_{w}^{(i)}, \mathbf{\alpha}) - (T_{w}^{(i+1)} - T_{a}^{(i)}) H(m_{a}, \mathbf{\alpha}) - m_{w}^{(i+1)} h_{f}^{(i+1)}(T_{w}^{(i+1)}, \mathbf{\alpha}) - (m_{w}^{(i)} - m_{w}^{(i+1)}) h_{g,w}^{(i+1)}(T_{w}^{(i+1)}, \mathbf{\alpha}) = 0;$$

$$(5.6)$$

(iii) Control Volume i=I:

$$N_{2}^{(I)}\left(\mathbf{m}_{w}, \mathbf{T}_{u}, \mathbf{T}_{a}, \boldsymbol{\omega}; \boldsymbol{\alpha}\right) \triangleq m_{w}^{(I)} h_{f}^{(I)}(T_{w}^{(I)}, \boldsymbol{\alpha}) - (T_{w}^{(I+1)} - T_{a}^{(I)}) H(m_{a}, \boldsymbol{\alpha}) - m_{w}^{(I+1)} h_{f}^{(I+1)}(T_{w}^{(I+1)}, \boldsymbol{\alpha}) - (m_{w}^{(I)} - m_{w}^{(I+1)}) h_{a,w}^{(I+1)}(T_{w}^{(I+1)}, \boldsymbol{\alpha}) = 0;$$

$$(5.7)$$

C. Water vapor continuity equations:

(i) Control Volume i=1:

$$N_3^{(1)}\left(\mathbf{m}_w, \mathbf{T}_u, \mathbf{T}_a, \mathbf{\omega}; \mathbf{\alpha}\right) \triangleq \omega^{(2)} - \omega^{(1)} + \frac{m_{w.in} - m_w^{(2)}}{|m_a|} = 0;$$
 (5.8)

(ii) Control Volumes i=2,..., I-1:

$$N_3^{(i)}(\mathbf{m}_w, \mathbf{T}_w, \mathbf{T}_a, \mathbf{\omega}; \mathbf{\alpha}) \triangleq \omega^{(i+1)} - \omega^{(i)} + \frac{m_w^{(i)} - m_w^{(i+1)}}{|m_a|} = 0;$$
 (5.9)

(iii) Control Volume i=I:

$$N_3^{(I)} \left(\mathbf{m}_w, \mathbf{T}_w, \mathbf{T}_a, \mathbf{\omega}; \mathbf{\alpha} \right) \triangleq \omega_{in} - \omega^{(I)} + \frac{m_w^{(I)} - m_w^{(I+1)}}{|m_a|} = 0;$$
 (5.10)

D. The air/water vapor energy balance equations:

(i) Control Volume i=1:

$$N_{4}^{(1)}\left(\mathbf{m}_{w}, \mathbf{T}_{w}, \mathbf{T}_{a}, \boldsymbol{\omega}; \boldsymbol{\alpha}\right) \triangleq \left(T_{a}^{(2)} - T_{a}^{(1)}\right) C_{p}^{(1)} \left(\frac{T_{a}^{(1)} + 273.15}{2}, \boldsymbol{\alpha}\right) - \omega^{(1)} h_{g,a}^{(1)} \left(T_{a}^{(1)}, \boldsymbol{\alpha}\right) + \frac{\left(T_{w}^{(2)} - T_{a}^{(1)}\right) H\left(m_{a}, \boldsymbol{\alpha}\right)}{\left|m_{a}\right|} + \frac{\left(m_{w,in} - m_{w}^{(2)}\right) h_{g,w}^{(2)} \left(T_{w}^{(2)}, \boldsymbol{\alpha}\right)}{\left|m_{a}\right|} + \omega^{(2)} h_{g,a}^{(2)} \left(T_{a}^{(2)}, \boldsymbol{\alpha}\right) = 0;$$

$$(5.11)$$

(ii) Control Volumes i=2,..., I-1:

$$N_{4}^{(i)}\left(\mathbf{m}_{w}, \mathbf{T}_{w}, \mathbf{T}_{a}, \boldsymbol{\omega}; \boldsymbol{\alpha}\right) \triangleq \left(T_{a}^{(i+1)} - T_{a}^{(i)}\right) C_{p}^{(i)} \left(\frac{T_{a}^{(i)} + 273.15}{2}, \boldsymbol{\alpha}\right)$$

$$-\omega^{(i)} h_{g,a}^{(i)}(T_{a}^{(i)}, \boldsymbol{\alpha}) + \frac{\left(T_{w}^{(i+1)} - T_{a}^{(i)}\right) H(m_{a}, \boldsymbol{\alpha})}{\left|m_{a}\right|}$$

$$+ \frac{\left(m_{w}^{(i)} - m_{w}^{(i+1)}\right) h_{g,w}^{(i+1)} \left(T_{w}^{(i+1)}, \boldsymbol{\alpha}\right)}{\left|m_{a}\right|} + \omega^{(i+1)} h_{g,a}^{(i+1)} \left(T_{a}^{(i+1)}, \boldsymbol{\alpha}\right) = 0;$$

$$\left|m_{a}\right|$$

$$(5.12)$$

(iii) Control Volume i=I:

$$N_{4}^{(I)}\left(\mathbf{m}_{w}, \mathbf{T}_{a}, \mathbf{\omega}; \mathbf{\alpha}\right) \triangleq (T_{a,in} - T_{a}^{(I)})C_{p}^{(I)}\left(\frac{T_{a}^{(I)} + 273.15}{2}, \mathbf{\alpha}\right)$$

$$-\omega^{(I)}h_{g,a}^{(I)}(T_{a}^{(I)}, \mathbf{\alpha}) + \frac{(T_{w}^{(I+1)} - T_{a}^{(I)})H(m_{a}, \mathbf{\alpha})}{\left|m_{a}\right|} + \frac{(m_{w}^{(I)} - m_{w}^{(I+1)})h_{g,w}^{(I+1)}(T_{w}^{(I+1)}, \mathbf{\alpha})}{\left|m_{a}\right|} + \omega_{in}h_{g,a}(T_{a,in}, \mathbf{\alpha}) = 0.$$

$$(5.13)$$

The components of the vector α , which appears in Eqs. (5.2) through (5.13) comprise the model parameters, which are generically denoted as α_i , i.e.,

$$\mathbf{\alpha} \triangleq \left(\alpha_1, ..., \alpha_{N_{\alpha}}\right),\tag{5.14}$$

where N_{α} denotes the total number of model parameters. These model parameters are experimentally derived quantities, and their complete distributions parameters are not known; however, we have determined the first four moments (means, variance/covariance, skewness, and kurtosis) of each of these parameter distributions, as detailed in Section 5.4. Equations (5.2) through (5.13) are solved by Newton's method together with the GMRES linear iterative solver for sparse matrices (Saad, Y. and Schultz, M.H. 1986) provided in the NSPCG package (Oppe et al, 1988). This GMRES solver approximates the exact solution-vector of a linear system by using the Arnoldi iteration to find the approximate solution-vector by minimizing the norm of the residual vector over a Krylov subspace. The specific computational steps are as follows:

(a) Write Eqs.(5.2) through (5.13) in vector form as

$$\mathbf{N}(\mathbf{u}) = \mathbf{0},\tag{5.15}$$

where the following definitions are used:

$$\mathbf{N} \triangleq \left(N_1^{(1)}, ..., N_1^{(I)}, ..., N_4^{(1)}, ..., N_4^{(I)}\right)^{\dagger}, \quad \mathbf{u} \triangleq \left(\mathbf{m}_{w}, \mathbf{T}_{w}, \mathbf{T}_{a}, \mathbf{\omega}\right)^{\dagger}; \tag{5.16}$$

- (b) Set the initial guess, \mathbf{u}_0 , to be the inlet boundary conditions;
- (c) Start outer iteration loop: Steps d through g, below, constitute the outer iteration loop; for n = 0,1,2,..., iterate over the following steps until convergence:
- (d) Start inner iteration loop: for m = 1, 2, ..., use the iterative GMRES linear solver with the Modified Incomplete Cholesky (MIC) preconditioner, with restarts, to solve, until convergence, the following system to compute the vector $\delta \mathbf{u}$:

$$\mathbf{J}(\mathbf{u}_n)\delta\mathbf{u} = -\mathbf{N}(\mathbf{u}_n),\tag{5.17}$$

where n is the current outer loop iteration number, and the Jacobian matrix of derivatives of Eqs. (5.3) through (5.13) with respect to the state functions is following the block-matrix:

$$\mathbf{J}(\mathbf{u}_n) \triangleq \begin{pmatrix} \mathbf{A}_1 & \mathbf{B}_1 & \mathbf{C}_1 & \mathbf{D}_1 \\ \mathbf{A}_2 & \mathbf{B}_2 & \mathbf{C}_2 & \mathbf{D}_2 \\ \mathbf{A}_3 & \mathbf{B}_3 & \mathbf{C}_3 & \mathbf{D}_3 \\ \mathbf{A}_4 & \mathbf{B}_4 & \mathbf{C}_4 & \mathbf{D}_4 \end{pmatrix}.$$
 (5.18)

The components of the matrices appearing in Eq.(5.18) are defined as follows:

$$a_{\ell}^{i,j} \triangleq \frac{\partial N_{\ell}^{(i)}}{\partial m_{\nu}^{(j+1)}}; \ \ell = 1, 2, 3, 4; \ i = 1, ..., I; \ j = 1, ..., I;$$
 (5.19)

$$b_{\ell}^{i,j} \triangleq \frac{\partial N_{\ell}^{(i)}}{\partial T_{w}^{(j+1)}}; \ \ell = 1, 2, 3, 4; \ i = 1, ..., I; \ j = 1, ..., I;$$
 (5.20)

$$c_{\ell}^{i,j} \triangleq \frac{\partial N_{\ell}^{(i)}}{\partial T_{a}^{(j)}}; \ \ell = 1, 2, 3, 4; i = 1, ..., I; \ j = 1, ..., I;$$
 (5.21)

$$d_{\ell}^{i,j} \triangleq \frac{\partial N_{\ell}^{(i)}}{\partial \omega^{(j)}}; \ \ell = 1, 2, 3, 4; \ i = 1, ..., I; \ j = 1, ..., I;$$
 (5.22)

Computing the derivatives of the "liquid continuity equations" with respect to $m_w^{(j)}$ yields:

$$\mathbf{A}_{1} \triangleq \left(a_{1}^{i,j}\right)_{I \times I} = \begin{pmatrix} 1 & 0 & . & 0 & 0 \\ -1 & 1 & . & 0 & 0 \\ . & . & . & . & . \\ 0 & 0 & . & 1 & 0 \\ 0 & 0 & . & -1 & 1 \end{pmatrix}.$$
 (5.23)

Computing the derivatives of the "liquid continuity equations" with respect to $T_{w}^{(j)}$ yields:

$$\mathbf{B}_{1} \triangleq \left(b_{1}^{i,j}\right)_{I \times I} = \begin{pmatrix} b_{1}^{1,1} & 0 & . & 0 & 0\\ 0 & b_{1}^{2,2} & . & 0 & 0\\ . & . & . & . & .\\ 0 & 0 & . & b_{1}^{I-1,I-1} & 0\\ 0 & 0 & . & 0 & b_{1}^{I,I} \end{pmatrix}, \tag{5.24}$$

where

$$b_1^{i,i} \triangleq -\frac{M(m_a, \boldsymbol{\alpha})}{\overline{R}} \frac{P_{vs}^{(i+1)}(T_w^{(i+1)}, \boldsymbol{\alpha})}{[T_w^{(i+1)}]^2} \left\{ \frac{a_1}{T_w^{(i+1)}} + 1 \right\}.$$
 (5.25)

Computing the derivatives of the "liquid continuity equations" with respect to $T_a^{(j)}$ yields:

$$\mathbf{C}_{1} \triangleq \left(c_{1}^{i,j}\right)_{I \times I} = \begin{pmatrix} c_{1}^{1,1} & 0 & . & 0 & 0\\ 0 & c_{1}^{2,2} & . & 0 & 0\\ . & . & . & . & .\\ 0 & 0 & . & c_{1}^{I-1,I-1} & 0\\ 0 & 0 & . & 0 & c_{1}^{I,I} \end{pmatrix}, \tag{5.26}$$

where

$$c_1^{i,i} \triangleq \frac{M(m_a, \mathbf{\alpha})}{\overline{R}} \frac{\omega^{(i)} P_{atm}}{\left[T_a^{(i)}\right]^2 \left(0.622 + \omega^{(i)}\right)}.$$
 (5.27)

Computing the derivatives of the "liquid continuity equations" with respect to $\omega^{(j)}$ yields:

$$\mathbf{D}_{1} \triangleq \left(d_{1}^{i,j}\right)_{I \times I} = \begin{pmatrix} d_{1}^{1,1} & 0 & . & 0 & 0\\ 0 & d_{1}^{2,2} & . & 0 & 0\\ . & . & . & . & .\\ 0 & 0 & . & d_{1}^{I-1,I-1} & 0\\ 0 & 0 & . & 0 & d_{1}^{I,I} \end{pmatrix}, \tag{5.28}$$

Where

$$d_1^{i,i} = \frac{M(m_a, \mathbf{\alpha})}{\overline{R}} \frac{P_{atm}}{\left[0.622 + \omega^{(i)}\right] T_a^{(i)}} \left\{ \frac{\omega^{(i)}}{\left[0.622 + \omega^{(i)}\right]} - 1 \right\}.$$
 (5.29)

Computing the derivatives of the liquid energy balance equations with respect to $m_w^{(j)}$ yields:

$$\mathbf{A}_{2} \triangleq \left(a_{2}^{i,j}\right)_{I \times I} = \begin{pmatrix} a_{2}^{1,1} & 0 & . & 0 & 0 \\ a_{2}^{2,1} & a_{2}^{2,2} & . & 0 & 0 \\ . & . & . & . & . \\ 0 & 0 & . & a_{2}^{I-1,I-1} & 0 \\ 0 & 0 & . & a_{2}^{I,I-1} & a_{2}^{I,I} \end{pmatrix},$$
 (5.30)

Where

$$a_2^{i,i-1} \triangleq h_f^{(i)}(T_w^{(i)}, \mathbf{\alpha}) - h_g^{(i+1)}(T_w^{(i+1)}, \mathbf{\alpha}), \quad i = 2, ..., I; \quad j = i-1;$$
 (5.31)

$$a_2^{i,i} \triangleq h_g^{(i+1)}(T_w^{(i+1)}, \boldsymbol{\alpha}) - h_f^{(i+1)}(T_w^{(i+1)}, \boldsymbol{\alpha}), \quad i = 1, ..., I; \quad j = i.$$
 (5.32)

Computing the derivatives of the liquid energy balance equations with respect to $T_{w}^{(j)}$ yields:

$$\mathbf{B}_{2} \triangleq \left(b_{2}^{i,j}\right)_{I \times I} = \begin{pmatrix} b_{2}^{1,1} & 0 & . & 0 & 0 \\ b_{2}^{2,1} & b_{2}^{2,2} & . & 0 & 0 \\ . & . & . & . & . \\ 0 & 0 & . & b_{2}^{I-1,I-1} & 0 \\ 0 & 0 & . & b_{2}^{I,I-1} & b_{2}^{I,I} \end{pmatrix},$$
(5.33)

Where

$$b_2^{i,i-1} \triangleq m_w^{(i)} \frac{\partial h_f^{(i)}}{\partial T_w^{(i)}}; \ i = 2,...,I; \ j = i-1;$$
 (5.34)

$$b_{2}^{i,i} \triangleq -m_{w}^{(i+1)} \frac{\partial h_{f}^{(i+1)}}{\partial T_{w}^{(i+1)}} - \left(m_{w}^{(i)} - m_{w}^{(i+1)}\right) \frac{\partial h_{g,w}^{(i+1)}}{\partial T_{w}^{(i+1)}} - H(m_{a}, \alpha); \quad i = 1, ..., I; \quad j = i.$$
 (5.35)

Computing the derivatives of the liquid energy balance equations with respect to $T_a^{(j)}$ yields:

$$\mathbf{C}_{2} \triangleq \left(c_{2}^{i,j}\right)_{I \times I} = \begin{pmatrix} c_{2}^{1,1} & 0 & . & 0 & 0\\ 0 & c_{2}^{2,2} & . & 0 & 0\\ . & . & . & . & .\\ 0 & 0 & . & c_{2}^{I-1,I-1} & 0\\ 0 & 0 & . & 0 & c_{2}^{I,I} \end{pmatrix}, \tag{5.36}$$

where

$$c_2^{i,i} \triangleq H(m_a, \mathbf{\alpha}); \quad i = 1, ..., I; \quad j = i.$$
 (5.37)

Computing the derivatives of the liquid energy balance equations with respect to $\omega^{(j)}$ yields:

$$\mathbf{D}_2 \triangleq \left[d_2^{i,j} \right]_{l \times l} = \mathbf{0}. \tag{5.38}$$

Computing the derivatives of the water vapor continuity equations with respect to $m_w^{(j)}$ yields:

$$\mathbf{A}_{3} \triangleq \left(a_{3}^{i,j}\right)_{I \times I} = \frac{1}{m_{a}} \begin{pmatrix} -1 & 0 & . & 0 & 0\\ 1 & -1 & . & 0 & 0\\ . & . & . & . & .\\ 0 & 0 & . & -1 & 0\\ 0 & 0 & . & 1 & -1 \end{pmatrix}, \tag{5.39}$$

Computing the derivatives of the water vapor continuity equations with respect to $T_{w}^{(j)}$ yields:

$$\mathbf{B}_{3} \triangleq \left[b_{3}^{i,j} \right]_{i,j} = \mathbf{0}. \tag{5.40}$$

Computing the derivatives of the water vapor continuity equations with respect to $T_a^{(j)}$ yields:

$$\mathbf{C}_3 \triangleq \left[c_3^{i,j} \right]_{I \times I} = \mathbf{0}. \tag{5.41}$$

Computing the derivatives of the water vapor continuity equations with respect to $\omega^{(j)}$ yields:

$$\mathbf{D}_{3} \triangleq \left(d_{3}^{i,j}\right)_{I \times I} = \begin{pmatrix} -1 & 1 & . & 0 & 0 \\ 0 & -1 & . & 0 & 0 \\ . & . & . & . & . \\ 0 & 0 & . & -1 & 1 \\ 0 & 0 & . & 0 & -1 \end{pmatrix}.$$
 (5.42)

Computing the derivatives of the air/water vapor energy balance equations with respect to $m_w^{(j)}$ yields:

$$\mathbf{A}_{4} \triangleq \left(a_{4}^{i,j}\right)_{I \times I} = \begin{pmatrix} a_{4}^{1,1} & 0 & . & 0 & 0 \\ a_{4}^{2,1} & a_{4}^{2,2} & . & 0 & 0 \\ . & . & . & . & . \\ 0 & 0 & . & a_{4}^{I-1,I-1} & 0 \\ 0 & 0 & . & a_{4}^{I,I-1} & a_{4}^{I,I} \end{pmatrix},$$
 (5.43)

where

$$a_4^{i,i-1} \triangleq \frac{h_{g,w}^{(i+1)}(T_w^{(i+1)}, \mathbf{\alpha})}{m_a}; \ i = 2, ..., I; \ j = i-1;$$
 (5.44)

$$a_4^{i,i} \triangleq -\frac{h_{g,w}^{(i+1)}(T_w^{(i+1)}, \boldsymbol{\alpha})}{m_a}; \ i = 1, ..., I; \ j = i.$$
 (5.45)

Computing the derivatives of the air/water vapor energy balance equations with respect $T_w^{(j)}$ yields:

$$\mathbf{B}_{4} \triangleq \left(b_{4}^{i,j}\right)_{I \times I} = \begin{pmatrix} b_{4}^{1,1} & 0 & . & 0 & 0\\ 0 & b_{4}^{2,2} & . & 0 & 0\\ . & . & . & . & .\\ 0 & 0 & . & b_{4}^{I-1,I-1} & 0\\ 0 & 0 & . & 0 & b_{4}^{I,I} \end{pmatrix}, \tag{5.46}$$

where

$$b_4^{i,i} \triangleq \frac{1}{m_a} \left[\left(m_w^{(i)} - m_w^{(i+1)} \right) \frac{\partial h_{g,w}^{(i+1)}}{\partial T_w^{(i+1)}} + H(m_a, \mathbf{\alpha}) \right]; \quad i = 1, ..., I; \quad j = i..$$
 (5.47)

Computing the derivatives of the air/water vapor energy balance equations with respect to $T_a^{(j)}$ yields:

$$\mathbf{C}_{4} \triangleq \left(c_{4}^{i,j}\right)_{I \times I} = \begin{pmatrix} c_{4}^{1,1} & c_{4}^{1,2} & . & 0 & 0\\ 0 & c_{4}^{2,2} & . & 0 & 0\\ . & . & . & .\\ 0 & 0 & . & c_{4}^{I-1,I-1} & c_{4}^{I-1,I}\\ 0 & 0 & . & 0 & c_{4}^{I,I} \end{pmatrix}, \tag{5.48}$$

where

$$c_{4}^{i,i} \triangleq \left(T_{a}^{(i+1)} - T_{a}^{(i)}\right) \frac{\partial C_{p}^{(i)}}{\partial T_{a}^{(i)}} - C_{p}^{(i)} \left(\frac{T_{a}^{(i)} + 273.15}{2}, \mathbf{\alpha}\right) - \omega^{(i)} \frac{\partial h_{g,a}^{(i)}}{\partial T_{a}^{(i)}} - \frac{H(m_{a}, \mathbf{\alpha})}{m_{a}}; \quad i = 1, ..., I; \quad j = i; \quad (5.49)$$

$$c_{4}^{i,i+1} \triangleq C_{p}^{(i)} \left(\frac{T_{a}^{(i)} + 273.15}{2}, \mathbf{\alpha}\right) + \omega^{(i+1)} \frac{\partial h_{g,a}^{(i+1)}}{\partial T_{a}^{(i+1)}}; \quad i = 1, ..., I-1; \quad j = i+1. \quad (5.50)$$

Computing the derivatives of the air/water vapor energy balance equations with respect to $\omega^{(j)}$ yields:

$$\mathbf{D}_{4} \triangleq \left(d_{4}^{i,j}\right)_{I \times I} = \begin{pmatrix} d_{4}^{1,1} & d_{4}^{1,2} & . & 0 & 0\\ 0 & d_{4}^{2,2} & . & 0 & 0\\ . & . & . & . & .\\ 0 & 0 & . & d_{4}^{I-1,I-1} & d_{4}^{I-1,I}\\ 0 & 0 & . & 0 & d_{4}^{I,I} \end{pmatrix}, \tag{5.51}$$

where

$$d_4^{i,i} \triangleq -h_{g,a}^{(i)}(T_a^{(i)}, \mathbf{\alpha}); \quad i = 1, ..., I; \quad j = i;$$
(5.52)

$$d_4^{i,i+1} \triangleq h_{g,a}^{(i+1)}(T_a^{(i+1)}, \mathbf{\alpha}); \quad i = 1, \dots, I-1; \ j = i+1.$$
 (5.53)

In view of Eqs. (5.19) through (5.53), the Jacobian represented by Eq. (5.18) is a non-symmetric sparse matrix of order 196 by 196, with 14 nonzero diagonals. The non-symmetric diagonal storage format is used to store the respective 14 nonzero diagonals, so that the "condensed" Jacobian matrix has dimensions 196 by 14. Since the Jacobian is highly non-symmetric, the cost of the iterations of the GMRES solver grows as $O(m^2)$, where m is the iteration number within the

GMRES solver. To reduce this computational cost, the GMRES solver is configured to run with the restart feature. The optimized value for the restart frequency is 10 for this specific application. The MIC preconditioner can speed up the convergence of the GMRES solver using the parameters OMEGA and LVFILL in the modified incomplete factorization methods for the MIC preconditioner; for this application the following values were found to be optimal: OMEGA = 0.000000001 and LVFILL = 1. The Jacobian is not updated inside the sparse GMRES solver. The default convergence of GMRES is tested with the following criterion ,

$$\left[\frac{\left\langle \tilde{\mathbf{z}}^{(m)}, \tilde{\mathbf{z}}^{(m)} \right\rangle}{\left\langle \delta \mathbf{u}^{(m)}, \delta \mathbf{u}^{(m)} \right\rangle}\right]^{\frac{1}{2}} < \zeta \tag{5.54}$$

where $\tilde{\mathbf{z}}^{(m)}$ denotes the pseudo-residual at m^{th} -iteration of the GMRES solver, $\delta \mathbf{u}^{(m)}$ is the solution of Eq. (5.17) at m^{th} -iteration, and ζ denotes the stopping test value for the GMRES solver.

(e) Set the next step:

$$\mathbf{u}_{n+1} = \mathbf{u}_n + \delta \mathbf{u},\tag{5.55}$$

where n is the current outer loop iteration number, and update the Jacobian.

(f) test for convergence of the outer loop until the error in the solution is less than a specified maximum value. For solving Eqs. (5.2) through (5.13), the following error criterion has been used:

$$error = \max\left(\frac{\left|\delta m_{w}^{(i)}\right|}{m_{w}^{(i)}}, \frac{\left|\delta T_{w}^{(i)}\right|}{T_{w}^{(i)}}, \frac{\left|\delta T_{a}^{(i)}\right|}{T_{a}^{(i)}}, \frac{\left|\delta \omega^{(i)}\right|}{\omega^{(i)}}\right) < 10^{-6}$$
 (5.56)

(g) Set n = n + 1, thus closing the outer iteration loop, and go to step (d).

The solution strategy described above in steps (a) through (g), cf. Eqs.(5.15) through (5.56) for solving Eqs. (5.2) through (5.13) converged successfully for all the 8079 benchmark data sets, which will be described in Section 5.4. For each of these benchmark data sets, the outer loop iterations described above (i.e., steps c through g) converge in 4 iterations; for each outer loop iteration, the GMRES solver used for solving Eq. (5.17) converges in 12 iterations. The "zero-to-

zero" verification of the solution's accuracy using Eqs. (5.2) through (5.13) gives an error of the order of 10^{-7} .

The responses that correspond to the measurements to be described in Section 5.4, below, are as follows:

- (a) the vector $\mathbf{m}_{w} \triangleq \left[m_{w}^{(2)}, ..., m_{w}^{(I+1)} \right]^{\dagger}$ of water mass flow rates at the exit of each control volume i, (i = 1, ..., 49);
- (b) the vector $\mathbf{T}_{w} \triangleq \left[T_{w}^{(2)},...,T_{w}^{(I+1)}\right]^{\dagger}$ of water temperatures at the exit of each control volume i, (i=1,...,49);
- (c) the vector $\mathbf{T}_a \triangleq \left[T_a^{(1)},...,T_a^{(I)}\right]^{\dagger}$ of air temperatures at the exit of each control volume i, (i = 1,...,49);
- (d) the vector $\mathbf{RH} \triangleq \left[RH^{(1)}, ..., RH^{(I)} \right]^{\dagger}$, having as components the air relative humidity at the exit of each control volume i, (i = 1, ..., 49).

While the water mass flow rates, the water temperatures, and the air temperatures are obtained directly as the solutions of Eqs.(5.2) through (5.13), the air relative humidity, $RH^{(i)}$, is computed for each control volume using the expression:

$$RH^{(i)} = \frac{P_{v}\left(\omega^{(i)}, \mathbf{\alpha}\right)}{P_{vs}\left(T_{a}^{(i)}, \mathbf{\alpha}\right)} \times 100 = \frac{\left(\frac{\omega^{(i)}P_{atm}}{\omega^{(i)} + 0.622}\right)}{\left(\frac{a_{0} + \frac{a_{1}}{T_{a}^{(i)}}\right)}} \times 100$$
(5.57)

The bar plots, showing the respective values of the water mass flow rates, the water temperatures, the air temperatures, and the air relative humidity, at the exit of each control volume, are presented in Figures 5.4 through 5.7, below.

Figure 5.4. Bar plot of the water mass flow rates $m_w^{(i)}$, (i = 2,...,50), at the exit of each control volume along the height of the fill section of the cooling tower.

Figure 5.5. Bar plot of the water temperatures $T_w^{(i)}$, (i=2,...,50), at the exit of each control volume along the height of the fill section of the cooling tower.

Figure 5.6. Bar plot of the air temperatures $T_a^{(i)}$, (i = 1,...,49), at the exit of each control volume along the height of the fill section of the cooling tower.

Figure 5.7. Bar plot of the air relative humidity $RH^{(i)}$, (i = 1,...,49), at the exit of each control volume along the height of the fill section of the cooling tower.

5.3 Adjoint Sensitivity Analysis of Cooling Tower Model

All of the responses of interest in this section, e.g., the experimentally measured and/or computed responses discussed in the previous Sections, can be generally represented in the functional form $R(\mathbf{m}_w, \mathbf{T}_w, \mathbf{T}_a, \boldsymbol{\omega}; \boldsymbol{\alpha})$, where R is a known functional of the model's state functions and parameters. As generally shown by Cacuci (1981), the sensitivity of such a response to arbitrary variations in the model's parameters $\delta \boldsymbol{\alpha} \triangleq \left(\delta \alpha_1, ..., \delta \alpha_{N_a}\right)$ and state functions $\delta \mathbf{m}_w, \delta \mathbf{T}_w, \delta \mathbf{T}_a, \delta \boldsymbol{\omega}$ is provided by the response's Gateaux (G-) differential $DR(\mathbf{m}_w^0, \mathbf{T}_w^0, \mathbf{T}_a^0, \boldsymbol{\omega}^0; \boldsymbol{\alpha}^0; \boldsymbol{\delta} \mathbf{m}_w, \delta \mathbf{T}_w, \delta \mathbf{T}_a, \delta \boldsymbol{\omega}; \delta \boldsymbol{\alpha})$, which is defined as follows:

$$DR\left(\mathbf{m}_{w}^{0}, \mathbf{T}_{w}^{0}, \mathbf{T}_{a}^{0}, \mathbf{\omega}^{0}; \boldsymbol{\alpha}^{0}; \boldsymbol{\delta}\mathbf{m}_{w}, \boldsymbol{\delta}\mathbf{T}_{w}, \boldsymbol{\delta}\mathbf{T}_{a}, \boldsymbol{\delta}\boldsymbol{\omega}; \boldsymbol{\delta}\boldsymbol{\alpha}\right) \triangleq \frac{d}{d\varepsilon} \left[R\left(\mathbf{m}_{w}^{0} + \varepsilon\delta\mathbf{m}_{w}, \mathbf{T}_{w}^{0} + \varepsilon\delta\mathbf{T}_{w}, \mathbf{T}_{a}^{0} + \varepsilon\delta\mathbf{T}_{a}, \boldsymbol{\omega}^{0} + \varepsilon\delta\boldsymbol{\omega}; \boldsymbol{\alpha}^{0} + \varepsilon\delta\boldsymbol{\alpha}\right) \right]_{\varepsilon=0}$$

$$= DR_{direct} + DR_{indirect},$$

$$(5.58)$$

where the "direct effect" term, DR_{direct} , and the "indirect effect" term, $DR_{indirect}$, are defined, respectively, as follows:

$$DR_{direct} \equiv \sum_{i=1}^{N_a} \left(\frac{\partial R}{\partial \alpha_i} \delta \alpha_i \right), \tag{5.59}$$

$$DR_{indirect} \triangleq \sum_{i=1}^{I} \left(\frac{\partial R}{\partial m_{w}^{(i+1)}} \delta m_{w}^{(i+1)} + \frac{\partial R}{\partial T_{w}^{(i+1)}} \delta T_{w}^{(i+1)} + \frac{\partial R}{\partial T_{a}^{(i)}} \delta T_{a}^{(i)} + \frac{\partial R}{\partial \omega^{(i)}} \delta \omega^{(i)} \right)$$

$$= \mathbf{R}_{1} \cdot \delta \mathbf{m}_{w} + \mathbf{R}_{2} \cdot \delta \mathbf{T}_{w} + \mathbf{R}_{3} \cdot \delta \mathbf{T}_{a} + \mathbf{R}_{4} \cdot \delta \mathbf{\omega}.$$
(5.60)

The components of the vectors $\mathbf{R}_{\ell} \equiv \left(r_{\ell}^{(1)},...,r_{\ell}^{(I)}\right)$, $\ell = 1,2,3,4$, which appear in Eq.(5.60) are defined as follows:

$$r_{1}^{(i)} \triangleq \frac{\partial R}{\partial m_{ii}^{(i+1)}}; \quad r_{2}^{(i)} \triangleq \frac{\partial R}{\partial T_{ii}^{(i+1)}}; \quad r_{3}^{(i)} \triangleq \frac{\partial R}{\partial T_{a}^{(i)}}; \quad r_{4}^{(i)} \triangleq \frac{\partial R}{\partial \omega^{(i)}}; \quad i = 1, ..., I.$$
 (5.61)

Since the model parameters are related to the model's state functions via Eqs. (5.2) through (5.13), it follows that variations in the model parameter will induce variations in the state variables, which can be computed by solving the G-differentiated model equations, namely:

$$\frac{d}{d\varepsilon} \left[\mathbf{N} \left(\mathbf{u}^0 + \varepsilon \delta \mathbf{u}; \boldsymbol{\alpha}^0 + \varepsilon \delta \boldsymbol{\alpha} \right) \right]_{\varepsilon=0} = \mathbf{0}$$
 (5.62)

Performing the above G-differentiation on Eqs. (5.2) through (5.13) yields the following forward sensitivity system:

$$\begin{pmatrix}
\mathbf{A}_{1} & \mathbf{B}_{1} & \mathbf{C}_{1} & \mathbf{D}_{1} \\
\mathbf{A}_{2} & \mathbf{B}_{2} & \mathbf{C}_{2} & \mathbf{D}_{2} \\
\mathbf{A}_{3} & \mathbf{B}_{3} & \mathbf{C}_{3} & \mathbf{D}_{3} \\
\mathbf{A}_{4} & \mathbf{B}_{4} & \mathbf{C}_{4} & \mathbf{D}_{4}
\end{pmatrix}
\begin{pmatrix}
\delta \mathbf{m}_{w} \\
\delta \mathbf{T}_{w} \\
\delta \mathbf{T}_{a} \\
\delta \omega
\end{pmatrix} = \begin{pmatrix}
\mathbf{Q}_{1} \\
\mathbf{Q}_{2} \\
\mathbf{Q}_{3} \\
\mathbf{Q}_{4}
\end{pmatrix}$$
(5.63)

where the components of the vectors $\mathbf{Q}_{\ell} \triangleq \left(q_{\ell}^{(1)},...,q_{\ell}^{(I)}\right), \ \ell = 1,2,3,4, \ \text{are defined as follows:}$

$$q_{\ell}^{(i)} = \sum_{j=1}^{N_{\alpha}} \left(\frac{\partial N_{\ell}^{(i)}}{\partial \alpha_{j}} \delta \alpha_{j} \right); \quad i = 1, ..., I; \quad \ell = 1, 2, 3, 4,$$
 (5.64)

and where the matrices \mathbf{A}_{ℓ} , \mathbf{B}_{ℓ} , \mathbf{C}_{ℓ} , \mathbf{D}_{ℓ} , $\ell=1,2,3,4$, have been defined in Section 5.2. The system represented by Eq. (5.63) is called the *forward sensitivity system*, which can be solved, in principle, to compute the variations in the state functions for every variation in the model parameters. In turn, the solution of Eq. (5.63) can be used in Eq. (5.60) to compute the "indirect effect" term, $DR_{indirect}$. However, since there are many parameter variations to consider, solving Eq. (5.63) repeatedly to compute $DR_{indirect}$ becomes computationally impracticable. The need for solving Eq. (5.63) repeatedly to compute $DR_{indirect}$ can be circumvented by applying the Adjoint Sensitivity Analysis Methodology (Cacuci, 1981), which proceeds by forming the inner-product of Eq. (5.63) with a yet unspecified vector of the form $[\mathbf{\mu}_w, \mathbf{\tau}_w, \mathbf{\tau}_a, \mathbf{o}]^{\dagger}$, having the same structure as the vector $\mathbf{u} \triangleq (\mathbf{m}_w, \mathbf{T}_w, \mathbf{T}_a, \mathbf{o})^{\dagger}$, transposing the resulting scalar equation and subsequently using Eq. (5.60). By requiring the vector $[\mathbf{\mu}_w, \mathbf{\tau}_w, \mathbf{\tau}_a, \mathbf{o}]^{\dagger}$ to satisfy the following adjoint sensitivity system:

$$\begin{pmatrix}
\mathbf{A}_{1}^{\dagger} & \mathbf{A}_{2}^{\dagger} & \mathbf{A}_{3}^{\dagger} & \mathbf{A}_{4}^{\dagger} \\
\mathbf{B}_{1}^{\dagger} & \mathbf{B}_{2}^{\dagger} & \mathbf{B}_{3}^{\dagger} & \mathbf{B}_{4}^{\dagger} \\
\mathbf{C}_{1}^{\dagger} & \mathbf{C}_{2}^{\dagger} & \mathbf{C}_{3}^{\dagger} & \mathbf{C}_{4}^{\dagger} \\
\mathbf{D}_{1}^{\dagger} & \mathbf{D}_{2}^{\dagger} & \mathbf{D}_{3}^{\dagger} & \mathbf{D}_{4}^{\dagger}
\end{pmatrix}
\begin{pmatrix}
\boldsymbol{\mu}_{w} \\
\boldsymbol{\tau}_{w} \\
\boldsymbol{\tau}_{a} \\
\mathbf{o}
\end{pmatrix} = \begin{pmatrix}
\mathbf{R}_{1} \\
\mathbf{R}_{2} \\
\mathbf{R}_{3} \\
\mathbf{R}_{4}
\end{pmatrix},$$
(5.65)

the "indirect effect" term can be expressed in the following form

$$DR_{indirect} = \boldsymbol{\mu}_{w} \cdot \boldsymbol{Q}_{1} + \boldsymbol{\tau}_{w} \cdot \boldsymbol{Q}_{2} + \boldsymbol{\tau}_{a} \cdot \boldsymbol{Q}_{3} + \boldsymbol{o} \cdot \boldsymbol{Q}_{4}. \tag{5.66}$$

The system represented by Eq. (5.65) is called the *adjoint sensitivity system*, which –notably– is independent of parameter variations. Therefore, the adjoint sensitivity system needs to be solved only once, to compute the adjoint functions $\left[\boldsymbol{\mu}_{w},\boldsymbol{\tau}_{w},\boldsymbol{\tau}_{a},\boldsymbol{o}\right]^{\dagger}$. In turn, the adjoint functions are used to compute $DR_{indirect}$, efficiently and exactly, using Eq. (5.66). The units of the adjoint functions are determined from Eq. (5.66) through dimensional analysis:

$$\left[\mu_{w}^{(i)} \right] = \frac{[R]}{[N_{1}]}; \quad \left[\tau_{w}^{(i)} \right] = \frac{[R]}{[N_{2}]}; \quad \left[\tau_{a}^{(i)} \right] = \frac{[R]}{[N_{3}]}; \quad \left[o^{(i)} \right] = \frac{[R]}{[N_{4}]}$$
 (5.67)

where "[R]" denotes the unit of the response R, and where the units for the respective equations are as follows:

$$[N_1] = \frac{kg}{s}; [N_2] = \frac{J}{s}; [N_3] = [-]; [N_4] = \frac{J}{kg}.$$
 (5.68)

Table 5.1, below, lists the units of the adjoint functions for four responses: $R \triangleq T_a^{(1)}$, $R \triangleq T_w^{(50)}$, $R \triangleq RH^{(1)}$ and $R \triangleq m_w^{(50)}$, respectively, in which, $T_a^{(1)}$ denotes exit air temperature; $T_w^{(50)}$ denotes exit water temperature; $RH^{(1)}$ denotes exit air relative humidity; and $m_w^{(50)}$ denotes exit water mass flow rate.

Table 5.1. Units of the adjoint functions for different responses.

Responses	$\left[\mu_{\scriptscriptstyle w}^{(i)}\right]$	$\left[au_{_{W}}^{(i)} ight]$	$\left[au_a^{(i)} ight]$	$\left[o^{(i)} ight]$
$R \triangleq T_a^{(1)}$	K/(kg/s)	K/(J/s)	K	K/(J/kg)
$R \triangleq T_w^{(50)}$	K/(kg/s)	K/(J/s)	K	K/(J/kg)
$R \triangleq RH^{(1)}$	$(kg/s)^{-1}$	$(J/s)^{-1}$	_	$(J/kg)^{-1}$
$R \triangleq m_w^{(50)}$	_	$(J/kg)^{-1}$	kg/s	(kg/s)/(J/kg)

Note that the adjoint sensitivity system represented by Eq. (5.65) is linear in the adjoint state functions, so it can be solved by using numerical methods appropriate for large-scale sparse linear systems. In particular, we solved it by using NSPCG, (Oppe et al.1988); 12 to 18 iterations sufficed for solving the adjoint system within convergence criterion of $\zeta = 10^{-12}$. Bar plots of the adjoint functions corresponding to the four measured responses of interest, namely: (i) the exit air temperature $R \triangleq T_a^{(1)}$; (ii) the outlet (exit) water temperature $R \triangleq T_w^{(50)}$; (iii) the exit air humidity ratio $R \triangleq RH^{(1)}$; and (iv) the outlet (exit) water mass flow rate $R \triangleq m_w^{(50)}$, are presented by Cacuci and Fang (2016).

The model responses of interest in this work are the following quantities: (i) the outlet air temperature, $T_a^{(1)}$; (ii) the outlet water temperature, $T_w^{(50)}$; (iii) the outlet water flow rate, $m_w^{(50)}$; and (iv) the outlet air relative humidity, $RH^{(1)}$. The analytical expressions of these sensitivities are presented by Cacuci and Fang (2016), and their respective numerical values and rankings, in descending order, are reproduced in Tables 5.2 through 5.5, below. Note that the relative sensitivity, $RS(\alpha_i)$, of a response $R(\alpha_i)$ to a parameter α_i is defined as $RS(\alpha_i) \triangleq \left[dR(\alpha_i)/d\alpha_i\right] \left[\alpha_i/R(\alpha_i)\right]$. Thus, the relative sensitivities are unit less numbers that are very useful in ranking the sensitivities to highlight their relative importance for the respective response. For example, a relative sensitivity of 1.00 indicates that a change of 1% in the respective parameter will induce a 1% change in a response that is linear in the respective sensitivity. The higher the relative sensitivity, the more important the respective parameter to the respective response.

The numerical results and ranking of the relative sensitivities of the air outlet temperature with respect to all of the model's parameters are provided, in descending order of their respective magnitudes, in Table 5.2, below, along with their respective relative standard deviations.

Table 5.2. Ranked relative sensitivities of the outlet air temperature, $T_a^{(1)}$.

Rank	Parameter $(\alpha_{_i})$	Nominal	Rel. Sens.	Rel. std.
#		Value	$RS(lpha_i)$	dev. (%)
1	Inlet air temperature, $T_{a,in}$	299.11 K	0.4858	1.39
2	Air temperature (dry bulb) , T_{db}	299.11 K	0.4829	1.39
3	Inlet water temperature, $T_{w,in}$	298.79 K	0.2756	0.57
4	Dew point temperature , T_{dp}	292.05 K	0.1834	0.81
5	$P_{vs}(T)$ parameter, a_0	25.5943	-0.0945	0.04
6	$P_{vs}(T)$ parameter, a_1	5229.89	0.0618	0.08
7	Inlet air humidity ratio, Ω_{in}	0.0138	0.0100	14.93
8	Fan shroud inner diameter, $D_{\it fan}$	4.1 m	-0.0056	1.00
9	Water enthalpy $h_f(T)$ parameter, a_{1f}	4186.51	0.0050	0.04
10	Wetted fraction of fill surface area, W_{tsa}	1.0	-0.0049	0.00
11	Nusselt number, Nu	14.94	-0.0049	34.0
12	Fill section surface area, A_{surf}	14221 m ²	-0.0049	25.0
13	Dynamic viscosity of air at T=300K, μ	1.983E-5 kg/(m s)	0.0045	4.88
14	Nu parameter, $a_{1,Nu}$	0.0031498	-0.0045	31.75
15	Reynolds number, Re _d	4428	-0.0045	15.17
16	Fill section flow area, A_{fill}	67.29 m ²	0.0045	10.0
17	$C_{pa}(T)$ parameter, $a_{0,cpa}$	1030.5	0.0032	0.03
18	Inlet water mass flow rate, $m_{w,in}$	44.02 kg/s	0.0031	5.0
19	$h_g(T)$ parameter, a_{0g}	2005744	-0.0030	0.05

20	$D_{av}(T)$ parameter, $a_{1,dav}$	2.65322	0.0028	0.11
21	Exit air speed at the shroud, $V_{\it exit}$	10.0 m/s	-0.0028	10.0
22	Inlet air mass flow rate, m_a	155.07 kg/s	-0.0028	10.26
23	Heat transfer coefficient multiplier, $f_{\it ht}$	1.0	-0.0026	50.0
24	Thermal conductivity of air at T=300K, $k_{air} \label{eq:kair}$	0.02624 W/(m K)	-0.0026	6.04
25	Mass transfer coefficient multiplier, $f_{\it mt}$	1.0	-0.0022	50.0
26	Sherwood number, Sh	14.13	-0.0022	34.25
27	$D_{av}(T)$ parameter, $a_{2,dav}$	-6.1681E-3	-0.0019	0.37
28	$h_f(T)$ parameter, a_{0f}	1143423	-0.0017	0.05
29	$D_{av}(T)$ parameter, $a_{0,dav}$	7.06085E-9	-0.0015	0
30	Atmospheric pressure, P_{atm}	100586 Pa	-0.0013	0.40
31	Kinematic viscosity of air at 300 K, v	1.568E-5 m ² /s	-0.00074	12.09
32	Prandlt number of air at T=80 C, Pr	0.708	0.00074	0.71
33	Schmidt number, Sc	0.60	-0.00074	12.41
34	$h_g(T)$ parameter, a_{1g}	1815.437	-0.00074	0.19
35	$D_{av}(T)$ parameter, $a_{3,dav}$	6.55265E-6	0.00063	0.58
36	Nu parameter, $a_{2,Nu}$	0.9902987	-0.00032	33.02
37	Fill section equivalent diameter, $D_{\rm h}$	0.0381 m	0.00032	1.0
38	$C_{pa}(T)$ parameter, $a_{1,cpa}$	-0.19975	-0.00018	1.0
39	C_{pa} (T) parameter, $a_{2,cpa}$	3.9734E-4	0.00010	0.84
40	Sum of loss coefficients above fill, k_{sum}	10.0	0.000	50.0
41	Fill section frictional loss multiplier, f	4.0	0.000	50.0
42	Nu parameter, $a_{0,Nu}$	8.235	0.000	25.0
43	Nu parameter, $a_{3,Nu}$	0.023	0.000	38.26

44	Cooling tower deck width in x-dir, W_{dkx}	8.5 m	0.000	1.0
45	Cooling tower deck width in y-dir, W_{dky}	8.5 m	0.000	1.0
46	Cooling tower deck height above ground, Δz_{dk}	10.0 m	0.000	1.0
47	Fan shroud height, Δz_{fan}	3.0 m	0.000	1.0
48	Fill section height, Δz_{fill}	2.013 m	0.000	1.0
49	Rain section height, Δz_{rain}	1.633 m	0.000	1.0
50	Basin section height, Δz_{bs}	1.168 m	0.000	1.0
51	Drift eliminator thickness, Δz_{de}	0.1524 m	0.000	1.0
52	Wind speed, $V_{\scriptscriptstyle W}$	1.80 m/s	0.000	51.1

As the results in Table 5.2 indicate, the first 5 parameters (i.e., $T_{a,in}$, T_{db} , $T_{w,in}$, T_{dp} , a_0) have relative sensitivities between ca. 10% and 50%, and are therefore the most important for the air outlet temperature response, $T_a^{(1)}$. The two largest sensitivities have values of 48%, which means that a 1% change in $T_{a,in}$ or T_{db} would induce a 0.48% change in $T_a^{(1)}$. The next two parameters (i.e., a_1 and a_1 have relative sensitivities between 1% and 6%, and are therefore somewhat important. Parameters #8 through #16 (i.e., a_1 , a_1 , a_1 , a_1 , a_2 , a_2 , a_3 , a_4

The results and ranking of the relative sensitivities of the outlet water temperature with respect to the most important 12 parameters for this response are listed in Table 5.3. The largest sensitivity of $T_w^{(50)}$ is to the parameter T_{dp} , and has the value of 0.548; this means that a 1% increase in T_{db} would induce a 0.548% increase in $T_w^{(50)}$ The sensitivities to the remaining 40 model parameters

have not been listed since they are smaller than 1% of the largest sensitivity (with respect to T_{dp}) for this response.

Table 5.3. Most important relative sensitivities of the outlet water temperature, $T_w^{(50)}$.

Rank	Parameter (α_i)	Nominal	Rel. Sens.	Rel. std.
#	(1)	value	$RS(\alpha_i)$	dev.(%)
1	Dew point temperature , T_{dp}	292.05 K	0.5482	0.81
2	Inlet air temperature, $T_{a,in}$	299.11 K	0.2318	1.39
3	Air temperature (dry bulb) , $T_{\it db}$	299.11 K	0.2244	1.39
4	$P_{vs}(T)$ parameters, a_0	25.5943	-0.1949	0.04
5	$P_{vs}(T)$ parameters, a_1	-5229.89	0.1282	0.08
6	Inlet water temperature, $T_{w,in}$	298.79 K	0.1066	0.57
7	Inlet air humidity ratio, ω_{in}	0.0138	0.0299	14.93
8	Fan shroud inner diameter, D_{fan}	4.1 m	-0.0085	1.00
9	Water enthalpy hf(T) parameter, a_{1f}	4186.51	0.0082	0.04
10	$D_{av}(T_{db})$ parameter, $a_{1,dav}$	2.653	0.0071	0.11
11	Enthalpy $h_g(T)$ parameter, a_{0g}	2005744	-0.0062	0.05
12	Sherwood number, Sh	14.13	-0.0056	34.25

The results and ranking of the relative sensitivities of the outlet water mass flow rate with respect to the most important 10 parameters for this response are listed in Table 5.4. This response is most sensitive to $m_{w,in}$ (a 1% increase in this parameter would cause a 1.01% increase in the response) and the second largest sensitivity is to the parameter $T_{w,in}$ (a 1% increase in this parameter would cause a 0.447% decrease in the response). The sensitivities to the remaining 42 model parameters have not been listed since they are smaller than 1% of the largest sensitivity (namely, with respect to $m_{w,in}$) for this response.

Table 5.4. Most important relative sensitivities of the outlet water mass flow rate, $m_w^{(50)}$.

Rank	Parameter (α_i)	Nominal	Rel. Sens.	Rel. std. dev.
#	(',	value	$RS(\alpha_i)$	(%)
1	Inlet water mass flow rate, $m_{w,in}$	44.02 kg/s	1.0060	5.00
2	Inlet water temperature, $T_{w,in}$	298.79 K	-0.4474	0.57
3	Dew point temperature , T_{dp}	292.05 K	0.3560	0.81
4	Pvs(T) parameters, a_0	25.5943	-0.1416	0.04
5	Air temperature (dry bulb) , T_{db}	299.11 K	-0.1184	1.39
6	Inlet air temperature, $T_{a,in}$	299.11 K	-0.1134	1.39
7	Pvs(T) parameters, a_1	5229.89	0.0930	0.08
8	Inlet air humidity ratio, ω_{in}	0.0138	0.0195	14.93
9	Fan shroud inner diameter, D_{fan}	4.1 m	-0.0117	1.00
10	Inlet air mass flow rate, m_a	155.07 kg/s	-0.0058	10.26

The results and ranking of the relative sensitivities of the outlet air relative humidity with respect to the most important 20 parameters for this response are listed in Table 5.5. The first three sensitivities of this response are quite large (relative sensitivities larger than unity are customarily considered to be very significant). In particular, an increase of 1% in $T_{a,in}$ or T_{db} would cause a decrease in the response of 6.66% or 6.525%, respectively. On the other hand, an increase of 1% in T_{dp} would cause an increase of 5.75% in the response. The sensitivities to the remaining 32 model parameters have not been listed since they are smaller than 1% of the largest sensitivity (with respect to $T_{a,in}$) for this response.

Table 5.5. Most important relative sensitivities of the outlet air relative humidity, $RH^{(1)}$.

D1- #	Donomoton (or)	Nominal	Rel. Sens.	Rel. std. dev.
Rank #	Parameter $(lpha_i)$	value	$RS(\alpha_i)$	(%)
1	Inlet air temperature, $T_{a,in}$	299.11 K	-6.660	1.39
2	Air temperature (dry bulb) , $T_{\it db}$	299.11 K	-6.525	1.39
3	Dew point temperature, T_{dp}	292.05 K	5.750	0.81
4	Inlet water temperature, $T_{\rm w,in}$	298.79 K	0.747	0.57
5	Inlet air humidity ratio, $ \Theta_{in} $	0.0138	0.3141	14.93
6	$P_{vs}(T)$ parameters, a_0	25.5943	-0.3123	0.04
7	Wetted fraction of fill surface area, w_{tsa}	1.0	0.1487	0.00
8	Fill section surface area, A_{surf}	14221 m ²	0.1487	25.0
9	Nusselt number, Nu	14.94	0.1487	34.0
10	Dynamic viscosity of air at T=300 K, μ	1.983E-5 kg/(m s)	-0.1388	4.88
11	Nu parameters, $a_{1,Nu}$	0.0031498	0.1388	31.75
12	Fill section flow area, $A_{\it fill}$	67.29 m^2	-0.1388	10.0
13	Reynold's number, Re	4428	0.1388	15.17
14	$D_{av}(T_{db})$ parameter, $a_{1,dav}$	2.65322	-0.1297	0.11
15	Mass transfer coefficient multiplier, f_{mt}	1.0	0.1023	50.0
16	Sherwood number, Sh	14.13	0.1023	34.25
17	Atmosphere pressure, P_{atm}	100586 Pa	0.0992	0.40
18	$D_{av}(T_{db})$ parameter, $a_{2,dav}$	-6.1681E-3	0.0902	0.37
19	$\mathrm{D}_{\mathrm{av}}(\mathrm{T}_{\mathrm{db}})$ parameter, $a_{\mathrm{0,dav}}$	7.06085E-9	0.0682	0.00
20	$P_{vs}(T)$ parameters, a_1	-5229.89	0.0681	0.08

Overall, the outlet air relative humidity, $RH^{(1)}$, displays the largest sensitivities, so this response is the most sensitive to parameter variations. The other responses, namely the outlet air temperature, the outlet water temperature, and the outlet water mass flow rate display sensitivities of comparable magnitudes.

5.4 Predictive Modeling: Optimal Best-Estimate Results with Reduced Predicted Uncertainties

A total of 7668 measured data sets fall into the "unsaturated" case presented in this illustrative example. The measured outlet (exit) air relative humidity, RH^{meas} , was obtained using Hobo humidity sensors. The accuracy of these sensors is depicted in Figure 5.7, which indicates the following tolerances (standard deviations): $\pm 2.5\%$ for relative humidity from 10 to 90%; between $\pm 2.5\%$ and $\pm 3.5\%$ for relative humidity from 90% to 95%; and $\pm 3.5\% \sim \pm 4.0\%$ from 95 to 100%. However, when exposed to relative humidity above 95%, the maximum sensor error may temporally increase by an additional 1%, so that the error can reach values between $\pm 4.5\%$ to $\pm 5.0\%$ for relative humidity from 95 to 100%.

Figure 5.7: Humidity sensor accuracy plot (adopted from the specification of HOBO Pro v2).

The 7668 measured values of the outlet (exit) air relative humidity, RH^{meas} , considered to be "unsaturated," are presented in the histogram plot shown in Figure 5.8. As shown in this figure,

although the computed relative humidity for each of the 7668 data sets is less than 100%, the measured relative humidity RH^{meas} actually spans the range from 33.0% to 104.1%; in this range, 6975 data sets have their respective RH^{meas} less than 100% while the other 693 data sets have their respective RH^{meas} over 100%. This situation is nevertheless consistent with the range of the sensors when their tolerances (standard deviations) are taken into account, which would make it possible for a measurement with RH^{meas} =105% to be nevertheless "unsaturated". Consequently, all the 7668 benchmark data sets plotted in Figure 5.8 were considered as "unsaturated", since their respective RH^{meas} was less than 105%. This plot, as well as all of the other histogram plots in this work, have their total respective areas normalized to unity.

Figure 5.8: Histogram plot of the measured air outlet relative humidity, within the 7688 data sets collected by SRNL from F-Area cooling towers (unsaturated conditions).

The statistical properties of the (measured air outlet relative humidity) distribution shown in Figures 5.8 have been computed using standard packages, and are presented in Table 5.6. These statistical properties will be needed for the uncertainty quantification and predictive modeling computations presented in the main body of this work.

Table 5.6. Statistics of the air outlet relative humidity distribution [%].

Minimum	Maximum	Range	Mean	Std. Dev.	Variance	Skewness	Kurtosis
33.0	104.1	71.1	81.98	15.63	244.44	-0.60	2.55

The histogram plots and their corresponding statistical characteristics of the 7668 data sets for the other measurements, namely for: the outlet air temperature $[T_{a out(Tidbit)}]$ measured using the

"Tidbit" sensors; the outlet air temperature $[T_{a,out(Hobo)}]$ measured using the "Hobo" sensors; and the outlet water temperature $[T_{w,out}^{meas}]$ are reported below in Figures 5.9 through 5.11, and Tables 5.7 through 5.9, respectively.

Figure 5.9. Histogram plot of the air outlet temperature measured using "Tidbit" sensors, within the 7688 data sets collected by SRNL from F-Area cooling towers (unsaturated conditions).

Table 5.7. Statistics of the air outlet temperature distribution [K], measured using "Tidbit" sensors.

Minimum	Maximum	Range	Mean	Std. Dev.	Variance	Skewness	Kurtosis
290.06	307.89	17.83	298.42	3.42	11.71	0.34	2.52

Figure 5.10. Histogram plot of the air outlet temperature measured using "Hobo" sensors, within the 7688 data sets collected by SRNL from F-Area cooling towers (unsaturated conditions).

Table 5.8. Air outlet temperature distribution statistics [K], measured using "Hobo" sensors.

Minimum	Maximum	Range	Mean	Std. Dev.	Variance	Skewness	Kurtosis
290.17	307.13	16.96	298.27	3.30	10.88	0.36	2.56

Figure 5.11. Histogram plot of water outlet temperature measurements, within the 7688 data sets collected by SRNL from F-Area cooling towers (unsaturated conditions).

Table 5.9. Water outlet temperature distribution statistics [K].

Minimum	Maximum	Range	Mean	Std. Dev.	Variance	Skewness	Kurtosis
290.67	299.57	8.90	295.68	1.58	2.48	-0.41	2.72

Ordering the above-mentioned four measured responses as follows: (i) outlet air temperature $T_{a,out(Tidbit)}$; (ii) outlet air temperature $T_{a,out(Hobo)}$; (iii) outlet water temperature $T_{w,out}^{meas}$; and (iv) outlet air relative humidity RH_{out}^{meas} , yields the following "measured response covariance matrix", denoted as $Cov\left(T_{a,out(Tidbit)},T_{a,out(Hobo)},T_{w,out}^{meas},RH_{out}^{meas}\right)$:

$$Cov\left(T_{a,out(Tidbit)}, T_{a,out(Hobo)}, T_{w,out}^{meas}, RH_{out}^{meas}\right) = \begin{pmatrix} 11.71 & 11.23 & 3.57 & -44.76 \\ 11.23 & 10.88 & 3.52 & -42.94 \\ 3.57 & 3.52 & 2.48 & -5.31 \\ -44.76 & -42.94 & -5.31 & 244.44 \end{pmatrix}.$$
 (5.69)

For the purposes of uncertainty quantification, data assimilation, model calibration and predictive modeling, the temperatures measurements provided by the "Tidbit" and "Hobo" sensors can be

combined into an "averaged" data set of measured air outlet temperatures, which will be denoted as $T_{a,out}^{meas}$. The histogram plot and corresponding statistical characteristics of this averaged air outlet temperature are presented in Figure 5.12 and Table 5.10, respectively.

Figure 5.12. Histogram plot of air outlet temperatures

Table 5.10. Statistics of the averaged air outlet temperature distribution [K].

Minimum	Maximum	Range	Mean	Std. Dev.	Variance	Skewness	Kurtosis
290.12	307.41	17.30	298.34	3.36	11.27	0.35	2.54

Computing the covariance matrix, denoted as $\left[Cov\left(T_{a,out}^{meas},T_{w,out}^{meas},RH_{out}^{meas}\right) \right]_{data}$, for all of the relevant experimental data for the averaged outlet air temperature $\left[T_{a,out}^{meas}\right]$, the outlet water temperature $\left[T_{w,out}^{meas}\right]$, and the outlet air relative humidity $\left[RH_{out}^{meas}\right]$, yields the following result:

$$\left[Cov \left(T_{a,out}^{meas}, T_{w,out}^{meas}, RH_{out}^{meas} \right) \right]_{data} = \begin{pmatrix} 11.27 & 3.55 & -43.85 \\ 3.55 & 2.48 & -5.31 \\ -43.85 & -5.31 & 244.44 \end{pmatrix}.$$
(5.70)

Comparing the results in Eqs. (5.69) and (5.70) shows that eliminating the second column and second row in Eq. (5.69) yields a 3-by-3 matrix which has entries essentially equivalent to the covariance matrix in Eq. (5.70). In turn, this result indicates that the temperature distributions

measured by the "Tidbit" and "Hobo" sensors, respectively, need not be treated as separate data sets for the purposes of uncertainty quantification and predictive modeling.

The sensors' standard deviations (namely: $\sigma_{sensor} = 0.2K$ for each of the responses $T_a^{(1)}$ and $T_w^{(50)}$, and $\sigma_{sensor} = 2.8\%$ for the response $RH^{(1)}$) have been taken into account for the data at the 100%-saturation point, by including the 693 data sets that have their respective measured relative humidity, RH^{meas} , between 100% and 104.1%. In addition, the respective sensors' uncertainties (standard deviations) must also be taken into account for the 6975 data sets that have their respective RH^{meas} less than 100%. Since the various measuring methods and devices are independent of each other, the standard deviation, $\sigma_{statistic}$, stemming from the statistical analysis of the 7668 benchmark data sets and the standard deviation, σ_{sensor} , stemming from the instrument's uncertainty are to be combined according to the well-known formula "addition of the variances of uncorrelated variates", namely:

$$\sigma = \sqrt{\sigma_{statistic}^2 + \sigma_{sensor}^2}, \tag{5.71}$$

Using Eq. (5.71) in conjunction with the result presented in Eq.(5.70) will lead to an increase of the variances on the diagonal of the respective "measured covariance matrix", which will be denoted as $Cov(T_{a,out}^{meas}, T_{w,out}^{meas}, RH_{out}^{meas})$. The final result thus obtained is

$$Cov(T_{a,out}^{meas}, T_{w,out}^{meas}, RH_{out}^{meas}) = \begin{pmatrix} 11.29 & 3.55 & -43.85 \\ 3.55 & 2.53 & -5.31 \\ -43.85 & -5.31 & 252.49 \end{pmatrix}.$$
(5.72)

The correlation matrix between the measured parameters and responses, denoted as $Cov(T_{a,out}^{meas}, T_{w,out}^{meas}, RH^{meas}, \alpha_1, ..., \alpha_{52})$, is presented below:

$$Cov\left(T_{a,out}^{meas}, T_{w,out}^{meas}, RH^{meas}, \alpha_{1}, ..., \alpha_{52}\right) = \begin{pmatrix} 12.96 & 3.51 & 2.33 & -447.09 & 0 & \cdots & 0 \\ 3.35 & 3.05 & 1.89 & -93.58 & 0 & \cdots & 0 \\ -54.16 & 1.73 & -2.27 & 1831.03 & 0 & \cdots & 0 \end{pmatrix}.$$

$$(5.73)$$

Parameters α_1 through α_4 (i.e., the dry bulb air temperature, dew point temperature, inlet water temperature, and atmospheric pressure) were also measured at the F-area SRNL site. Among the 8079 measured benchmark data sets, 7688 data sets are considered to represent "unsaturated conditions", which have been used to derive the statistical properties (means, variance and covariance, skewness and kurtosis) for these model parameters, as shown below in Figures 5.13 through 5.16 and Tables 5.11 through 5.14.

Figure 5.13. Histogram plot of dry-bulb air temperature data collected by SRNL from F-Area cooling towers (unsaturated conditions).

Table 5.11. Statistics of the dry-bulb temperature (set to air inlet temperature) distribution [K].

Minimum	Maximum	Range	Mean	Std. Dev.	Variance	Skewness	Kurtosis
289.50	309.91	20.41	299.11	4.17	17.37	0.25	2.18

Figure 5.14. Histogram plot of dew-point air temperature data collected by SRNL from F-Area cooling towers (unsaturated conditions).

Table 5.12. Statistics of the dew-point temperature distribution [K].

Minimum	Maximum	Range	Mean	Std. Dev.	Variance	Skewness	Kurtosis
282.58	298.06	15.48	292.05	2.36	5.57	-0.66	3.10

Figure 5.15. Histogram plot of inlet water temperature data collected by SRNL from F-Area cooling towers (unsaturated conditions).

Table 5.13. Statistics of the inlet water temperature distribution [K].

Minimum	Maximum	Range	Mean	Std. Dev.	Variance	Skewness	Kurtosis
293.93	303.39	9.46	298.79	1.70	2.90	-0.12	2.84

Figure 5.16. Histogram plot of atmospheric pressure data collected by SRNL from F-Area cooling towers (unsaturated conditions).

Table 5.14. Statistics of the atmospheric pressure distribution [Pa].

Minimum	Maximum	Range	Mean	Std. Dev.	Variance	Skewness	Kurtosis
99617	101677	2060	100586	401	160597	0.10	2.58

Using the results presented in Tables 5.11 through 5.14, and ordering these from model parameters as follows: the dry-bulb air temperature, T_{db} ; the dew-point air temperature, T_{dp} ; the inlet water temperature $T_{w,in}$, and atmospheric air pressure P_{atm} , yields the following 4-by-4 covariance matrix:

$$Cov(T_{db}; T_{dp}; T_{w,in}; P_{atm}) = \begin{pmatrix} 17.37 & 2.83 & 1.81 & -529.26 \\ 2.83 & 5.56 & 2.31 & -87.16 \\ 1.81 & 2.31 & 2.90 & -47.22 \\ -529.26 & -87.16 & -47.22 & 160597.01 \end{pmatrix}.$$
(5.74)

The covariance matrix computed in Eq.(5.74) neglects the uncertainty associated with sensor readings throughout the data collection period. When combining uncertainties by adding variances, the contribution from the sensors is 0.04 K for each of the first three parameters, which accounts for a maximum of ca. 1% of the total variance (for the inlet water temperature, specifically). The uncertainty in the atmospheric pressure sensor is negligibly small. The matrix presented in Eq.(5.74) is used to obtain the following "a priori" parameter covariance matrix, $\mathbf{C}_{\alpha\alpha}$:

$$\mathbf{C}_{\alpha\alpha} \triangleq \begin{pmatrix}
Var(\alpha_{1}) & Cov(\alpha_{1}, \alpha_{2}) & \bullet & Cov(\alpha_{1}, \alpha_{52}) \\
Cov(\alpha_{2}, \alpha_{1}) & Var(\alpha_{2}) & \bullet & Cov(\alpha_{2}, \alpha_{52}) \\
\bullet & \bullet & \bullet & \bullet \\
Cov(\alpha_{52}, \alpha_{1}) & \bullet & Var(\alpha_{52})
\end{pmatrix}$$

$$= \begin{pmatrix}
17.37 & 2.83 & 1.81 & -529.26 & 0 & \bullet & 0 \\
2.83 & 5.56 & 2.31 & -87.16 & 0 & \bullet & 0 \\
1.81 & 2.31 & 2.90 & -47.22 & 0 & \bullet & 0 \\
-529.26 & -87.16 & -47.22 & 160597.01 & 0 & \bullet & 0 \\
0 & 0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & \bullet & 25.81
\end{pmatrix}$$
(5.75)

The a priori covariance matrix of the computed responses, \mathbf{C}_{rr}^{comp} , is obtained by using Eqs.(4.22) and (5.75) together with the sensitivity results presented in Tables 5.2 through 5.4; the final result is given below:

$$\mathbf{C}_{rr}^{comp} \triangleq Cov\left(T_{a}^{(1)}, T_{w}^{(50)}, RH^{(1)}\right) = \mathbf{S}_{ra}\mathbf{C}_{\alpha a}\mathbf{S}_{ra}^{\dagger}$$

$$= \begin{pmatrix} \frac{\partial T_{a}^{(1)}}{\partial \alpha_{1}}, \dots, \frac{\partial T_{a}^{(1)}}{\partial \alpha_{N\alpha}} \\ \frac{\partial T_{w}^{(50)}}{\partial \alpha_{1}}, \dots, \frac{\partial T_{w}^{(50)}}{\partial \alpha_{N\alpha}} \\ \frac{\partial RH^{(1)}}{\partial \alpha_{1}}, \dots, \frac{\partial RH^{(1)}}{\partial \alpha_{N\alpha}} \end{pmatrix} \begin{pmatrix} Var(\alpha_{1}) & Cov(\alpha_{1}, \alpha_{2}) & \bullet & Cov(\alpha_{1}, \alpha_{52}) \\ Cov(\alpha_{2}, \alpha_{1}) & Var(\alpha_{2}) & \bullet & Cov(\alpha_{2}, \alpha_{52}) \\ \bullet & \bullet & \bullet & \bullet \\ Cov(\alpha_{52}, \alpha_{1}) & \bullet & Var(\alpha_{52}) \end{pmatrix} \begin{pmatrix} \frac{\partial T_{a}^{(1)}}{\partial \alpha_{1}}, \dots, \frac{\partial T_{a}^{(1)}}{\partial \alpha_{N\alpha}} \\ \frac{\partial T_{w}^{(50)}}{\partial \alpha_{1}}, \dots, \frac{\partial T_{w}^{(50)}}{\partial \alpha_{N\alpha}} \\ \frac{\partial RH^{(1)}}{\partial \alpha_{1}}, \dots, \frac{\partial RH^{(1)}}{\partial \alpha_{N\alpha}} \end{pmatrix}$$

$$= \begin{pmatrix} 10.87 & 7.19 & -34.81 \\ 7.19 & 7.72 & -13.97 \\ -34.81 & -13.97 & 221.88 \end{pmatrix}. \tag{5.76}$$

The a priori covariance matrix, $Cov\left(T_{a,out}^{meas},T_{w,out}^{meas},RH_{out}^{meas}\right)\triangleq\mathbf{C}_{rr}$, of the measured responses (namely: the outlet air temperature, $T_{a,out}^{meas}\equiv\left[T_{a}^{(1)}\right]^{measured}$; the outlet water temperature, $T_{w,out}^{meas}\equiv\left[T_{w}^{(50)}\right]^{measured}$, and the outlet air relative humidity, $RH_{out}^{meas}\equiv\left[RH^{(1)}\right]^{measured}$) is given below:

$$Cov\left(T_{a,out}^{meas}, T_{w,out}^{meas}, RH_{out}^{meas}\right) \triangleq \mathbf{C}_{rr} = \begin{pmatrix} 11.29 & 3.55 & -43.85 \\ 3.55 & 2.53 & -5.31 \\ -43.85 & -5.31 & 252.49 \end{pmatrix}.$$
(5.77)

The best-estimate nominal parameter values have been computed using Eq.(4.16) in conjunction with the a priori matrices given in Eqs.(5.73), (5.75) and (5.76) together with the sensitivities presented in Tables 5.2 through 5.5. The resulting best-estimate nominal values are listed in Table 5.15, below. The corresponding best-estimate absolute standard deviations for these parameters are also presented in this table. These values are the square-roots of the diagonal elements of the matrix $\mathbf{C}_{\alpha\alpha}^{pred}$, which is computed using Eq.(4.18) in conjunction with the a priori matrices given in Eqs.(5.73), (5.75) and (5.76) and the sensitivities presented in Tables 5.2 through 5.5. For

comparison, the original nominal parameter values and original absolute standard deviations are also listed. As the results in Table 5.15 indicate, the predicted best-estimate standard deviations are all smaller or at most equal to (i.e., left unaffected) the original standard deviations. The parameters are affected proportionally to the magnitudes of their corresponding sensitivities: the parameters experiencing the largest reductions in their predicted standard deviations are those having the largest sensitivities.

Table 5.15. Best-estimated nominal parameter values and their standard deviations.

i	Scalar Parameter (α_i)	Symbol	Original Nominal Value	Original Absolute Std. Dev.	Best- estimated Nominal Value	Best- estimated Absolute Std. Dev.
1	Air temperature (dry bulb), (K)	T_{db}	299.11	4.17	299.37	3.44
2	Dew point temperature (K)	T_{dp}	292.05	2.36	292.23	2.28
3	Inlet water temperature (K)	$T_{w,in}$	298.79	1.70	298.77	1.70
4	Atmospheric pressure (Pa)	P_{atm}	100586	401	100576	389
5	Wetted fraction of fill surface area	W _{tsa}	1	0	1	0
6	Sum of loss coefficients above fill	k _{sum}	10	5	10	5
7	Dynamic viscosity of air at T=300 K (kg/m s)	μ	1.983x10 ⁻⁵	9.676E-7	1.984 x10 ⁻⁵	9.668E-7

8	Kinematic viscosity of air at T=300 K (m^2/s)	ν	1.568x10 ⁻⁵	1.895 x10 ⁻⁶	1.564 x10 ⁻⁵	1.893 x10 ⁻⁶
9	Thermal conductivity of air at T=300 K (W/m K)	k_{air}	0.02624	1.584 x10 ⁻³	0.02625	1.583 x10 ⁻³
10	Heat transfer coefficient multiplier	f_{ht}	1	0.5	1.0316	0.47
11	Mass transfer coefficient multiplier	f_{mt}	1	0.5	0.882	0.41
12	Fill section frictional loss multiplier	f	4	2	4	2.00
13	P _{vs} (T)	a_0	25.5943	0.01	25.5943	0.01
14	parameters	a_1	-5229.89	4.4	-5229.92	4.40
15		$a_{0,cpa}$	1030.5	0.2940	1030.5	0.294
16	C _{pa} (T)	$a_{1,cpa}$	-0.19975	0.0020	-0.19975	0.0020
17	T	$a_{2,cpa}$	3.9734x10 ⁻⁴	3.345x10 ⁻⁶	3.9734x10 ⁻⁴	3.345 x10 ⁻⁶
18		$a_{0,dav}$	7.0608x10 ⁻⁹	0	7.06085 x10 ⁻⁹	0
19	D _{av} (T)	$a_{1,dav}$	2.65322	0.003	2.65322	0.003
20	parameters	$a_{2,dav}$	-6.1681 x10 ⁻³	2.3 x10 ⁻⁵	-6.16806 x10 ⁻³	2.3 x10 ⁻⁵
21		$a_{3,dav}$	6.552659 x10 ⁻⁶	3.8 x10 ⁻⁸	6.552688 x10 ⁻⁶	3.8 x 10 ⁻⁸
22	h _f (T)	a_{0f}	-1143423.8	543	-1143423.7	543
23	parameters	a_{1f}	4186.50768	1.8	4186.50818	1.8

24	h _g (T)	a_{0g}	2005743.99	1046	2005743.80	1046
25	parameters	a_{1g}	1815.437	3.5	1815.436	3.5
26		$a_{0,Nu}$	8.235	2.059	8.235	2.059
27	Nu parameters	$a_{1,Nu}$	0.00314987	0.001	0.0030475	0.001
28	Tvu parameters	$a_{2,Nu}$	0.9902987	0.327	0.987827	0.327
29		$a_{3,Nu}$	0.023	0.0088	0.023	0.088
30	Cooling tower deck width in x-dir. (m)	W_{dkx}	8.5	0.085	8.5	0.085
31	Cooling tower deck width in y-dir. (m)	W_{dky}	8.5	0.085	8.5	0.085
32	Cooling tower deck height above ground (m)	Δz_{dk}	10	0.1	10	0.1
33	Fan shroud height (m)	Δz_{fan}	3.0	0.03	3.0	0.03
34	Fan shroud inner diameter (m)	D_{fan}	4.1	0.041	4.1	0.041
35	Fill section height (m)	Δz_{fill}	2.013	0.02013	2.013	0.02013
36	Rain section height (m)	Δz_{rain}	1.633	0.01633	1.633	0.01633
37	Basin section height (m)	Δz_{bs}	1.168	0.01168	1.168	0.01168
38	Drift eliminator thickness (m)	Δz_{de}	0.1524	0.001524	0.1524	0.001524

39	Fill section equivalent diameter (m)	D_h	0.0381	0.000381	0.0381	0.000381
40	Fill section flow area (m ²)	A_{fill}	67.29	6.729	67.507	6.705
41	Fill section surface area (m²)	A_{surf}	14221	3555.3	13914	3463
42	Prandtl number of air at T=80 C	P_r	0.708	0.005	0.708	0.005
43	Wind speed (m/s)	$V_{_{\scriptscriptstyle W}}$	1.80	0.92	1.80	0.92
44	Exit air speed at the shroud (m/s)	$V_{\it exit}$	10.0	1.0	9.978	1.0
i	Boundary Param.	Symbol	Original Nominal	Absolute Std.	Best- estimated	Best- estimated
		v	Value	Dev.	Nominal Value	Absolute Std. Dev.
45	Inlet water mass flow rate (kg/s)	$m_{w,in}$		2.201	Nominal Value 44.05	
45	mass flow rate		Value			Dev.
	mass flow rate (kg/s) Inlet air temperature	$m_{w,in}$	Value 44.02	2.201	44.05	Dev. 2.199

i	Special Dependent Parameter	Symbol	Original Nominal Value	Absolute Std. Dev.	Best- estimated Nominal Value	Best- estimated Absolute Std. Dev.
49	Reynold's number	Re_d	4428	671.6	4395	666.1
50	Schmidt number	Sc	0.60	0.074	0.5986	0.0739
51	Sherwood number	Sh	14.13	4.84	13.35	4.44
52	Nusselt number	Nu	14.94	5.08	14.34	4.83

Using the a priori matrices given in the a priori matrices given in Eqs.(5.73), (5.75) and (5.76) together with the sensitivities presented in Tables 5.2 through 5.5 in Eq.(4.19) yields the following predicted response covariance matrix, \mathbf{C}_{rr}^{pred} :

$$\mathbf{C}_{rr}^{pred} \triangleq Cov\left(\left[T_{a}^{(1)}\right]^{be}, \left[T_{w}^{(50)}\right]^{be}, \left[RH^{(1)}\right]^{be}\right) = \begin{pmatrix} 6.71 & 2.73 & -22.80\\ 2.73 & 2.37 & -1.79\\ -22.80 & -1.79 & 145.19 \end{pmatrix}.$$
(5.78)

The best-estimate response-parameter correlation matrix, $\mathbf{C}_{\alpha r}^{pred}$, is obtained using Eq.(4.20) together with the a priori matrices given in Eqs.(5.73), (5.75) and (5.76) together with the sensitivities presented in Tables 5.2 through 5.5. The non-zero elements with the largest magnitudes are as follows:

$$\begin{split} rel. & cor.(R_1,\alpha_4) = -0.278; \ rel. cor.(R_1,\alpha_{41}) = -0.070; \\ rel. & cor.(R_1,\alpha_{49}) = -0.039; \\ rel. & cor.(R_2,\alpha_4) = -0.108; \ rel. & cor.(R_2,\alpha_{41}) = -0.019; \\ rel. & cor.(R_3,\alpha_4) = 0.232; \ rel. & cor.(R_3,\alpha_{41}) = 0.127; \\ rel. & cor.(R_3,\alpha_{49}) = 0.072. \end{split}$$

The notation used in Eq. (5.79) is as follows: $R_1 \triangleq T_a^{(1)}, R_2 \triangleq T_w^{(50)}, R_3 \triangleq RH^{(1)}; \alpha_4 \triangleq P_{atm},$ $\alpha_{41} \triangleq A_{surf}$, and $\alpha_{49} \triangleq \text{Re}_d$.

The best-estimate nominal values of the (model responses) outlet air temperature, $T_a^{(1)}$; outlet water temperature $T_w^{(50)}$; and outlet air relative humidity, $RH^{(1)}$, have been computed using Eq.(4.17) together with the a priori matrices given in Eqs.(5.73), (5.75) and (5.76) together with the sensitivities presented in Tables 5.2 through 5.5. The resulting best-estimate predicted nominal values are summarized in Table 5.16. To facilitate comparison, the corresponding measured and computed nominal values are also presented in this table. Note that there are no direct measurements for the outlet water flow rate, $m_w^{(50)}$. For this response, therefore, the predicted best-estimate nominal value has been obtained by a forward re-computation using the best-estimate nominal parameter values listed in Table 5.15, while the predicted best estimate standard deviation for this response has been computed by using "best-estimate" values in Eq.(4.22), to obtain:

$$\left[\mathbf{C}_{rr}^{comp}\right]^{be} = \left[\mathbf{S}_{r\alpha}\right]^{be} \left[\mathbf{C}_{\alpha\alpha}\right]^{be} \left[\mathbf{S}_{r\alpha}^{\dagger}\right]^{be}.$$
(5.80)

Table 5.16. Computed, measured, and optimal best-estimate nominal values and standard deviations for the outlet air temperature, outlet water temperature, outlet air relative humidity, and outlet water flow rate responses.

Nominal Values and	$T_a^{(1)}$	$T_w^{(50)}$	$RH^{(1)}$	$m_w^{(50)}$
Standard Deviations	[K]	[K]	[%]	[kg/s]
Measured				
nominal value	298.34	295.68	81.98	
standard deviation	±3.36	±1.59	±15.89	
Computed				
nominal value	297.46	294.58	86.12	43.60
standard deviation	±3.30	±2.78	±14.90	±2.21
Best-estimate				
nominal value	298.45	295.67	82.12	43.67
standard deviation	±2.59	±1.54	±12.05	±2.20

The results presented in Table 5.16 indicate that the predicted standard deviations are smaller than either the computed or the experimentally measured ones. This is indeed the consequence of using the PM-CMPS methodology in conjunction with consistent (as opposed to discrepant) computational and experimental information. Often, however, the information is inconsistent, usually due to the presence of unrecognized errors. Solutions for addressing such situations have been proposed by Cacuci and Ionescu-Bujor (2010b). It is also important to note that the PM-CMPS methodology has improved (i.e., reduced, albeit not by a significant amount) the predicted standard deviation for the outlet water flow rate response, for which no measurements were available.

As mentioned in the foregoing, measurements are available only for the three outlet responses: $T_a^{(1)}$, $T_w^{(50)}$ and $RH^{(1)}$. Otherwise, there are no direct measurements for the internal responses along the height of the fill section, namely: (i) the air temperature, $T_a^{(i)}$, i=2,...,I, at the exit of each control volume; (ii) the water temperature, $T_w^{(i+1)}$, i = 1,..., I-1, at the exit of each control volume; and (iii) the air relative humidity, $RH^{(i)}$, i=2,...,I, at the exit of each control volume. For these responses, therefore, the predicted best-estimate nominal value has been obtained by a forward recomputation using the best-estimate nominal parameter values, α^{pred} , as listed in Table 5.15. Furthermore, the predicted best estimate standard deviation for these responses have been obtained by using "best-estimate" values in Eq.(5.80), in which the matrix of sensitivities $\left[\mathbf{S}_{r\alpha}\right]^{pred}$ has been obtained for each of the responses $T_a^{(i)}$, i = 2,...,I, $T_w^{(i+1)}$, i = 1,...,I-1, and $RH^{(i)}$, i = 2,...,I by performing adjoint sensitivity computations using the best-estimate parameter values, rather than at the nominal parameter values. The resulting best-estimate nominal parameter values and standard deviations for these responses are plotted in Figs. 5.17 through 5.19, which depict the computed (black), best-estimate (red), and re-computed (green) nominal values and standard deviations for the air temperature $Ta^{(i)}$, (i = 1,...,49); water temperature $Tw^{(i)}$, (i = 2,...,50); and air humidity $RH^{(i)}$, (i = 1,...,49), respectively, along the height of the fill section of the cooling tower.

Figure 5.17. Computed (black), best-estimate (red), and re-computed (green; using best-estimate parameter values) nominal values and standard deviations for the air temperature, $Ta^{(i)}$, (i = 1,...,49), at the exit of each control volume along the height of the fill section of the cooling tower.

Figure 5.18. Computed (black), best-estimate (red), and re-computed (green; using best-estimate parameter values) nominal values and standard deviations for the water temperature, $Tw^{(i)}$,

(i = 2,...,50), at the exit of each control volume along the height of the fill section of the cooling tower.

Figure 5.19. Computed (black), best-estimate (red), and re-computed (green; using best-estimate parameter values) nominal values and standard deviations for the air relative humidity, $RH^{(i)}$, (i = 1,...,49), at the exit of each control volume along the height of the fill section of the cooling tower.

The following major conclusions can be drawn from the results presented in this Section:

- (i) The results presented in Table 5.16 indicate that the standard deviations predicted by the PM-CMPS are smaller than either the computed or the experimentally measured ones at the locations where measurements are available.
- (ii) The results presented in Figs. 5.17 through 5.19 indicate that the PM-CMPS methodology has also improved the predicted standard deviations for the responses inside and along the height of the fill section at locations, for which no measurements were available. As Figs. 5.17 through 5.19 indicate, the PM-CMPS methodology has reduced the uncertainties of the predicted internal responses well below the uncertainties in the computed responses due to uncertainties in the model parameters.
- (iii) As depicted in Figs. 5.17 through 5.19, the maximum reductions of uncertainties are always at the boundaries where direct measurements are available, and the amount of reductions decreases toward the inlets along the height of the fill section. For instance, as

shown in Fig. 5.17, a maximum of 19% reduction of the uncertainty is achieved for the response $T_a^{(1)}$ at the air exit of the fill section, and this reduction gradually decreases to 14% for the response $T_a^{(49)}$ near the air inlet of the fill section. Similarly, in Fig. 5.18, the maximum reduction of the uncertainty is around 45%, for the response $T_w^{(50)}$ at the water exit of the fill section, and this reduction gradually diminishes to nearly 1% for the response $T_w^{(2)}$ near the water inlet of the fill section. Lastly, for the humidity responses shown in Fig. 5, a maximum of 16% reduction is achieved for the response $RH^{(1)}$ at the air exit of the fill section; this reduction gradually diminishes to around 7% for the response $RH^{(49)}$ near the inlet of the fill section.

Figures 5.17 through 5.19 also indicate that for the internal responses that have no measurements, the assimilation of available experimental information at the boundaries by the PM-CMPS methodology also reduces the predicted uncertainties to be significantly smaller than their computed ones. The maximum reductions of uncertainties occurs at the locations where direct measurements are available (the tower's outlet, in the case considered in this work) and the amount of reductions gradually decrease further away from the locations of the measurements (toward the inlets along the height of the fill section, in the case considered in this work).

6 REFERENCES

Aleman, S.E. and Garrett, A.J. 2015. Operational Cooling Tower Model (CTTool v1.0), SRNL-STI-2015-00039, Revision 0, Savannah River National Laboratory, Savannah River, SC, USA, January 2015.

Arslan E., and D. G. Cacuci, 2014. Predictive Modeling of Liquid-Sodium Thermal-Hydraulics Experiments and Computations, *Ann. Nucl. Energy*, **63C**, 355-370, 2014.

Badea, M. C., D.G. Cacuci, and A.F. Badea, 2012. Best-Estimate Predictions and Model Calibration for Reactor Thermal-Hydraulics", *Nucl. Sci. Eng.*, **172**, 1-19, 2012.

Bledsoe, K.C. J. A. Favorite, and T. Aldemir. 2011. Application of the Differential Evolution Method for Solving Inverse Transport Problems, *Nucl. Sci. Eng.*, **169**, 208 (2011).

Cacuci, D. G. 1981a. Sensitivity Theory for Nonlinear Systems: I. Nonlinear Functional Analysis Approach, *J. Math. Phys.* 22: 2794-2802.

Cacuci, D. G. 1981b. Sensitivity Theory for Nonlinear Systems: II. Extensions to additional classes of responses, *J. Math. Phys.* 22: 2803-2812.

Cacuci, D. G. 1988. The forward and the adjoint methods of sensitivity analysis. Chapter 3 in *Uncertainty Analysis*, ed. Y. Ronen, 71-144. Boca Raton: CRC Press, Inc.

Cacuci, D. G. 2003. Sensitivity and Uncertainty Analysis: Theory, **Volume 1.** Boca Raton: Chapman & Hall/CRC.

Cacuci, D. G. 2014. Predictive modeling of coupled multi-physics systems: I. Theory. *Annals of Nuclear Energy* 70: 266–278. See also: Cacuci, D.G. and Badea, M.C. 2014. Predictive modelling of coupled multi-physics systems: II. Illustrative application to reactor physics, *Annals of Nuclear Energy*, **70**, 279-291, 2014.

Cacuci, D. G. 2015a. Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing exactly and efficiently first- and second-order sensitivities in large-scale linear systems: I. Computational methodology. *J. Comp. Phys.* 284: 687–699.

Cacuci, D. G. 2015b. Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing exactly and efficiently first- and second-order sensitivities in large-scale linear systems: II. Illustrative application to a paradigm particle diffusion problem. *J. Comp. Phys.* 284: 700–717.

Cacuci, D. G. 2016a. Second-order adjoint sensitivity and uncertainty analysis of a benchmark heat transport problem: I. Analytical results. *Nucl. Sci. Eng.* 183: 1-21.

Cacuci, D. G. 2016b. Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for large-scale nonlinear systems: I. Theory," *Nucl. Sci. Eng.* 184: 16–30.

Cacuci, D. G. 2016c. Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for large-scale nonlinear systems: II. Illustrative application to a paradigm nonlinear heat conduction benchmark. *Nucl. Sci. Eng.* 184: 31-52.

Cacuci, D. G. 2016d. A Heat Transport Benchmark Problem for Predicting the Impact of Measurements on Thermal-Hydraulics Experimental Facility Design. *Nucl. Eng. and Design*, 300, 12–27.

Cacuci, D. G. 2016e. Second-Order Adjoint Sensitivity and Uncertainty Analysis of a Benchmark Heat Transport Problem: I. Analytical Results, *Nucl. Sci. Eng.*, 183, 1-21. DOI 10.13182/NSE15-80.

Cacuci, D. G. 2017. Inverse predictive modeling of radiation transport through optically thick media in the presence of counting uncertainties, *Nucl. Sci. Eng.* **186**: 199–223, http://dx.doi.org/10.1080/00295639.2017.1305244, 20 May 2017.

Cacuci D. G., and E. Arslan. 2014. Reducing Uncertainties via Predictive Modeling: FLICA4 Calibration Using BFBT Benchmarks, *Nucl. Sci. Eng.*, **176**, 339–349, 2014.

Cacuci, D. G. and Fang, R. 2016. Predictive Modelling of a Paradigm Mechanical Cooling Tower. I: Adjoint Sensitivity Model, *Energies*, **9**, 718 (2016).

Cacuci D.G., and M. Ionescu-Bujor. 2010a. *Sensitivity and Uncertainty Analysis, Data Assimilation and Predictive Best-Estimate Model Calibration*, Chapter 17 in Vol.3, pp 1913 – 2051, *Handbook of Nuclear Engineering*, D. G. Cacuci, Editor, ISBN: 978-0-387-98150-5, Springer New York / Berlin, 2010. See also: D. G. Cacuci and M. Ionescu-Bujor, Model calibration and best-estimate prediction through experimental data assimilation: I. Mathematical framework, *Nucl. Sci. Eng.*, **165** (2010) 18-44.

Cacuci D.G., and M. Ionescu-Bujor. 2010b. On the Evaluation of Discrepant Scientific Data with Unrecognized Errors, *Nucl. Sci. Eng.*, **165**, 1-17, 2010.

Cacuci, D. G., M. Ionescu-Bujor and M. I. Navon. 2005. *Sensitivity and Uncertainty Analysis: Applications to Large Scale Systems*, **Volume 2**. Boca Raton: Chapman & Hall/CRC.

Cacuci, D. G., M. I. Navon and M. Ionescu-Bujor. 2013. *Computational Methods for Data Evaluation and Assimilation*. Boca Raton: Chapman & Hall/CRC.

D.G. Cacuci, C.F. Weber, E.M. Oblow, and J.H. Marable. 1980. Sensitivity Theory for General Systems of Nonlinear Equations," *Nucl. Sci. Eng.*, **75**, 88-110 (1980). See also: Cacuci, D. G., E. Greenspan, J. H. Marable, M. L. Williams. 1980. Developments in sensitivity theory, in: *ANS Topical Conference* "1980 Advances in Reactor Physics and Shielding, 692–704. NAS/70048, 14–17 September 1980. Sun Valley, Idaho.

Fang, R., D. G. Cacuci and M. C. Badea. 2016. Predictive Modelling of a Paradigm Mechanical Cooling Tower. II: Optimal Best-Estimate Predictions with Reduced Uncertainties, *Energies*, **9**, 747 (2016).

Lahoz, W., Khattatov, B., Ménard, R. (Editors), 2010. Data Assimilation: Making Sense of Observations, Springer Verlag, Berlin.

Mattingly, J. K. 2015. Private Communication, North Carolina State University, 2015.

McCormick, N.J. 1992. Inverse Radiative Transfer Problems: A Review, *Nucl. Sci. Eng.*, **112**, 185 (1992).

Oppe, T. C., W. D. Joubert, and D. R. Kincaid. 1988. A Package for Solving Large Sparse Linear Systems by Various Iterative Methods", NSPCG User's Guide, Version 1.0. Center for Numerical Analysis, the University of Texas at Austin, April 1988.

Saad, Y. and Schultz, M.H. 1986. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, *SIAM J. Sci. Stat. Comp* 7, No. 3, 856-869, 1986.

Sanchez, R. and N.J. McCormick, 2008. On the Uniqueness on the Inverse Source Problem for Linear Particle Transport Theory, TTSP, **37**, 236 (2008).

Tarantola, A. 2015. *Inverse Problem Theory and Methods for Model Parameter Estimation*, Society for Industrial and Applied Mathematics, Philadelphia, (2005).

Tichonov, A. N. 1963. Regularization of Non-Linear Ill-Posed Problems, *Doklady Akademii Nauk*, **49**(4), 1963. See also: Tichonov, "Solution of Incorrectly Formulated Problems and the Regularization Method", *Soviet Math. Doklady*, **4**, 1035 (1963).

7 MULTI-PRED CODE MODULE

The equations expressing the results of the PM-CMPS methodology developed by Cacuci (2014), namely Eqs. (2.58) through (2.82), which underlie the general case of "two multi-physics models, as well as Eqs. (2.89) through (2.135), which underlie particular situations, have been programed in the computational software module **MULTI-PRED**. All routines in **MULTI-PRED** are written in Fortran 90 and are compatible with most Linux systems, performing predictive modelling computations for the following four cases:

CASE 1: "One Multi-Physics Model": predictive modeling solely for Model A with N_a model parameters and N_r measured responses.

CASE 2: "One Multi-Physics Model with Additional Model Parameters": predictive modeling for Model A with N_b additional model parameters, but no additional responses.

CASE 3: "One Multi-Physics Model with Additional Model Responses": predictive modeling for Model A with N_q additional responses, but no additional parameters.

CASE 4: "Two Multi-Physics Models": predictive modelling for Model A coupled with Model B.

7.1 Directories

The computational software module **MULTI-PRED** comprises the following directories:

(1) multi-pred/source/

This folder contains the source codes.

(2) multi-pred/examples/

This folder contains 5 examples specified in the following subfolders.

(i) ../Neutron_Diffusion_Model_Case_1/

This folder contains the input/output files for Multi-Pred Case 1 for the neutron diffusion model presented in Chapter 3.

(ii) ../Cooling_Tower_Model_Case_1/

This folder contains the input/output files for Multi-Pred Case 1 for the cooling tower model presented in Chapter 5.

(iii) ../Cooling_Tower_Model_Case_2/

This folder contains the input/output files for Multi-Pred Case 2 for the cooling tower model presented in Chapter 5.

(iv) ../Cooling_Tower_Model_Case_3/

This folder contains the input/output files for Multi-Pred Case 3 for the cooling tower model presented in Chapter 5.

(v) ../Cooling_Tower_Model_Case_4/

This folder contains the input/output files for Multi-Pred Case 4 for the cooling tower model presented in Chapter 5.

(3) multi-pred/matrix_positive_definite_test/

This folder contains the source code for a stand-alone program used to test if a *symmetric* matrix is *positive definite* (SPD). Note that the covariance matrices $\mathbf{C}_{aa}(N_a \times N_a)$, $\mathbf{C}_{rr}(N_r \times N_r)$, $\mathbf{C}_{bb}(N_b \times N_b)$ and $\mathbf{C}_{qq}(N_q \times N_q)$ must be SPD matrices. This program computes the Cholesky factorization of the matrix being tested. If it can be factorized, the program returns a flag indicating that the tested matrix is SPD. Running this test stand-alone program is optional, since the Cholesky factorization has also been implemented in **MULTI-PRED**.

Also included in this folder is an large-scale matrix used for the SPD test. This matrix is a large symmetric positive definite matrix, with seemingly random sparsity pattern. It has a dimension of 60,000 by 60,000 with 410077 nonzero elements. Refer to the following website http://www.cise.ufl.edu/research/sparse/matrices/Andrews/Andrews for detailed information about this matrix.

7.2 Code Compilation and Execution

(1) Compile the software program in Linux

Enter the *multi-pred/source/* directory, and use the command *make*, an executable named *multi-pred* will be generated under the source directory.

The compiler used in the *makefile* is ifort (version 12.1.6 and above). It can also be compiled with gfortran (version 4.47 and above). An example makefile with the gfortran compiler, named *makefile.gfortran*, is also included in the *source* directory.

(2) Run the program

To run the program, copy the executable *multi-pred* into the example directories, then use the command:

./multi-pred superfile.inp

where the argument *superfile.inp* contains all the input/output files names. Output files will be generated in the respective example folders.

7.3 Input and Output File Organization

This Section describes the input and output files within the **MULTI-PRED** module.

7.3.1 Super File

The **MULTI-PRED** super-file is a text file that contains the names of input/output files and organizes the individual files for input and output operations. This super-file is read from the command line (UNIT=5) as an argument. The first line of the super-file is reserved for an identifier card, "MultiPredSup". After the identifier line, each subsequent line is preceded by a category code and a filename. The category code and filename have to be enclosed in single quotes. The filenames can be changed by the user. The second line of the super-file is also reserved for the "dims" category; the corresponding input file defines the dimensions of the matrices and vectors used in **MULTI-PRED**. The lines after the second line are for data files. There are no restrictions regarding the order of the data files and their corresponding categories. Tables 7.1 through 7.4

show the format and complete list of super files for the **MULTI-PRED** Case 1, Case 2, Case 3 and Case 4, respectively.

Table 7.1. Super File Format for Multi-Pred Case 1

Category	File Name
MultiPredSup	
'dims'	'dimensions.inp'
'a_nom'	'a.inp'
'r_mea'	'rm.inp'
'r_com'	'rc.inp'
'C_aa'	'Caa.inp'
'C_ar'	'Car.inp'
'C_rr'	'Crr.inp'
'S_ra'	'Sra.inp'
'a_BE'	'aBE.out'
'r_BE'	'rBE.out'
'C_aaBE'	'CaaBE.out'
'C_rrBE'	'CrrBE.out'
'C_arBE'	'CarBE.out'
'Crr_comp'	"Crrcomp.out"
'chi2'	'chi2.out'

Table 7.2. Super File Format for Multi-Pred Case 2

Category	File Name
MultiPredSup	
'dims'	'dimensions.inp'
'a_nom'	'a.inp'
'r_mea'	'rm.inp'
'r_com'	'rc.inp'
'C_aa'	'Caa.inp'
'C_ar'	'Car.inp'
'C_rr'	'Crr.inp'
'S_ra'	'Sra.inp'
'b_nom'	'b.inp'

'C_bb'	'Cbb.inp'
'C_ab'	'Cab.inp'
'C_br'	'Cbr.inp'
'S_rb'	'Srb.inp'
'a_BE'	'aBE.out'
'r_BE'	'rBE.out'
'C_aaBE'	'CaaBE.out'
'C_rrBE'	'CrrBE.out'
'C_arBE'	'CarBE.out'
'Crr_comp'	"Crrcomp.out"
'b_BE'	'bBE.out'
'C_bbBE'	'CbbBE.out'
'C_abBE'	'CabBE.out'
'C_brBE'	'CbrBE.out'
'chi2'	'chi2.out'

Table 7.3. Super File Format for Multi-Pred Case 3

Category	File Name
MultiPredSup	
'dims'	'dimensions.inp'
'a_nom'	'a.inp'
'r_mea'	'rm.inp'
'r_com'	'rc.inp'
'C_aa'	'Caa.inp'
'C_ar'	'Car.inp'
'C_rr'	'Crr.inp'
'S_ra'	'Sra.inp'
'q_mea'	'qm.inp'
'q_com'	'qc.inp'
'C_qq'	'Cqq.inp'
'C_aq'	'Caq.inp'
'S_qa'	'Sqa.inp'
'a_BE'	'aBE.out'
'r_BE'	'rBE.out'

'C_aaBE'	'CaaBE.out'
'C_rrBE'	'CrrBE.out'
'C_arBE'	'CarBE.out'
'Crr_comp'	"Crrcomp.out'
'q_BE'	'qBE.out'
'C_qqBE'	'CqqBE.out'
'Cqq_comp'	"Cqqcomp.out'
'C_aqBE'	'CaqBE.out'
'C_rqBE'	'CrqBE.out'
'Crq_comp'	"Crqcomp.out"
'chi2'	'chi2.out'

Table 7.4. Super File Format for Multi-Pred Case 4

Category	File Name
MultiPredSup	
'dims'	'dimensions.inp'
'a_nom'	'a.inp'
'r_mea'	'rm.inp'
'r_com'	'rc.inp'
'C_aa'	'Caa.inp'
'C_ar'	'Car.inp'
'C_rr'	'Crr.inp'
'S_ra'	'Sra.inp'
'b_nom'	'b.inp'
'q_mea'	'qm.inp'
'q_com'	'qc.inp'
'C_bb'	'Cbb.inp'
'C_bq'	'Cbq.inp'
'C_qq'	'Cqq.inp'
'S_qb'	'Sqb.inp'
'C_ab'	'Cab.inp'
'C_aq'	'Caq.inp'
'C_br'	'Cbr.inp'
'C_rq'	'Crq.inp'
'S_rb'	'Srb.inp'

'S_qa'	'Sqa.inp'
'a_BE'	'aBE.out'
'r_BE'	'rBE.out'
'C_aaBE'	'CaaBE.out'
'C_rrBE'	'CrrBE.out'
'C_arBE'	'CarBE.out'
'Crr_comp'	"Crrcomp.out'
'b_BE'	'bBE.out'
'q_BE'	'qBE.out'
'C_bbBE'	'CbbBE.out'
'C_qqBE'	'CqqBE.out'
'C_bqBE'	'CbqBE.out'
'Cqq_comp'	"Cqqcomp.out'
'C_abBE'	'CabBE.out'
'C_aqBE'	'CaqBE.out'
'C_brBE'	'CbrBE.out'
'C_rqBE'	'CrqBE.out'
'Crq_comp'	"Crqcomp.out"
'chi2'	'chi2.out'

7.3.2 File "dimensions.inp"

The file *dimensions.inp* defines the following important control variables:

CaseNumber - Multi-Pred Case selection;

 N_a : number of parameters for Model A;

 N_r : number of responses for Model A;

 N_b : number of additional parameters for Model A (Case 2) or the number of parameters of Model B (Case 4);

 N_q : number of additional responses for Model A (Case 3) or the number of responses of Model B (Case 4);

The following is an example of *dimensions.inp* for the Cooling Tower Model Case 4. For this test case, Cooling Tower Model is separated into Model A and Model B. Model A comprises the first 42 parameters (of the total 52 model parameters) and the first 2 responses (of the total 3 model responses). Thus: for Model A, Na = 42 and Nr = 2. Model B comprises the last 10 parameters (of the total 52 model parameters) and the 3rd response (of the total 3 model responses of the Cooling Tower Model). Thus: for Model B, Nb = 10 and Nq = 1.

```
/ Case options:
      = 1 "One-Model" Case: predictive modeling solely for Model A with Na
                             model parameters and Nr measured responses;
      = 2 "One-Model" Case: predictive modeling for Model A with Nb additional
                            parameters, but no additional responses;
      = 3 "One-Model" Case: predictive modeling for Model A with Nq additional
                           responses, but no additional parameters;
      = 4 "Two-Model" Case: predictive modeling for Model A coupled with Model B.
/ Case selection (CaseNumber):
4
/Na -- number of parameters for model A
42
/Nr -- number of responses for model A
/Nb -- number of additional parameters:
      -- for case 1: not used
       -- for case 2: number of parameters added to the Na parameters for model A
      -- for case 3: not used
      -- for case 4: number of parameters of model B
10
/Ng -- number of additional responses:
      -- for case 1: not used
      -- for case 2: not used
      -- for case 3: number of responses added to the Nr responses for model A
      -- for case 4: number of responses for model B
```

The format of *dimensions.inp* is fixed as shown above. The user can change the numbers corresponding to the control variables, namely: CaseNumber, Na, Nr, Nb and Nq, respectively.

7.3.3 Contents and Organization of Input and Output Files

Tables 7.5 through 7.8 describe the contents of the input and output (I/O) files specified within the **MULTI-PRED** super-files listed in Tables 7.1 through 7.4, respectively. The vectors / matrices corresponding to each data file are also listed in Tables 7.5 through 7.8.

Table 7.5. Summary of Input and Output Files for MULTI-PRED Case $1\,$

File	Unit	I/O	Corresponding vector/matrix	Descriptions
superfile.inp	5	input		File organization
dimensions.inp	20	input		Defines the Case selection and dimensions control
a.inp	21	input	$\alpha(N_a)$	Nominal values of Na parameters of model A
rm.inp	22	input	$\mathbf{r}_{m}(N_{r})$	Nominal values of Nr measured responses of model A
rc.inp	23	input	$\mathbf{r}_c(N_r)$	Nominal values of Nr computed responses of model A
Caa.inp	24	input	$\mathbf{C}_{aa}(N_a \times N_a)$	Covariance matrix of Na parameters of model A
Car.inp	25	input	$\mathbf{C}_{ar}(N_a \times N_r)$	Correlations between Na parameters and Nr responses of Model A
Crr.inp	26	input	$\mathbf{C}_{rr}(N_r \times N_r)$	Covariance matrix of Nr responses of model A
Sra.inp	27	input	$\mathbf{S}_{ra}(N_r \times N_a)$	Absolute sensitivities of Nr responses of Model A w.r.t Na parameters of Model A
aBE.out	51	output	$\mathbf{\alpha}^{be}(N_a)$	Best-estimate nominal values of parameters of Model A
rBE.out	52	output	$\mathbf{r}^{be}(N_r)$	Best-estimate nominal values of responses of Model A
CaaBE.out	53	output	$\mathbf{C}^{be}_{aa}(N_a \times N_a)$	Predicted covariance matrix of Na parameters of Model A
CrrBE.out	54	output	$\mathbf{C}^{be}_{rr}(N_r \times N_r)$	Predicted covariance matrix of Nr responses of Model A
CarBE.out	55	output	$\mathbf{C}^{be}_{ar}(N_a \times N_r)$	Predicted correlation matrix between the Na parameters and Nr responses of model A
Crrcomp.out	56	output	$\mathbf{C}_{rr}^{comp}(N_r \times N_r)$	Covariance matrix of Nr computed responses of model A
chi2.out	76	output	χ^2 , scalar	Value of the consistency indicator

Table 7.6. Summary of Input and Output Files for MULTI-PRED Case 2

File	Unit	I/O	Corresponding vector/matrix	Descriptions
superfile.inp	5	input		File organization
dimensions.inp	20	input		Defines the Case selection and dimensions control
a.inp	21	Input	$\alpha(N_a)$	Nominal values of Na parameters of model A
rm.inp	22	Input	$\mathbf{r}_{m}(N_{r})$	Nominal values of Nr measured responses of model A
rc.inp	23	Input	$\mathbf{r}_{c}(N_{r})$	Nominal values of Nr computed responses of model A
Caa.inp	24	Input	$\mathbf{C}_{aa}(N_a \times N_a)$	Covariance matrix of Na parameters of model A
Car.inp	25	Input	$\mathbf{C}_{ar}(N_a \times N_r)$	Correlations between Na parameters and Nr responses of Model A

File	Unit	I/O	Corresponding vector/matrix	Descriptions
Crr.inp	26	Input	$\mathbf{C}_{rr}(N_r \times N_r)$	Covariance matrix of Nr responses of model A
Sra.inp	27	Input	$\mathbf{S}_{ra}(N_r \times N_a)$	Absolute sensitivities of Nr responses of Model A w.r.t Na parameters of Model A
b.inp	31	Input	$\mathbf{b}(N_b)$	Nominal values of Nb additional parameters for model A
Cbb.inp	34	Input	$\mathbf{C}_{bb}(N_b \times N_b)$	Covariance matrix of Nb additional parameters
Cab.inp	41	Input	$\mathbf{C}_{ab}(N_a \times N_b)$	Correlations between Na parameters of Model A and Nb additional parameters for Model A
Cbr.inp	43	Input	$\mathbf{C}_{br}(N_b \times N_r)$	Correlations between Nb additional parameters for Model A and Nr responses of Model A
Srb.inp	45	input	$\mathbf{S}_{rb}(N_r \times N_b)$	Absolute sensitivities of Nr responses of Model A w.r.t Nb additional parameters for model A
aBE.out	51	output	$\mathbf{\alpha}^{be}(N_a)$	Best-estimate nominal values of Na parameters of Model A
rBE.out	52	output	$\mathbf{r}^{be}(N_r)$	Best-estimate nominal values of Nr responses of Model A
CaaBE.out	53	output	$\mathbf{C}^{be}_{aa}(N_a \times N_a)$	Predicted covariance matrix of Na parameters of Model A
CrrBE.out	54	output	$\mathbf{C}^{be}_{rr}(N_r \times N_r)$	Predicted covariance matrix of Nr responses of Model A
CarBE.out	55	output	$\mathbf{C}_{ar}^{be}(N_a \times N_r)$	Predicted correlation matrix between the Na parameters and Nr responses of model A
Crrcomp.out	56	output	$\mathbf{C}_{rr}^{comp}(N_r \times N_r)$	Covariance matrix of Nr computed responses of model A
bBE.out	61	output	$\mathbf{b}^{be}(N_b)$	Best-estimate nominal values of Nb additional parameters
CbbBE.out	63	output	$\mathbf{C}_{bb}^{be}(N_b \times N_b)$	Predicted covariance matrix of Nb parameters of Model A
CabBE.out	71	output	$\mathbf{C}^{be}_{ab}(N_a \times N_b)$	Predicted correlation matrix between the Na parameters of Model A and the Nb additional parameters for Model A
CbrBE.out	73	output	$\mathbf{C}_{br}^{be}(N_b \times N_r)$	Predicted correlation matrix between the Nb additional parameters for Model A and Nr responses of model A
chi2.out	76	output	χ^2 , scalar	Value of the consistency indicator

Table 7.7. Summary of Input and Output Files for MULTI-PRED Case 3

File	Unit	I/O	Corresponding vector/matrix	Descriptions
superfile.inp	5	input		File organization
dimensions.inp	20	input		Defines the Case selection and dimensions control
a.inp	21	input	$\alpha(N_a)$	Nominal values of Na parameters of model A
rm.inp	22	input	$\mathbf{r}_{m}(N_{r})$	Nominal values of Nr measured responses of model A

File	Unit	I/O	Corresponding vector/matrix	Descriptions
rc.inp	23	input	$\mathbf{r}_{c}(N_{r})$	Nominal values of Nr computed responses of model A
Caa.inp	24	input	$\mathbf{C}_{aa}(N_a \times N_a)$	Covariance matrix of Na parameters of model A
Car.inp	25	input	$\mathbf{C}_{ar}(N_a \times N_r)$	Correlations between Na parameters and Nr responses of Model A
Crr.inp	26	input	$\mathbf{C}_{rr}(N_r \times N_r)$	Covariance matrix of Nr responses of model A
Sra.inp	27	input	$\mathbf{S}_{ra}(N_r \times N_a)$	Absolute sensitivities of Nr responses of Model A w.r.t Na parameters of Model A
qm.inp	32	input	$\mathbf{q}_{\scriptscriptstyle m}(N_{\scriptscriptstyle q})$	Nominal values of Nq additional measured responses for model A
qc.inp	33	input	$\mathbf{q}_c(N_q)$	Nominal values of Nq additional computed responses for model A
Cqq.inp	36	input	$\mathbf{C}_{qq}(N_q \times N_q)$	Covariance matrix of Nq additional responses for Model A
Caq.inp	42	input	$\mathbf{C}_{aq}(N_a \times N_q)$	Correlations between Na parameters of Model A and Nq additional responses for Model A
Crq.inp	44	input	$\mathbf{C}_{rq}(N_r \times N_q)$	Correlations between Nr responses of Model A and Nq additional responses for Model A
Sqa.inp	46	input	$\mathbf{S}_{qa}(N_q imes N_a)$	Absolute sensitivities of Nq additional responses for Model A w.r.t Na parameters of Model A
aBE.out	51	output	$\mathbf{\alpha}^{be}(N_a)$	Best-estimate nominal values of parameters of Model A
rBE.out	52	output	$\mathbf{r}^{be}(N_r)$	Best-estimate nominal values of responses of Model A
CaaBE.out	53	output	$\mathbf{C}^{be}_{aa}(N_a \times N_a)$	Predicted covariance matrix of Na parameters of Model A
CrrBE.out	54	output	$\mathbf{C}^{be}_{rr}(N_r \times N_r)$	Predicted covariance matrix of Nr responses of Model A
CarBE.out	55	output	$\mathbf{C}^{be}_{ar}(N_a \times N_r)$	Predicted correlation matrix between the Na parameters and Nr responses of model A
Crrcomp.out	56	output	$\mathbf{C}_{rr}^{comp}(N_r \times N_r)$	Covariance matrix of Nr computed responses of model A
qBE.out	62	output	$\mathbf{q}^{be}(N_q)$	Best-estimate nominal values of Nq additional responses for model A
CqqBE.out	64	output	$\mathbf{C}^{be}_{qq}(N_q imes N_q)$	Predicted covariance matrix of Nq additional responses for model A
Cqqcomp.out	66	output	$\mathbf{C}_{qq}^{comp}(N_{q} imes N_{q})$	Covariance matrix of Nq additional computed responses for model A
CaqBE.out	72	output	$\mathbf{C}_{aq}^{comp}(N_a imes N_q)$	Predicted correlation matrix between the Na parameters and of Model A and Nq additional responses for model A
CrqBE.out	74	output	$\mathbf{C}^{be}_{rq}(N_r imes N_q)$	Predicted correlation matrix of between Nr responses of Model A and Nq additional responses for model A
Crqcomp.out	75	output	$\mathbf{C}_{rq}^{comp}(N_{r} imes N_{q})$	Correlation matrix of Nr computed responses of Model A and Nq additional computed responses for model A

File	Unit	I/O	Corresponding vector/matrix	Descriptions
chi2.out	76	output	χ^2 , scalar	Value of the consistency indicator

Table 7.8. Summary of Input and Output Files for MULTI-PRED Case 4

File	Unit	I/O	Corresponding vector/matrix	Descriptions
superfile.inp	5	input		File organization
dimensions.inp	20	input		Defines the Case selection and dimensions control
a.inp	21	input	$\alpha(N_a)$	Nominal values of Na parameters of model A
rm.inp	22	input	$\mathbf{r}_{\scriptscriptstyle m}(N_{\scriptscriptstyle r})$	Nominal values of Nr measured responses of model A
rc.inp	23	input	$\mathbf{r}_{c}(N_{r})$	Nominal values of Nr computed responses of model A
Caa.inp	24	input	$\mathbf{C}_{aa}(N_a \times N_a)$	Covariance matrix of Na parameters of model A
Car.inp	25	input	$\mathbf{C}_{ar}(N_a \times N_r)$	Correlations between Na parameters and Nr responses of Model A
Crr.inp	26	input	$\mathbf{C}_{rr}(N_r \times N_r)$	Covariance matrix of Nr responses of model A
Sra.inp	27	input	$\mathbf{S}_{ra}(N_r \times N_a)$	Absolute sensitivities of Nr responses of Model A w.r.t Na parameters of Model A
b.inp	31	input	$\mathbf{b}(N_b)$	Nominal values of Na parameters of model B
qm.inp	32	input	$\mathbf{q}_{\scriptscriptstyle m}(N_{\scriptscriptstyle q})$	Nominal values of Nq measured responses of model B
qc.inp	33	input	$\mathbf{q}_c(N_q)$	Nominal values of Nq computed responses of model B
Cbb.inp	34	input	$\mathbf{C}_{bb}(N_b \times N_b)$	Covariance matrix of Nb parameters of model B
Cbq.inp	35	input	$\mathbf{C}_{bq}(N_b \times N_q)$	Correlations between Nb parameters and Nq responses of Model B
Cqq.inp	36	input	$\mathbf{C}_{qq}(N_q \times N_q)$	Covariance matrix of Nq responses of model B
Sqb.inp	37	input	$\mathbf{S}_{qb}(N_q \times N_b)$	Absolute sensitivities of Nq responses of Model B w.r.t Nb parameters of Model B
Cab.inp	41	input	$\mathbf{C}_{ab}(N_a \times N_b)$	Correlation matrix between the Na parameters of Model A and the Nb parameters of Model B
Caq.inp	42	input	$\mathbf{C}_{aq}(N_a \times N_q)$	Correlation matrix between the Na parameters and of Model A and Nq responses of model B
Cbr.inp	43	input	$\mathbf{C}_{br}(N_b \times N_r)$	Correlation matrix between the Nb parameters of Model B and Nr responses of model A
Crq.inp	44	input	$\mathbf{C}_{rq}(N_r \times N_q)$	Correlation matrix of between Nr responses of Model A and Nq responses of model B

File	Unit	I/O	Corresponding vector/matrix	Descriptions
Srb.inp	45	input	$\mathbf{S}_{rb}(N_r \times N_b)$	Absolute sensitivities of Nr responses of Model A w.r.t Nb parameters of model B
Sqa.inp	46	input	$\mathbf{S}_{qa}(N_q \times N_a)$	Absolute sensitivities of Nq responses of Model B w.r.t Na parameters of Model A
aBE.out	51	output	$\boldsymbol{\alpha}^{be}(N_a)$	Best-estimate nominal values of parameters of Model A
rBE.out	52	output	$\mathbf{r}^{be}(N_r)$	Best-estimate nominal values of responses of Model A
CaaBE.out	53	output	$\mathbf{C}^{be}_{aa}(N_a \times N_a)$	Predicted covariance matrix of Na parameters of Model A
CrrBE.out	54	output	$\mathbf{C}^{be}_{rr}(N_r \times N_r)$	Predicted covariance matrix of Nr responses of Model A
CarBE.out	55	output	$\mathbf{C}^{be}_{ar}(N_a \times N_r)$	Predicted correlation matrix between the Na parameters and Nr responses of model A
Crrcomp.out	56	output	$\mathbf{C}_{rr}^{comp}(N_r \times N_r)$	Covariance matrix of Nr computed responses of model A
bBE.out	61	output	$\mathbf{b}^{be}(N_b)$	Best-estimate nominal values of parameters of Model B
qBE.out	62	output	$\mathbf{q}^{be}(N_q)$	Best-estimate nominal values of responses of Model B
CbbBE.out	63	output	$\mathbf{C}^{be}_{bb}(N_b \times N_b)$	Predicted covariance matrix of Nb parameters of Model B
CqqBE.out	64	output	$\mathbf{C}^{be}_{qq}(N_q imes N_q)$	Predicted covariance matrix of Nq responses of Model B
CbqBE.out	65	output	$\mathbf{C}_{bq}^{be}(N_b\! imes\!N_q)$	Predicted correlation matrix between the Nb parameters and Nq responses of model B
Cqqcomp.out	66	output	$\mathbf{C}_{qq}^{comp}(N_q imes N_q)$	Covariance matrix of Nq computed responses of model B
CabBE.out	71	output	$\mathbf{C}^{be}_{ab}(N_a \times N_b)$	Predicted correlation matrix between the Na parameters of Model A and the Nb parameters for Model B
CaqBE.out	72	output	$\mathbf{C}^{be}_{aq}(N_a\! imes\!N_q)$	Predicted correlation matrix between the Na parameters and of Model A and Nq responses of model B
CbrBE.out	73	output	$\mathbf{C}^{be}_{br}(N_b \times N_r)$	Predicted correlation matrix between the Nb parameters of Model B and Nr responses of model A
CrqBE.out	74	output	$\mathbf{C}^{be}_{rq}(N_r \times N_q)$	Predicted correlation matrix of between Nr responses of Model A and Nq responses of model B
Crqcomp.out	75	output	$\mathbf{C}_{rq}^{comp}(N_r imes N_q)$	Correlation matrix of Nr computed responses of Model A and Nq computed responses of model B
chi2.out	76	output	χ^2 , scalar	Value of the consistency indicator

7.4 Input Data Files

This Section describes in detail the *input* files (and their contents) that were listed in Table 7.8. All the data files are in the "sparse triplet matrix" file format, which is a commonly used ASCII file format for storing sparse matrices and compatible with most files in the Matrix Market format.

The *sparse triplet data structure* simply records, for each nonzero entry of the matrix, the row, column and value. The general format is as follows:

Line 1:	$\mathbf{M} \mathbf{N}$	Nz	
Line 2:	Row_index	Col_index	Val
Line 3:	Row_index	Col_index	Val
 Line Nz+1:	 Row_index	 Col_index	 Val

In the above format, the quantities **M** and **N** denote, respectively, the number of rows and columns in the original full matrix; **Nz** denotes total the number of nonzero elements in the matrix; **Row_index** and **Col_index** denote the row and column indices of each nonzero element; and **VAL** denotes the value of the nonzero element.

7.4.1 Input Data Files for MULTI-PRED Case 1

MULTI-PRED Case 1 requires the following 7 input data files as listed in Table 7.9, as well as in Table 7.5.

Table 7.9. Input Data Files for MULTI-PRED Case 1

Input Data File for Model A
a.inp
rm.inp
rc.inp
Caa.inp
Car.inp
Crr.inp
Sra.inp

The file structures for the inputs shown in Table 7.9 are described in detail below.

(1) a.inp

The input file *a.inp* contains the nominal values of all N_a parameters of Model A. For example, for the neutron diffusion model, the nominal values of the $N_a = 4$ parameters are given as follows:

$$\alpha = \begin{pmatrix} 0.0197 \\ 0.16 \\ 1.0E + 07 \\ 7.438 \end{pmatrix}. \tag{7.1}$$

The corresponding *a.inp* is as follows.

(2) **rm.inp**

The input file rm.inp contains the nominal values of N_r measured responses for Model A. T For the neutron diffusion model, for example, the nominal values of the $N_r = 4$ measured responses are as follows:

$$\mathbf{r}_{m} = \begin{pmatrix} 3.40 + 09 \\ 3.59 + 09 \\ 3.77 + 09 \\ 3.74 + 09 \end{pmatrix}. \tag{7.2}$$

The corresponding *rm.inp* is as follows.

4	1	4
1	1	3.398068337E+09
2	1	3.586849912E+09
3	1	3.772511377E+09
4	1	3.735885053E+09

(3) rc.inp

The input file rc.inp contains the nominal values of N_r computed responses of Model A. For the neutron diffusion model, for example, the nominal values of the $N_r = 4$ computed responses are as follows:

$$\mathbf{r}_{c} = \begin{pmatrix} 3.77E + 09 \\ 3.77E + 09 \\ 3.66E + 09 \\ 3.66E + 09 \end{pmatrix}. \tag{7.3}$$

The corresponding *rc.inp* is as follows.

(4) Caa.inp

The input file *Caa.inp* contains the nonzero elements of the covariance matrix $\mathbf{C}_{aa}(N_a \times N_a)$ of model parameters of Model A. For the neutron diffusion model, for example, \mathbf{C}_{aa} is:

$$\boldsymbol{C}_{\alpha a} = \begin{pmatrix} \left(9.85 \times 10^{-4}\right)^{2} & 0 & 0 & 0\\ 0 & \left(8.0 \times 10^{-3}\right)^{2} & 0 & 0\\ 0 & 0 & \left(1.5 \times 10^{6}\right)^{2} & 0\\ 0 & 0 & 0 & \left(7.44 \times 10^{-1}\right)^{2} \end{pmatrix}. \tag{7.4}$$

The corresponding *Caa.inp* is as follows.

```
4 4 4
1 9.70225E-07
2 2 6.40000E-05
3 3 2.25000E+12
4 4 5.5323844E-01
```

(5) Car.inp

The input file Car.inp contains the nonzero elements of the correlation matrix $\mathbf{C}_{ar}(N_a \times N_r)$ between the model parameters and measured responses of Model A. For the neutron diffusion model, for examples, the parameters and measured responses are not correlated; therefore, \mathbf{C}_{ar} has the following structure:

The corresponding *Car.inp* is as follows:

4 4 0

In other applications, the parameters and measured responses are correlated, i.e., $\mathbf{C}_{\alpha r} \neq \mathbf{0}$. An example of a non-zero correlation matrix is provided by the cooling tower model, for which $N_a = 52$, $N_r = 3$, and for which the correlation matrix $\mathbf{C}_{\alpha r}$ comprises 12 nonzero elements. Hence, for this example, *Car.inp* is as follows:

52	3	12
1	1	12.957508300000001
1	2	3.3548676099999999
1	3	-54.158679370000002
2	1	3.5102394000000001
2	2	3.0452589900000002
2	3	1.73334787
3	1	2.3294612799999999
3	2	1.8856921
3	3	-2.26657529
4	1	-447.08545706000001
4	2	-93.577718820000001
4	3	1831.03340159

(6) Crr.inp

The input file Crr.inp contains the nonzero elements of the covariance matrix $\mathbf{C}_{rr}(N_r \times N_r)$ between the model responses of Model A. For the neutron diffusion model, for example, \mathbf{C}_{rr} is

$$C_{rr} = \begin{pmatrix} (1.7 \times 10^8)^2 & 0 & 0 & 0\\ 0 & (2.15 \times 10^8)^2 & 0 & 0\\ 0 & 0 & (1.89 \times 10^8)^2 & 0\\ 0 & 0 & 0 & (1.87 \times 10^8)^2 \end{pmatrix}.$$
(7.6)

The corresponding *Crr.inp* is as follows:

(7) Sra.inp

The input file Sra.inp contains the nonzero elements of the absolute sensitivities matrix $\mathbf{S}_{ra}(N_r \times N_a)$. For the neutron diffusion model, for example, $\mathbf{S}_{ra}(N_r \times N_a)$ is

$$S \triangleq \left(\frac{\partial R_i}{\partial \alpha_j}\right) = \begin{pmatrix} -1.92 \times 10^{11} & -1.33 \times 10^5 & 3.78 \times 10^2 & 5.08 \times 10^8 \\ -1.92 \times 10^{11} & -1.33 \times 10^5 & 3.78 \times 10^2 & 5.08 \times 10^8 \\ -1.76 \times 10^{11} & -1.24 \times 10^9 & 3.66 \times 10^2 & 4.92 \times 10^8 \\ -1.76 \times 10^{11} & -1.24 \times 10^9 & 3.66 \times 10^2 & 4.92 \times 10^8 \end{pmatrix}.$$
(7.7)

The corresponding *Sra.inp* is as follows:

```
4 4 16
1 -1.916553399E+11
1 2 -1.330585230E+5
1 3 3.775631486E+2
1 4 5.076138055E+8
2 1 -1.916553399E+11
2 2 -1.330585230E+5
2 3 3.775631486E+2
2 4 5.076138055E+8
3 1 -1.758565925E+11
```

```
-1.239109567E+9
3
       3
             3.662632405E+2
3
       4
             4.924216731E+8
       1
             -1.758565925E+11
4
       2
             -1.239109567E+9
4
       3
             3.662632405E+2
             4.924216731E+8
```

7.4.2 Input Data Files for MULTI-PRED Case 2

Table 7.10 presents the 12 input files required for MULTI-PRED Case 2; these files are also listed in Table 7.6. Of the 12 files listed in Table 7.10, 7 input data files have been previously described in Section 7.4.2; the additional 5 input data files have the same structure as their counterparts for Model A.

Table 7.10. Input Data Files for MULTI-PRED Case 2

Input Data File for Model A	Inputs for the Coupled Matrices	Inputs for the Nb additional parameters for Model A
a.inp		b.inp
rm.inp		
rc.inp		
Caa.inp	Cab.inp	Cbb.inp
Car.inp	Cbr.inp	
Crr.inp		
Sra.inp	Srb.inp	

7.4.3 Input Data Files for MULTI-PRED Case 3

Table 7.11 presents the 13 input files required for MULTI-PRED Case 3; these files are also listed in Table 7.7. Of the 13 files listed in Table 7.10, 7 input data files have been previously described in Section 7.4.2; the additional 6 input data files have the same structure as their counterparts for Model A.

Table 7.11. Input Data Files for MULTI-PRED Case 3

Input Data File for Model A	Inputs for the coupled matrices	Inputs for the Nq additional responses for Model A
a.inp		
rm.inp		qm.inp
rc.inp		qc.inp
Caa.inp		
Car.inp	Caq.inp	
Crr.inp	Crq.inp	Cqq.inp
Sra.inp	Sqa.inp	

7.4.4 Input Data Files for MULTI-PRED Case 4

Table 7.12 presents the 20 input files required for MULTI-PRED Case 3; these files are also listed in Table 7.8. Of the 20 files listed in Table 7.10, 7 input data files have been previously described in Section 7.4.2; the additional 13 input data files have the same structure as their counterparts for Model A.

Table 7.12. Input Data Files for MULTI-PRED Case 4

Input Data File for Model A	Inputs Data Files for the Coupled Matrices between Model A and Model B	Inputs Data Files for Model B
a.inp		b.inp
rm.inp		qm.inp
rc.inp		qc.inp
Caa.inp	Cab.inp	Cbb.inp
Car.inp	Caq.inp, Cbr.inp	Cbq.inp
Crr.inp	Crq.inp	Cqq.inp
Sra.inp	Sqa.inp, Srb.inp	Sqb.inp

7.5 Output Data Files

The model output files are specified in the categories of the super files. All the output files are in the "sparse triplet matrix" file format. In addition, a data file for the consistency indicator, χ^2 , is also generated.

7.5.1 Output Data Files for MULTI-PRED Case 1

Table 7.13 lists the output data files generated by MULTI-PRED Case 1; these output files are also listed in Table 7.5.

Table 7.13. Output Data Files for MULTI-PRED Case 1

Output Data File for Model A			
aBE.out			
rBE.out			
CaaBE.out			
CrrBE.out			
CarBE.out			
Crrcomp.out			
chi2.out			

(1) aBE.out

The output data file aBE.out contains the nonzero components of the resulting vector $\mathbf{u}^{be}(N_a)$, which provide the best-estimate parameter values for Model A. This file has the same structure as the file a.inp. For the neutron diffusion model, for example, the best-estimate parameter values are:

$$\boldsymbol{\alpha}^{be} = \begin{pmatrix} 0.0198 \\ 0.1591 \\ 9.85 \times 10^6 \\ 7.388 \end{pmatrix}. \tag{7.8}$$

The corresponding output data file *aBE.out* is as follows:

4	1	4
1	1	1.98418101E-02
2	1	1.59118840E-01
3	1	9.84778916E+06
4	1	7.38768248E+00

(2) rBE.out

The output file rBE.out contains the nonzero components of the vector $\mathbf{r}^{be}(N_r)$, which provide the best-estimate response values for Model A. This output file has the structure as the file rc.inp. For the neutron diffusion model, for example, the best-estimate response values are:

$$\mathbf{r}^{be} = \begin{pmatrix} 3.66 \times 10^9 \\ 3.66 \times 10^9 \\ 3.56 \times 10^9 \\ 3.56 \times 10^9 \end{pmatrix}. \tag{7.9}$$

The corresponding output data file rBE.out is as follows:

(3) CaaBE.out

The output file CaaBE.out contains the nonzero components of the predicted optimal covariance matrix $\mathbf{C}_{aa}^{be}(N_a \times N_a)$ of parameters for Model A. This output file has the same structure as the file Caa.inp. For the neutron diffusion model, for example, the best-estimate covariance matrix $\mathbf{C}_{aa}^{be}(N_a \times N_a)$ has the following form:

$$\boldsymbol{C}_{aa}^{be} = \begin{pmatrix} 9.03 \times 10^{-7} & 6.75 \times 10^{-9} & 3.03 \times 10^{2} & 1.00 \times 10^{-4} \\ 6.75 \times 10^{-9} & 6.38 \times 10^{-5} & 7.37 \times 10^{1} & 2.44 \times 10^{-5} \\ 3.03 \times 10^{2} & 7.37 \times 10^{1} & 8.24 \times 10^{11} & -4.71 \times 10^{5} \\ 1.00 \times 10^{-4} & 2.44 \times 10^{-5} & -4.71 \times 10^{5} & 3.97 \times 10^{-1} \end{pmatrix}$$
(7.10)

The corresponding output data file CaaBE.out is as follows.

4	4	16
1	1	9.02992937E-07
1	2	6.48311998E-09
1	3	3.03370351E+02
1	4	1.00295979E-04
2	1	6.48311998E-09
2	2	6.38139054E-05
2	3	7.32951010E+01
2	4	2.43980122E-05
3	1	3.03370351E+02
3	2	7.32951010E+01
3	3	8.24405218E+11
3	4	-4.71401727E+05
4	1	1.00295979E-04
4	2	2.43980122E-05
4	3	-4.71401727E+05
4	4	3.97657348E-01

(4) CarBE.out

The output file CarBE.out contains the nonzero components of the predicted parameter-response correlation matrix $\mathbf{C}_{ar}^{be}(N_a \times N_r)$ for Model A. This output file has the same structure as the file Car.inp. For the neutron diffusion model, for example, the correlation matrix $\mathbf{C}_{ar}^{be}(N_a \times N_r)$ has the following structure:

$$\boldsymbol{C}_{\alpha r}^{be} = \begin{pmatrix} -7.81 \times 10^{3} & -7.81 \times 10^{3} & 1.50 \times 10^{3} & 1.50 \times 10^{3} \\ 3.89 \times 10^{4} & 3.89 \times 10^{4} & -4.13 \times 10^{4} & -4.13 \times 10^{4} \\ 1.38 \times 10^{13} & 1.38 \times 10^{13} & 1.64 \times 10^{13} & 1.64 \times 10^{13} \\ 4.57 \times 10^{6} & 4.57 \times 10^{6} & 5.41 \times 10^{6} & 5.41 \times 10^{6} \end{pmatrix}.$$
(7.11)

The corresponding output data file CarBE.out is as follows:

4	4	16
1	1	-7.81261058E+03
1	2	-7.81261058E+03
1	3	1.50018202E+03
1	4	1.50018202E+03
2	1	3.88811594E+04
2	2	3.88811594E+04
2	3	-4.12791159E+04
2	4	-4.12791159E+04
3	1	1.38214773E+13
3	2	1.38214773E+13

```
3 3 1.63658795E+13
3 4 1.63658795E+13
4 1 4.56907323E+06
4 2 4.56907323E+06
4 3 5.41019607E+06
4 4 5.41019607E+06
```

(5) CrrBE.out

The output file CrrBE.out contains the nonzero components of the predicted covariance matrix $\mathbf{C}_{rr}^{be}(N_r \times N_r)$ of responses for Model A. This output file has the same file structure as the file Crr.inp. For the neutron diffusion model, for example, the correlation matrix $\mathbf{C}_{rr}^{be}(N_r \times N_r)$ is as follows:

$$C_{rr}^{be} = \begin{pmatrix} 9.04 \times 10^{15} & 9.04 \times 10^{15} & 8.64 \times 10^{15} & 8.64 \times 10^{15} \\ 9.04 \times 10^{15} & 9.04 \times 10^{15} & 8.64 \times 10^{15} & 8.64 \times 10^{15} \\ 8.64 \times 10^{15} & 8.64 \times 10^{15} & 8.45 \times 10^{15} & 8.45 \times 10^{15} \\ 8.64 \times 10^{15} & 8.64 \times 10^{15} & 8.45 \times 10^{15} & 8.45 \times 10^{15} \end{pmatrix}$$
(7.12)

The corresponding output data file *CrrBE.out* is as follows:

4	4	16
1	1	9.03512848E+15
1	2	9.03512848E+15
1	3	8.63793079E+15
1	4	8.63793079E+15
2	1	9.03512848E+15
2	2	9.03512848E+15
2	3	8.63793079E+15
2	4	8.63793079E+15
3	1	8.63793079E+15
3	2	8.63793079E+15
3	3	8.44565029E+15
3	4	8.44565029E+15
4	1	8.63793079E+15
4	2	8.63793079E+15
4	3	8.44565029E+15
4	4	8.44565029E+15

(6) Crrcomp.out

The output file Crrcomp.out contains the nonzero components of the covariance matrix $\mathbf{C}_{rr}^{comp}(N_r \times N_r)$ of computed responses for Model A. This output file has the same structure as the file Crr.inp. For the neutron diffusion model, for example, the covariance matrix $\mathbf{C}_{rr}^{comp}(N_r \times N_r)$ is as follows:

$$\boldsymbol{C}_{rr}^{comp} = \begin{pmatrix} 4.99 \times 10^{17} & 4.99 \times 10^{17} & 4.82 \times 10^{17} & 4.82 \times 10^{17} \\ 4.99 \times 10^{17} & 4.99 \times 10^{17} & 4.82 \times 10^{17} & 4.82 \times 10^{17} \\ 4.82 \times 10^{17} & 4.82 \times 10^{17} & 4.66 \times 10^{17} & 4.66 \times 10^{17} \\ 4.82 \times 10^{17} & 4.82 \times 10^{17} & 4.66 \times 10^{17} & 4.66 \times 10^{17} \end{pmatrix}$$
(7.13)

The corresponding output data file Crrcomp.out is as follows:

4	4	16
1	1	4.98938357E+17
1	2	4.98938357E+17
1	3	4.82134716E+17
1	4	4.82134716E+17
2	1	4.98938357E+17
2	2	4.98938357E+17
2	3	4.82134716E+17
2	4	4.82134716E+17
3	1	4.82134716E+17
3	2	4.82134716E+17
3	3	4.66086473E+17
3	4	4.66086473E+17
4	1	4.82134716E+17
4	2	4.82134716E+17
4	3	4.66086473E+17
4	4	4 66086473E+17

(7) Chi2.out

The output file chi2.*out* contains the values for the consistency indicators χ^2 and $\frac{\chi^2}{N_r}$. For the neutron diffusion model, for example, MULTI-PRED outputs the following values for chi2.*out*:

$$chi^2 = 4.852$$

 $chi^2_d = (chi^2)/(number of responses) = 1.213$

7.5.2 Output Data Files for MULTI-PRED Case 2

Table 7.14 presents the 11 output files generated for MULTI-PRED Case 2; these files are also listed in Table 7.6. Of the 11 output files listed in Table 7.14, 7 output data files have also been listed in Table 7.13; the additional 4 output data files have the same structure as their counterparts for Model A.

Table 7.14. Output Data Files for MULTI-PRED Case 2

Output Data File for Model A	Outputs for the Coupled Matrices	Outputs for the Nb additional parameters for Model A
aBE.out		bBE.out
rBE.out		
CaaBE.out	CabBE.out	CbbBE.out
CrrBE.out		
CarBE.out	CbrBE.out	
Crrcomp.out		
chi2.out		

7.5.3 Output Data Files for MULTI-PRED Case 3

Table 7.15 presents the 13 output files generated for MULTI-PRED Case 2; these files are also listed in Table 7.7. Of the 13 output files listed in Table 7.15, 7 output data files have also been listed in Table 7.13; the additional 6 output data files have the same structure as their counterparts for Model A.

Table 7.15. Output Data Files for MULTI-PRED Case 3

Output Data File for Model A	Outputs for the coupled matrices	Outputs for the Nq additional responses for Model A
aBE.out		
rBE.out		qBE.out
CaaBE.out		
CrrBE.out	CrqBE.out	CqqBE.out
CarBE.out	CaqBE.out	
Crrcomp.out	Crqcomp.out	Cqqcomp.out
chi2.out		

7.5.4 Output Data Files for MULTI-PRED Case 4

Table 7.16 presents the 18 output files generated for MULTI-PRED Case 2; these files are also listed in Table 7.8. Of the 18 output files listed in Table 7.15, 7 output data files have also been listed in Table 7.13; the additional 11 output data files have the same structure as their counterparts for Model A.

Table 7.16. Output Data Files for MULTI-PRED Case 4

Output Data File for Model A	Outputs Data Files for the Coupled Matrices between Model A and Model B	Outputs Data Files for Model B
aBE.out		bBE.out
rBE.out		qBE.out
CaaBE.out	CabBE.out	CbbBE.out
CrrBE.out	CrqBE.out	CqqBE.out
CarBE.out	CaqBE.out, CbrBE.out	CbqBE.out
Crrcomp.out	Crqcomp.out	Cqqcomp.out
chi2.out		

8 FORTRAN Source Code for the Program Multi-Pred

The program Multi-Pred includes the following routines and modules:

• Main program: multi-pred.f90

• Module: ModuleGlobalParameters.f90

• Module: ModuleIO.f90

• Module: ModuleErrors.f90

• Subroutine: Files.f90

• Module: ModuleFiles.f90

• Subroutine: ReadInput.f90

• Module: ModuleReadWrite.f90

• Subroutine: MultiPredSolver.f90

• Module: ModuleMultiPred.f90

• Module: ModuleLapack.f90

The source code for each of them are presented as follows. The structure of the code is organized as shown in Figure 8.1.

Figure 8.1 Multi-Pred Code Structure

8.1 Main program multi-pred.f90

```
PROGRAM multipred
1
2
  3
  !* multi-pred: This program is a computational implementation of the
 |*
                 "predictive modeling for coupled multi-physics systems"
6 !*
                 methodology developed by Cacuci, based on the work "predictive*
7
  |*
                 modeling for coupled multi-physics systems: I. Theory," Annals*
8 !*
                 of Nuclear Energy. 70, 266-278 (2014).
9 1*
10 !*
                 The multi-pred has the following fundamental features:
11 !*
                 (i) it uses the maximum entropy principle to combine all
12 !*
                     available experimental and computational information to
13 !*
                     calibrate simultaneously all uncertain quantities,
14 |*
                     including model parameters, initial conditions, boundary
15 !*
                     conditions, and observed model responses;
16 !*
                (ii) it provides explicit formulas for the calibrated best
17 !*
                     estimate predicted values for the model responses and
18 !*
                     parameters;
19 I*
                (iii)it reduces the predicted uncertainties in these
20 !*
                     predicted model responses and parameters, providing
21 1*
                     explicit formulas for the predicted covariance matrices
22 !*
                    of responses and parameters;
23 !*
                (iv) it provides a quantitative indicator -- constructed from
24 !*
                     parameter and response covariances and responses
25 !*
                     sensitivities to parameters-- for quantifying the
26 !*
                     consistency (agreement or disagreement) among the a
27 !*
                     priori computational and experimental data.
28 !*
29 !* multi-pred can perform predictive modeling for the following four cases
30 !* (CaseNumber):
     = 1 "One-Model" Case: predictive modeling solely for Model A with Na
31 !*
32 !*
                           model parameters and Nr measured responses;
33 !*
     = 2 "One-Model" Case: predictive modeling for Model A with Nb additional
34 !*
                           parameters, but no additional responses;
35 !*
     = 3 "One-Model" Case: predictive modeling for Model A with Nq additional
36 !*
                           responses, but no additional parameters;
37 !*
     = 4 "Two-Model" Case: predictive modeling for Model A coupled with Model
38 !*
39 1*
40 !* Developed by the University of South Carolina, Columbia, SC
41 I*
42 !* called by: none
43 !* calls to: Files, ReadInput, MultiPredSolver
44 !*
46 !*************************
47
48
    IMPLICIT NONE
49
50 ! read superfile and open all files for i/o
51 call Files
52
53 ! read all input data
   call ReadInput
56 ! apply the Multi-Pred formulation and generate outputs
57 call MultiPredSolver
58 END PROGRAM multipred
```

8.2 Module ModuleGlobalParameters.f90

```
1
   MODULE ModuleGlobalParameters
2
   ! Symbolic names for kind types of 4-, 2- and 1-byte integers:
3
     INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
4
     INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)
     INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)
6
7
   ! Symbolic names for kind types of single- and double precision reals:
     INTEGER, PARAMETER :: SP = KIND(1.0)
     INTEGER, PARAMETER :: DP = KIND(1.0D0)
9
10
11 ! Global parameters used in multi-pred:
12 ! alpha = nominal values of Na parameters of Model A (in)
             = nominal values of Nr measured responses of Model A (in)
13 ! rm
             = nominal values of Nr computed responses of Model A (in)
14 ! rc
15 ! Caa
             = covariance matrix of Na parameters of Model A (in)
16 ! Car
            = correlations between Na parameters and Nr responses
17 I
              of Model A (in)
18 ! Crr = covariance matrix of Nr responses of Model A (in)
            = sensitivities of Model B (in)
19 ! Sra
20 ! beta = nominal values of Nb parameters of Model B (in)
21 ! qm
             = nominal values of Nq measured responses of Model B (in)
22 ! qc
             = nominal values of Nq computed responses of Model B (in)
23 ! Cbb
             = covariance matrix of Nb parameters of Model B (in)
24 ! Cbq
            = correlations between Nb parameters and N1 responses
25 !
              of Model B (in)
  ! Cqq
            = covariance matrix of Nq responses of Model B (in)
26
27
  ! Sqb
             = sensitivities of Model B (in)
28 ! Cab
            = correlations between Na parameters of Model A and Nb
29 I
              parameters of Model B (in)
30 ! Caq
            = correlations between Na parameters of Model A and Nq
31
              responses of Model B (in)
32 ! Cbr
            = correlations between Nb parameters of Model B and Nr
33 !
              responses of Model A (in)
34 ! Crq
            = correlations between Nr responses of Model A and Ng
35 !
              responses of Model B (in)
36 ! Srb
            = sensitivities of Nr responses of Model A w.r.t. Nb
37 !
              parameters of Model B (in)
38 ! Sqa
             = sensitivities of Nq responses of Model B w.r.t. Na
              parameters of Model A (in)
39 I
40 ! aBE
             = best-estimate nominal values of Na parameters of Model A (out)
41 ! rBE
             = best-estimate nominal values of Nr responses of Model A (out)
42 ! CaaBE = predicted covariance matrix of Na parameters of Model A (out)
43 ! CarBE
            = predicted correlation matrix between the Na parameters
               and Nr responses of Model A (out)
  ! CrrBE = predicted covariance matrix of Nr responses of Model A (out)
  ! Crrcomp = covariance matrix of Nr computed responses of Model A (out)
             = best-estimate nominal values of Nb parameters of Model B (out)
47 ! bBE
48 ! qBE
             = best-estimate nominal values of Nq responses of Model B (out)
49 ! CbbBE
            = predicted covariance matrix of Nb parameters of Model B (out)
50 ! CbqBE
            = predicted correlation matrix between the Nb parameters
51 !
               and Ng responses of Model B (out)
52 ! CqqBE = predicted covariance matrix of Nq responses of Model B (out)
53 ! Cggcomp = covariance matrix of Ng computed responses of Model B (out)
54 ! CabBE = predicted correlation matrix between Na parameters of
              Model A and Nb parameters of Model B (out)
55 !
56 ! CaaBE
            = predicted correlation matrix between Na parameters of
              Model A and Ng responses of Model B (out)
58 ! CbrBE = predicted correlation matrix between Nb parameters of
```

```
Model B and Nr responses of Model A (out)
60 ! CrqBE
              = predicted correlation matrix between Nr responses of
61!
                Model A and Ng responses of Model B (out)
62 ! Cqqcomp = covariance matrix between Nr computed responses of
63 !
                Model A and Ng computed responses of Model B (out)
64
   ! chi2
              = value of the consistency indicator chi^2
                                                            (out)
65
66
      PUBLIC
67
      REAL(DP), ALLOCATABLE ::
                                alpha(:)
68
      REAL(DP), ALLOCATABLE ::
                                rm(:)
69
      REAL(DP), ALLOCATABLE ::
                                rc(:)
70
      REAL(DP), ALLOCATABLE ::
                                Caa(:,:)
      REAL(DP), ALLOCATABLE ::
71
                                Car(:,:)
      REAL(DP), ALLOCATABLE ::
72
                                Crr(:,:)
73
      REAL(DP), ALLOCATABLE ::
                                Sra(:,:)
74
75
      REAL(DP), ALLOCATABLE ::
                                beta(:)
      REAL(DP), ALLOCATABLE ::
76
                                qm(:)
      REAL(DP), ALLOCATABLE ::
77
                                qc(:)
      REAL(DP), ALLOCATABLE ::
78
                                Cbb(:,:)
      REAL(DP), ALLOCATABLE ::
79
                                Cbq(:,:)
      REAL(DP), ALLOCATABLE ::
80
                                Cqq(:,:)
      REAL(DP), ALLOCATABLE ::
81
                                Sqb(:,:)
82
83
      REAL(DP), ALLOCATABLE ::
                                Cab(:,:)
84
      REAL(DP), ALLOCATABLE ::
                                Caq(:,:)
85
      REAL(DP), ALLOCATABLE ::
                                Cbr(:,:)
86
      REAL(DP), ALLOCATABLE ::
                                Crq(:,:)
87
      REAL(DP), ALLOCATABLE ::
                                Srb(:,:)
      REAL(DP), ALLOCATABLE ::
88
                                Sqa(:,:)
89
90
      REAL(DP), ALLOCATABLE ::
                                aBE(:)
91
      REAL(DP), ALLOCATABLE ::
                                rBE(:)
92
      REAL(DP), ALLOCATABLE ::
                                CaaBE(:,:)
93
      REAL(DP), ALLOCATABLE ::
                                CarBE(:,:)
94
      REAL(DP), ALLOCATABLE ::
                                CrrBE(:,:)
95
      REAL(DP), ALLOCATABLE ::
                                Crrcomp(:,:)
96
97
      REAL(DP), ALLOCATABLE ::
                                bBE(:)
98
      REAL(DP), ALLOCATABLE ::
                                qBE(:)
      REAL(DP), ALLOCATABLE ::
99
                                CbbBE(:,:)
100
      REAL(DP), ALLOCATABLE ::
                                CbqBE(:,:)
101
      REAL(DP), ALLOCATABLE ::
                                CqqBE(:,:)
102
      REAL(DP), ALLOCATABLE :: Cqqcomp(:,:)
103
104
      REAL(DP), ALLOCATABLE ::
                                CabBE(:,:)
105
      REAL(DP), ALLOCATABLE ::
                                CaqBE(:,:)
106
      REAL(DP), ALLOCATABLE ::
                                CbrBE(:,:)
107
      REAL(DP), ALLOCATABLE ::
                                CrqBE(:,:)
108
      REAL(DP), ALLOCATABLE ::
                                Crqcomp(:,:)
109
110
      REAL(DP)
                                chi2
111
112
      INTEGER (I4B)
                                CaseNumber
113
      INTEGER (I4B)
                                Na, Nr, Nb, Nq
114
115 END MODULE ModuleGlobalParameters
```

8.3 Module ModuleIO.f90

```
MODULE ModuleIO
1
2
3
     IMPLICIT NONE
4
5
     INTEGER, PARAMETER
                              :: usupr
                                            = 5, &
6
                                 udims
                                            =20, &
7
  !unit for the input of model A
8
                                 ua_nom
                                            =21,
9
                                            =22,
                                                  &
                                 ur_mea
                                 ur_com
10
                                            =23,
                                                  &
11
                                 uC_aa
                                            =24,
                                                  &
12
                                 uC_ar
                                            =25,
                                                  &
13
                                 uC_rr
                                            =26,
                                                  &
14
                                            =27,
                                 uS_ra
                                                  &
15
16 !unit for the input of model B
17
                                 ub_nom
                                            =31, &
18
                                 uq_mea
                                            =32,
                                                  &
                                            =33,
19
                                 uq_com
20
                                            =34,
                                 uC_bb
                                                  &
                                            =35,
21
                                 uC_bq
                                                  &
22
                                            =36,
                                 uC_qq
                                                  &
23
                                 uS_qb
                                            =37,
24
25 !unit for the input of the coupled matrices
26 !between models A & B
27
                                 uC_ab
                                            =41,
                                 uC_aq
28
                                            =42,
                                                  &
29
                                 uC_br
                                            =43,
                                                  &
30
                                            =44,
                                 uC_rq
                                                  &
31
                                            =45,
                                 uS_rb
                                                  &
32
                                 uS_qa
                                            =46,
34 !unit for the output of model A
                                 ua_BE
35
                                            =51, &
36
                                 ur_BE
                                            =52,
                                            =53,
37
                                 uC_aaBE
                                            =54,
38
                                 uC_rrBE
39
                                            =55,
                                 uC_arBE
40
                                 uCrr_comp
                                            =56,
41
42 !unit for the output of model B
43
                                 ub_BE
                                            =61,
44
                                 uq_BE
                                            =62,
45
                                 uC bbBE
                                            =63,
46
                                 uC_qqBE
                                            =64,
47
                                 uC_bqBE
                                            =65,
48
                                            =66,
                                 uCqq_comp
50 !unit for the output of the coupled matrices
51 !between models A & B
52
                                 uC_abBE
                                            =71, &
53
                                 uC_aqBE
                                            =72,
                                            =73,
54
                                 uC brBE
                                            =74,
55
                                 uC_rqBE
                                 uCrq_comp =75,
56
57
                                 uchi2
                                            =76
58
```

```
59
    LOGICAL :: a_nom =.false., r_mea =.false., r_com =.false.,
              C_aa =.false., C_ar =.false., C_rr =.false.,
60
              S_ra =.false., b_nom =.false., q_mea =.false.,
61
62
              q_com =.false., C_bb =.false., C_bq =.false.,
63
              C_qq =.false., S_qb =.false., C_ab =.false.,
                    =.false., C_br =.false., C_rq =.false.,
64
              C_aq
                     =.false., S_qa =.false., a_BE =.false.,
65
              S rb
                     =.false., C_aaBE =.false., C_rrBE=.false.,
66
              r BE
              C_arBE =.false., Crr_comp=.false., b_BE =.false.,
67
              q_BE
68
                      =.false., C bbBE =.false., C qqBE=.false.,
              C_bqBE =.false., Cqq_comp=.false., C_abBE=.false.,
69
70
              C_aqBE =.false., C_brBE =.false., C_rqBE=.false.,
71
              Crq_comp=.false., chi_2 =.false., dims =.false.
72
73 END MODULE ModuleIO
```

8.4 Module Module Errors. f90

42 END MODULE ModuleErrors

```
1 MODULE ModuleErrors
2
3
     USE ModuleGlobalParameters
4
5
    IMPLICIT NONE
6
    CHARACTER(LEN=80) errstr(5)
7
    INTEGER(I4B) :: alloc err,ierr = 0
8
     LOGICAL
                 :: lerr = .false.
9
10
    DATA errstr/
11
     'Error condition during file open',
                                                          & ! error 1
     'Error condition during file read',
12
                                                          & ! error 2
     'Error condition during file write',
13
                                                          & ! error 3
     'Unable to allocate storage for array',
                                                          & ! error 4
15
     'Unable to deallocate storage for array'/
                                                            ! error 5
16
17 CONTAINS
20
    SUBROUTINE errmsg
21
35
                           '****'//trim(errstr(ierr))//'****'
36
      write(*,'(/,a)')
37
   END SUBROUTINE errmsg
38
```

8.5 Subroutine Files.f90

```
1
   SUBROUTINE Files
2
   3
  !*
4
  !* Open input/output files for multi-pred using super file format. For
  !* different cases, the required input and output files are different.
  !*
  !* called by: multipred
8
   !* calls to: getarg,errmsg, filescase1, filescase2, filescase3, filescase4 *
9
  |*
10
  11
12
13
     USE ModuleFiles
14
15
16
     IMPLICIT NONE
17
     !local-----
18
     CHARACTER(LEN=128) :: argv,filename
19
20
     CHARACTER(LEN=12) :: header
     CHARACTER(LEN=8) :: category
INTEGER(I4B) :: argc, i
21
22
23
     CHARACTER(LEN=128) :: commnt
24
25
     argc = 1
26
     call getarg(argc,argv)
27
     filename = argv
28
     open(usupr,file=filename,status='old',err=100)
29
     read(usupr, '(a12)') header
     if (header /= 'MultiPredSup') then
30
      write(*,*) 'This is not a multi-pred superfile.'
31
32
      stop
33
     end if
34
     write(*,900) trim(filename)
35
     ! read the dimensions.inp file for control variables
36
     read(usupr,*) category,filename
37
     if (category == 'dims') then
      open(udims,file=filename,status='old',err=100)
38
39
      write(*,1000) trim(filename)
40
      dims = .true.
41
     else
42
      write(*,*) 'dimensions.inp is specified in the superfile.'
43
      stop
     end if
44
45
     ! read CaseNumber
46
47
     do i=1, 9
48
      read(udims,*,err=100) commnt
49
50
     read (udims,*,err=100) CaseNumber
51
     ! file I/O for Case 1
52
     if(CaseNumber == 1) then
53
54
      call filescase1
55
     end if
56
57
     ! file I/O for Case 2
     if(CaseNumber == 2) then
```

```
59
       call filescase2
60
     end if
61
62
     ! file I/O for Case 3
63
     if(CaseNumber == 3) then
       call filescase3
64
     end if
65
66
67
     ! file I/O for Case 4
68
     if(CaseNumber == 4) then
69
       call filescase4
70
     end if
71
     write(*, 1001)
72
73
     if(CaseNumber == 1) then
74
        write(*, 1002)
75
     else if (CaseNumber == 2) then
        write(*, 1003)
76
77
     else if (CaseNumber == 3) then
        write(*, 1004)
78
79
     else if (CaseNumber == 4) then
        write(*, 1005)
80
81
     end if
82
83
     return
     100 lerr = .true.;ierr = 1;call errmsg;stop
     900 format(/, &
85
          1x,'-----',/, &
1x,' Input super file .....',a)
86
87
     1000 format(&
88
          89
90
     1001 format(/, &
91
          1x, 'Case selected for this run: ',a)
92
     1002 format(&
93
          1x,'Case 1 -- "One-Model" Case: predictive modeling solely for Model A' /,&
94
                         with Na model parameters and Nr measured responses.', a)
95
     1003 format(&
          1x, 'Case 2 -- "One-Model" Case: predictive modeling for Model A with Nb'/,&
96
97
                         additional parameters, but no additional responses.', a)
98
     1004 format(&
          1x, 'Case 3 -- "One-Model" Case: predictive modeling for Model A with Nq'/,&
99
100
                         additional responses, but no additional parameters.', a)
101
     1005 format(&
          1x,'Case 4 -- "Two-Model" Case: predictive modeling for Model A coupled'/,&
102
103
                        with Model B.', a)
104
105 END SUBROUTINE Files
```

8.6 Module ModuleFiles.f90

```
1
    MODULE ModuleFiles
    2
   |*
3
   !* Module ModuleFiles encapsulates subroutines for:
4
5
   |*
                     subroutine filescase1()
   |*
                     subroutine filescase2()
6
   !*
7
                     subroutine filescase3()
   |*
                     subroutine filescase4()
8
   !*
9
   10
11
12
13
     USE ModuleErrors
     USE ModuleIO
14
15
     USE ModuleGlobalParameters
16
17
     IMPLICIT NONE
18
19
   CONTAINS
20
21
   22
23
   SUBROUTINE filescase1()
24
    25
26
   !*
27
   !* open needed files for case 1: "One-Model" Case: predictive modeling
28
    !* solely for Model A with Na model parameters and Nr
   !* measured responses.
29
30
   | *
   !* Open input/output files for multi-pred using super file format
31
32
   | *
   !* Category
               I/O
33
                      Description
34
   !* -----
   !* 'dims'
               input defines the Case selection and dimensions control
35
   !* 'a_nom'
               input nominal values of Na parameters of Model A
36
               input nominal values of Nr measured responses of Model A
37
   !* 'r_mea'
   !* 'r_com'
               input nominal values of Nr computed responses of Model A
38
   !* 'C_aa'
39
              input covariance matrix of Na parameters of Model A
              input covariance matrix of parameter-response of Model A
   !* 'C_ar'
40
   input covariance matrix of Nr responses of Model A
41
              input sensitivities of Model A
42
43
   !*
   !* 'a BE'
44
              output
                      best-estimate nominal values of Na parameters of
45
   !*
                      Model A
   !* 'r BE'
                      best-estimate nominal values of Nr responses of
46
               output
47
   |*
                      Model A
48
   !* 'C_aaBE'
               output predicted covariance matrix of Na parameters of
49
   !*
                      Model A
   !* 'C_rrBE'
               output predicted covariance matrix of Nr responses of
50
51
   !*
                      Model A
   !* 'C_arBE'
52
              output predicted correlation matrix between the Na
53
   !*
                     parameters and Nr responses of Model A
54
   !* 'Crr comp' output covariance matrix of Nr computed responses of Model A *
   !* 'chi 2' output value of the consistency indicator chi^2
55
56
   |*
57 !* called by: Files
  !* calls to: getarg,errmsg
```

```
59
    |*
    60
61
      IMPLICIT NONE
62
      !local-----
63
      CHARACTER(LEN=128) :: filename
64
      CHARACTER(LEN=8) :: category
65
66
      inquire(unit=usupr)
67
      do
68
        read(usupr,*,end=1) category,filename
69
70
       INPUT FILES
        if (category == 'a_nom') then
71
72
          open(ua nom,file=filename,status='old',err=100)
73
          write(*,1010) trim(filename)
74
          a nom = .true.
75
        else if (category == 'r mea') then
76
          open(ur mea,file=filename,status='old',err=100)
77
          write(*,1020) trim(filename)
78
          r mea = .true.
79
        else if (category == 'r com') then
          open (ur com,file=filename,status='old',err=100)
80
81
          write(*,1030) trim(filename)
82
          r com = .true.
        else if (category == 'C_aa') then
83
84
          open(uC_aa,file=filename,status='old',err=100)
          write(*,1040) trim(filename)
85
86
          C aa = .true.
87
        else if (category == 'C ar') then
          open(uC ar,file=filename,status='old',err=100)
88
          write(*,1050) trim(filename)
89
90
          Car = .true.
        else if (category == 'C rr') then
91
92
          open(uC rr,file=filename,status='old',err=100)
          write(*,1060) trim(filename)
93
94
          C rr = .true.
95
        else if (category == 'S ra') then
96
          open(uS ra,file=filename,status='old',err=100)
97
          write(*,1070) trim(filename)
98
          S ra = .true.
99
        OUTPUT FILES FOR RESULTS
        else if (category == 'a BE') then
102
          open (ua BE,file=filename,status='unknown',err=100)
103
          write(*,1100) trim(filename)
104
          a BE = .true.
        else if (category == 'r BE') then
105
106
          open (ur_BE,file=filename,status='unknown',err=100)
          write(*,1110) trim(filename)
107
108
          r BE = .true.
109
        else if (category == 'C aaBE') then
110
          open (uC aaBE,file=filename,status='unknown',err=100)
111
          write(*,1120) trim(filename)
112
          C aaBE = .true.
        else if (category == 'C rrBE') then
113
114
          open (uC rrBE,file=filename,status='unknown',err=100)
115
          write(*,1130) trim(filename)
116
          C rrBE = .true.
117
        else if (category == 'C_arBE') then
118
          open (uC_arBE,file=filename,status='unknown',err=100)
119
          write(*,1140) trim(filename)
```

```
120
           C_arBE = .true.
         else if (category == 'Crr_comp') then
121
           open (uCrr_comp,file=filename,status='unknown',err=100)
122
123
           write(*,1150) trim(filename)
124
           Crr\ comp = .true.
         else if (category == 'chi2') then
125
           open (uchi2,file=filename,status='unknown',err=100)
126
           write(*,1160) trim(filename)
127
128
           chi 2 = .true.
129 !
          else
130 !
            write(*,1500) category, filename
         end if
131
132
       end do
133
       1 close(usupr)
134
135 ! CHECK TO SEE IF REQUIRED INPUT/OUTPUT FILES ARE OPEN IN THE SUPERFILE
136
      ! INPUT
137
       if (.not. a_nom) then
138
         write(*,1510) 'a_nom';
                                  stop
139
       end if
140
       if (.not. r mea) then
141
        write(*,1510) 'r_mea';
                                  stop
142
       end if
       if (.not. r_com) then
144
        write(*,1510) 'r_com';
                                  stop
145
       end if
146
       if (.not. C_aa) then
147
        write(*,1510) 'C_aa';
                                  stop
148
       end if
       if (.not. S_ra) then
        write(*,1510) 'S_ra';
150
                                  stop
151
       end if
       if (.not. C ar) then
152
153
        write(*,1510) 'C ar';
                                  stop
154
       end if
155
       if (.not. C rr) then
156
        write(*,1510) 'C_rr';
                                  stop
157
       end if
158
       ! OUTPUT
159
       if (.not. Crr_comp) then
        write(*,1520) 'Crr_comp';stop
161
       end if
162
       if (.not. a BE) then
163
        write(*,1520) 'a_BE';
                                  stop
164
       end if
165
       if (.not. r BE) then
166
        write(*,1520) 'r BE';
                                  stop
167
       end if
168
       if (.not. C aaBE) then
169
        write(*,1520) 'C_aaBE'; stop
170
171
       if (.not. C rrBE) then
172
         write(*,1520) 'C_rrBE'; stop
173
       end if
174
       if (.not. C arBE) then
175
        write(*,1520) 'C arBE'; stop
176
177
       if (.not. chi 2) then
178
         write(*,1520) 'chi_2';
                                  stop
179
       end if
180
       return
```

```
181
182
     100 lerr = .true.;ierr = 1;call errmsg;stop
183
     1010 format(&
184
         1x,' Input file for parameters nominal values .......,a)
185
     1020 format(&
         186
     1030 format(&
187
188
         1x,' Input file for computed responses nominal values .................,a)
189
     1040 format(&
190
         1x,' Input file for covariance matrix of parameters ..................,a)
191
     1050 format(&
         1x,' Input file for correlation matrix of parameter-response ......',a)
192
     1060 format(&
193
         194
195
     1070 format(&
196
         1x,' Input file for sensitivities .......,a)
197
     1100 format(&
         198
199
     1110 format(&
         200
201
     1120 format(&
         1x, 'Output file for predicted covariance matrix of parameters......',a)
202
203
     1130 format(&
         1x,'Output file for predicted covariance matrix of responses ......',a)
204
205
     1140 format(&
206
         1x, 'Output file for predicted correlation of parameter-response ....',a)
207
     1150 format(&
208
         1x, 'Output file for covariance matrix for computed responses ......',a)
209
     1160 format(&
         1x, 'Output file for the consistency indicator chi^2 .....',a)
210
     1500 format(1x, 'Invalid file type:',a,' ....skipping',/, &
211
212
               1x, 'Specified file name:',a)
     1510 format(&
213
         1x,a,' input file not specified in superfile!')
214
215
216
         1x,a,' output file not specified in superfile!')
217
218
   END SUBROUTINE filescase1
219
   !++++++
220
221
222
   SUBROUTINE filescase2()
223
225 !*
226 !* open needed files for case 2: predictive modeling for Model A with Nb
227 !* additional parameters, but no additional responses;
228 !*
229 !* Open input/output files for multi-pred using super file format
230 !*
231 !* Category
                I/0
                       Description
232 !* -----
               _____
233 !* 'dims'
               input
                      defines the Case selection and dimensions control
234 !* 'a_nom'
               input
                      nominal values of Na parameters of Model A
235 !* 'r_mea'
               input
                      nominal values of Nr measured responses of Model A
236 !* 'r_com'
               input
                      nominal values of Nr computed responses of Model A
237 !* 'C_aa'
               input
                      covariance matrix of Na parameters of Model A
238 !* 'C_ar'
               input
                      covariance matrix of parameter-response of Model A
239 !* 'C_rr'
               input
                      covariance matrix of Nr responses of Model A
240 !* 'S_ra'
               input
                      sensitivities of Model A
241 !*
```

```
242 !* 'b nom'
                          nominal values of Nb additional parameters for Model A *
                  input
243 !* 'C_bb'
                  input
                          covariance matrix of Nb additional parameters
244 !*
245 !* 'C ab'
                  input
                          correlations between Na parameters and Nb parameters
246 !* 'C br'
                  input
                          correlations between Nb parameters and Nr responses
247 !* 'S_rb'
                  input
                          sensitivities of Nr responses wrt Nb parameters
248 !*
249 !* 'a_BE'
                          best-estimate nominal values of Na parameters of
                  output
250 !*
                          Model A
251 !* 'r_BE'
                          best-estimate nominal values of Nr responses of
                  output
252 !*
                          Model A
253 !* 'C_aaBE'
                          predicted covariance matrix of Na parameters of
                  output
254 !*
255 !* 'C rrBE'
                  output
                          predicted covariance matrix of Nr responses of Model A
256 !* 'C_arBE'
                  output
                          predicted correlation matrix between the Na parameters
257 !*
              and Nr responses of Model A
258 !* 'Crr_comp' output
                          covariance matrix of Nr computed responses of Model A
259 !*
260 !* 'b_BE'
                          best-estimate nominal values of Nb additional
                  output
261 !*
                          parameters for Model A
262 !* 'C bbBE'
                  output
                          predicted covariance matrix of Nb additional
263 !*
                          parameters for Model A
264 !*
265 !* 'C_abBE'
                          predicted correlations between Na parameters and Nb
                  output
266 !*
                          additional parameters for Model A
267 !* 'C brBE'
                  output
                          predicted correlations between Nb additional parameters*
268 !*
                          and Nr responses of Model A
269 !* 'chi 2'
                  output
                          value of the consistency indicator chi^2
270 1*
271 !* called by: Files
272 !* calls to: getarg,errmsg
273 !*
IMPLICIT NONE
275
276
      !Local-----
277
      CHARACTER(LEN=128) :: filename
278
      CHARACTER(LEN=8) :: category
279
280
      inquire(unit=usupr)
281
282
        read(usupr,*,end=1) category,filename
283
284 ! INPUT FILES FOR MODEL A
        if (category == 'a nom') then
          open(ua nom,file=filename,status='old',err=100)
286
287
          a nom = .true.
        else if (category == 'r mea') then
288
289
          open(ur_mea,file=filename,status='old',err=100)
290
          r mea = .true.
291
        else if (category == 'r com') then
292
          open (ur com,file=filename,status='old',err=100)
293
          r com = .true.
294
        else if (category == 'C aa') then
295
          open(uC aa,file=filename,status='old',err=100)
296
          C aa = .true.
        else if (category == 'C ar') then
297
298
          open(uC ar,file=filename,status='old',err=100)
299
          C ar = .true.
        else if (category == 'C rr') then
300
301
          open(uC_rr,file=filename,status='old',err=100)
302
          C_{rr} = .true.
```

```
303
         else if (category == 'S_ra') then
304
           open(uS_ra,file=filename,status='old',err=100)
305
           S_ra = .true.
306
307 !
        INPUT FILES FOR ADDITIONAL PARAMETERS
308
         else if (category == 'b nom') then
           open(ub_nom,file=filename,status='old',err=100)
310
           b nom = .true.
311
         else if (category == 'C bb') then
312
           open(uC bb,file=filename,status='old',err=100)
313
           C_bb = .true.
314
315 !
         INPUT FILES FOR COUPLED MATRICES
316
         else if (category == 'C ab') then
317
           open(uC_ab,file=filename,status='old',err=100)
318
           C ab = .true.
         else if (category == 'C br') then
319
320
           open(uC_br,file=filename,status='old',err=100)
           C_br = .true.
321
         else if (category == 'S rb') then
322
323
           open(uS rb,file=filename,status='old',err=100)
324
           S rb = .true.
325
        OUTPUT FILES FOR MODEL A
         else if (category == 'a BE') then
328
           open (ua_BE,file=filename,status='unknown',err=100)
329
           a BE = .true.
330
         else if (category == 'r BE') then
331
           open (ur BE,file=filename,status='unknown',err=100)
           r BE = .true.
332
         else if (category == 'C aaBE') then
333
           open (uC aaBE,file=filename,status='unknown',err=100)
           C aaBE = .true.
         else if (category == 'C rrBE') then
336
           open (uC rrBE,file=filename,status='unknown',err=100)
337
338
           C rrBE = .true.
339
         else if (category == 'C arBE') then
340
           open (uC arBE,file=filename,status='unknown',err=100)
           C arBE = .true.
         else if (category == 'Crr comp') then
342
343
           open (uCrr comp,file=filename,status='unknown',err=100)
344
           Crr comp = .true.
345
346 !
        OUTPUT FILES FOR MODEL B
347
         else if (category == 'b BE') then
348
           open (ub BE,file=filename,status='unknown',err=100)
349
           b BE = .true.
         else if (category == 'C_bbBE') then
350
351
           open (uC bbBE,file=filename,status='unknown',err=100)
352
           C \ bbBE = .true.
353
354 !
         OUTPUT FILES FOR COUPLED MATRICES BETWEEN MODELS A & B
355
         else if (category == 'C abBE') then
356
           open (uC abBE,file=filename,status='unknown',err=100)
357
           C abBE = .true.
         else if (category == 'C brBE') then
358
359
           open (uC brBE,file=filename,status='unknown',err=100)
360
           C brBE = .true.
361
         else if (category == 'chi2') then
362
363
           open (uchi2,file=filename,status='unknown',err=100)
```

```
364
          chi_2 = .true.
365 !
       else
366 !
           write(*,1500) category,filename
367
         end if
368
     end do
369
      1 close(usupr)
370
371 ! CHECK TO SEE IF REQUIRED INPUT/OUTPUT FILES ARE OPEN IN THE SUPERFILE
372
       ! INPUT
373
       if (.not. a_nom) then
374
        write(*,1510) 'a_nom';
                                  stop
375
       end if
376
       if (.not. r_mea) then
377
        write(*,1510) 'r_mea';
                                  stop
378
       end if
379
       if (.not. r_com) then
        write(*,1510) 'r_com';
380
                                  stop
381
       end if
382
       if (.not. C_aa) then
383
        write(*,1510) 'C_aa';
                                  stop
384
       end if
       if (.not. C_ar) then
385
        write(*,1510) 'C_ar';
                                  stop
387
       end if
388
       if (.not. C_rr) then
389
        write(*,1510) 'C_rr';
                                  stop
390
       end if
391
       if (.not. S_ra) then
        write(*,1510) 'S_ra';
392
                                  stop
393
       end if
394
       if (.not. b nom) then
395
        write(*,1510) 'b_nom';
                                  stop
396
       end if
397
       if (.not. C bb) then
398
        write(*,1510) 'C bb';
                                  stop
399
       end if
400
       if (.not. C ab) then
401
        write(*,1510) 'C_ab';
                                  stop
402
       end if
403
       if (.not. C br) then
        write(*,1510) 'C_br';
404
                                  stop
405
       end if
406
       if (.not. S rb) then
407
       write(*,1510) 'S rb';
                                  stop
408
       end if
409
410
       ! OUTPUT
411
       if (.not. Crr_comp) then
412
        write(*,1520) 'Crr_comp';stop
413
       end if
414
       if (.not. a BE) then
415
        write(*,1520) 'a_BE';
                                  stop
416
       end if
417
       if (.not. r BE) then
418
        write(*,1520) 'r BE';
                                  stop
419
       end if
420
       if (.not. C aaBE) then
421
        write(*,1520) 'C aaBE'; stop
422
423
       if (.not. C_rrBE) then
424
        write(*,1520) 'C_rrBE'; stop
```

```
425
     end if
426
     if (.not. C_arBE) then
427
       write(*,1520) 'C_arBE'; stop
428
     end if
429
     if (.not. b_BE) then
430
       write(*,1520) 'b_BE';
                            stop
431
     end if
432
     if (.not. C bbBE) then
433
       write(*,1520) 'C_bbBE'; stop
434
     end if
435
     if (.not. C abBE) then
436
       write(*,1520) 'C_abBE'; stop
437
     end if
438
     if (.not. C_brBE) then
439
       write(*,1520) 'C_brBE';
                            stop
440
     end if
441
     if (.not. chi_2) then
442
       write(*,1520) 'chi_2';
                            stop
443
     end if
444
445
     return
446
     100 lerr = .true.;ierr = 1;call errmsg;stop
447
     1010 format(&
448
449
         1x,' Input file for parameters nominal values ......................,a)
450
     1020 format(&
         451
452
     1030 format(&
453
         1x,' Input file for computed responses nominal values .................,a)
     1040 format(&
454
         1x,' Input file for covariance matrix of parameters ...................,a)
455
456
     1050 format(&
         1x,' Input file for correlation matrix of parameter-response ......,a)
457
458
     1060 format(&
         459
460
     1070 format(&
         1x,' Input file for sensitivities .......,a)
461
462
     1100 format(&
         463
     1110 format(&
464
         465
466
     1120 format(&
467
         1x, 'Output file for predicted covariance matrix of parameters.....',a)
468
     1130 format(&
469
         1x, 'Output file for predicted covariance matrix of responses ......',a)
470
     1140 format(&
471
         1x, 'Output file for predicted correlation of parameter-response ....',a)
472
     1150 format(&
473
         1x, 'Output file for covariance matrix for computed responses ......',a)
474
     1160 format(&
475
         1x, 'Output file for the consistency indicator chi^2 ...............,a)
476
     1500 format(1x, 'Invalid file type:',a,' ....skipping',/, &
477
               1x,'Specified file name:',a)
478
     1510 format(&
479
         1x,a,' input file not specified in superfile!')
480
     1520 format(&
481
         1x,a,' output file not specified in superfile!')
482
483
    END SUBROUTINE filescase2
484
485
```

487 **SUBROUTINE** filescase3()

486

488

```
490 !*
491 !* open needed files for read and write for Case 3: predictive modeling for
492 !* Model A with Ng additional responses, but no additional parameters.
493 !*
494 !* Open input/output files for multi-pred using super file format
495 !*
496 !* Category
                  I/0
                           Description
497 !* -----
                  ----
498 !* 'dims'
                 input
                         defines the Case selection and dimensions control
499 !* 'a nom'
                 input
                          nominal values of Na parameters of Model A
500 !* 'r mea'
                 input
                          nominal values of Nr measured responses of Model A
501 !* 'r com'
                 input
                          nominal values of Nr computed responses of Model A
502 !* 'C aa'
                 input
                          covariance matrix of Na parameters of Model A
503 !* 'C_ar'
                 input
                          correlations between Na parameters and Nr responses of *
504 !*
                          Model A
505 !* 'C_rr'
                 input
                          covariance matrix of Nr responses of Model A
506 !* 'S_ra'
                 input
                          sensitivities of Model A
507 !*
508 !* 'q_mea'
                          nominal values of Ng measured responses for Model A
                 input
509 !* 'q_com'
                          nominal values of Ng computed responses for Model A
                 input
510 !* 'C_qq'
                          covariance matrix of Nq additional responses for
                 input
511 !*
                          Model A
512 !*
513 !* 'C_aq'
                 input
                          correlations between Na parameters of Model A and
514 !*
                          Ng additional responses for Model A
515 !* 'C_rq'
                 input
                          correlations between Nr responses of Model A and Ng
516 !*
                          additional responses for Model A
517 !* 'S_qa'
                 input
                          sensitivities of Ng additional responses for Model A
518 !*
                          w.r.t. Na parameters of Model A
519 !*
520 !* 'a BE'
                          best-estimate nominal values of Na parameters of
                 output
521 !*
522 !* 'r BE'
                 output
                          best-estimate nominal values of Nr responses of
523 !*
524 !* 'C_aaBE'
                          predicted covariance matrix of Na parameters of
                 output
525 !*
526 !* 'C rrBE'
                 output
                          predicted covariance matrix of Nr responses of Model A *
527 !* 'C_arBE'
                 output
                          predicted correlation matrix between the Na parameters *
528 !*
                 and Nr responses of Model A
529 !* 'Crr comp' output
                          covariance matrix of Nr computed responses of Model A *
530 !*
531 !* 'q BE'
                          best-estimate nominal values of Ng additional response *
532 !*
533 !* 'C_qqBE'
                 output
                          predicted covariance matrix of Nq additional response
534 !*
                          for Model A
535 !* 'Cqq_comp' output
                          covariance matrix for Nq additional computed responses
536 !*
                          of Model A
537 !*
538 !* 'C_aqBE'
                 output
                          predicted correlation matrix between Na parameters of
539 !*
                          Model A and Nq additional responses for Model A
540 !* 'C_rqBE'
                 output
                          predicted correlation matrix between Nr responses of
541 !*
                          Model A and Nq additional responses for Model A
542 !* 'Crq_comp' output
                          correlation matrix between Nr computed responses of
543 !*
                          Model A and Ng additional computed responses of Model A*
544 !* 'chi_2'
                 output
                          value of the consistency indicator chi^2
545 !*
546 !* called by: Files
```

```
*
547 !* calls to: getarg,errmsg
548 !*
550
551
      IMPLICIT NONE
552
      !Local-----
553
      CHARACTER(LEN=128) :: filename
      CHARACTER(LEN=8) :: category
554
555
556
      inquire(unit=usupr)
557 ! write(*,900) trim(filename)
558
      do
559
        read(usupr,*,end=1) category,filename
560
561 !
        INPUT FILES FOR MODEL A
562
        if (category == 'a nom') then
563
          open(ua nom,file=filename,status='old',err=100)
564
          a nom = .true.
        else if (category == 'r mea') then
565
566
          open(ur_mea,file=filename,status='old',err=100)
567
          r mea = .true.
        else if (category == 'r com') then
568
569
          open (ur_com,file=filename,status='old',err=100)
570
          r_{com} = .true.
571
        else if (category == 'C aa') then
572
          open(uC_aa,file=filename,status='old',err=100)
573
          C aa = .true.
574
        else if (category == 'C ar') then
575
          open(uC ar,file=filename,status='old',err=100)
576
          Car = .true.
        else if (category == 'C rr') then
577
578
          open(uC rr,file=filename,status='old',err=100)
579
          C rr = .true.
        else if (category == 'S ra') then
580
          open(uS ra,file=filename,status='old',err=100)
582
          S ra = .true.
583
584 !
        INPUT FILES FOR MODEL B
        else if (category == 'q_mea') then
          open(uq_mea,file=filename,status='old',err=100)
587
          q mea = .true.
        else if (category == 'q com') then
          open (uq_com,file=filename,status='old',err=100)
590
          q com = .true.
591
        else if (category == 'C qq') then
592
          open(uC qq,file=filename,status='old',err=100)
593
          C qq = .true.
594
595 !
        INPUT FILES FOR COUPLED MATRICES
        else if (category == 'C aq') then
597
          open(uC aq,file=filename,status='old',err=100)
598
          C aq = .true.
599
        else if (category == 'C rq') then
600
          open(uC rq,file=filename,status='old',err=100)
          C_rq = .true.
601
        else if (category == 'S qa') then
602
603
          open(uS qa,file=filename,status='old',err=100)
604
          S qa = .true.
605
        OUTPUT FILES FOR MODEL A
606 !
607
        else if (category == 'a_BE') then
```

```
608
           open (ua_BE,file=filename,status='unknown',err=100)
609
           a BE = .true.
         else if (category == 'r_BE') then
610
611
           open (ur_BE,file=filename,status='unknown',err=100)
612
           r BE = .true.
         else if (category == 'C aaBE') then
613
614
           open (uC aaBE,file=filename,status='unknown',err=100)
           C aaBE = .true.
615
         else if (category == 'C rrBE') then
616
617
           open (uC rrBE,file=filename,status='unknown',err=100)
           C_rrBE = .true.
618
         else if (category == 'C arBE') then
619
620
           open (uC_arBE,file=filename,status='unknown',err=100)
           C arBE = .true.
621
622
         else if (category == 'Crr comp') then
623
           open (uCrr comp,file=filename,status='unknown',err=100)
624
           Crr comp = .true.
625
        OUTPUT FILES FOR MODEL B
626 !
627
         else if (category == 'q BE') then
628
           open (uq_BE,file=filename,status='unknown',err=100)
           q_BE = .true.
629
         else if (category == 'C qqBE') then
630
           open (uC_qqBE,file=filename,status='unknown',err=100)
631
632
           C qqBE = .true.
633
         else if (category == 'Cqq comp') then
634
           open (uCqq comp,file=filename,status='unknown',err=100)
635
           Cqq comp = .true.
636
        OUTPUT FILES FOR COUPLED MATRICES BETWEEN MODELS A & B
637 !
         else if (category == 'C agBE') then
638
639
           open (uC aqBE,file=filename,status='unknown',err=100)
640
           C agBE = .true.
         else if (category == 'C rgBE') then
641
           open (uC rqBE,file=filename,status='unknown',err=100)
642
643
           C rqBE = .true.
644
         else if (category == 'Crq comp') then
645
           open (uCrq comp,file=filename,status='unknown',err=100)
           Crq comp = .true.
647
         else if (category == 'chi2') then
648
           open (uchi2,file=filename,status='unknown',err=100)
649
           chi 2 = .true.
650 !
651 !
            write(*,1500) category,filename
652
         end if
653
      end do
654
      1 close(usupr)
655
656 ! CHECK TO SEE IF REQUIRED INPUT/OUTPUT FILES ARE OPEN IN THE SUPERFILE
       ! INPUT
658
       if (.not. a nom) then
659
         write(*,1510) 'a nom';
                                  stop
660
       end if
661
       if (.not. r mea) then
662
         write(*,1510) 'r mea';
                                  stop
663
       end if
664
       if (.not. r com) then
665
        write(*,1510) 'r com';
                                  stop
666
       end if
667
       if (.not. C_aa) then
668
        write(*,1510) 'C_aa';
                                  stop
```

```
end if
669
670
       if (.not. C_ar) then
671
         write(*,1510) 'C_ar';
                                  stop
672
       end if
673
       if (.not. C_rr) then
674
         write(*,1510) 'C_rr';
                                   stop
675
       end if
676
       if (.not. S_ra) then
677
         write(*,1510) 'S_ra';
                                   stop
678
       end if
679
       if (.not. q_mea) then
680
         write(*,1510) 'q_mea';
                                   stop
681
       end if
682
       if (.not. q_com) then
683
         write(*,1510) 'q_com';
                                   stop
684
       end if
685
       if (.not. C_qq) then
686
         write(*,1510) 'C_qq';
                                   stop
687
       end if
       if (.not. C_aq) then
688
689
         write(*,1510) 'C_aq';
                                   stop
690
       end if
691
       if (.not. C_rq) then
692
        write(*,1510) 'C_rq';
                                   stop
693
       end if
694
       if (.not. S_qa) then
695
        write(*,1510) 'S_qa';
                                   stop
696
       end if
697
       ! OUTPUT
698
699
       if (.not. Crr_comp) then
700
         write(*,1520) 'Crr comp';stop
701
       end if
702
       if (.not. a BE) then
703
         write(*,1520) 'a BE';
                                   stop
704
       end if
705
       if (.not. r BE) then
706
         write(*,1520) 'r_BE';
                                   stop
707
       end if
708
       if (.not. C_aaBE) then
709
         write(*,1520) 'C_aaBE'; stop
710
       end if
711
       if (.not. C rrBE) then
712
        write(*,1520) 'C rrBE'; stop
713
714
       if (.not. C arBE) then
715
         write(*,1520) 'C arBE'; stop
716
       end if
717
       if (.not. Cqq_comp) then
718
         write(*,1520) 'Cqq_comp';stop
719
720
       if (.not. q_BE) then
721
         write(*,1520) 'q_BE';
                                   stop
722
       end if
723
       if (.not. C qqBE) then
724
         write(*,1520) 'C qqBE'; stop
725
726
       if (.not. Crq_comp) then
727
         write(*,1520) 'Crq_comp';stop
728
       end if
729
       if (.not. C_aqBE) then
```

```
write(*,1520) 'C_aqBE'; stop
731
      end if
732
      if (.not. C_rqBE) then
733
       write(*,1520) 'C_rqBE'; stop
734
      end if
735
      if (.not. chi_2) then
736
      write(*,1520) 'chi_2';
                              ston
737
      end if
738
739
      return
740
741
      100 lerr = .true.;ierr = 1;call errmsg;stop
742
      1500 format(1x, 'Invalid file type:',a,' ....skipping',/, &
                1x,'Specified file name:',a)
      1510 format(&
          1x,a,' input file not specified in superfile!')
      1520 format(&
          1x,a,' output file not specified in superfile!')
747
748
749 END SUBROUTINE filescase3
750
752
753 SUBROUTINE filescase4()
754
756 !*
757 !* open needed files for read and write for case 4: "Two-Model" Case:
758 !* predictive modeling for Model A coupled with Model B.
759 !*
760 !* Open input/output files for multi-pred using super file format
761 !*
762 !* Category
                 I/O
                          Description
763 !* -----
                 -----
764 !* 'dims'
                 input defines the Case selection and dimensions control
765 !* 'a nom'
                 input
                         nominal values of Na parameters of Model A
766 !* 'r mea'
                 input
                         nominal values of Nr measured responses of Model A
767 !* 'r com'
                 input
                         nominal values of Nr computed responses of Model A
768 !* 'C_aa'
                 input
                        covariance matrix of Na parameters of Model A
769 !* 'C_ar'
                         correlations between Na parameters and Nr responses of *
                 input
770 !*
771 !* 'C rr'
                 input
                         covariance matrix of Nr responses of Model A
772 !* 'S_ra'
                 input
                         sensitivities of Model A
773 !*
774 !* 'b nom'
                 input
                         nominal values of Nb parameters of Model B
775 !* 'q mea'
                 input
                         nominal values of Ng measured responses of Model B
776 !* 'q com'
                 input
                         nominal values of Nq computed responses of Model B
777 !* 'C_bb'
                 input
                         covariance matrix of Nb parameters of Model B
778 !* 'C bq'
                 input
                         correlations between Nb parameters and Nq responses of *
779 !*
780 !* 'C qq'
                 input
                         covariance matrix of Nq responses of Model B
781 !* 'S_qb'
                 input
                         sensitivities of Nq responses of Model B w.r.t. Nb
782 !*
                         parameters of Model B
783 !*
784 !* 'C ab'
                 input
                         correlations between Na parameters of Model A and Nb
785 !*
                         parameters of Model B
786 !* 'C aq'
                         correlations between Na parameters of Model A and Ng
                 input
787 !*
                         responses of Model B
788 !* 'C_br'
                 input
                         correlations between Nb parameters of Model B and Nr
789 !*
                         responses of Model A
790 !* 'C rq'
                 input
                         correlations between Nr responses of Model A and Nq
```

```
791 !*
                           responses of Model B
792 !* 'S_rb'
                           sensitivities of Nr responses of Model A w.r.t. Nb
                  input
793 !*
                           parameters of Model B
794 !* 'S_qa'
                           sensitivities of Ng responses of Model B w.r.t. Na
                  input
795 !*
                           parameters of Model A
796 !*
797 !* 'a_BE'
                  output
                           best-estimate nominal values of Na parameters of
798 !*
799 !* 'r BE'
                           best-estimate nominal values of Nr responses of
                  output
800 !*
                           Model A
801 !* 'C_aaBE'
                  output
                           predicted covariance matrix of Na parameters of
802 !*
                           Model A
803 !* 'C rrBE'
                  output
                           predicted covariance matrix of Nr responses of Model A
804 !* 'C_arBE'
                  output
                           predicted correlation matrix between the Na parameters
805 !*
                  and Nr responses of Model A
806 !* 'Crr_comp' output
                           covariance matrix of Nr computed responses of Model A
807 !*
808 !* 'b BE'
                  output
                           best-estimate parameters nominal values of Model B
809 !* 'q_BE'
                  output
                           best-estimate response nominal values of Model B
810 !* 'C_bbBE'
                  output
                           predicted optimal covariance matrix of parameters of
811 !*
812 !* 'C qqBE'
                           predicted covariance matrix of responses of Model B
                  output
813 !* 'C_bqBE'
                  output
                           predicted correlation matrix for the parameters
814 !*
                  and responses of Model B
815 !* 'Cqq_comp' output
                           covariance matrix for computed responses of Model B
816 !*
817 !* 'C abBE'
                           predicted correlation matrix between Na parameters of
                  output
818 !*
                           Model A and Nb parameters of Model B
819 !* 'C_aqBE'
                           predicted correlation matrix between Na parameters of
                  output
820 !*
                           Model A and Ng responses of Model B
821 !* 'C_brBE'
                  output
                           predicted correlation matrix between Nb parameters of
822 !*
                           Model B and Nr responses of Model A
823 !* 'C rqBE'
                           predicted correlation matrix between Nr responses of
                  output
824 !*
                           Model A and Ng responses of Model B
825 !* 'Crq_comp' output
                           covariance matrix between Nr computed responses of
826 !*
                           Model A and Ng computed responses of Model B
827 !* 'chi 2'
                  output
                           value of the consistency indicator chi^2
828 !*
829 !* called by: Files
830 !* calls to: getarg, errmsg
832 !***********************
833
834
      IMPLICIT NONE
835
      !Local-----
836
      CHARACTER(LEN=128) :: filename
837
      CHARACTER(LEN=8) :: category
838
839
      inquire(unit=usupr)
840 ! write(*,900) trim(filename)
841
842
        read(usupr,*,end=1) category,filename
843
844 !
       INPUT FILES FOR MODEL A
845
        if (category == 'a nom') then
846
          open(ua nom,file=filename,status='old',err=100)
847
          a nom = .true.
848
        else if (category == 'r mea') then
849
          open(ur mea,file=filename,status='old',err=100)
          r_mea = .true.
850
        else if (category == 'r_com') then
851
```

```
852
           open (ur_com,file=filename,status='old',err=100)
853
           r_{com} = .true.
         else if (category == 'C_aa') then
854
855
           open(uC_aa,file=filename,status='old',err=100)
856
           C_aa = .true.
         else if (category == 'C ar') then
857
858
           open(uC ar,file=filename,status='old',err=100)
859
           C ar = .true.
         else if (category == 'C rr') then
860
861
           open(uC rr,file=filename,status='old',err=100)
862
           C_{rr} = .true.
         else if (category == 'S_ra') then
863
           open(uS_ra,file=filename,status='old',err=100)
864
865
           S_ra = .true.
866
867 !
         INPUT FILES FOR MODEL B
868
         else if (category == 'b nom') then
869
           open(ub nom,file=filename,status='old',err=100)
870
           b nom = .true.
         else if (category == 'q_mea') then
871
872
           open(uq mea,file=filename,status='old',err=100)
           q_mea = .true.
873
         else if (category == 'q_com') then
874
875
           open (uq_com,file=filename,status='old',err=100)
876
           q_{com} = .true.
877
         else if (category == 'C bb') then
878
           open(uC_bb,file=filename,status='old',err=100)
879
           C bb = .true.
         else if (category == 'C bq') then
880
           open(uC bq,file=filename,status='old',err=100)
           C bq = .true.
         else if (category == 'C_qq') then
           open(uC_qq,file=filename,status='old',err=100)
           C qq = .true.
         else if (category == 'S qb') then
887
           open(uS qb,file=filename,status='old',err=100)
888
           S qb = .true.
889
890 !
         INPUT FILES FOR COUPLED MATRICES BETWEEN MODELS A & B
         else if (category == 'C ab') then
892
           open(uC_ab,file=filename,status='old',err=100)
893
           C ab = .true.
894
         else if (category == 'C aq') then
895
           open(uC aq,file=filename,status='old',err=100)
896
           C aq = .true.
897
         else if (category == 'C br') then
898
           open(uC br,file=filename,status='old',err=100)
899
           C_br = .true.
900
         else if (category == 'C rq') then
901
           open(uC rq,file=filename,status='old',err=100)
902
           C rq = .true.
903
         else if (category == 'S rb') then
904
           open(uS rb,file=filename,status='old',err=100)
905
           S rb = .true.
         else if (category == 'S qa') then
906
907
           open(uS qa,file=filename,status='old',err=100)
908
           S qa = .true.
909
910 !
         OUTPUT FILES FOR MODEL A
911
         else if (category == 'a_BE') then
912
           open (ua_BE,file=filename,status='unknown',err=100)
```

```
913
           a_BE = .true.
914
         else if (category == 'r_BE') then
915
           open (ur_BE,file=filename,status='unknown',err=100)
916
           r_BE = .true.
917
         else if (category == 'C aaBE') then
918
           open (uC aaBE,file=filename,status='unknown',err=100)
919
           C aaBE = .true.
         else if (category == 'C rrBE') then
920
921
           open (uC rrBE,file=filename,status='unknown',err=100)
922
           C_rrBE = .true.
         else if (category == 'C arBE') then
923
924
           open (uC_arBE,file=filename,status='unknown',err=100)
           C arBE = .true.
925
         else if (category == 'Crr comp') then
926
927
           open (uCrr comp,file=filename,status='unknown',err=100)
928
           Crr comp = .true.
929
         OUTPUT FILES FOR MODEL B
930 !
931
         else if (category == 'b BE') then
932
           open (ub BE,file=filename,status='unknown',err=100)
933
           b BE = .true.
         else if (category == 'q_BE') then
           open (uq_BE,file=filename,status='unknown',err=100)
935
936
           q_BE = .true.
937
         else if (category == 'C bbBE') then
938
           open (uC_bbBE,file=filename,status='unknown',err=100)
939
           C bbBE = .true.
940
         else if (category == 'C qqBE') then
           open (uC qqBE,file=filename,status='unknown',err=100)
           C qqBE = .true.
         else if (category == 'C bgBE') then
943
944
           open (uC bqBE,file=filename,status='unknown',err=100)
945
           C bqBE = .true.
946
         else if (category == 'Cqq comp') then
947
           open (uCqq comp,file=filename,status='unknown',err=100)
948
           Cqq comp = .true.
949
950 !
        OUTPUT FILES FOR COUPLED MATRICES BETWEEN MODELS A & B
         else if (category == 'C abBE') then
952
           open (uC_abBE,file=filename,status='unknown',err=100)
953
           C abBE = .true.
954
         else if (category == 'C aqBE') then
955
           open (uC aqBE,file=filename,status='unknown',err=100)
956
           C aqBE = .true.
957
         else if (category == 'C brBE') then
958
           open (uC brBE,file=filename,status='unknown',err=100)
959
           C brBE = .true.
         else if (category == 'C_rqBE') then
960
961
           open (uC rqBE,file=filename,status='unknown',err=100)
962
           C rqBE = .true.
963
         else if (category == 'Crq comp') then
964
           open (uCrq comp,file=filename,status='unknown',err=100)
965
           Crq comp = .true.
966
         else if (category == 'chi2') then
967
           open (uchi2,file=filename,status='unknown',err=100)
968
           chi 2 = .true.
969
970
           write(*,1500) category,filename
971
         end if
972
       end do
973
       1 close(usupr)
```

```
974
975 ! CHECK TO SEE IF REQUIRED INPUT/OUTPUT FILES ARE OPEN IN THE SUPERFILE
976
       ! INPUT
977
       if (.not. a_nom) then
978
         write(*,1510) 'a_nom';
                                  stop
979
       end if
980
       if (.not. r_mea) then
981
         write(*,1510) 'r_mea';
                                  stop
982
       end if
983
       if (.not. r_com) then
984
         write(*,1510) 'r_com';
                                  stop
985
       end if
986
       if (.not. C_aa) then
987
         write(*,1510) 'C_aa';
                                  stop
988
       end if
989
       if (.not. C_ar) then
         write(*,1510) 'C_ar';
990
                                  stop
991
       end if
992
       if (.not. C_rr) then
993
        write(*,1510) 'C_rr';
                                  stop
994
       end if
995
       if (.not. S ra) then
996
        write(*,1510) 'S_ra';
                                  stop
997
       end if
998
       if (.not. b_nom) then
999
        write(*,1510) 'b_nom';
                                  stop
1000
       end if
1001
       if (.not. q_mea) then
        write(*,1510) 'q_mea';
1002
                                   stop
1003
       end if
1004
       if (.not. q_com) then
1005
        write(*,1510) 'q_com';
                                  stop
1006
       end if
1007
       if (.not. C bb) then
1008
        write(*,1510) 'C bb';
                                  stop
1009
       end if
1010
       if (.not. C bq) then
1011
        write(*,1510) 'C_bq';
                                  stop
1012
       end if
1013
       if (.not. C_qq) then
1014
        write(*,1510) 'C_qq';
                                  stop
1015
       end if
1016
       if (.not. S qb) then
1017
        write(*,1510) 'S_qb';
                                  stop
1018
       end if
1019
       if (.not. C ab) then
1020
        write(*,1510) 'C ab';
                                  stop
1021
       end if
1022
       if (.not. C_aq) then
1023
        write(*,1510) 'C_aq';
                                  stop
1024
1025
       if (.not. C br) then
1026
        write(*,1510) 'C br';
                                  stop
1027
       end if
1028
       if (.not. C rq) then
1029
        write(*,1510) 'C rq';
                                  stop
1030
      end if
1031
       if (.not. S rb) then
1032
        write(*,1510) 'S_rb';
                                  stop
1033
       end if
1034
      if (.not. S_qa) then
```

```
1035
        write(*,1510) 'S_qa';
                              stop
1036 end if
1037
1038
     ! OUTPUT
      if (.not. Crr_comp) then
1039
        write(*,1520) 'Crr_comp';stop
1040
1041
      end if
1042
      if (.not. a_BE) then
       write(*,1520) 'a_BE';
1043
                                stop
1044
      end if
1045
      if (.not. r BE) then
       write(*,1520) 'r_BE';
1046
                                stop
1047
      end if
      if (.not. C_aaBE) then
1048
       write(*,1520) 'C_aaBE'; stop
1050
     end if
1051
      if (.not. C rrBE) then
       write(*,1520) 'C_rrBE'; stop
1052
1053 end if
      if (.not. C_arBE) then
1054
1055
        write(*,1520) 'C_arBE'; stop
1056
      end if
      if (.not. Cqq_comp) then
1057
1058
        write(*,1520) 'Cqq_comp';stop
1059 end if
1060
      if (.not. b_BE) then
1061
       write(*,1520) 'b_BE';
                                stop
1062
      end if
1063
      if (.not. q_BE) then
1064
       write(*,1520) 'q_BE';
                                stop
1065
      end if
1066
      if (.not. C bbBE) then
1067
       write(*,1520) 'C bbBE'; stop
1068
      end if
1069
      if (.not. C qqBE) then
1070
       write(*,1520) 'C_qqBE'; stop
1071
1072
      if (.not. C bqBE) then
1073
       write(*,1520) 'C_bqBE'; stop
1074
      end if
1075
      if (.not. Crq_comp) then
1076
       write(*,1520) 'Crq comp';stop
1077
1078
      if (.not. C abBE) then
1079
       write(*,1520) 'C abBE'; stop
1080
      end if
1081
      if (.not. C aqBE) then
1082
       write(*,1520) 'C_aqBE'; stop
1083
      end if
1084
      if (.not. C brBE) then
1085
       write(*,1520) 'C brBE'; stop
1086
      end if
1087
      if (.not. C rqBE) then
1088
        write(*,1520) 'C rqBE'; stop
1089
      end if
1090
      if (.not. chi 2) then
1091
       write(*,1520) 'chi 2';
                                stop
1092
      end if
1093
1094
      return
1095
```

```
100 lerr = .true.;ierr = 1;call errmsg;stop
1097
     1500 format(1x, 'Invalid file type:',a,' ....skipping',/, &
              1x,'Specified file name:',a)
1098
1099
     1510 format(&
         1x,a,' input file not specified in superfile!')
1100
1101
     1520 format(&
         1x,a,' output file not specified in superfile!')
1102
1103
1104 END SUBROUTINE filescase4
1108 END MODULE ModuleFiles
1109
```

8.7 Subroutine ReadInput.f90

```
SUBROUTINE ReadInput
2
   3
   !*
4
5
   !* Reads and processes all multi-pred input parameters and data.
   !*
6
   !************************
7
     !Global-----
8
9
    USE ModuleReadWrite
10
    USE ModuleLapack, ONLY : is_positive_definite
11
12
    IMPLICIT NONE
13
    !Local-----
14
    INTEGER(I4B)
15
    CHARACTER(LEN=128) :: commnt
16
17
     ! read dimensions for the vectors and matrices
18
    read (udims,*,err=100) commnt
    read (udims,*,err=100) Na
19
    read (udims,*,err=100) commnt
20
    read (udims,*,err=100) Nr
21
22
    write(*, 1010) Na, Nr
23
    if(CaseNumber /= 1) then
24
       do i=1, 5
25
        read(udims,*,err=100) commnt
26
       end do
27
       read (udims,*,err=100) Nb
28
       do i=1, 5
29
        read(udims,*,err=100) commnt
30
       end do
       read (udims,*,err=100) Nq
31
       if(CaseNumber == 2) then
32
         write(*, 1011) Nb
33
34
       else if (CaseNumber == 3) then
35
         write(*, 1012) Nq
       else if (CaseNumber == 4) then
36
         write(*, 1013) Nb, Nq
37
       end if
38
39
     end if
40
    close(udims)
41
```

```
42
     write(*, 1000)
43
44
     !READ INPUT FILES FOR MODEL A
45
      ! read parameters nominal values
     write(*, 1020)
46
     write(*, 1030)
47
48
     allocate(alpha(Na),stat=alloc_err)
49
     call readVectorFromFile(ua nom,alpha)
50
51
     ! read measured responses nominal values
52
     write(*, 1040)
53
     allocate(rm(Nr),stat=alloc_err)
     call readVectorFromFile(ur_mea,rm)
54
55
56
     ! read computed responses nominal values
57
     write(*, 1050)
58
     allocate(rc(Nr),stat=alloc_err)
     call readVectorFromFile(ur_com,rc)
59
60
     ! read covariance matrices for parameter-parameter
61
62
     write(*, 1060)
     allocate(Caa(Na,Na),stat=alloc_err)
63
     call readMatrixFromFile(uC_aa,Caa)
64
     ! check if Ca positive definite
65
     write(*, 1070)
66
67
     if(is_positive_definite(Caa) == 0) then
68
        write(*, 1080)
69
     else
70
        write(*, 1090); stop
71
     end if
72
73 ! read covariance matrices for parameter-response
74
     write(*, 1100)
75
     allocate(Car(Na,Nr),stat=alloc err)
76
     call readMatrixFromFile(uC ar,Car)
77
78
     ! read covariance matrices for response-response
79
     write(*, 1110)
80
     allocate(Crr(Nr,Nr),stat=alloc_err)
81
     call readMatrixFromFile(uC rr,Crr)
82
     ! check if Crr positive definite
83
     write(*, 1120)
84
     if(is_positive_definite(Crr) == 0) then
85
        write(*, 1130);
86
87
        write(*, 1140); stop
88
     end if
89
90
     ! read sensitivities
91
     write(*, 1150)
92
     allocate(Sra(Nr,Na),stat=alloc_err)
93
     call readMatrixFromFile(uS ra,Sra)
94
     ! for Case 2: additional read inputs to Case 1
95
96
     if(CaseNumber == 2) then
97
         98
         !READ INPUT FILES FOR ADDITIONAL PARAMETERS
99
         ! read parameters nominal values
100
         write(*, 2000)
101
         write(*, 2010)
102
         allocate(beta(Nb),stat=alloc_err)
```

```
103
         call readVectorFromFile(ub_nom,beta)
104
105
         ! read covariance matrices for parameter-parameter
106
         write(*, 2020)
         allocate(Cbb(Nb,Nb),stat=alloc_err)
107
108
         call readMatrixFromFile(uC bb,Cbb)
109
         ! check if Cb positive definite
110
         write(*, 2030)
111
         if(is positive definite(Cbb) == 0) then
112
            write(*, 2040)
113
         else
114
            write(*, 2050); stop
115
         end if
116
117
         1-----
118
         !READ INPUT FILES FOR THE COUPLED MATRICES
119
         ! read correlations between parameters a and b
         write(*, 2060)
120
         write(*, 2070)
121
         allocate(Cab(Na,Nb),stat=alloc_err)
122
123
         call readMatrixFromFile(uC ab,Cab)
124
         ! read correlations between parameters b and responses r
125
126
         write(*, 2080)
         allocate(Cbr(Nb,Nr),stat=alloc_err)
127
128
         call readMatrixFromFile(uC_br,Cbr)
129
130
         ! read sensitivities of responses r and parameters b
131
         write(*, 2090)
         allocate(Srb(Nr,Nb),stat=alloc err)
132
         call readMatrixFromFile(uS rb,Srb)
133
134
135
     end if !case 2
136
     ! for Case 3: additional read inputs to Case 1
137
138
     if(CaseNumber == 3) then
139
         1-----
140
         !READ INPUT FILES FOR ADDITIONAL RESPONSES
141
         write(*, 3000)
142
143
         ! read measured responses nominal values
144
         write(*, 3010)
145
         allocate(qm(Nq),stat=alloc err)
146
         call readVectorFromFile(uq mea,qm)
147
148
         ! read computed responses nominal values
149
         write(*, 3020)
150
         allocate(qc(Nq),stat=alloc_err)
151
         call readVectorFromFile(uq com,qc)
152
153
         ! read covariance matrices for response-response
154
         write(*, 3030)
155
         allocate(Cqq(Nq,Nq),stat=alloc err)
156
         call readMatrixFromFile(uC qq,Cqq)
157
         ! check if Cqq positive definite
158
         write(*, 3040)
159
         if(is positive definite(Cqq) == 0) then
160
            write(*, 3050)
161
         else
162
            write(*, 3060); stop
163
         end if
```

```
164
165
166
          !READ INPUT FILES FOR THE COUPLED MATRICES
167
          write(*, 3070)
168
169
          ! read correlations between parameters a and responses q
170
          write(*, 3080)
171
          allocate(Caq(Na,Nq),stat=alloc_err)
172
          call readMatrixFromFile(uC aq,Caq)
173
174
          ! read correlations between responses r and responses q
175
          write(*, 3090)
176
          allocate(Crq(Nr,Nq),stat=alloc_err)
177
          call readMatrixFromFile(uC_rq,Crq)
178
          ! read sensitivities of responses q and parameters a
179
180
          write(*, 3100)
181
          allocate(Sqa(Nq,Na),stat=alloc_err)
182
          call readMatrixFromFile(uS_qa,Sqa)
      end if !case 3
183
184
      ! for Case 4: additional read inputs to Case 1
185
186
      if(CaseNumber == 4) then
187
          !READ INPUT FILES FOR MODEL B
          ! read parameters nominal values
          write(*, 4000)
          write(*, 4010)
192
          allocate(beta(Nb),stat=alloc err)
          call readVectorFromFile(ub nom,beta)
193
          ! read measured responses nominal values
          write(*, 4020)
          allocate(qm(Nq),stat=alloc err)
197
198
          call readVectorFromFile(uq mea,qm)
199
200
          ! read computed responses nominal values
201
          write(*, 4030)
          allocate(qc(Nq),stat=alloc_err)
203
          call readVectorFromFile(uq_com,qc)
204
205
          ! read covariance matrices for parameter-parameter
206
          write(*, 4040)
207
          allocate(Cbb(Nb,Nb),stat=alloc err)
208
          call readMatrixFromFile(uC bb,Cbb)
209
          ! check if Cb positive definite
210
          write(*, 4050)
211
          if(is_positive_definite(Cbb) == 0) then
212
             write(*, 4060)
213
214
             write(*, 4070); stop
215
          end if
216
217
          ! read covariance matrices for parameter-response
218
          write(*, 4080)
219
          allocate(Cbq(Nb,Nq),stat=alloc err)
220
          call readMatrixFromFile(uC bq,Cbq)
221
222
          ! read covariance matrices for response-response
223
          write(*, 4090)
224
          allocate(Cqq(Nq,Nq),stat=alloc_err)
```

```
225
         call readMatrixFromFile(uC_qq,Cqq)
226
          ! check if Cqq positive definite
227
         write(*, 4100)
228
         if(is_positive_definite(Cqq) == 0) then
229
             write(*, 4110)
230
         else
231
            write(*, 4120); stop
232
         end if
233
234
          ! read sensitivities
235
         write(*, 4130)
236
         allocate(Sqb(Nq,Nb),stat=alloc err)
237
         call readMatrixFromFile(uS_qb,Sqb)
238
239
240
         !READ INPUT FILES FOR THE COUPLED MATRICES BETWEEN MODELS A & B
241
          ! read correlations between parameters a and b
242
         write(*, 4140)
         write(*, 4150)
243
244
         allocate(Cab(Na,Nb),stat=alloc_err)
245
         call readMatrixFromFile(uC ab,Cab)
246
         ! read correlations between parameters a and responses q
247
248
         write(*, 4160)
         allocate(Caq(Na,Nq),stat=alloc_err)
249
250
         call readMatrixFromFile(uC_aq,Caq)
251
252
         ! read correlations between parameters b and responses r
253
         write(*, 4170)
         allocate(Cbr(Nb,Nr),stat=alloc err)
254
255
         call readMatrixFromFile(uC br,Cbr)
256
         ! read correlations between responses r and responses q
257
258
         write(*, 4180)
259
         allocate(Crq(Nr,Nq),stat=alloc err)
260
         call readMatrixFromFile(uC rq,Crq)
261
262
         ! read sensitivities of responses r and parameters b
263
         write(*, 4190)
         allocate(Srb(Nr,Nb),stat=alloc_err)
264
265
         call readMatrixFromFile(uS rb,Srb)
266
267
         ! read sensitivities of responses q and parameters a
268
         write(*, 4200)
269
         allocate(Sqa(Nq,Na),stat=alloc err)
270
          call readMatrixFromFile(uS qa,Sqa)
271
     end if !case 4
272
273
     return
274
      100 lerr = .true.;ierr = 1;call errmsg;stop
275
     1010 format(/, &
276
           1x, 'For model A: Na =' ,i5,'
                                           Nr = ', i5)
277
     1011 format(&
278
           1x,'Nb =' ,i5,' parameters added to the Na parameters for Model A',a)
279
     1012 format(&
           1x,'Nq =', i5,' responses added to the Nr reponses for Model A',a)
280
281
     1013 format(&
282
           1x, 'For model B: Nb =' , i5, ' Nq =', i5)
283
     1000 format(/, &
           1x,'----- Read Inputs into Vectors/Matrices ------,a)
284
285
      ! format reading for model A
```

```
286
     1020 format(&
287
          1x,':: Reading inputs for Model A:',a)
288
     1030 format(&
289
          1x,'Reading the input for the parameter vector ..... alpha',a)
290
     1040 format(&
          1x,'Reading the input for measured response vector ......... rm',a)
291
292
     1050 format(&
293
          1x, 'Reading the input for computed response vector ...... rc',a)
294
     1060 format(&
295
          1x, 'Reading the input for covariance matrix of parameters ...... Caa',a)
296
     1070 format(&
                     Factorizing matrix Caa -- to test if positive definite.',a)
297
          1x,'
     1080 format(&
298
                     OK, Caa is positive definite.',a)
299
          1x,'
300
     1090 format(&
          1x, 'ERROR: The input covariance matrix Caa is not positive'
301
302
             'definite, check the input file',a)
303
     1100 format(&
304
          305
     1110 format(&
306
          1x, 'Reading the input for covariance matrix of responses .......... Crr',a)
307
     1120 format(&
                     Factorizing matrix Crr -- to test if positive definite.',a)
308
          1x,'
     1130 format(&
309
                     OK, Crr is positive definite.',a)
310
          1x,'
311
     1140 format(&
          1x, 'ERROR: The input covariance matrix Crr is not positive'
312
             'definite, check the input file',a)
313
314
          1x, 'Reading the input for the sensitivity matrix ................ Sra',a)
315
316
317
     ! Case 2 -- format reading for Nb additional parameters
318
          1x,':: Reading inputs for additional model parameters for Case 2:',a)
319
320
     2010 format(&
321
          1x, 'Reading the input for the parameter vector ......beta',a)
322
     2020 format(&
323
          1x, 'Reading the input for covariance matrix of parameters ...... Cbb',a)
     2030 format(&
324
325
          1x,'
                     Factorizing matrix Cbb -- to test if positive definite.',a)
326
     2040 format(&
327
          1x,'
                     OK, Cbb is positive definite.',a)
328
     2050 format(&
329
          1x, 'ERROR: The input covariance matrix Cbb is not positive'
330
             'definite, check the input file',a)
331
     ! Case 2 -- format reading for the coupled matrices
332
333
     2060 format(/,&
334
          1x,':: Reading inputs for coupled matrices for Case 2:',a)
335
     2070 format(&
336
          1x, 'Reading the input for matrix ...... Cab',a)
337
     2080 format(&
338
          1x, 'Reading the input for matrix ...... Cbr',a)
339
     2090 format(&
          1x, 'Reading the input for matrix ...... Srb',a)
340
341
342
     ! Case 3 -- format reading for additional responses
343
     3000 format(/,&
344
          1x,':: Reading inputs for additional model responses for Case 3: ',a)
345
     3010 format(&
          1x, Reading the input for additional measured response vector ..... qm',a)
346
```

```
347
     3020 format(&
348
         1x, 'Reading the input for additional computed response vector ..... qc',a)
349
     3030 format(&
350
         1x, Reading the input for covariance matrix of responses ......... Cqq',a)
351
     3040 format(&
                   Factorizing matrix Cqq -- to test if positive definite.',a)
352
         1x,'
     3050 format(&
353
354
         1x,'
                   OK, Cqq is positive definite.',a)
355
     3060 format(&
356
         1x, 'ERROR: The input covariance matrix Cqq is not positive'
357
            'definite, check the input file',a)
358
     ! Case 3 -- format reading for the coupled matrices
359
360
     3070 format(/,&
361
         1x,':: Reading inputs for coupled matrices for Case 3:',a)
     3080 format(&
362
363
         364
     3090 format(&
         365
366
     3100 format(&
367
         368
     ! Case 4 -- format reading for model B
369
     4000 format(/,&
370
         1x,':: Reading inputs for Model B: ',a)
371
372
     4010 format(&
373
         1x, 'Reading the input for the parameter vector ......beta',a)
374
     4020 format(&
375
         1x, 'Reading the input for measured response vector ...... qm',a)
     4030 format(&
376
         1x, 'Reading the input for computed response vector ...... qc',a)
377
378
     4040 format(&
379
         1x, 'Reading the input for covariance matrix of parameters ...... Cbb',a)
     4050 format(&
380
         1x,'
                   Factorizing matrix Cbb -- to test if positive definite.',a)
381
382
     4060 format(&
383
         1x,'
                   OK, Cbb is positive definite.',a)
384
     4070 format(&
         1x, 'ERROR: The input covariance matrix Cbb is not positive'
385
            'definite, check the input file',a)
386
     4080 format(&
387
388
         1x, 'Reading the input for the correlation matrix ........... Cbq',a)
389
     4090 format(&
390
         1x, 'Reading the input for covariance matrix of responses ........... Cqq',a)
391
     4100 format(&
392
         1x,'
                   Factorizing matrix Cqq -- to test if positive definite.',a)
393
     4110 format(&
394
         1x,'
                   OK, Cqq is positive definite.',a)
395
     4120 format(&
396
         1x, 'ERROR: The input covariance matrix Cqq is not positive'
397
            'definite, check the input file',a)
398
     4130 format(&
399
         1x, 'Reading the input for the sensitivity matrix ...... Sqb',a)
400
401
     ! Case 4 -- format reading for the coupled matrices between models A & B
402
     4140 format(/,&
         1x,':: Reading inputs for coupled matrices between Models A & B:',a)
403
404
     4150 format(&
405
         1x, 'Reading the input for matrix ...... Cab',a)
406
     4160 format(&
         407
```

```
408
   4170 format(&
      1x,'Reading the input for matrix
Cbr',a)
409
410
   4180 format(&
411
      412
   4190 format(&
      1x,'Reading the input for matrix
Srb',a)
413
414
   4200 format(&
      1x, 'Reading the input for matrix ...... Sqa',a)
415
416
417 END SUBROUTINE ReadInput
```

8.8 Module ModuleReadWrite.f90

```
MODULE ModuleReadWrite
1
  2
3
  !*
4
  !* Module ModuleReadWrite encapsulates subroutines for:
5
  !*
                  readMatrixFromFile (UnitNum, Array)
6
  !*
                  readVectorFromFile (UnitNum, Array)
                  writeVectorToFile (UnitNum, Array)
7
  !*
8
  !*
                  writeMatrixToFile (UnitNum, Array)
  !*
9
  10
11
12
13
    USE ModuleErrors
14
    USE ModuleIO
15
    USE ModuleGlobalParameters
16
17
    IMPLICIT NONE
18
19
  CONTAINS
20
21
  SUBROUTINE readMatrixFromFile (UnitNum, Array)
22
  23
  !*
24
  !* read a 2D sparse matrix and to produce a normal one
25
26
  !*
  27
28
    IMPLICIT NONE
29
    ! Arguments-----
30
     INTEGER, intent(in) :: UnitNum
31
32
     REAL(DP), ALLOCATABLE :: Array(:,:)
    !Local-----
33
                   :: numRows, numCols, NonzeroElements, Nrow, Ncol
:: i, j, k
34
     INTEGER(I4B)
35
     INTEGER(I4B)
36
     INTEGER(I4B)
                    :: IOstatus
37
     REAL(DP)
                     :: val
38
39
     Nrow = size(Array,1)
     Ncol = size(Array,2)
40
     rewind(UnitNum)
41
42
     read (UnitNum,*,err=100) numRows,numCols,NonzeroElements
     if(numRows /= Nrow .OR. numCols /= Ncol) then
43
       write(*, 200) Nrow, Ncol; stop
44
```

```
45
      end if
46
      Array = 0.0
47
       do k=1, NonzeroElements
48
         read (UnitNum,*,IOSTAT=IOstatus) i, j, Array(i,j)
49
         if(Iostatus > 0) then !something is wrong, like illegal values
50
              Write(*, 210) K+1
51
              stop
52
         else if (Iostatus < 0) then</pre>
                                    !end of file reached
53
              Write(*, 220) NonzeroElements, K-1
54
              stop
55
         else !normal reading
56
            if(i > Nrow .OR. j > Ncol) then
57
             write(*, 300); stop
58
            end if
59
         end if
60
      end do
61
       ! read one more line, to check if end of file reached.
62
       ! if not, then the input data file has a inconsistency.
63
       ! It has more data than expected.
      read (UnitNum,*,IOSTAT=IOstatus) i,j,val
64
65
       if(IOstatus == 0) then
         write(*, 310)NonzeroElements
66
67
         stop
      end if
68
69
70
      close(UnitNum)
71
      return
72
       ! bail out for read error
73
      100 lerr = .true.;ierr = 2;call errmsg;stop
      200 format(&
74
75
         1x, 'Error: this matrix should have a dimension of ',i8,'
76
       210 format(&
         1x, 'Error: something is wrong while reading line ',i8,'. Maybe illegal',/,&
77
78
                    data; Check the input.',a)
79
       220 format(&
80
         1x,'Error: end of file reached earlier than expected. It is expected ',/,&
81
                    to read Nz = ', i8,' nonzero elements, but only read ',i8,'&
82
                    of them. Check the input.',a)
83
       300 format(&
         1x, 'Error: the index for nonzero elements exceeds the matrix size.',a)
84
85
       310 format(&
         1x, 'Error: something is wrong with the input data file. It seems the',/,&
                    actual number of nonzero elements in the file exceeds ' ,/,&
87
                    that defined in the 1st line: Nz = ',i8,'. Check the ',',&
88
89
                    input.',a)
90
91 END SUBROUTINE readMatrixFromFile
92
94
95 SUBROUTINE readVectorFromFile(UnitNum, Array)
96
98 !*
99 !* read a 1D sparse matrix and to produce a normal one
101 !************************
102
     IMPLICIT NONE
103
104
     ! Arguments-----
105
      INTEGER, intent(in) :: UnitNum
```

```
106
       REAL(DP), ALLOCATABLE :: Array(:)
107
      !local-----
       INTEGER(I4B) :: numRows, numCols, NonzeroElements, Nrow, Ncol
108
109
       INTEGER(I4B)
                           :: i, j, k
110
       INTEGER(I4B)
                           :: IOstatus
111
       REAL(DP)
                            :: val
112
       Nrow = size(Array,1)
113
114
       Ncol = 1
115
       rewind(UnitNum)
116
       read (UnitNum,*,err=100) numRows,numCols,NonzeroElements
117
       Array = 0.0
118
       if(numRows /= Nrow .OR. numCols /= 1) then
         write(*, 200) Nrow, Ncol; stop
119
120
121
       do k=1, NonzeroElements
          read (UnitNum,*,IOSTAT=IOstatus) i, j, Array(i)
122
123
          if(Iostatus > 0) then !something is wrong, like illegal values
124
               Write(*, 210) K+1
125
               stop
126
          else if (Iostatus < 0) then !end of file reached earlier than expected
127
               Write(*, 220) NonzeroElements, K-1
128
          else !normal reading
129
             if(i > Nrow .OR. j > Ncol) then
130
               write(*, 300); stop
132
             end if
133
          end if
134
       end do
       ! read one more line, to check if end of file reached
135
       ! if not, then the input data file has a inconstancy.
136
137
       ! It has more data than expected.
138
       read (UnitNum,*,IOSTAT=IOstatus) i,j,val
139
       if(IOstatus == 0) then
140
          write(*, 310)NonzeroElements
141
          stop
142
       end if
143
       close(UnitNum)
145
       return
       ! bail out for read error
146
147
       100 lerr = .true.; ierr = 2; call errmsg; stop
148
       200 format(&
149
          1x, 'Error: this vector should have a dimension of ',i8,' -by-', i8)
150
       210 format(&
151
          1x, 'Error: something is wrong while reading line ',18,'. Maybe illegal',/,&
152
                      data; Check the input.',a)
       220 format(&
153
          1x, 'Error: end of file reached earlier than expected. It is expected ',/,&
154
155
                     to read Nz = ', i8,' nonzero elements, but only read ',i8,'&
156
                      of them. Check the input.',a)
157
       300 format(&
158
          1x, 'Error: the index for nonzero elements exceeds the vector size.',a)
159
       310 format(&
160
          1x, 'Error: something is wrong with the input data file. It seems the',/,&
                     actual number of nonzero elements in the file exceeds ' ,/,&
161
                      that defined in the 1st line: Nz = ',i8,'. Check the ' ,/,&
162
163
                      input.',a)
165 END SUBROUTINE readVectorFromFile
```

166

```
168
169 SUBROUTINE writeVectorToFile(UnitNum, Array)
170
171 !************************
172 !*
                                                        *
173 !* write a full vector into a file as a sparse one
176
    IMPLICIT NONE
177
    ! Arguments-----
178
     INTEGER, intent(in) :: UnitNum
179
     REAL(DP), ALLOCATABLE :: Array(:)
180
181
    !Local-----
              :: numRows, numCols, nZ
182
     INTEGER(I4B)
183
     INTEGER(I4B)
                   :: i, j
184
185
    numRows = size(Array,1)
186
     numCols = 1
187
     nZ = 0
188
189 ! write the 1st line for numRows, numCols and the number of nonzero elements
     do i=1, numRows
       do j=1, numCols
191
192
         if(Array(i)/= 0.0) then
193
           nZ = nZ + 1
194
         end if
195
       end do
     end do
196
     write(UnitNum, 1000, err=200) numRows, numCols, nZ
197
198
199 ! write the nonzero elements with their associated row and colume coordinates
     do i=1, numRows
200
201
       do j=1, numCols
202
         if(Array(i)/= 0.0) then
203
           write(UnitNum, 2000, err=200) i, j, Array(i)
204
         end if
205
       end do
206
     end do
207
208
    close(UnitNum)
209
     return
210
   ! bail out for write error
211
     200 lerr = .true.;ierr = 3;call errmsg;stop
212
     1000 format(3I5)
213
     2000 format(215, ES20.8)
214
215 END SUBROUTINE writeVectorToFile
218
219 SUBROUTINE writeMatrixToFile(UnitNum, Array)
220
222 !*
                                                        *
223 !* write a 2D full matrix into a file as a sparse one
226
   IMPLICIT NONE
227
```

```
! Arguments-----
228
      INTEGER, intent(in) :: UnitNum
229
      REAL(DP), ALLOCATABLE :: Array(:,:)
230
231
     !Local-----
      INTEGER(I4B) :: numRows, numCols, nZ
232
                       :: i, j
233
      INTEGER(I4B)
234
235
      numRows = size(Array,1)
236
      numCols = size(Array,2)
237
      nZ = 0
238
239 ! write the 1st line for numRows, numCols and the number of nonzero elements
240
      do i=1, numRows
241
         do j=1, numCols
242
           if(Array(i,j)/= 0.0) then
243
             nZ = nZ + 1
           end if
         end do
245
      end do
246
      write(UnitNum, 1000, err=200) numRows, numCols, nZ
247
248
249 ! write the nonzero elements with their associated row and colume coordinates
      do i=1, numRows
250
251
         do j=1, numCols
252
           if(Array(i,j)/= 0.0) then
253
             write(UnitNum, 2000, err=200) i, j, Array(i,j)
254
255
         end do
256
      end do
257
258
    close(UnitNum)
259
      return
   ! bail out for write error
      200 lerr = .true.;ierr = 3;call errmsg;stop
262
      1000 format(I5, I5, I8)
263
      2000 format(215, ES20.8)
264
265 END SUBROUTINE writeMatrixToFile
268
269
    LOGICAL FUNCTION is NAN or Infinity M(A) result(tf)
270
271 ! -- chech the matrix component values not to be Inifinite or NAN
272 ! -- where A is a 2D matrix
273 ! -- developed by University of South Carolina.
274 !
      INTEGER, PARAMETER :: DP = KIND(1.000)
275
276
      INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
     ! Arguments-----
277
278
      REAL(DP), dimension(:,:), intent(in) :: A
279 !
      LOGICAL
                                    :: tf
280 ! Local-----
                                          _____
281
      REAL(DP)
                               :: infinity
282
      INTEGER(I4B)
                                :: numRows, numCols, i, j
283
284
      infinity
                = 1.e100 dp
285
      tf = .false.
286
287
      numRows = size(A,1)
288
      numCols = size(A,2)
```

```
289
290
       do i=1, numRows
291
         do j=1, numCols
292
            !check if infinity
           if(A(i,j) > infinity) then
293
            tf = .true.
           end if
296
           ! check if NAN
297
           if(A(i,j) /= A(i,j)) then
298
            tf = .true.
299
           end if
300
         end do
     end do
301
302
303
    END FUNCTION is_NAN_or_Infinity_M
306
    LOGICAL FUNCTION is_NAN_or_Infinity_V(A) result(tf)
307
309 ! -- chech the matrix component values not to be Inifinite or NAN
310 ! -- where A is a Vector
311 ! -- developed by University of South Carolina.
313
      INTEGER, PARAMETER :: DP = KIND(1.000)
314
      INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
315
     ! Arguments----
      REAL(DP), dimension(:), intent(in) :: A
317 !
      LOGICAL
                                      :: tf
   ! Local-----
319
      REAL(DP)
                                :: infinity
320
      INTEGER(I4B)
                                 :: numRows, i, j
321
322
     infinity
                = 1.e100 dp
323
      tf = .false.
324
325
     numRows = size(A,1)
326
327
       do i=1, numRows
328
            !check if infinity
329
            if(A(i) > infinity) then
330
             tf = .true.
331
            end if
332
            ! check if NAN
333
           if(A(i) /= A(i)) then
334
             tf = .true.
335
            end if
     end do
336
337
338
    END FUNCTION is_NAN_or_Infinity_V
339
340 END MODULE ModuleReadWrite
```

8.9 Subroutine MultiPredSolver.f90

```
1 SUBROUTINE MultiPredSolver
4 !*
5 !* apply the Multi-Pred formulations and solve
6 !*
 7
8
   !Global-----
9
10 USE ModuleMultiPred
11
  IMPLICIT NONE
12
13
   ! call Multi-Pred solver for Case 1: Modle A solely
14
15
   if(CaseNumber == 1) then
    call solvercase1
16
17
   end if
18
   ! call Multi-Pred solver for Case 2: Modle A with additional Nb parameters
19
   if(CaseNumber == 2) then
20
21
    call solvercase2
22 end if
23
24
   ! call Multi-Pred solver for Case 3: Modle A with additional Nc responses
25
   if(CaseNumber == 3) then
26
    call solvercase3
27
   end if
28
29
   ! call Multi-Pred solver for Case 4: Coupled Model A and Model B
30 if(CaseNumber == 4) then
    call solvercase4
31
32 end if
33
34
35 END SUBROUTINE MultiPredSolver
```

8.10 Module Module MultiPred.f90

```
MODULE ModuleMultiPred
  2
3
  !* Module ModuleMultiPred encapsulates subroutines for:
4
5
  !*
              solvercase1 ()
  !*
              solvercase2 ()
6
  !*
              solvercase3 ()
7
  !*
8
              solvercase4 ()
  !*
9
  10
11
   !Global-----
12
   USE ModuleReadWrite
13
14
   USE ModuleLapack
15
16
   IMPLICIT NONE
17
```

```
CONTAINS
18
19
20
    21
    SUBROUTINE solvercase1()
22
   ! solver for Casee 1: predictive modeling for Model A solely
23
24
25
26
      REAL(DP), ALLOCATABLE :: SraCaa(:,:), SraT(:,:)
27
      REAL(DP), ALLOCATABLE :: Xa(:,:), Xr(:,:), Drr(:,:), D11(:,:), rd(:)
28
      REAL(DP), ALLOCATABLE :: CarT(:,:)
29
      REAL(DP), ALLOCATABLE :: Drrinv(:,:)
30
      REAL(DP), ALLOCATABLE :: XaD11(:,:), XrD11(:,:)
      REAL(DP), ALLOCATABLE :: D11rd(:)
31
32
      write(*,1000)
33
34
      !start with computing covariance matrix of Crr comp
35
      !for the computed responses.
36
37
38
      ! Crrcomp = Sra*Caa*Sra'
      allocate(Crrcomp(Nr,Nr),stat=alloc err)
39
40
      allocate(SraCaa(Nr,Na),stat=alloc_err)
41
      allocate(SraT(Na,Nr),stat=alloc_err)
42
      Crrcomp = 0.0;
                       SraCaa = 0.0
43
      SraT
             = 0.0;
44
45
      write(*, 1010)
46
      SraCaa = multipMM(Sra,Caa)
47
      SraT
            = transpose(Sra)
48
      Crrcomp = multipMM(SraCaa,SraT)
49
      call writeMatrixToFile(uCrr comp,Crrcomp)
50
51
      ! define intermediate quantities and initialize
52
      write(*, 1020)
53
      allocate(Xa(Na,Nr),stat=alloc err)
54
      allocate(Xr(Nr,Nr),stat=alloc err)
55
      allocate(Drr(Nr,Nr),stat=alloc err)
56
      allocate(D11(Nr,Nr),stat=alloc err)
57
      allocate(rd(Nr),stat=alloc err)
58
      Xa = 0.0
59
      Xr = 0.0
60
      Drr = 0.0
61
      D11 = 0.0
62
      rd = 0.0
63
64
      ! Xa=Caa*Sra'-Car
65
      Xa = multipMM(Caa,SraT)
66
      Xa = Xa - Car
67
68
      ! Xr=Car'*Sra'-Crr
69
      allocate(CarT(Nr,Na),stat=alloc err)
70
      CarT = 0.0
71
      CarT = transpose(Car)
72
      Xr = multipMM(CarT,SraT)
73
74
      Xr = Xr - Crr
75
76
      ! Drr=Sra*Xa-Xr
77
      Drr = multipMM(Sra, Xa)
      Drr = Drr - Xr
78
```

```
79
80
       ! define rd
81
       rd = rc - rm
82
83
       ! compute Drr^-1, D22^-1
84
       allocate(Drrinv(Nr,Nr),stat=alloc_err)
85
       Drrinv = 0.0
86
       Drrinv = inv(Drr)
87
       if(is_NAN_or_Infinity_M(Drr)) then
88
          write(*, 1030)
89
       end if
90
       if(is_NAN_or_Infinity_M(Drrinv)) then
91
          write(*, 1040)
92
       end if
93
94
       ! D11=Drr^-1
95
       D11 = Drrinv
96
97
       ! best estimated mean values for aBE, rBE
98
       write(*, 1050)
       allocate(aBE(Na),stat=alloc_err)
99
100
       allocate(rBE(Nr),stat=alloc err)
101
       aBE = 0.0
       rBE = 0.0
102
103
       ! aBE = alpha-[Xa*D11]*rd
       allocate(XaD11(Na,Nr),stat=alloc_err)
106
      XaD11 = 0.0
107
      XaD11 = multipMM(Xa,D11)
108
       aBE = multipMV(XaD11,rd)
110
       aBE = alpha - aBE
       call writeVectorToFile(ua BE,aBE)
111
112
113
       ! rBE = rm-[Xr*D11]*rd
114
       write(*, 1060)
115
       allocate(XrD11(Nr,Nr),stat=alloc_err)
116
       XrD11 = 0.0
117
       XrD11 = multipMM(Xr,D11)
118
119
       rBE = multipMV(XrD11,rd)
120
       rBE = rm - rBE
121
       call writeVectorToFile(ur_BE,rBE)
122
123
       !calculate coviances for responses and parameters
124
       allocate(CaaBE(Na,Na),stat=alloc err)
125
       allocate(CrrBE(Nr,Nr),stat=alloc err)
126
       allocate(CarBE(Na,Nr),stat=alloc_err)
127
       CaaBE = 0.0; CrrBE = 0.0; CarBE = 0.0
128
129
       ! CaaBE = Caa - [Xa*(D11*Xa')]
130
       write(*, 1070)
131
       CaaBE = multipMM(Xa,transpose(XaD11))
132
       CaaBE = Caa - CaaBE
133
       call writeMatrixToFile(uC aaBE, CaaBE)
134
135
       ! CrrBE = Crr - [Xr*(D11*Xr')]
136
       write(*, 1080)
137
       CrrBE = multipMM(Xr,transpose(XrD11))
138
       CrrBE = Crr - CrrBE
139
       call writeMatrixToFile(uC_rrBE,CrrBE)
```

```
140
141
      ! CarBE = Car - [Xa*(D11*Xr')]
142
      write(*, 1090)
143
      CarBE = multipMM(Xa,transpose(XrD11))
144
      CarBE = Car - CarBE
145
      call writeMatrixToFile(uC arBE,CarBE)
146
      !calculate the "consistency indicator" chi^2
147
148
      allocate(D11rd(Nr), stat=alloc err)
149
      D11rd = 0.0
150
      chi2
              = 0.0
151
152
      D11rd = multipMV(D11,rd)
153
      chi2
              = multipVV(rd,D11rd)
154
      write(uchi2,3500,err=200) chi2, chi2/Nr
155
156
      write(*,3600)
157
      return
158
      200 lerr = .true.;ierr = 3;call errmsg;stop
159
      1000 format(/, &
           1x,'-----')

Multi-pred Solving & Output -----')
160
161
      1010 format(&
162
           1x, 'computing Crrcomp = Sra*Caa*Sra"',a)
163
      1020 format(&
           1x, 'computing Xa, Xr, D11, Drr, Drr^-1, rd',a)
165
      1030 format(&
           1x,'ERROR: Infinite or NAN in computing Drr, where '
                                                                               &
166
              'Drr=Sra*Xa-(CarT)*(SraT)-Crr',a)
167
168
      1040 format(&
           1x, 'ERROR: Infinite or NAN in computing Drr^-1, where '
169
170
              'Drr=Sra*Xa-(CarT)*(SraT)-Crr',a)
171
      1050 format(&
172
           1x,'computing aBE = alpha-[Caa*Sra"-Car]*Drr^-1*rd',a)
173
      1060 format(&
174
           1x, 'computing rBE = rm-[(Car'')*(Sra'')-Crr]*Drr^-1*rd',a)
175
      1070 format(&
176
           1x, 'computing CaaBE = Caa-[Caa*Sra"-Car]*Drr^-1*[Caa*Sra"-Car]"',a)
177
      1080 format(&
178
           1x, 'computing CrrBE = Crr-[Car"*Sra"-Crr]*Drr^-1*[Car"*Sra"-Crr]"',a)
179
      1090 format(&
180
           1x, 'computing CarBE = Car-[Caa*Sra"-Car]*Drr^-1*[Car"*Sra"-Crr]"',a)
181
      3500 format(&
                                                                       ,F8.3/, &
182
              'chi^2
              'chi^2_d = (chi^2)/(number of responses) ='
183
                                                                       ,F8.3)
184
      3600 format(/, &
185
           1x, 'done.')
186
187 END SUBROUTINE solvercase1
188
190
191 SUBROUTINE solvercase2()
192 !
193 ! solver for Casee 2: predictive modeling for Model A with Nb additional
194 !
                          parameters, but no additional responses
195 !
196
197
      REAL(DP), ALLOCATABLE :: SraCaa(:,:), SraT(:,:), SraCab(:,:), SrbT(:,:), &
198
                              SrbCbb(:,:)
      REAL(DP), ALLOCATABLE :: Xa(:,:), Xb(:,:), Xr(:,:), Drr(:,:), D11(:,:), rd(:)
199
200
      REAL(DP), ALLOCATABLE :: CarT(:,:), CbrT(:,:)
```

```
REAL(DP), ALLOCATABLE :: Drrinv(:,:), XaD11(:,:), XbD11(:,:), XrD11(:,:)
202
      REAL(DP), ALLOCATABLE :: D11rd(:)
203
204
      write(*,1000)
205
      !start with computing covariance matrix of Crr comp
206
      !for the computed responses.
207
208
      ! Crrcomp = Sra*Caa*Sra'+2*Sra*Cab*Srb'+Srb*Cbb*Srb'
209
210
      allocate(Crrcomp(Nr,Nr),stat=alloc err)
      allocate(SraCaa(Nr,Na),stat=alloc err)
211
      allocate(SraT(Na,Nr),stat=alloc err)
212
      allocate(SraCab(Nr,Nb),stat=alloc err)
213
      allocate(SrbT(Nb,Nr),stat=alloc err)
214
215
      allocate(SrbCbb(Nr,Nb),stat=alloc err)
216
      Crrcomp = 0.0;
                        SraCaa
                                = 0.0
217
      SraT
             = 0.0;
                        SraCab
                                 = 0.0
      SrbT
                        SrbCbb
218
               = 0.0;
                                 = 0.0
219
      write(*, 1010)
220
221
      SraCaa = multipMM(Sra,Caa)
      SraT
               = transpose(Sra)
222
223
      Crrcomp = multipMM(SraCaa,SraT)
      SraCab = multipMM(Sra,Cab)
224
225
      SrbT
               = transpose(Srb)
226
      Crrcomp = Crrcomp + 2 * multipMM(SraCab, SrbT)
227
      SrbCbb = multipMM(Srb,Cbb)
228
      Crrcomp = Crrcomp + multipMM(SrbCbb,SrbT)
229
      call writeMatrixToFile(uCrr comp,Crrcomp)
230
      ! define intermediate quantities and initialize
231
232
      allocate(Xa(Na,Nr),stat=alloc err)
233
      allocate(Xb(Nb,Nr),stat=alloc err)
234
      allocate(Xr(Nr,Nr),stat=alloc err)
235
      allocate(Drr(Nr,Nr),stat=alloc err)
236
      allocate(D11(Nr,Nr),stat=alloc err)
237
      allocate(rd(Nr), stat=alloc err)
238
      Xa = 0.0
239
      Xb = 0.0
240
      Xr = 0.0
      Drr = 0.0
241
242
      D11 = 0.0
243
      rd = 0.0
244
245
      ! Xa=Caa*Sra'+Cab*Srb'-Car
246
      Xa = multipMM(Caa,SraT)
247
      Xa = Xa + multipMM(Cab,SrbT)
248
      Xa = Xa - Car
249
250
      ! Xb=Cab'*Sra'+Cbb*Srb'-Cbr
251
      Xb = multipMM(transpose(Cab),SraT)
252
      Xb = Xb + multipMM(Cbb,SrbT)
253
      Xb = Xb - Cbr
254
      ! Xr=Car'*Sra'+Cbr'*Srb'-Crr
255
256
      allocate(CarT(Nr,Na),stat=alloc err)
257
      allocate(CbrT(Nr,Nb),stat=alloc err)
258
      CarT = 0.0
259
      CbrT = 0.0
260
      CarT = transpose(Car)
261
      CbrT = transpose(Cbr)
```

```
262
263
      Xr = multipMM(CarT,SraT)
264
      Xr = Xr + multipMM(CbrT,SrbT)
265
      Xr = Xr - Crr
266
      ! Drr=Sra*Xa+Srb*Xb-Xr
267
268
      write(*, 1020)
269
      Drr = multipMM(Sra,Xa)
      Drr = Drr + multipMM(Srb,Xb)
270
271
      Drr = Drr - Xr
272
273
      ! define rd
274
      rd = rc - rm
275
276
      ! compute Drr^-1
277
      allocate(Drrinv(Nr,Nr),stat=alloc_err)
278
      Drrinv = 0.0
279
      Drrinv = inv(Drr)
      if(is_NAN_or_Infinity_M(Drr)) then
280
         write(*, 1030)
281
282
      if(is_NAN_or_Infinity_M(Drrinv)) then
         write(*, 1040)
285
      end if
286
287
      ! D11=Drr^-1
288
      D11 = Drrinv
289
      ! best estimated mean values for aBE, bBE, rBE
      write(*, 1050)
291
      allocate(aBE(Na),stat=alloc err)
      allocate(bBE(Nb),stat=alloc err)
294
      allocate(rBE(Nr),stat=alloc err)
295
      aBE = 0.0
296
      bBE = 0.0
297
      rBE = 0.0
298
299
      ! aBE = alpha-[Xa*D11]*rd
      allocate(XaD11(Na,Nr),stat=alloc_err)
      XaD11 = 0.0
302
      XaD11 = multipMM(Xa,D11)
303
304
      aBE = multipMV(XaD11,rd)
305
      aBE = alpha - aBE
306
      call writeVectorToFile(ua_BE,aBE)
307
308
      ! bBE = beta-[Xb*D11]*rd
309
      write(*, 1060)
310
      allocate(XbD11(Nb,Nr),stat=alloc_err)
311
      XbD11 = 0.0
312
      XbD11 = multipMM(Xb,D11)
313
314
      bBE = multipMV(XbD11,rd)
315
      bBE = beta - bBE
      call writeVectorToFile(ub BE,bBE)
316
317
318
      ! rBE = rm-[Xr*D11]*rd
319
      write(*, 1070)
320
      allocate(XrD11(Nr,Nr),stat=alloc_err)
321
      XrD11 = 0.0
322
      XrD11 = multipMM(Xr,D11)
```

```
323
324
       rBE = multipMV(XrD11,rd)
325
       rBE = rm - rBE
326
       call writeVectorToFile(ur_BE,rBE)
327
328
       !calculate coviances for responses and parameters
       allocate(CaaBE(Na,Na),stat=alloc err)
329
330
       allocate(CrrBE(Nr,Nr),stat=alloc err)
       allocate(CarBE(Na,Nr),stat=alloc err)
331
332
       allocate(CbbBE(Nb,Nb),stat=alloc err)
333
       allocate(CabBE(Na,Nb),stat=alloc err)
334
       allocate(CbrBE(Nb,Nr),stat=alloc err)
335
       CaaBE = 0.0; CrrBE = 0.0; CarBE = 0.0
       CbbBE = 0.0; CbrBE = 0.0; CbrBE = 0.0
336
337
338
       ! CaaBE = Caa - Xa*(D11*Xa')
339
       write(*, 1080)
340
       CaaBE = multipMM(Xa,transpose(XaD11))
341
       CaaBE = Caa - CaaBE
       call writeMatrixToFile(uC_aaBE,CaaBE)
342
343
       ! CrrBE = Crr - Xr*(D11*Xr')
344
      write(*, 1090)
       CrrBE = multipMM(Xr,transpose(XrD11))
       CrrBE = Crr - CrrBE
348
       call writeMatrixToFile(uC_rrBE,CrrBE)
349
350
       ! CarBE = Car - Xa*(D11*Xr')
351
       write(*, 2000)
       CarBE = multipMM(Xa,transpose(XrD11))
352
353
       CarBE = Car - CarBE
354
       call writeMatrixToFile(uC arBE, CarBE)
355
       ! CbbBE = Cbb - Xb*(D11*Xb')
356
357
       write(*, 2010)
358
       CbbBE = multipMM(Xb,transpose(XbD11))
359
       CbbBE = Cbb - CbbBE
360
       call writeMatrixToFile(uC_bbBE,CbbBE)
       ! CabBE = Cab - Xa*(D11*Xb')
       write(*, 2020)
       CabBE = multipMM(Xa,transpose(XbD11))
365
       CabBE = Cab - CabBE
366
       call writeMatrixToFile(uC_abBE,CabBE)
367
368
       ! CbrBE = Cbr - Xb*(D11*Xr')
369
       write(*, 2030)
370
       CbrBE = multipMM(Xb,transpose(XrD11))
371
       CbrBE = Cbr - CbrBE
372
       call writeMatrixToFile(uC_brBE,CbrBE)
373
374
       !calculate the "consistency indicator" chi^2
375
       allocate(D11rd(Nr), stat=alloc err)
376
       D11rd
                = 0.0
377
       chi2
                = 0.0
378
379
       D11rd
               = multipMV(D11,rd)
380
               = multipVV(rd,D11rd)
381
       write(uchi2,3500,err=200) chi2, chi2/(Nr)
382
383
       write(*,3600)
```

```
384
      return
385
       200 lerr = .true.;ierr = 3;call errmsg;stop
      1000 format(/, &
386
           1x,'-----')
387
388
      1010 format(&
           1x, 'computing Crrcomp = Sra*Caa*Sra"+2*Sra*Cab*Srb"+Srb*Cbb*Srb"',a)
389
390
      1020 format(&
391
           1x, 'computing Xa, Xb, Xr, D11, Drr, Drr^-1, rd',a)
392
      1030 format(&
393
           1x, 'ERROR: Infinite or NAN in computing Drr, where '
                                                                               &
394
              'Drr=Sra*Xa+Srb*Xb-Xr',a)
395
      1040 format(&
396
           1x, 'ERROR: Infinite or NAN in computing Drr^-1',a)
397
      1050 format(&
398
           1x,'computing aBE = alpha-[Xa*D11]*rd',a)
      1060 format(&
399
           1x,'computing bBE = beta-[Xb*D11]*rd',a)
400
401
      1070 format(&
           1x, computing rBE = rm-[Xr*D11]*rd',a)
402
403
      1080 format(&
404
           1x,'computing CaaBE = Caa - Xa*(D11*Xa")',a)
405
      1090 format(&
           1x, 'computing CrrBE = Crr - Xr*(D11*Xr")',a)
406
407
      2000 format(&
408
           1x, 'computing CarBE = Car - Xa*(D11*Xr")',a)
409
      2010 format(&
410
           1x,'computing CbbBE = Cbb - Xb*(D11*Xb")',a)
411
      2020 format(&
           1x, 'computing CabBE = Cab - Xa*(D11*Xb")',a)
412
      2030 format(&
413
414
           1x, 'computing CbrBE = Cbr - Xb*(D11*Xr")',a)
415
      3500 format(&
416
                                                                      ,F8.3/, &
417
              'chi^2 d = (chi^2)/(number of responses) ='
                                                                       ,F8.3)
418
      3600 format(/, &
419
           1x, 'done.')
420
421 END SUBROUTINE solvercase2
422
424
425 SUBROUTINE solvercase3()
426 !
427 ! solver for Casee 2: predictive modeling for Model A with Ng additional
428 !
                          responses, but no additional parameters
429 !
430
431
      REAL(DP), ALLOCATABLE :: SraCaa(:,:), SraT(:,:), SqaCaa(:,:), SqaT(:,:)
432
      REAL(DP), ALLOCATABLE :: Xa(:,:), Ya(:,:), Xr(:,:), Yr(:,:), Xq(:,:), &
433
                               Yq(:,:), Drr(:,:), Drq(:,:), Dqr(:,:), Dqq(:,:), &
434
                              D11(:,:), D12(:,:), D21(:,:), D22(:,:), rd(:), qd(:)
435
      REAL(DP), ALLOCATABLE :: CarT(:,:), CaqT(:,:), CrqT(:,:)
436
      REAL(DP), ALLOCATABLE :: Drrinv(:,:), DqrDrrinv(:,:)
437
      REAL(DP), ALLOCATABLE :: XaD11plusYaD21(:,:), XaD12plusYaD22(:,:)
438
      REAL(DP), ALLOCATABLE :: XrD11plusYrD21(:,:), XrD12plusYrD22(:,:)
439
      REAL(DP), ALLOCATABLE :: XqD11plusYqD21(:,:), XqD12plusYqD22(:,:)
440
      REAL(DP), ALLOCATABLE :: D11rd(:), D12qd(:), D22qd(:)
441
442
      write(*,1000)
443
444
      !start with computing covariance matrix of Crr_comp, Cqq_comp and Crq_comp
```

```
445
      !for the computed responses.
446
447
      ! Crrcomp = Sra*Caa*Sra'
448
      write(*,1010)
449
      allocate(Crrcomp(Nr,Nr),stat=alloc_err)
      allocate(SraCaa(Nr,Na),stat=alloc err)
450
      allocate(SraT(Na,Nr),stat=alloc err)
451
452
      Crrcomp = 0.0
      SraCaa = 0.0
453
454
      SraT
               = 0.0
455
456
      SraCaa = multipMM(Sra,Caa)
457
      SraT
               = transpose(Sra)
      Crrcomp = multipMM(SraCaa,SraT)
458
459
      call writeMatrixToFile(uCrr_comp,Crrcomp)
460
461
      ! Cggcomp = Sga*Caa*Sga'
      write(*, 1020)
462
      allocate(Cqqcomp(Nq,Nq),stat=alloc_err)
463
      allocate(SqaCaa(Nq,Na),stat=alloc_err)
464
465
      allocate(SqaT(Na,Nq),stat=alloc err)
      Cqqcomp = 0.0
466
      SqaCaa = 0.0
467
468
      SqaT
               = 0.0
469
470
      SqaCaa = multipMM(Sqa,Caa)
471
      SaaT
               = transpose(Sqa)
472
      Cqqcomp = multipMM(SqaCaa,SqaT)
473
      call writeMatrixToFile(uCqq comp,Cqqcomp)
474
475
      ! Crgcomp = Sra*Caa*Sga'
476
      write(*, 1030)
477
      allocate(Crqcomp(Nr,Nq),stat=alloc err)
478
      Cracomp = 0.0
479
480
      Crqcomp = multipMM(SraCaa,SqaT)
481
      call writeMatrixToFile(uCrq comp,Crqcomp)
482
483
      ! define intermediate quantities and initialize
484
      write(*, 1040)
485
      allocate(Xa(Na,Nr),stat=alloc err)
486
      allocate(Ya(Na,Nq),stat=alloc err)
487
      allocate(Xr(Nr,Nr),stat=alloc err)
488
      allocate(Yr(Nr,Nq),stat=alloc err)
489
      allocate(Xq(Nq,Nr),stat=alloc err)
490
      allocate(Yq(Nq,Nq),stat=alloc err)
491
      allocate(Drr(Nr,Nr),stat=alloc err)
492
      allocate(Drq(Nr,Nq),stat=alloc_err)
493
      allocate(Dqr(Nq,Nr),stat=alloc err)
494
      allocate(Dqq(Nq,Nq),stat=alloc err)
      allocate(D11(Nr,Nr),stat=alloc err)
495
496
      allocate(D12(Nr,Nq),stat=alloc err)
497
      allocate(D21(Nq,Nr),stat=alloc err)
      allocate(D22(Nq,Nq),stat=alloc err)
498
499
      allocate(rd(Nr),stat=alloc err)
500
      allocate(qd(Nq),stat=alloc err)
501
502
      Xa = 0.0; Ya = 0.0; Xr
                                  = 0.0;
503
      Yr = 0.0; Xq
                       = 0.0; Yq = 0.0;
504
      Drr = 0.0; Drq = 0.0; Dqr = 0.0;
505
      Dqq = 0.0; D11 = 0.0; D12 = 0.0;
```

```
D21 = 0.0; D22 = 0.0; rd = 0.0;
506
507
      qd = 0.0
508
509
      ! Xa=Caa*Sra'-Car
510
      Xa = multipMM(Caa,SraT)
      Xa = Xa - Car
511
512
513
      ! Ya=Caa*Sqa'-Caq
514
      Ya = multipMM(Caa,SqaT)
515
      Ya = Ya - Caq
516
      ! Xr=Car'*Sra'-Crr
517
518
      allocate(CarT(Nr,Na),stat=alloc_err)
519
      CarT = 0.0
520
      CarT = transpose(Car)
521
522
      Xr = multipMM(CarT,SraT)
523
      Xr = Xr - Crr
524
525
      ! Yr=Car'*Sqa'-Crq
526
      Yr = multipMM(CarT,SqaT)
527
      Yr = Yr - Crq
528
529
      ! Xq=Caq'*Sra'-Crq'
530
       allocate(CaqT(Nq,Na),stat=alloc_err)
531
       allocate(CrqT(Nq,Nr),stat=alloc_err)
532
      CaqT = 0.0
533
      CrqT = 0.0
534
      CaqT = transpose(Caq)
535
      CrqT = transpose(Crq)
536
537
      Xq = multipMM(CaqT,SraT)
538
      Xq = Xq - CrqT
539
540
      ! Yq=Caq'*Sqa'-Cqq
541
      Yq = multipMM(CaqT,SqaT)
542
      Yq = Yq - Cqq
543
544
      ! Drr=Sra*Xa-Xr
545
      Drr = multipMM(Sra,Xa)
546
      Drr = Drr - Xr
547
548
      ! Drq=Sra*Ya-Yr
549
      Drq = multipMM(Sra,Ya)
550
      Drq = Drq - Yr
551
552
      ! Drq'
553
      Dqr = transpose(Drq)
554
555
      ! Dqq=Sqa*Ya-Yq
556
      Dqq = multipMM(Sqa,Ya)
557
      Dqq = Dqq - Yq
558
      ! define rd, qd
559
560
      rd = rc - rm
561
      qd = qc - qm
562
563
      ! compute Drr^-1, Dqq^-1, D22^-1
564
      allocate(Drrinv(Nr,Nr),stat=alloc_err)
565
      Drrinv = 0.0
566
      Drrinv = inv(Drr)
```

```
567
       if(is_NAN_or_Infinity_M(Drr)) then
568
         write(*, 1050)
569
       end if
570
       if(is_NAN_or_Infinity_M(Drrinv)) then
571
         write(*, 1060)
       end if
572
573
       ! D22=[Dgg-Drg'*Drr^-1*Drg]^-1
574
       allocate(DqrDrrinv(Nq,Nr),stat=alloc_err)
575
576
       DgrDrrinv = 0.0
       DqrDrrinv = multipMM(Dqr,Drrinv)
577
       D22 = Dqq - multipMM(DqrDrrinv,Drq)
578
579
       D22 = inv(D22)
580
581
       ! D12=-Drr^-1*Drg*D22
582
      D12 = multipMM(Drrinv,Drq)
       D12 = -1.0 * multipMM(D12,D22)
584
      ! D12'
585
      D21 = transpose(D12)
586
       ! D11=Drr^-1+D12*Drg'*Drr^-1
      D11 = multipMM(D12,Dqr)
590
      D11 = Drrinv - multipMM(D11,Drrinv)
       ! best estimated mean values for aBE, rBE, qBE
593
       write(*, 1070)
594
       allocate(aBE(Na),stat=alloc err)
       allocate(rBE(Nr),stat=alloc err)
       allocate(qBE(Nq),stat=alloc err)
597
       aBE = 0.0
598
       rBE = 0.0
599
       aBE = 0.0
       ! aBE = alpha-[Xa*D11+Ya*D21]*rd-[Xa*D12+Ya*D22]*qd
602
       allocate(XaD11plusYaD21(Na,Nr),stat=alloc err)
603
       allocate(XaD12plusYaD22(Na,Nq),stat=alloc err)
604
       XaD11plusYaD21 = 0.0
605
       XaD12plusYaD22 = 0.0
606
       XaD11plusYaD21 = multipMM(Xa,D11) + multipMM(Ya,D21)
       XaD12plusYaD22 = multipMM(Xa,D12) + multipMM(Ya,D22)
607
608
609
       aBE = multipMV(XaD11plusYaD21,rd)
610
       aBE = alpha - aBE
       aBE = aBE - multipMV(XaD12plusYaD22,qd)
611
612
       call writeVectorToFile(ua BE,aBE)
613
       ! rBE = rm-[Xr*D11+Yr*D21]*rd-[Xr*D12+Yr*D22]*qd
614
615
       write(*, 1080)
616
       allocate(XrD11plusYrD21(Nr,Nr),stat=alloc err)
617
       allocate(XrD12plusYrD22(Nr,Nq),stat=alloc err)
618
       XrD11plusYrD21 = 0.0
619
       XrD12plusYrD22 = 0.0
       XrD11plusYrD21 = multipMM(Xr,D11) + multipMM(Yr,D21)
620
       XrD12plusYrD22 = multipMM(Xr,D12) + multipMM(Yr,D22)
621
622
623
       rBE = multipMV(XrD11plusYrD21,rd)
624
       rBE = rm - rBE
       rBE = rBE - multipMV(XrD12plusYrD22,qd)
625
626
       call writeVectorToFile(ur_BE,rBE)
627
```

```
628
       ! qBE = qm-[Xq*D11+Yq*D21]*rd-[Xq*D12+Yq*D22]*qd
629
       write(*, 1090)
630
       allocate(XqD11plusYqD21(Nq,Nr),stat=alloc_err)
631
       allocate(XqD12plusYqD22(Nq,Nq),stat=alloc_err)
632
       XqD11plusYqD21 = 0.0
633
       XqD12plusYqD22 = 0.0
634
       XqD11plusYqD21 = multipMM(Xq,D11) + multipMM(Yq,D21)
635
       XqD12plusYqD22 = multipMM(Xq,D12) + multipMM(Yq,D22)
636
637
       gBE = multipMV(XqD11plusYqD21,rd)
638
       qBE = qm - qBE
       qBE = qBE - multipMV(XqD12plusYqD22,qd)
639
640
       call writeVectorToFile(uq_BE,qBE)
641
642
       !calculate coviances for responses and parameters
643
       allocate(CaaBE(Na,Na),stat=alloc err)
       allocate(CrrBE(Nr,Nr),stat=alloc err)
       allocate(CarBE(Na,Nr),stat=alloc err)
645
       allocate(CqqBE(Nq,Nq),stat=alloc_err)
646
647
       allocate(CagBE(Na,Ng),stat=alloc err)
648
       allocate(CrqBE(Nr,Nq),stat=alloc err)
       CaaBE = 0.0; CrrBE = 0.0; CarBE = 0.0
       CqqBE = 0.0; CaqBE = 0.0; CrqBE = 0.0
650
651
       ! CaaBE = Caa - [Xa*(D11*Xa'+D12*Ya')+Ya*(D21*Xa'+D22*Ya')]
652
653
       write(*, 2000)
654
       CaaBE = multipMM(Xa,transpose(XaD11plusYaD21))
       CaaBE = Caa - CaaBE
656
       CaaBE = CaaBE - multipMM(Ya,transpose(XaD12plusYaD22))
657
       call writeMatrixToFile(uC aaBE, CaaBE)
658
659
       ! CrrBE = Crr - [Xr*(D11*Xr'+D12*Yr')+Yr*(D21*Xr'+D22*Yr')]
660
       write(*, 2010)
       CrrBE = multipMM(Xr,transpose(XrD11plusYrD21))
661
       CrrBE = Crr - CrrBE
662
       CrrBE = CrrBE - multipMM(Yr,transpose(XrD12plusYrD22))
664
       call writeMatrixToFile(uC rrBE,CrrBE)
665
       ! CarBE = Car - [Xa*(D11*Xr'+D12*Yr')+Ya*(D21*Xr'+D22*Yr')]
666
       write(*, 2020)
667
       CarBE = multipMM(Xa,transpose(XrD11plusYrD21))
       CarBE = Car - CarBE
670
       CarBE = CarBE - multipMM(Ya,transpose(XrD12plusYrD22))
671
       call writeMatrixToFile(uC arBE, CarBE)
672
673
       ! CqqBE = Cqq - [Xq*(D11*Xq'+D12*Yq')+Yq*(D21*Xq'+D22*Yq')]
674
       write(*, 2030)
675
       CqqBE = multipMM(Xq,transpose(XqD11plusYqD21))
676
       CqqBE = Cqq - CqqBE
677
       CqqBE = CqqBE - multipMM(Yq,transpose(XqD12plusYqD22))
678
       call writeMatrixToFile(uC qqBE,CqqBE)
679
680
       ! CaqBE = Caq - [Xa*(D11*Xq'+D12*Yq')+Ya*(D21*Xq'+D22*Yq')]
681
       write(*, 2040)
       CaqBE = multipMM(Xa,transpose(XqD11plusYqD21))
682
683
       CagBE = Cag - CagBE
684
       CaqBE = CaqBE - multipMM(Ya,transpose(XqD12plusYqD22))
685
       call writeMatrixToFile(uC aqBE,CaqBE)
686
       ! CrqBE = Crq - [Xr*(D11*Xq'+D12*Yq')+Yr*(D21*Xq'+D22*Yq')]
687
688
       write(*, 2050)
```

```
689
      CrqBE = multipMM(Xr,transpose(XqD11plusYqD21))
690
      CraBE = Cra - CraBE
      CrqBE = CrqBE - multipMM(Yr,transpose(XqD12plusYqD22))
691
692
      call writeMatrixToFile(uC_rqBE,CrqBE)
693
      !calculate the "consistency indicator" chi^2
694
695
      allocate(D11rd(Nr), stat=alloc err)
696
      allocate(D12qd(Nr),stat=alloc err)
697
      allocate(D22qd(Nq),stat=alloc err)
698
      D11rd
               = 0.0
699
      D12qd
               = 0.0
      D22ad
700
               = 0.0
      chi2
701
               = 0.0
702
703
      D11rd
              = multipMV(D11,rd)
704
      D12qd
              = multipMV(D12,qd)
              = multipMV(D22,qd)
705
      D22qd
      chi2
              = multipVV(rd,D11rd)
706
707
      chi2
               = chi2 + 2.0 * multipVV(rd,D12qd)
              = chi2 + multipVV(qd,D22qd)
708
      chi2
709
      write(uchi2,3500,err=200) chi2, chi2/(Nr+Nq)
710
      write(*,3600)
711
712
      return
713
       200 lerr = .true.;ierr = 3;call errmsg;stop
      1000 format(/, &
714
715
            1x, '---
                        -----') Multi-pred Solving & Output
716
      1010 format(&
717
            1x,'computing Crrcomp = Sra*Caa*Sra"',a)
718
      1020 format(&
719
            1x,'computing Cqqcomp = Sqa*Caa*Sqa"',a)
720
      1030 format(&
721
            1x,'computing Cggcomp = Sga*Caa*Sga"',a)
722
      1040 format(&
            1x, 'computing Xa, Ya, Xr, Yr, Xq, Yq, D11, D12, D22, Drr,Drq, Dqr,'/, &
723
724
                          Dqq, rd, qd',a)
725
      1050 format(&
726
            1x, 'ERROR: Infinite or NAN in computing Drr, where Drr=Sra*Xa-Xr',a)
727
      1060 format(&
728
            1x, 'ERROR: Infinite or NAN in computing Drr^-1',a)
729
      1070 format(&
730
            1x,'computing aBE
                               = alpha-[Xa*D11+Ya*D21]*rd-[Xa*D12+Ya*D22]*qd',a)
731
      1080 format(&
732
            1x,'computing rBE
                               = rm-[Xr*D11+Yr*D21]*rd-[Xr*D12+Yr*D22]*qd',a)
733
      1090 format(&
                               = qm-[Xq*D11+Yq*D21]*rd-[Xq*D12+Yq*D22]*qd',a)
734
            1x,'computing qBE
735
      2000 format(&
            1x,'computing CaaBE = Caa-[Xa*(D11*Xa"+D12*Ya")+Ya*(D21*Xa"+D22*Ya")]',a)
736
737
      2010 format(&
            1x, 'computing CrrBE = Crr-[Xr*(D11*Xr"+D12*Yr")+Yr*(D21*Xr"+D22*Yr")]',a)
738
739
      2020 format(&
740
            1x, 'computing CarBE = Car-[Xa*(D11*Xr"+D12*Yr")+Ya*(D21*Xr"+D22*Yr")]',a)
741
      2030 format(&
           1x, 'computing CqqBE = Cqq-[Xq*(D11*Xq"+D12*Yq")+Yq*(D21*Xq"+D22*Yq")]',a)
742
743
      2040 format(&
            1x, 'computing CaqBE = Caq-[Xa*(D11*Xq"+D12*Yq")+Ya*(D21*Xq"+D22*Yq")]',a)
744
745
      2050 format(&
746
           1x, 'computing CrqBE = Crq-[Xr*(D11*Xq"+D12*Yq")+Yr*(D21*Xq"+D22*Yq")]',a)
747
      3500 format(&
748
               'chi^2
                                                                            ,F8.3/, &
               'chi^2_d = (chi^2)/(number of responses) ='
749
                                                                            ,F8.3)
```

```
3600 format(/, &
750
751
           1x, 'done.')
752
753 END SUBROUTINE solvercase3
754
756
757 SUBROUTINE solvercase4()
758 !
759 ! solver for Casee 4: coupled Models A & B
760 !
761
      !Local-----
762
      REAL(DP), ALLOCATABLE :: SraCaa(:,:), SraT(:,:), SraCab(:,:), SrbT(:,:),
763
                              SrbCbb(:,:)
764
      REAL(DP), ALLOCATABLE :: SqaCaa(:,:), SqaT(:,:), SqaCab(:,:), SqbT(:,:),
765
                              SqbCbb(:,:)
766
      REAL(DP), ALLOCATABLE :: CabT(:,:), SrbCabT(:,:)
767
      REAL(DP), ALLOCATABLE :: Xa(:,:), Ya(:,:), Xb(:,:), Yb(:,:),
                                                                      Xr(:,:), &
                                        Xq(:,:), Yq(:,:), Drr(:,:), Drq(:,:), &
768
                              Yr(:,:),
                              Dqr(:,:), Dqq(:,:), D11(:,:), D12(:,:), D21(:,:), &
769
770
                              D22(:,:), rd(:), qd(:)
      REAL(DP), ALLOCATABLE :: CarT(:,:), CbrT(:,:)
771
      REAL(DP), ALLOCATABLE :: CaqT(:,:), CbqT(:,:), CrqT(:,:)
772
773
      REAL(DP), ALLOCATABLE :: Drrinv(:,:), DqrDrrinv(:,:), temp2(:,:), temp3(:,:)
774
      REAL(DP), ALLOCATABLE :: XaD11plusYaD21(:,:), XaD12plusYaD22(:,:)
775
      REAL(DP), ALLOCATABLE :: XbD11plusYbD21(:,:), XbD12plusYbD22(:,:)
776
      REAL(DP), ALLOCATABLE :: XrD11plusYrD21(:,:), XrD12plusYrD22(:,:)
777
      REAL(DP), ALLOCATABLE :: XqD11plusYqD21(:,:), XqD12plusYqD22(:,:)
778
      REAL(DP), ALLOCATABLE :: D11rd(:), D12qd(:), D22qd(:)
779
780
      write(*,1000)
781
782
      !start with computing covariance matrix of Crr comp, Cqq comp and Crq comp
783
      !for the computed responses.
784
785
      ! Crrcomp = Sra*Caa*Sra'+2Sra*Cab*Srb'+Srb*Cbb*Srb'
786
      write(*, 1010)
787
      allocate(Crrcomp(Nr,Nr),stat=alloc err)
788
      allocate(SraCaa(Nr,Na),stat=alloc err)
789
      allocate(SraT(Na,Nr),stat=alloc err)
790
      allocate(SraCab(Nr,Nb),stat=alloc err)
791
      allocate(SrbT(Nb,Nr),stat=alloc err)
792
      allocate(SrbCbb(Nr,Nb),stat=alloc err)
793
      Crrcomp = 0.0; SraCaa = 0.0
794
      SraT
              = 0.0;
                       SraCab
                               = 0.0
795
      SrbT
              = 0.0;
                       SrbCbb = 0.0
796
797
      SraCaa = multipMM(Sra,Caa)
798
      SraT
               = transpose(Sra)
799
      Crrcomp = multipMM(SraCaa,SraT)
800
      SraCab = multipMM(Sra,Cab)
801
      SrbT
               = transpose(Srb)
802
      Crrcomp = Crrcomp + 2 * multipMM(SraCab, SrbT)
803
      SrbCbb = multipMM(Srb,Cbb)
      Crrcomp = Crrcomp + multipMM(SrbCbb,SrbT)
804
805
      call writeMatrixToFile(uCrr comp,Crrcomp)
806
807
      ! Cqqcomp = Sqa*Caa*Sqa'+2Sqa*Cab*Sqb'+Sqb*Cbb*Sqb'
808
      write(*, 1020)
809
      allocate(Cqqcomp(Nq,Nq),stat=alloc_err)
810
      allocate(SqaCaa(Nq,Na),stat=alloc_err)
```

```
811
       allocate(SqaT(Na,Nq),stat=alloc_err)
812
       allocate(SqaCab(Nq,Nb),stat=alloc_err)
813
       allocate(SqbT(Nb,Nq),stat=alloc err)
814
       allocate(SqbCbb(Nq,Nb),stat=alloc_err)
815
       Cqqcomp = 0.0;
                         SaaCaa
                                  = 0.0
                         SaaCab
                                  = 0.0
816
       SaaT
                = 0.0;
       SabT
                         SabCbb
817
                = 0.0;
                                  = 0.0
818
819
       SgaCaa
                = multipMM(Sqa,Caa)
820
       SgaT
                = transpose(Sqa)
       Cqqcomp = multipMM(SqaCaa,SqaT)
821
822
       SgaCab
                = multipMM(Sqa,Cab)
823
       SabT
                = transpose(Sqb)
       Cqqcomp = Cqqcomp + 2 * multipMM(SqaCab,SqbT)
824
825
                = multipMM(Sqb,Cbb)
       Cqqcomp = Cqqcomp + multipMM(SqbCbb,SqbT)
826
827
       call writeMatrixToFile(uCqq comp,Cqqcomp)
828
       ! Crgcomp = Sra*Caa*Sqa'+Sra*Cab*Sqb'+Srb*Cab'*Sqa'+Sqb*Cbb*Sqb'
829
       write(*, 1030)
830
831
       allocate(Crgcomp(Nr,Nq),stat=alloc err)
       allocate(CabT(Nb,Na),stat=alloc err)
832
833
       allocate(SrbCabT(Nr,Na),stat=alloc_err)
834
       Crqcomp = 0.0
835
       CabT
                = 0.0
836
       SrbCabT = 0.0
837
838
       Crgcomp = multipMM(SraCaa,SqaT)
839
       Crqcomp = Crqcomp + multipMM(SraCab,SqbT)
840
       CabT
                = transpose(Cab)
841
       SrbCabT = multipMM(Srb,CabT)
842
       Crgcomp = Crgcomp + multipMM(SrbCabT,SgaT)
843
       Crgcomp = Crgcomp + multipMM(SrbCbb,SqbT)
844
       call writeMatrixToFile(uCrq comp,Crqcomp)
845
846
       ! define intermediate quantities and initialize
847
       write(*, 1040)
848
       allocate(Xa(Na,Nr),stat=alloc err)
849
       allocate(Ya(Na,Nq),stat=alloc err)
850
       allocate(Xb(Nb,Nr),stat=alloc err)
       allocate(Yb(Nb,Nq),stat=alloc err)
851
852
       allocate(Xr(Nr,Nr),stat=alloc err)
853
       allocate(Yr(Nr,Nq),stat=alloc err)
854
       allocate(Xq(Nq,Nr),stat=alloc err)
855
       allocate(Yq(Nq,Nq),stat=alloc err)
856
       allocate(Drr(Nr,Nr),stat=alloc err)
857
       allocate(Drq(Nr,Nq),stat=alloc err)
858
       allocate(Dqr(Nq,Nr),stat=alloc_err)
859
       allocate(Dqq(Nq,Nq),stat=alloc err)
860
       allocate(D11(Nr,Nr),stat=alloc err)
861
       allocate(D12(Nr,Nq),stat=alloc err)
862
       allocate(D21(Nq,Nr),stat=alloc err)
863
       allocate(D22(Nq,Nq),stat=alloc err)
864
       allocate(rd(Nr),stat=alloc err)
865
       allocate(qd(Nq),stat=alloc err)
866
867
           = 0.0; Ya
                       = 0.0; Xb
                                    = 0.0
868
       Yb
           = 0.0; Xr
                       = 0.0; Yr
                                    = 0.0
                       = 0.0; Drr = 0.0
869
       Xq = 0.0; Yq
870
       Drq = 0.0; Dqr = 0.0; Dqq = 0.0
       D11 = 0.0; D12 = 0.0; qd
871
```

```
D21 = 0.0; D22 = 0.0; rd = 0.0
872
873
874
      ! Xa=Caa*Sra'+Cab*Srb'-Car
875
      Xa = multipMM(Caa,SraT)
876
      Xa = Xa + multipMM(Cab,SrbT)
      Xa = Xa - Car
877
878
879
       ! Ya=Caa*Sqa'+Cab*Sqb'-Caq
      Ya = multipMM(Caa,SqaT)
880
881
      Ya = Ya + multipMM(Cab, SqbT)
882
      Ya = Ya - Caq
883
       ! Xb=Cab'*Sra'+Cbb*Srb'-Cbr
884
      Xb = multipMM(CabT,SraT)
885
886
      Xb = Xb + multipMM(Cbb,SrbT)
      Xb = Xb - Cbr
887
888
       ! Yb=Cba*Sqa'+Cbb*Sqb'-Cbq
889
      Yb = multipMM(CabT,SqaT)
890
891
      Yb = Yb + multipMM(Cbb,SqbT)
      Yb = Yb - Cbq
892
893
894
       ! Xr=Car'*Sra'+Cbr'*Srb'-Crr
       allocate(CarT(Nr,Na),stat=alloc_err)
       allocate(CbrT(Nr,Nb),stat=alloc_err)
897
      CarT = 0.0
898
      CbrT = 0.0
899
      CarT = transpose(Car)
900
      CbrT = transpose(Cbr)
901
902
      Xr = multipMM(CarT,SraT)
903
      Xr = Xr + multipMM(CbrT,SrbT)
904
      Xr = Xr - Crr
905
906
      ! Yr=Car'*Sqa'+Cbr'*Sqb'-Crq
907
      Yr = multipMM(CarT,SqaT)
908
      Yr = Yr + multipMM(CbrT,SqbT)
909
      Yr = Yr - Crq
910
911
       ! Xq=Caq'*Sra'+Cbq'*Srb'-Crq'
       allocate(CagT(Ng,Na),stat=alloc err)
912
913
       allocate(CbqT(Nq,Nb),stat=alloc_err)
914
       allocate(CrqT(Nq,Nr),stat=alloc_err)
915
       CaqT = 0.0
916
       CbqT = 0.0
917
       CrqT = 0.0
918
       CaqT = transpose(Caq)
919
       CbqT = transpose(Cbq)
920
       CrqT = transpose(Crq)
921
922
      Xq = multipMM(CaqT,SraT)
923
       Xq = Xq + multipMM(CbqT,SrbT)
924
       Xq = Xq - CrqT
925
       ! Yq=Caq'*Sqa'+Cbq'*Sqb'-Cqq
926
927
       Yq = multipMM(CaqT,SqaT)
928
       Yq = Yq + multipMM(CbqT,SqbT)
929
       Yq = Yq - Cqq
930
      ! Drr=Sra*Xa+Srb*Xb-Xr
931
932
      Drr = multipMM(Sra,Xa)
```

```
Drr = Drr + multipMM(Srb,Xb)
      Drr = Drr - Xr
934
935
936
      ! Drq=Sra*Ya+Srb*Yb-Yr
937
      Drg = multipMM(Sra,Ya)
      Drq = Drq + multipMM(Srb,Yb)
938
939
      Drq = Drq - Yr
940
941
      ! Drg'
942
      Dqr = transpose(Drq)
943
      ! Dqq=Sqa*Ya+Sqb*Yb-Yq
944
945
      Dqq = multipMM(Sqa,Ya)
946
      Dqq = Dqq + multipMM(Sqb,Yb)
947
      Dqq = Dqq - Yq
948
      ! define rd, qd
949
950
      rd = rc - rm
951
      qd = qc - qm
952
953
      ! compute Drr^-1, Dqq^-1, D22^-1
954
      allocate(Drrinv(Nr,Nr),stat=alloc err)
955
      Drrinv = 0.0
956
      Drrinv = inv(Drr)
957
      if(is_NAN_or_Infinity_M(Drr)) then
958
         write(*, 1050)
959
960
      if(is_NAN_or_Infinity_M(Drrinv)) then
961
         write(*, 1060)
962
      end if
963
      ! D22=[Dag-Drg'*Drr^-1*Drg]^-1
      allocate(DqrDrrinv(Nq,Nr),stat=alloc err)
966
      DgrDrrinv = 0.0
      DqrDrrinv = multipMM(Dqr,Drrinv)
967
968
      D22 = Dqq - multipMM(DqrDrrinv,Drq)
969
      D22 = inv(D22)
970
971
      ! D12=-Drr^-1*Drq*D22
972
      D12 = multipMM(Drrinv,Drg)
973
      D12 = -1.0 * multipMM(D12,D22)
974
975
      ! D12'
976
      D21 = transpose(D12)
977
      ! D11=Drr^-1+D12*Drg'*Drr^-1
978
979
      D11 = multipMM(D12,Dqr)
980
      D11 = Drrinv - multipMM(D11,Drrinv)
981
982
      ! best estimated mean values for aBE, bBE, rBE, qBE
983
      write(*, 1070)
984
      allocate(aBE(Na),stat=alloc err)
985
      allocate(bBE(Nb),stat=alloc err)
986
      allocate(rBE(Nr),stat=alloc err)
987
      allocate(qBE(Nq),stat=alloc err)
      aBE = 0.0
988
      bBE = 0.0
989
990
      rBE = 0.0
991
      qBE = 0.0
992
      ! aBE = alpha-[Xa*D11+Ya*D21]*rd-[Xa*D12+Ya*D22]*qd
993
```

```
allocate(XaD11plusYaD21(Na,Nr),stat=alloc_err)
995
       allocate(XaD12plusYaD22(Na,Nq),stat=alloc_err)
996
       XaD11plusYaD21 = 0.0
997
       XaD12plusYaD22 = 0.0
       XaD11plusYaD21 = multipMM(Xa,D11) + multipMM(Ya,D21)
       XaD12plusYaD22 = multipMM(Xa,D12) + multipMM(Ya,D22)
999
1000
1001
       aBE = multipMV(XaD11plusYaD21,rd)
1002
       aBE = alpha - aBE
1003
       aBE = aBE - multipMV(XaD12plusYaD22,qd)
1004
       call writeVectorToFile(ua BE,aBE)
1005
      ! bBE = beta-[Xb*D11+Yb*D21]*rd-[Xb*D12+Yb*D22]*qd
1006
1007
      write(*, 1080)
1008
       allocate(XbD11plusYbD21(Nb,Nr),stat=alloc_err)
       allocate(XbD12plusYbD22(Nb,Nq),stat=alloc_err)
1010
      XbD11plusYbD21 = 0.0
1011
      XbD12plusYbD22 = 0.0
      XbD11plusYbD21 = multipMM(Xb,D11) + multipMM(Yb,D21)
1012
      XbD12plusYbD22 = multipMM(Xb,D12) + multipMM(Yb,D22)
1013
1014
      bBE = multipMV(XbD11plusYbD21,rd)
1015
      bBE = beta - bBE
1016
       bBE = bBE - multipMV(XbD12plusYbD22,qd)
1017
1018
       call writeVectorToFile(ub BE,bBE)
1019
1020
      ! rBE = rm-[Xr*D11+Yr*D21]*rd-[Xr*D12+Yr*D22]*qd
1021
      write(*, 1090)
1022
       allocate(XrD11plusYrD21(Nr,Nr),stat=alloc err)
       allocate(XrD12plusYrD22(Nr,Nq),stat=alloc err)
1023
      XrD11plusYrD21 = 0.0
1024
1025
      XrD12plusYrD22 = 0.0
      XrD11plusYrD21 = multipMM(Xr,D11) + multipMM(Yr,D21)
1026
1027
      XrD12plusYrD22 = multipMM(Xr,D12) + multipMM(Yr,D22)
1028
1029
      rBE = multipMV(XrD11plusYrD21,rd)
1030
       rBE = rm - rBE
1031
       rBE = rBE - multipMV(XrD12plusYrD22,qd)
1032
       call writeVectorToFile(ur BE,rBE)
1033
1034
      ! qBE = qm-[Xq*D11+Yq*D21]*rd-[Xq*D12+Yq*D22]*qd
1035
      write(*, 2000)
1036
       allocate(XqD11plusYqD21(Nq,Nr),stat=alloc err)
1037
       allocate(XqD12plusYqD22(Nq,Nq),stat=alloc err)
1038
       XqD11plusYqD21 = 0.0
1039
       XqD12plusYqD22 = 0.0
1040
       XqD11plusYqD21 = multipMM(Xq,D11) + multipMM(Yq,D21)
1041
       XqD12plusYqD22 = multipMM(Xq,D12) + multipMM(Yq,D22)
1042
1043
      qBE = multipMV(XqD11plusYqD21,rd)
1044
      qBE = qm - qBE
1045
       qBE = qBE - multipMV(XqD12plusYqD22,qd)
1046
       call writeVectorToFile(uq BE,qBE)
1047
1048
      !calculate coviances for responses and parameters
1049
       allocate(CaaBE(Na,Na),stat=alloc err)
1050
       allocate(CrrBE(Nr,Nr),stat=alloc err)
1051
       allocate(CarBE(Na,Nr),stat=alloc err)
1052
       allocate(CbbBE(Nb,Nb),stat=alloc_err)
1053
       allocate(CqqBE(Nq,Nq),stat=alloc_err)
1054
       allocate(CbqBE(Nb,Nq),stat=alloc_err)
```

```
1055
       allocate(CabBE(Na,Nb),stat=alloc_err)
1056
       allocate(CaqBE(Na,Nq),stat=alloc_err)
1057
       allocate(CbrBE(Nb,Nr),stat=alloc_err)
1058
       allocate(CrqBE(Nr,Nq),stat=alloc_err)
1059
       CaaBE = 0.0; CrrBE = 0.0; CarBE = 0.0
1060
      CbbBE = 0.0; CqqBE = 0.0; CbqBE = 0.0
1061
      CagBE = 0.0; CbrBE = 0.0; CbrBE = 0.0
1062
      CrqBE = 0.0
1063
1064
      ! CaaBE = Caa - [Xa*(D11*Xa'+D12*Ya')+Ya*(D21*Xa'+D22*Ya')]
1065
      write(*, 2010)
1066
      CaaBE = multipMM(Xa,transpose(XaD11plusYaD21))
1067
      CaaBE = Caa - CaaBE
1068
      CaaBE = CaaBE - multipMM(Ya,transpose(XaD12plusYaD22))
1069
       call writeMatrixToFile(uC_aaBE,CaaBE)
1070
1071
      ! CrrBE = Crr - [Xr*(D11*Xr'+D12*Yr')+Yr*(D21*Xr'+D22*Yr')]
1072
      write(*, 2020)
1073
      CrrBE = multipMM(Xr,transpose(XrD11plusYrD21))
1074
      CrrBE = Crr - CrrBE
1075
      CrrBE = CrrBE - multipMM(Yr,transpose(XrD12plusYrD22))
1076
      call writeMatrixToFile(uC rrBE,CrrBE)
1077
     ! CarBE = Car - [Xa*(D11*Xr'+D12*Yr')+Ya*(D21*Xr'+D22*Yr')]
1078
1079
      write(*, 2030)
1080
      CarBE = multipMM(Xa,transpose(XrD11plusYrD21))
      CarBE = Car - CarBE
      CarBE = CarBE - multipMM(Ya,transpose(XrD12plusYrD22))
1083
       call writeMatrixToFile(uC arBE, CarBE)
1084
      ! CbbBE = Cbb - [Xb*(D11*Xb'+D12*Yb')+Yb*(D21*Xb'+D22*Yb')]
1085
1086
      write(*, 2040)
      CbbBE = multipMM(Xb,transpose(XbD11plusYbD21))
1087
      CbbBE = Cbb - CbbBE
      CbbBE = CbbBE - multipMM(Yb,transpose(XbD12plusYbD22))
      call writeMatrixToFile(uC bbBE,CbbBE)
1090
      ! CqqBE = Cqq - [Xq*(D11*Xq'+D12*Yq')+Yq*(D21*Xq'+D22*Yq')]
1092
1093
      write(*, 2050)
      CqqBE = multipMM(Xq,transpose(XqD11plusYqD21))
       CqqBE = Cqq - CqqBE
       CqqBE = CqqBE - multipMM(Yq,transpose(XqD12plusYqD22))
1097
       call writeMatrixToFile(uC qqBE,CqqBE)
1098
1099
      ! CbqBE = Cbq - [Xb*(D11*Xq'+D12*Yq')+Yb*(D21*Xq'+D22*Yq')]
1100
      write(*, 2060)
       CbqBE = multipMM(Xb,transpose(XqD11plusYqD21))
1101
1102
       CbqBE = Cbq - CbqBE
1103
       CbqBE = CbqBE - multipMM(Yb,transpose(XqD12plusYqD22))
1104
       call writeMatrixToFile(uC bqBE,CbqBE)
1105
1106
      ! CabBE = Cab - [Xa*(D11*Xb'+D12*Yb')+Yb*(D21*Xb'+D22*Yb')]
1107
      write(*, 2070)
1108
      CabBE = multipMM(Xa,transpose(XbD11plusYbD21))
1109
       CabBE = Cab - CabBE
1110
      CabBE = CabBE - multipMM(Ya,transpose(XbD12plusYbD22))
1111
       call writeMatrixToFile(uC abBE,CabBE)
1112
1113
      ! CaqBE = Caq - [Xa*(D11*Xq'+D12*Yq')+Ya*(D21*Xq'+D22*Yq')]
1114
       write(*, 2080)
1115
       CaqBE = multipMM(Xa,transpose(XqD11plusYqD21))
```

```
CagBE = Cag - CagBE
1116
1117
      CaqBE = CaqBE - multipMM(Ya,transpose(XqD12plusYqD22))
1118
      call writeMatrixToFile(uC_aqBE,CaqBE)
1119
1120
      ! CbrBE = Cbr - [Xb*(D11*Xr'+D12*Yr')+Yb*(D21*Xr'+D22*Yr')]
1121
      write(*, 2090)
1122
      CbrBE = multipMM(Xb,transpose(XrD11plusYrD21))
1123
      CbrBE = Cbr - CbrBE
1124
      CbrBE = CbrBE - multipMM(Yb,transpose(XrD12plusYrD22))
1125
      call writeMatrixToFile(uC brBE,CbrBE)
1126
      ! CrqBE = Crq - [Xr*(D11*Xq'+D12*Yq')+Yr*(D21*Xq'+D22*Yq')]
1127
1128
      write(*, 3000)
1129
      CrqBE = multipMM(Xr,transpose(XqD11plusYqD21))
1130
      CraBE = Cra - CraBE
1131
      CrqBE = CrqBE - multipMM(Yr,transpose(XqD12plusYqD22))
1132
      call writeMatrixToFile(uC rqBE,CrqBE)
1133
1134
      !calculate the "consistency indicator" chi^2
1135
1136
      allocate(D11rd(Nr).stat=alloc err)
1137
      allocate(D12qd(Nr),stat=alloc err)
1138
      allocate(D22qd(Nq),stat=alloc_err)
1139
      D11rd
              = 0.0
1140
      D12qd
              = 0.0
1141
      D22qd = 0.0
1142
      chi2
              = 0.0
1143
1144 D11rd = multipMV(D11,rd)
      D12qd = multipMV(D12,qd)
1145
      D22qd = multipMV(D22,qd)
1146
1147
      chi2
              = multipVV(rd,D11rd)
      chi2
1148
              = chi2 + 2.0 * multipVV(rd,D12gd)
1149
              = chi2 + multipVV(qd,D22qd)
1150
      write(uchi2,3500,err=200) chi2, chi2/(Nr+Nq)
1151
1152 write(*,3600)
1153 return
1154
      200 lerr = .true.;ierr = 3;call errmsg;stop
1155
      1000 format(/, &
1156
           1x, '---
                       -----')
1157
      1010 format(&
1158
           1x, 'computing Crrcomp = Sra*Caa*Sra"+2*Sra*Cab*Srb"+Srb*Cbb*Srb"',a)
1159 1020 format(&
1160
           1x, 'computing Cqqcomp = Sqa*Caa*Sqa"+2*Sqa*Cab*Sqb"+Sqb*Cbb*Sqb"',a)
1161 1030 format(&
1162
           1x, 'computing Crqcomp = Sra*Caa*Sqa"+Sra*Cab*Sqb"+Srb*Cab"*Sqa"+Sqb*Cbb*Sqb"',a)
1163 1040 format(&
           1x,'computing Xa, Ya, Xb, Yb, Xr, Yr, Xq, Yq, D11, D12, D22, Drr,' /, &
1164
1165
                         Drq, Dqr, Dqq, rd, qd',a)
1166 1050 format(&
1167
           1x, 'ERROR: Infinite or NAN in computing Drr, where '
                                                                                &
1168
              'Drr=Sra*Xa+Srb*Xb-Xr',a)
1169 1060 format(&
1170
           1x, 'ERROR: Infinite or NAN in computing Drr^-1',a)
1171 1070 format(&
1172
           1x,'computing aBE
                              = alpha-[Xa*D11+Ya*D21]*rd-[Xa*D12+Ya*D22]*qd',a)
1173 1080 format(&
1174
           1x, 'computing bBE
                              = beta-[Xb*D11+Yb*D21]*rd-[Xb*D12+Yb*D22]*qd',a)
1175 1090 format(&
1176
           1x, 'computing rBE
                              = rm-[Xr*D11+Yr*D21]*rd-[Xr*D12+Yr*D22]*qd',a)
```

```
1177
      2000 format(&
           1x, 'computing qBE = qm-[Xq*D11+Yq*D21]*rd-[Xq*D12+Yq*D22]*qd',a)
1178
      2010 format(&
1179
1180
           1x,'computing CaaBE = Caa-[Xa*(D11*Xa"+D12*Ya")+Ya*(D21*Xa"+D22*Ya")]',a)
1181
      2020 format(&
           1x, 'computing CrrBE = Crr-[Xr*(D11*Xr"+D12*Yr")+Yr*(D21*Xr"+D22*Yr")]',a)
1182
1183
      2030 format(&
           1x,'computing CarBE = Car-[Xa*(D11*Xr"+D12*Yr")+Ya*(D21*Xr"+D22*Yr")]',a)
1184
      2040 format(&
1185
           1x,'computing CbbBE = Cbb-[Xb*(D11*Xb"+D12*Yb")+Yb*(D21*Xb"+D22*Yb")]',a)
1186
1187
      2050 format(&
           1x, 'computing CqqBE = Cqq-[Xq*(D11*Xq"+D12*Yq")+Yq*(D21*Xq"+D22*Yq")]',a)
1188
1189
      2060 format(&
           1x, 'computing CbqBE = Cbq-[Xb*(D11*Xq"+D12*Yq")+Yb*(D21*Xq"+D22*Yq")]',a)
1190
1191
      2070 format(&
           1x, 'computing CabBE = Cab-[Xa*(D11*Xb"+D12*Yb")+Yb*(D21*Xb"+D22*Yb")]',a)
1192
1193
      2080 format(&
           1x, 'computing CaqBE = Caq-[Xa*(D11*Xq"+D12*Yq")+Ya*(D21*Xq"+D22*Yq")]',a)
1194
1195
      2090 format(&
           1x, 'computing CbrBE = Cbr-[Xb*(D11*Xr"+D12*Yr")+Yb*(D21*Xr"+D22*Yr")]'.a)
1196
1197
      3000 format(&
           1x, 'computing CrqBE = Crq-[Xr*(D11*Xq"+D12*Yq")+Yr*(D21*Xq"+D22*Yq")]',a)
1198
      3500 format(&
1199
              'chi^2
                                                                        ,F8.3/, &
              'chi^2 d = (chi^2)/(number of responses) = '
                                                                       ,F8.3)
1201
1202
      3600 format(/, &
1203
           1x, 'done.')
1205 END SUBROUTINE solvercase4
1209 END MODULE ModuleMultiPred
```

8.11 Module ModuleLapack.f90

```
1
    MODULE ModuleLapack
    <u>|</u>
2
    !*
3
4
    !* Module ModuleLapack encapsulates subroutines/functions for matrix/vector
5
    !* operations, including multiplication and inverse, which call subroutines
6
    !* from lapack.
    !*
    !*
8
                          FUNCTION inv(A) result(Ainv)
    !*
9
                         FUNCTION multipMM(A, B) result(C)
    !*
10
                         FUNCTION multipMV(A, B) result(C)
    !*
                         FUNCTION is positive definite(A) result(info)
11
    !*
12
13
    |*
            All dependent subroutines are extracted from lapack and packaged in
14
    |*
            this code. Therefore, no lapack installation is needed to run this
    !*
15
            program.
16
    | *
    !* called by: MultiPredSolver
17
    !* calls to: inv,multipMM,multipMV,DGEMM,DTRSM,XERBLA,LSAME,DLASWP,DSCAL,
18
19
    |*
                   DGETF2, DGETRF, DGER, DLAMCH, DGETRF2, ILAENV, IEEECK, DSWAP, DGEMV,
    !*
                   DTRTRI, DTRMM, DTRTI2, DTRMV, DGETRI, DPBTF2, DSYR, DPOTF2, DDOT,
20
    !*
                   DISNAN, DLAISNAN, DSYRK, DPBTRF
21
```

```
22
    23
24
25
     IMPLICIT NONE
26
    CONTAINS
27
28
29
    30
31
     FUNCTION inv(A) result(Ainv)
32
    ! -- Returns the inverse of a matrix calculated by finding the LU
33
34
   ! -- decomposition.
   ! -- developed by University of South Carolina.
35
36
37
       INTEGER, PARAMETER :: DP = KIND(1.0D0)
                                         _____
38
     ! Arguments-----
39
       REAL(DP), dimension(:,:), intent(in) :: A
40
       REAL(DP), dimension(size(A,1),size(A,2)) :: Ainv
41
                                           ! work array for LAPACK
! pivot indices
42
       REAL(DP), dimension(size(A,1)) :: work
43
       INTEGER, dimension(size(A,1)) :: ipiv
44
                                  :: n, info
45
    ! External procedures defined in LAPACK
46
47
  ! external DGETRF
       external DGETRI
48
49
50
     ! Store A in Ainv to prevent it from being overwritten by LAPACK
       Ainv = A
51
       n = size(A, 1)
52
53
     ! DGETRF computes an LU factorization of a general M-by-N matrix A
54
55
     ! using partial pivoting with row interchanges.
       call DGETRF(n, n, Ainv, n, ipiv, info)
56
57
58
       if (info /= 0) then
59
          stop 'Matrix is numerically singular!'
60
61
     ! DGETRI computes the inverse of a matrix using the LU factorization
62
63
     ! computed by DGETRF.
64
       call DGETRI(n, Ainv, n, ipiv, work, n, info)
65
66
       if (info /= ∅) then
67
          stop 'Matrix inversion failed!'
68
       end if
69
70
     END FUNCTION inv
71
72
    ! -----
73
74
     FUNCTION multipMM(A, B) result(C)
75
76
    ! -- Returns the product of a matrix C= A*B calculated by using DGEMM(),
77
    ! -- a subroutine of LAPACK, where A and B are 2D matrices.
78
   ! -- developed by University of South Carolina.
79
       INTEGER, PARAMETER :: DP = KIND(1.0D0)
80
81
     ! Arguments-----
82
       REAL(DP), dimension(:,:), intent(in) :: A,B
```

```
83
       REAL(DP), dimension(size(A,1),size(B,2)) :: C
84
     ! Local-----
85
       INTEGER
                                 :: M, K, N, LDA, LDB, LDC
86
       REAL(DP)
                                 :: ALPHA, BETA
87
88
     ! External procedures defined in LAPACK
    ! external DGEMM
89
90
91
     ! initialize data for matrix multiplication C=A*B
92
       C = 0.0
       ALPHA = 1.0
93
94
       BETA = 0.0
95
            = size(A,1)
96
       Ν
            = size(B,2)
97
       K
           = size(A,2)
       LDA = M
       LDB
            = size(B,1)
       LDC
100
            = M
101
     ! Computing matrix product using DGEMM subroutine
102
103
       call DGEMM('N','N',M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
104
     END FUNCTION multipMM
105
107 ! -----
     FUNCTION multipMV(A, B) result(C)
111 ! -- Returns the product of a matrix C= A*B calculated by using DGEMM(),
112 ! -- a subroutine of LAPACK, where A is a 2D matrix and B is a column vector.
113 ! -- developed by University of South Carolina.
115
       INTEGER, PARAMETER :: DP = KIND(1.0D0)
    ! Arguments-----
                                         -----
       REAL(DP), dimension(:,:), intent(in) :: A
118
       REAL(DP), dimension(:), intent(in) :: B
       REAL(DP), dimension(size(A,1))
119
    ! Local-----
120
                                         ______
121
      INTEGER
                                :: M, K, N, LDA, LDB, LDC
122
       REAL(DP)
                                 :: ALPHA, BETA
123
124
    ! External procedures defined in LAPACK
125 ! external DGEMM
126
127
     ! initialize data for matrix multiplication C=A*B
128
       C
           = 0.0
129
       ALPHA = 1.0
       BETA = 0.0
130
            = size(A,1)
131
       Μ
132
       N
            = 1
133
       K
            = size(A,2)
134
       LDA = M
135
       LDB
            = size(B,1)
136
       LDC
            = M
137
138
     ! Computing matrix product using DGEMM subroutine
139
       call DGEMM('N','N',M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
140
141
     END FUNCTION multipMV
142
```

```
144
      FUNCTION multipVV(A, B) result(C)
145
146
147 ! -- Returns the product of vectors C= A*B calculated by using SDSDOT(),
148 ! -- a subroutine of LAPACK, where A and B are both vectors.
149 ! -- developed by University of South Carolina.
       INTEGER, PARAMETER :: DP = KIND(1.0D0)
151
     ! Arguments-----
152
153
       REAL(DP), dimension(:), intent(in) :: A(:)
       REAL(DP), dimension(:), intent(in) :: B(:)
154
                                :: C
155
       REAL(DP)
     ! Local-----
156
       INTEGER
157
                                     :: N, INCX, INCY
158
       REAL
                                       :: SB
159
     ! initialize arguments for SDSDOT()
      N = size(B, 1)
160
          = 0.0
161
      SB
      INCX = 1
162
      INCY = 1
163
164
     ! Computing matrix product using DGEMM subroutine
165
       C = SDSDOT(N,SB,A,INCX,B,INCY)
166
167
      END FUNCTION multipVV
168
169 ! -----
170
171
     INTEGER FUNCTION is positive definite(A) result(info)
172
173 ! -- check if matrix A positive definite, using the Cholesky factorization
174 ! -- and check to see if such a factorization exists.
175 ! -- developed by University of South Carolina.
176 !
177
       INTEGER, PARAMETER :: DP = KIND(1.0D0)
                                          -----
178
    ! Arguments-----
179
       REAL(DP), dimension(:,:), intent(in) :: A
180
    ! Local-----
181
       INTEGER
                            :: i, ifail, j, kd, ldab, n
182
       INTEGER
                                :: ARow, AColumn, nZ
183
       LOGICAL
                                 :: flag
       CHARACTER (1)
184
                                 :: uplo
185
       REAL(DP), ALLOCATABLE
                                :: AB(:,:)
186
187
    !find the array size
188
     ARow = size(A,1)
       AColumn = size(A, 2)
189
190
      nZ = 0
191
192
       flag = .false.
193
      !find the number of superdiagonals of the Upper triangle of A,
194
       jloop: do j=1, AColumn
195
          iloop: do i=1, ARow-j+1
196
                 if(A(i,i+j-1)/= 0.0) then
197
                   flag = .true.
198
                   exit iloop
199
                  end if
200
          end do iloop
201
          if(flag) then
202
             nZ = nZ + 1
          end if
203
204
          flag = .false.
```

```
205
        end do jloop
206
207
       n = AColumn
208
       kd = nZ - 1
209
       1dab = kd + 1
210
       ALLOCATE (AB(ldab,n))
211
       AB = 0.0
212
213
     ! write the lower triangle of the symmetric band matrix A, stored in
214
     ! the first KD+1 rows of the array, as required by SUBROUTINE DPBTRF.
215
        do i=1, ldab
216
          do j=1, n-i+1
             AB(i,j) = A(i+j-1,j)
217
          end do
218
219
        end do
220
221
       uplo = 'L'
222
      ! call dpbtrf to factorize A
223
       CALL dpbtrf(uplo,n,kd,AB,ldab,info)
224
225
      END FUNCTION is_positive_definite
226
227 ! -----
228
         SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
229 !
230 ! -- Reference BLAS level3 routine (version 3.7.0) --
231 ! -- Reference BLAS is a software package provided by Univ. of Tennessee,
232 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
233 !
         December 2016
234 !
235 !
          .. Scalar Arguments ..
236
         DOUBLE PRECISION ALPHA, BETA
237
         INTEGER K, LDA, LDB, LDC, M, N
238
         CHARACTER TRANSA, TRANSB
239 !
240 !
          .. Array Arguments ..
241
         DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
242 !
243 !
244 ! -----
245 !
        .. External Functions ..
246 !
247 !
         LOGICAL LSAME
248 !
         EXTERNAL LSAME
249 !
250 !
        .. External Subroutines ..
251 !
         EXTERNAL XERBLA
252 !
253 !
         .. Intrinsic Functions ..
254
         INTRINSIC MAX
255 !
256 !
          .. Local Scalars ..
257
         DOUBLE PRECISION TEMP
258
         INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB
259
         LOGICAL NOTA, NOTB
260 !
261 !
          .. Parameters ..
262
         DOUBLE PRECISION ONE, ZERO
263
         PARAMETER (ONE=1.0D+0, ZERO=0.0D+0)
264 !
265 !
```

```
266 !
          Set NOTA and NOTB as true if A and B respectively are not
267 !
           transposed and set NROWA, NCOLA and NROWB as the number of rows
268 !
           and columns of A and the number of rows of B respectively.
269 !
270
          NOTA = LSAME(TRANSA, 'N')
           NOTB = LSAME (TRANSB, 'N')
271
           IF (NOTA) THEN
272
273
              NROWA = M
274
              NCOLA = K
275
           ELSE
              NROWA = K
276
277
              NCOLA = M
278
           END IF
279
           IF (NOTB) THEN
280
              NROWB = K
281
           ELSE
282
              NROWB = N
           END IF
283
284 !
285 !
          Test the input parameters.
286 !
287
          INFO = ∅
288
          IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA, 'C')) .AND. &
               (.NOT.LSAME(TRANSA, 'T'))) THEN
290
              INFO = 1
291
          ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB, 'C')) .AND. &
292
                   (.NOT.LSAME(TRANSB, 'T'))) THEN
293
               INFO = 2
           ELSE IF (M.LT.0) THEN
294
295
              INFO = 3
296
           ELSE IF (N.LT.0) THEN
297
              INFO = 4
298
           ELSE IF (K.LT.0) THEN
299
              INFO = 5
300
           ELSE IF (LDA.LT.MAX(1, NROWA)) THEN
301
              INFO = 8
302
           ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
303
              INFO = 10
           ELSE IF (LDC.LT.MAX(1,M)) THEN
305
               INFO = 13
306
           END IF
307
           IF (INFO.NE.0) THEN
308
               CALL XERBLA('DGEMM ', INFO)
309
              RETURN
           END IF
310
311 !
312 !
          Quick return if possible.
313 !
314
          IF ((M.EQ.0) .OR. (N.EQ.0) .OR. &
315
              (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
316 !
317 !
          And if alpha.eq.zero.
318 !
319
           IF (ALPHA.EQ.ZERO) THEN
320
               IF (BETA.EQ.ZERO) THEN
321
                  DO 20 J = 1,N
322
                       D0 \ 10 \ I = 1,M
323
                           C(I,J) = ZERO
324
       10
                       CONTINUE
                   CONTINUE
325
       20
              ELSE
326
```

```
327
                   DO 40 J = 1,N
                        DO 30 I = 1,M
328
329
                           C(I,J) = BETA*C(I,J)
330
        30
                        CONTINUE
331
        40
                   CONTINUE
332
               END IF
333
               RETURN
334
           END IF
335 !
336 !
           Start the operations.
337 !
338
           IF (NOTB) THEN
339
               IF (NOTA) THEN
340 !
341 !
                 Form C := alpha*A*B + beta*C.
342 !
343
                   DO 90 J = 1,N
344
                        IF (BETA.EQ.ZERO) THEN
345
                           DO 50 I = 1,M
346
                                C(I,J) = ZERO
347
        50
                            CONTINUE
348
                        ELSE IF (BETA.NE.ONE) THEN
                           DO 60 I = 1, M
349
350
                                C(I,J) = BETA*C(I,J)
351
        60
                            CONTINUE
352
                        END IF
353
                        D0 80 L = 1, K
354
                            TEMP = ALPHA*B(L,J)
                           DO 70 I = 1, M
355
356
                                C(I,J) = C(I,J) + TEMP*A(I,L)
357
        70
                            CONTINUE
358
        80
                        CONTINUE
359
        90
                   CONTINUE
360
               ELSE
361 !
362 !
                 Form C := alpha*A**T*B + beta*C
363 !
                   DO 120 J = 1, N
364
365
                        DO 110 I = 1,M
366
                            TEMP = ZERO
367
                            D0 \ 100 \ L = 1, K
368
                                TEMP = TEMP + A(L,I)*B(L,J)
369
       100
                            CONTINUE
                            IF (BETA.EQ.ZERO) THEN
370
371
                                C(I,J) = ALPHA*TEMP
                            ELSE
372
373
                                C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                            END IF
374
375
       110
                        CONTINUE
                   CONTINUE
376
       120
               END IF
377
378
           ELSE
379
               IF (NOTA) THEN
380 !
                 Form C := alpha*A*B**T + beta*C
381 !
382 !
                   DO 170 J = 1,N
383
384
                        IF (BETA.EQ.ZERO) THEN
385
                           DO 130 I = 1, M
386
                                C(I,J) = ZERO
                            CONTINUE
387
       130
```

```
ELSE IF (BETA.NE.ONE) THEN
388
389
                        DO 140 I = 1,M
390
                            C(I,J) = BETA*C(I,J)
391
      140
                        CONTINUE
392
                     END IF
                     DO 160 L = 1,K
393
394
                        TEMP = ALPHA*B(J,L)
                        DO 150 I = 1, M
395
396
                            C(I,J) = C(I,J) + TEMP*A(I,L)
397
      150
                        CONTINUE
                     CONTINUE
398
      160
399
                 CONTINUE
      170
400
             ELSE
401 !
402 !
               Form C := alpha*A**T*B**T + beta*C
403 !
404
                 DO 200 J = 1,N
                     DO 190 I = 1,M
405
                        TEMP = ZERO
406
407
                        D0 180 L = 1, K
408
                            TEMP = TEMP + A(L,I)*B(J,L)
409
                        CONTINUE
410
                        IF (BETA.EQ.ZERO) THEN
411
                            C(I,J) = ALPHA*TEMP
412
413
                            C(I,J) = ALPHA*TEMP + BETA*C(I,J)
414
                        END IF
415
    190
                     CONTINUE
416
                 CONTINUE
417
             END IF
418
         END IF
419 !
420
         RETURN
421 !
422 !
         End of DGEMM .
423 !
424
          END SUBROUTINE DGEMM
425
426 !
427 ! ------
428
         SUBROUTINE DTRSM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
429 !
430 ! -- Reference BLAS level3 routine (version 3.7.0) --
431 ! -- Reference BLAS is a software package provided by Univ. of Tennessee,
432 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        December 2016
433 !
434 !
435 !
          .. Scalar Arguments ..
436
         DOUBLE PRECISION ALPHA
437
          INTEGER LDA, LDB, M, N
438
          CHARACTER DIAG, SIDE, TRANSA, UPLO
439 !
440 !
          .. Array Arguments ..
         DOUBLE PRECISION A(LDA,*),B(LDB,*)
441
442 !
443 !
444 ! -----
445 !
446 !
        .. External Functions ..
         LOGICAL LSAME
447 !
448 !
          EXTERNAL LSAME
```

```
449 !
450 !
           .. External Subroutines ..
451 !
           EXTERNAL XERBLA
452 !
453 !
           .. Intrinsic Functions ..
           INTRINSIC MAX
454
455 !
           .. Local Scalars ..
456 !
           DOUBLE PRECISION TEMP
457
458
           INTEGER I,INFO,J,K,NROWA
459
           LOGICAL LSIDE, NOUNIT, UPPER
460 !
461 !
           .. Parameters ..
           DOUBLE PRECISION ONE, ZERO
462
463
           PARAMETER (ONE=1.0D+0, ZERO=0.0D+0)
464 !
465 !
466 !
           Test the input parameters.
467 !
468
           LSIDE = LSAME(SIDE, 'L')
469
           IF (LSIDE) THEN
470
               NROWA = M
471
           ELSE
472
               NROWA = N
473
           END IF
474
           NOUNIT = LSAME(DIAG, 'N')
475
           UPPER = LSAME(UPLO, 'U')
476 !
477
           INFO = ∅
478
           IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE, 'R'))) THEN
479
               INFO = 1
480
           ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO, 'L'))) THEN
               INFO = 2
481
482
           ELSE IF ((.NOT.LSAME(TRANSA, 'N')) .AND.&
                    (.NOT.LSAME(TRANSA, 'T')) .AND.&
484
                    (.NOT.LSAME(TRANSA, 'C'))) THEN
485
               INFO = 3
           ELSE IF ((.NOT.LSAME(DIAG, 'U')) .AND. (.NOT.LSAME(DIAG, 'N'))) THEN
487
               INFO = 4
           ELSE IF (M.LT.0) THEN
489
               INFO = 5
490
           ELSE IF (N.LT.0) THEN
491
               INFO = 6
492
           ELSE IF (LDA.LT.MAX(1, NROWA)) THEN
493
               INFO = 9
494
           ELSE IF (LDB.LT.MAX(1,M)) THEN
495
               INFO = 11
496
           END IF
497
           IF (INFO.NE.0) THEN
498
               CALL XERBLA('DTRSM ',INFO)
499
               RETURN
500
           END IF
501 !
502 !
           Quick return if possible.
503 !
           IF (M.EQ.∅ .OR. N.EQ.∅) RETURN
504
505 !
506 !
           And when alpha.eq.zero.
507 !
           IF (ALPHA.EQ.ZERO) THEN
508
509
               DO 20 J = 1,N
```

```
510
                   DO 10 I = 1,M
511
                        B(I,J) = ZERO
512
                   CONTINUE
        10
513
        20
               CONTINUE
514
               RETURN
515
           END IF
516 !
517 !
           Start the operations.
518 !
519
           IF (LSIDE) THEN
520
               IF (LSAME(TRANSA,'N')) THEN
521 !
522 !
                 Form B := alpha*inv( A )*B.
523 !
524
                   IF (UPPER) THEN
                        DO 60 J = 1,N
525
526
                            IF (ALPHA.NE.ONE) THEN
                                00 \ 30 \ I = 1,M
527
528
                                    B(I,J) = ALPHA*B(I,J)
529
        30
                                CONTINUE
530
                            END IF
                            D0 50 K = M, 1, -1
531
532
                                IF (B(K,J).NE.ZERO) THEN
                                    IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
533
534
                                    DO 40 I = 1, K - 1
535
                                        B(I,J) = B(I,J) - B(K,J)*A(I,K)
536
        40
                                    CONTINUE
537
                                END IF
538
        50
                            CONTINUE
539
                        CONTINUE
        60
540
                   ELSE
541
                        DO 100 J = 1,N
542
                            IF (ALPHA.NE.ONE) THEN
                                DO 70 I = 1, M
543
544
                                    B(I,J) = ALPHA*B(I,J)
545
        70
                                CONTINUE
546
                            END IF
547
                            D0 90 K = 1,M
548
                                IF (B(K,J).NE.ZERO) THEN
549
                                    IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
550
                                    DO 80 I = K + 1, M
551
                                        B(I,J) = B(I,J) - B(K,J)*A(I,K)
552
        80
                                    CONTINUE
553
                                END IF
554
        90
                            CONTINUE
                        CONTINUE
555
       100
556
                   END IF
               ELSE
557
558 !
                 Form B := alpha*inv( A**T )*B.
559 !
560 !
561
                   IF (UPPER) THEN
562
                        DO 130 J = 1,N
563
                            DO 120 I = 1, M
                                TEMP = ALPHA*B(I,J)
564
565
                                DO 110 K = 1, I - 1
566
                                    TEMP = TEMP - A(K,I)*B(K,J)
567
       110
                                CONTINUE
                                IF (NOUNIT) TEMP = TEMP/A(I,I)
568
569
                                B(I,J) = TEMP
                            CONTINUE
570
       120
```

```
571
                        CONTINUE
       130
572
                   ELSE
573
                        DO 160 J = 1,N
                            DO 150 I = M, 1, -1
574
                                TEMP = ALPHA*B(I,J)
575
                                DO 140 K = I + 1, M
576
577
                                    TEMP = TEMP - A(K,I)*B(K,J)
578
       140
                                CONTINUE
579
                                IF (NOUNIT) TEMP = TEMP/A(I,I)
580
                                B(I,J) = TEMP
581
       150
                            CONTINUE
582
                        CONTINUE
       160
583
                   END IF
584
               END IF
585
           ELSE
586
               IF (LSAME(TRANSA, 'N')) THEN
587 !
588 !
                 Form B := alpha*B*inv( A ).
589 !
590
                   IF (UPPER) THEN
                        DO 210 J = 1,N
591
592
                            IF (ALPHA.NE.ONE) THEN
593
                                DO 170 I = 1,M
594
                                    B(I,J) = ALPHA*B(I,J)
595
       170
                                CONTINUE
596
                            END IF
597
                            DO 190 K = 1, J - 1
598
                                IF (A(K,J).NE.ZERO) THEN
                                    DO 180 I = 1, M
599
600
                                        B(I,J) = B(I,J) - A(K,J)*B(I,K)
601
       180
                                    CONTINUE
602
                                END IF
603
       190
                            CONTINUE
604
                            IF (NOUNIT) THEN
605
                                TEMP = ONE/A(J,J)
606
                                DO 200 I = 1,M
607
                                    B(I,J) = TEMP*B(I,J)
608
       200
                                CONTINUE
609
                            END IF
610
       210
                        CONTINUE
                   ELSE
611
612
                        DO 260 J = N,1,-1
613
                            IF (ALPHA.NE.ONE) THEN
614
                                DO 220 I = 1,M
                                    B(I,J) = ALPHA*B(I,J)
615
                                CONTINUE
616
       220
617
                            END IF
618
                            DO 240 K = J + 1,N
619
                                IF (A(K,J).NE.ZERO) THEN
620
                                    DO 230 I = 1,M
621
                                        B(I,J) = B(I,J) - A(K,J)*B(I,K)
622
       230
                                    CONTINUE
623
                                END IF
                            CONTINUE
624
       240
625
                            IF (NOUNIT) THEN
626
                                TEMP = ONE/A(J,J)
627
                                DO 250 I = 1,M
628
                                    B(I,J) = TEMP*B(I,J)
629
       250
                                CONTINUE
                            END IF
630
                        CONTINUE
631
       260
```

```
632
                   END IF
633
               ELSE
634 !
635 !
                 Form B := alpha*B*inv( A**T ).
636 !
                   IF (UPPER) THEN
637
                       DO 310 K = N_1, -1
638
639
                           IF (NOUNIT) THEN
                               TEMP = ONE/A(K,K)
640
                               DO 270 I = 1,M
641
642
                                   B(I,K) = TEMP*B(I,K)
643
                               CONTINUE
       270
644
                           END IF
645
                           DO 290 J = 1, K - 1
646
                               IF (A(J,K).NE.ZERO) THEN
647
                                   TEMP = A(J,K)
                                   DO 280 I = 1, M
648
649
                                       B(I,J) = B(I,J) - TEMP*B(I,K)
650
                                   CONTINUE
       280
651
                               END IF
652
                           CONTINUE
653
                           IF (ALPHA.NE.ONE) THEN
                               DO 300 I = 1,M
654
655
                                   B(I,K) = ALPHA*B(I,K)
656
                               CONTINUE
657
                           END IF
658
       310
                       CONTINUE
659
                   ELSE
                       DO 360 K = 1,N
660
                           IF (NOUNIT) THEN
661
662
                               TEMP = ONE/A(K,K)
                               DO 320 I = 1,M
663
664
                                   B(I,K) = TEMP*B(I,K)
665
       320
                               CONTINUE
666
                           END IF
667
                           DO 340 J = K + 1, N
668
                               IF (A(J,K).NE.ZERO) THEN
669
                                   TEMP = A(J,K)
670
                                   DO 330 I = 1,M
671
                                       B(I,J) = B(I,J) - TEMP*B(I,K)
672
       330
                                   CONTINUE
673
                               END IF
674
       340
                           CONTINUE
                           IF (ALPHA.NE.ONE) THEN
675
676
                               DO 350 I = 1,M
                                   B(I,K) = ALPHA*B(I,K)
677
678
       350
                               CONTINUE
                           END IF
679
680
       360
                       CONTINUE
681
                   END IF
682
               END IF
683
           END IF
684 !
685
           RETURN
686 !
           \ensuremath{\mathsf{End}} of \ensuremath{\mathsf{DTRSM}} .
687 !
688 !
689
           END SUBROUTINE DTRSM
690 !
       _____
691 !
           SUBROUTINE XERBLA( SRNAME, INFO )
692
```

```
693 !
694 ! -- Reference BLAS level1 routine (version 3.7.0) --
695 ! -- Reference BLAS is a software package provided by Univ. of Tennessee,
696 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
697 !
        December 2016
698 !
699 !
        .. Scalar Arguments ..
700
        CHARACTER*(*)
                       SRNAME
701
        INTEGER
                        INFO
702 !
703!
705 !
706 !
        .. Intrinsic Functions ..
707
       INTRINSIC
                       LEN_TRIM
708 !
        .. Executable Statements ..
709 !
710 !
        WRITE( *, FMT = 9999 )SRNAME( 1:LEN_TRIM( SRNAME ) ), INFO
711
712 !
713
        STOP
714 !
        9999 FORMAT( ' ** On entry to ', A, ' parameter number ', I2, ' had ',&
715
716
              'an illegal value' )
717 !
718 !
       End of XERBLA
719 !
720
        END SUBROUTINE XERBLA
721
LOGICAL FUNCTION LSAME(CA,CB)
724 !
725 ! -- Reference BLAS level1 routine (version 3.1) --
726 ! -- Reference BLAS is a software package provided by Univ. of Tennessee,
727 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
728 !
       December 2016
729 !
730 ! .. Scalar Arguments ..
731
        CHARACTER CA, CB
732 !
733 !
735 !
736 ! .. Intrinsic Functions ..
737
       INTRINSIC ICHAR
738 !
739 !
         .. Local Scalars ..
740
        INTEGER INTA, INTB, ZCODE
741 !
742 !
743 !
        Test if the characters are equal
744 !
745
        LSAME = CA .EQ. CB
746
        IF (LSAME) RETURN
747 !
        Now test for equivalence if both characters are alphabetic.
748 !
749 !
750
        ZCODE = ICHAR('Z')
751 !
        Use 'Z' rather than 'A' so that ASCII can be detected on Prime
752 !
753 !
        machines, on which ICHAR returns a value with bit 8 set.
```

```
ICHAR('A') on Prime machines returns 193 which is the same as
          ICHAR('A') on an EBCDIC machine.
755 !
756 !
757
          INTA = ICHAR(CA)
758
          INTB = ICHAR(CB)
759 !
         IF (ZCODE.EQ.90 .OR. ZCODE.EQ.122) THEN
760
761 !
762 !
            ASCII is assumed - ZCODE is the ASCII code of either lower or
763 !
            upper case 'Z'.
764 !
765
             IF (INTA.GE.97 .AND. INTA.LE.122) INTA = INTA - 32
766
             IF (INTB.GE.97 .AND. INTB.LE.122) INTB = INTB - 32
767 !
768
          ELSE IF (ZCODE.EQ.233 .OR. ZCODE.EQ.169) THEN
769 !
770 !
            EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
771 !
            upper case 'Z'.
772 !
773
             IF (INTA.GE.129 .AND. INTA.LE.137 .OR.&
774
                 INTA.GE.145 .AND. INTA.LE.153 .OR.&
775
         &
                 INTA.GE.162 .AND. INTA.LE.169) INTA = INTA + 64
776
             IF (INTB.GE.129 .AND. INTB.LE.137 .OR.&
777
                 INTB.GE.145 .AND. INTB.LE.153 .OR.&
778
                 INTB.GE.162 .AND. INTB.LE.169) INTB = INTB + 64
779 !
780
          ELSE IF (ZCODE.EQ.218 .OR. ZCODE.EQ.250) THEN
781 !
782 !
            ASCII is assumed, on Prime machines - ZCODE is the ASCII code
783 !
            plus 128 of either lower or upper case 'Z'.
784 !
785
             IF (INTA.GE.225 .AND. INTA.LE.250) INTA = INTA - 32
786
             IF (INTB.GE.225 .AND. INTB.LE.250) INTB = INTB - 32
787
          END IF
788
          LSAME = INTA .EQ. INTB
789 !
790 !
         RETURN
791 !
792 !
         End of LSAME
793 !
794
          END FUNCTION LSAME
795
796
797
798 ! -----
799
          SUBROUTINE DLASWP( N, A, LDA, K1, K2, IPIV, INCX )
801 ! -- LAPACK auxiliary routine (version 3.7.1) --
802 ! -- LAPACK is a software package provided by Univ. of Tennessee,
803 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
804 !
          June 2017
805 !
806 !
          .. Scalar Arguments ..
807
         INTEGER
                           INCX, K1, K2, LDA, N
808 !
809 !
          .. Array Arguments ..
810
          INTEGER
                           IPIV( * )
811
          DOUBLE PRECISION
                           A( LDA, * )
812 !
813 !
```

```
815 !
816 !
           .. Local Scalars ..
           INTEGER
817
                               I, I1, I2, INC, IP, IX, IX0, J, K, N32
818
           DOUBLE PRECISION
                              TEMP
819 !
           .. Executable Statements ..
820 !
821 !
822 !
           Interchange row I with row IPIV(K1+(I-K1)*abs(INCX)) for each of rows
823 !
           K1 through K2.
824 !
825
           IF( INCX.GT.∅ ) THEN
826
              IX0 = K1
827
              I1 = K1
828
              I2 = K2
829
              INC = 1
830
           ELSE IF( INCX.LT.0 ) THEN
831
              IX0 = K1 + (K1-K2)*INCX
              I1 = K2
832
              I2 = K1
833
              INC = -1
834
835
           ELSE
836
              RETURN
837
           END IF
838 !
839
           N32 = (N / 32)*32
840
           IF( N32.NE.0 ) THEN
841
              DO 30 J = 1, N32, 32
842
                 IX = IX0
843
                 DO 20 I = I1, I2, INC
844
                    IP = IPIV( IX )
845
                    IF( IP.NE.I ) THEN
846
                       DO 10 K = J, J + 31
847
                          TEMP = A(I, K)
848
                          A(I, K) = A(IP, K)
849
                          A(IP, K) = TEMP
850
        10
                       CONTINUE
851
                    END IF
852
                    IX = IX + INCX
853
        20
                 CONTINUE
854
        30
              CONTINUE
           END IF
855
856
           IF( N32.NE.N ) THEN
857
              N32 = N32 + 1
858
              IX = IX0
859
              DO 50 I = I1, I2, INC
860
                 IP = IPIV( IX )
861
                 IF( IP.NE.I ) THEN
862
                    DO 40 \text{ K} = \text{N32}, \text{ N}
863
                       TEMP = A(I, K)
864
                       A(I, K) = A(IP, K)
865
                       A(IP, K) = TEMP
866
        40
                    CONTINUE
867
                 END IF
868
                 IX = IX + INCX
              CONTINUE
869
        50
           END IF
870
871 !
           RETURN
872
873 !
           End of DLASWP
874 !
875 !
```

```
876
        END SUBROUTINE DLASWP
877
878 ! -----
879
        SUBROUTINE DSCAL(N,DA,DX,INCX)
880 !
881 ! -- Reference BLAS level1 routine (version 3.8.0) --
882 ! -- Reference BLAS is a software package provided by Univ. of Tennessee,
883 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
884 !
         November 2017
885 !
886 !
         .. Scalar Arguments ..
         DOUBLE PRECISION DA
887
888
         INTEGER INCX,N
889 !
890 !
         .. Array Arguments ..
891
         DOUBLE PRECISION DX(*)
892 !
893 !
895 !
896 !
         .. Local Scalars ..
        INTEGER I,M,MP1,NINCX
897
898 !
899 !
         .. Intrinsic Functions ..
900
        INTRINSIC MOD
901 !
902
         IF (N.LE.0 .OR. INCX.LE.0) RETURN
903
         IF (INCX.EQ.1) THEN
904 !
905!
          code for increment equal to 1
906!
907 !
908 !
           clean-up loop
909 !
910
           M = MOD(N,5)
911
           IF (M.NE.0) THEN
912
              DOI = 1,M
913
                 DX(I) = DA*DX(I)
914
              END DO
915
              IF (N.LT.5) RETURN
916
           END IF
917
           MP1 = M + 1
918
          DO I = MP1, N, \frac{5}{1}
919
              DX(I) = DA*DX(I)
920
              DX(I+1) = DA*DX(I+1)
921
              DX(I+2) = DA*DX(I+2)
922
              DX(I+3) = DA*DX(I+3)
923
              DX(I+4) = DA*DX(I+4)
924
            END DO
925
        ELSE
926 !
927 !
          code for increment not equal to 1
928 !
           NINCX = N*INCX
929
930
           DO I = 1, NINCX, INCX
931
              DX(I) = DA*DX(I)
932
            END DO
933
        END IF
934
         RETURN
         END SUBROUTINE DSCAL
935
936
```

```
937
938 !
SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO )
942 ! -- LAPACK computational routine (version 3.7.0) --
943 ! -- LAPACK is a software package provided by Univ. of Tennessee,
944 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
         December 2016
946 !
947 !
         .. Scalar Arguments ..
                          INFO, LDA, M, N
948
         INTEGER
949 !
950 !
         .. Array Arguments ..
951
         INTEGER
                          IPIV( * )
         DOUBLE PRECISION A( LDA, * )
952
953 !
954 !
956 !
957 !
         .. Parameters ..
958
         DOUBLE PRECISION ONE, ZERO
959
         PARAMETER
                         ( ONE = 1.0D+0, ZERO = 0.0D+0 )
960 !
961 !
         .. Local Scalars ..
962
         DOUBLE PRECISION SFMIN
963
         INTEGER
                         I, J, JP
964 !
         .. External Functions ..
965 !
966 !
         DOUBLE PRECISION DLAMCH
967 !
         INTEGER
                          IDAMAX
968 !
         EXTERNAL
                          DLAMCH, IDAMAX
969 !
970 !
         .. External Subroutines ..
971 !
          EXTERNAL
                          DGER, DSCAL, DSWAP, XERBLA
972 !
973 !
         .. Intrinsic Functions ..
974
         INTRINSIC
                          MAX, MIN
975 !
976 !
         .. Executable Statements ..
977 !
978 !
         Test the input parameters.
979 !
980
         INFO = ∅
981
         IF( M.LT.0 ) THEN
982
            INFO = -1
983
         ELSE IF( N.LT.0 ) THEN
984
            INFO = -2
985
         ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
986
            INFO = -4
987
         END IF
988
         IF( INFO.NE.0 ) THEN
989
            CALL XERBLA( 'DGETF2', -INFO )
990
            RETURN
         END IF
991
992 !
993 !
         Quick return if possible
994 !
995
         IF( M.EQ.∅ .OR. N.EQ.∅ )&
996
            RETURN
997 !
```

```
998 !
          Compute machine safe minimum
999 !
          SFMIN = DLAMCH('S')
1000
1001 !
1002
          DO 10 J = 1, MIN( M, N )
1003 !
             Find pivot and test for singularity.
1004 !
1005 !
1006
             JP = J - 1 + IDAMAX(M-J+1, A(J, J), 1)
1007
             IPIV(J) = JP
1008
             IF( A( JP, J ).NE.ZERO ) THEN
1009 !
                Apply the interchange to columns 1:N.
1010 !
1011 !
1012
                IF( JP.NE.J )&
                   CALL DSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
1013
1014 !
1015 !
                Compute elements J+1:M of J-th column.
1016 !
                IF( J.LT.M ) THEN
1017
1018
                   IF( ABS(A( J, J )) .GE. SFMIN ) THEN
                      CALL DSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
1019
1020
                     DO 20 I = 1, M-J
1021
                        A(J+I, J) = A(J+I, J) / A(J, J)
1022
1023
       20
                     CONTINUE
1024
                   END IF
1025
                END IF
1026 !
             ELSE IF( INFO.EQ.∅ ) THEN
1027
1028 !
1029
                INFO = J
             END IF
1030
1031 !
             IF( J.LT.MIN( M, N ) ) THEN
1032
1033 !
1034 !
                Update trailing submatrix.
1035 !
                CALL DGER( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), LDA,&
1036
                           A(J+1, J+1), LDA)
1037
             END IF
1038
1039
       10 CONTINUE
1040
          RETURN
1041 !
1042 !
          End of DGETF2
1043 !
1044
          END SUBROUTINE DGETF2
1045 !
1046 ! -----
1047
          SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
1048 !
1049 ! -- LAPACK computational routine (version 3.7.0) --
1050! -- LAPACK is a software package provided by Univ. of Tennessee,
1051! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1052 !
          December 2016
1053 !
1054 !
          .. Scalar Arguments ..
1055
          INTEGER
                            INFO, LDA, M, N
1056 !
1057 !
          .. Array Arguments ..
                            IPIV( * )
1058
          INTEGER
```

```
DOUBLE PRECISION A( LDA, * )
1059
1060 !
1061 !
1062 ! -----
1063 !
1064 !
          .. Parameters ..
          DOUBLE PRECISION
1065
                            ONE
1066
          PARAMETER
                            ( ONE = 1.0D+0 )
1067 !
1068 !
          .. Local Scalars ..
1069
          INTEGER
                            I, IINFO, J, JB, NB
1070 !
          .. External Subroutines ..
1071 !
                             DGEMM, DGETRF2, DLASWP, DTRSM, XERBLA
1072 !
          EXTERNAL
1073 !
          .. External Functions ..
1074 !
1075 !
          INTEGER
                             ILAENV
1076 !
          EXTERNAL
                             ILAENV
1077 !
          .. Intrinsic Functions ..
1078 !
1079
          INTRINSIC
                            MAX, MIN
1080 !
          .. Executable Statements ..
1081 !
1082 !
1083 !
          Test the input parameters.
1084 !
1085
          INFO = ∅
          IF( M.LT.∅ ) THEN
1086
1087
             INFO = -1
          ELSE IF( N.LT.0 ) THEN
1088
             INFO = -2
1089
1090
          ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
             INFO = -4
1091
1092
          END IF
1093
          IF( INFO.NE.∅ ) THEN
1094
             CALL XERBLA( 'DGETRF', -INFO )
1095
             RETURN
1096
          END IF
1097 !
1098 !
          Quick return if possible
1099 !
1100
          IF( M.EQ.∅ .OR. N.EQ.∅ )&
1101
             RETURN
1102 !
          Determine the block size for this environment.
1103 !
1104 !
          NB = ILAENV( 1, 'DGETRF', ' ', M, N, -1, -1 )
1105
          IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
1106
1107 !
1108 !
            Use unblocked code.
1109 !
1110
             CALL DGETRF2( M, N, A, LDA, IPIV, INFO )
1111
          ELSE
1112 !
             Use blocked code.
1113 !
1114 !
1115
             DO 20 J = 1, MIN( M, N ), NB
1116
                JB = MIN(MIN(M, N)-J+1, NB)
1117 !
                Factor diagonal and subdiagonal blocks and test for exact
1118 !
1119 !
                singularity.
```

```
1120 !
1121
                CALL DGETRF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
1122 !
1123 !
                Adjust INFO and the pivot indices.
1124
                IF( INFO.EQ. ⊘ .AND. IINFO.GT. ⊘ )&
1125
1126
                   INFO = IINFO + J - 1
1127
                DO 10 I = J, MIN( M, J+JB-1 )
1128
                   IPIV(I) = J - 1 + IPIV(I)
1129
       10
                CONTINUE
1130 !
1131 !
                Apply interchanges to columns 1:J-1.
1132 !
                CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
1133
1134 !
1135
                IF( J+JB.LE.N ) THEN
1136 !
1137 !
                   Apply interchanges to columns J+JB:N.
1138 !
                   CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,&
1139
1140
                                IPIV, 1)
1141 !
                   Compute block row of U.
1142 !
1143 !
                   CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,&
1144
1145
                              N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),&
1146
                   IF( J+JB.LE.M ) THEN
1147
1148 !
                      Update trailing submatrix.
1149 !
1150 !
1151
                      CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,&
                                 N-J-JB+1, JB, -ONE, A(J+JB, J), LDA,
1152
                                 A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ), &
1153
1154
                                 LDA )
1155
                   END IF
1156
                END IF
1157
       20
             CONTINUE
1158
          END IF
1159
          RETURN
1160 !
1161 !
         End of DGETRF
1162 !
1163
          END SUBROUTINE DGETRF
1164 !
1165 ! -----
          SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
1167 !
1168 ! -- Reference BLAS level2 routine (version 3.7.0) --
1169 ! -- Reference BLAS is a software package provided by Univ. of Tennessee,
1170 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1171 !
          December 2016
1172 !
1173 !
          .. Scalar Arguments ..
1174
          DOUBLE PRECISION ALPHA
1175
          INTEGER INCX, INCY, LDA, M, N
1176 !
1177 !
          .. Array Arguments ..
1178
          DOUBLE PRECISION A(LDA,*),X(*),Y(*)
1179 !
1180 !
```

```
1181 ! -----
1182 !
1183 !
          .. Parameters ..
1184
          DOUBLE PRECISION ZERO
1185
          PARAMETER (ZERO=0.0D+0)
1186 !
          .. Local Scalars ..
1187 !
          DOUBLE PRECISION TEMP
1188
1189
          INTEGER I, INFO, IX, J, JY, KX
1190 !
          .. External Subroutines ..
1191 !
          EXTERNAL XERBLA
1192 !
1193 !
1194 !
          .. Intrinsic Functions ..
1195
          INTRINSIC MAX
1196 !
1197 !
1198 !
         Test the input parameters.
1199 !
          INFO = ∅
1200
1201
          IF (M.LT.⊘) THEN
              INFO = 1
1202
          ELSE IF (N.LT.0) THEN
1203
1204
              INFO = 2
1205
          ELSE IF (INCX.EQ.∅) THEN
1206
              INFO = 5
1207
          ELSE IF (INCY.EQ.0) THEN
1208
              INFO = 7
1209
          ELSE IF (LDA.LT.MAX(1,M)) THEN
1210
              INFO = 9
1211
          END IF
1212
          IF (INFO.NE.0) THEN
1213
              CALL XERBLA('DGER ',INFO)
1214
              RETURN
1215
          END IF
1216 !
1217 !
          Quick return if possible.
1218 !
1219
          IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
1220 !
1221 !
          Start the operations. In this version the elements of A are
1222 !
          accessed sequentially with one pass through A.
1223 !
1224
          IF (INCY.GT.∅) THEN
1225
              JY = 1
1226
          ELSE
1227
              JY = 1 - (N-1)*INCY
1228
          END IF
1229
          IF (INCX.EQ.1) THEN
1230
              DO 20 J = 1, N
1231
                  IF (Y(JY).NE.ZERO) THEN
1232
                      TEMP = ALPHA*Y(JY)
1233
                      DO 10 I = 1,M
1234
                         A(I,J) = A(I,J) + X(I)*TEMP
                      CONTINUE
1235
       10
1236
                  END IF
1237
                  JY = JY + INCY
1238
       20
              CONTINUE
          ELSE
1239
              IF (INCX.GT.0) THEN
1240
1241
                  KX = 1
```

```
1242
             ELSE
                KX = 1 - (M-1)*INCX
1243
             END IF
1244
1245
             DO 40 J = 1, N
1246
                IF (Y(JY).NE.ZERO) THEN
                    TEMP = ALPHA*Y(JY)
1247
1248
                    IX = KX
                    D0 \ 30 \ I = 1,M
1249
1250
                       A(I,J) = A(I,J) + X(IX)*TEMP
1251
                       IX = IX + INCX
                    CONTINUE
1252 30
                END IF
1253
1254
                JY = JY + INCY
1255 40
            CONTINUE
1256
        END IF
1257 !
1258
        RETURN
1259 !
        End of DGER .
1260 !
1261 !
1262
        END SUBROUTINE DGER
1263
1264 !
1265 ! ------
        DOUBLE PRECISION FUNCTION DLAMCH (CMACH)
1268 ! -- LAPACK auxiliary routine (version 3.7.0) --
1269! -- LAPACK is a software package provided by Univ. of Tennessee,
1270 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1271 !
        December 2016
1272 !
1273 !
       .. Scalar Arguments ..
1274
         CHARACTER
1275 !
1276 !
1277 ! -----
1278 !
1279 ! .. Parameters ..
        DOUBLE PRECISION ONE, ZERO
1280
1281
        PARAMETER
                         ( ONE = 1.0D+0, ZERO = 0.0D+0 )
1282 !
1283 !
         .. Local Scalars ..
1284
         DOUBLE PRECISION RND, EPS, SFMIN, SMALL, RMACH
1285 !
1286 !
        .. External Functions ..
1287 !
         LOGICAL
                          LSAME
1288 !
         EXTERNAL
                          LSAME
1289 !
1290 !
         .. Intrinsic Functions ..
1291
         INTRINSIC
                          DIGITS, EPSILON, HUGE, MAXEXPONENT,&
1292
                          MINEXPONENT, RADIX, TINY
1293 !
1294 !
        .. Executable Statements ..
1295 !
1296 !
1297 !
        Assume rounding, not chopping. Always.
1298 !
1299
         RND = ONE
1300 !
         IF( ONE.EQ.RND ) THEN
1301
            EPS = EPSILON(ZERO) * 0.5
1302
```

```
1303
         ELSE
1304
            EPS = EPSILON(ZERO)
1305
          END IF
1306 !
         IF( LSAME( CMACH, 'E' ) ) THEN
1307
1308
            RMACH = EPS
          ELSE IF( LSAME( CMACH, 'S' ) ) THEN
1309
            SFMIN = TINY(ZERO)
1310
1311
            SMALL = ONE / HUGE(ZERO)
1312
            IF( SMALL.GE.SFMIN ) THEN
1313 !
1314 !
               Use SMALL plus a bit, to avoid the possibility of rounding
1315 !
               causing overflow when computing 1/sfmin.
1316 !
1317
               SFMIN = SMALL*( ONE+EPS )
1318
            END IF
1319
            RMACH = SFMIN
          ELSE IF( LSAME( CMACH, 'B' ) ) THEN
1320
1321
            RMACH = RADIX(ZERO)
          ELSE IF( LSAME( CMACH, 'P' ) ) THEN
1322
1323
            RMACH = EPS * RADIX(ZERO)
          ELSE IF( LSAME( CMACH, 'N' ) ) THEN
1324
1325
            RMACH = DIGITS(ZERO)
          ELSE IF( LSAME( CMACH, 'R' ) ) THEN
1326
1327
            RMACH = RND
1328
          ELSE IF( LSAME( CMACH, 'M' ) ) THEN
1329
            RMACH = MINEXPONENT(ZERO)
          ELSE IF( LSAME( CMACH, 'U' ) ) THEN
1330
1331
            RMACH = tiny(zero)
          ELSE IF( LSAME( CMACH, 'L' ) ) THEN
1332
            RMACH = MAXEXPONENT(ZERO)
1333
          ELSE IF( LSAME( CMACH, '0' ) ) THEN
1334
            RMACH = HUGE(ZERO)
1335
          ELSE
1336
1337
            RMACH = ZERO
1338
          END IF
1339 !
1340
          DLAMCH = RMACH
1341
          RETURN
1342 !
1343 !
        End of DLAMCH
1344 !
1345
         END FUNCTION DLAMCH
1346
1347 !
1348 ! -----
        INTEGER FUNCTION IDAMAX(N,DX,INCX)
1350 !
1351 ! -- Reference BLAS level1 routine (version 3.8.0) --
1352! -- Reference BLAS is a software package provided by Univ. of Tennessee,
1353 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1354 !
         November 2017
1355 !
1356 !
          .. Scalar Arguments ..
1357
          INTEGER INCX,N
1358 !
1359 !
          .. Array Arguments ..
1360
          DOUBLE PRECISION DX(*)
1361 !
1362 !
1363 ! -----
```

```
1364 !
1365 !
         .. Local Scalars ..
         DOUBLE PRECISION DMAX
1366
1367
         INTEGER I, IX
1368 !
          .. Intrinsic Functions ..
1369 !
         INTRINSIC DABS
1370
1371 !
         IDAMAX = 0
1372
1373
         IF (N.LT.1 .OR. INCX.LE.0) RETURN
1374
         IDAMAX = 1
1375
         IF (N.EQ.1) RETURN
         IF (INCX.EQ.1) THEN
1376
1377 !
1378 !
            code for increment equal to 1
1379 !
1380
            DMAX = DABS(DX(1))
1381
            DOI = 2,N
               IF (DABS(DX(I)).GT.DMAX) THEN
1382
                 IDAMAX = I
1383
1384
                 DMAX = DABS(DX(I))
               END IF
1385
            END DO
1386
         ELSE
1387
1388 !
1389 !
           code for increment not equal to 1
1390 !
1391
            IX = 1
1392
            DMAX = DABS(DX(1))
            IX = IX + INCX
1393
            DOI = 2.N
1394
1395
               IF (DABS(DX(IX)).GT.DMAX) THEN
1396
                 IDAMAX = I
1397
                 DMAX = DABS(DX(IX))
1398
               END IF
1399
               IX = IX + INCX
1400
            END DO
1401
        END IF
1402
         RETURN
1403
         END FUNCTION IDAMAX
1404
1407
        RECURSIVE SUBROUTINE DGETRF2( M, N, A, LDA, IPIV, INFO )
1408 !
1409 ! -- LAPACK computational routine (version 3.7.0) --
1410! -- LAPACK is a software package provided by Univ. of Tennessee,
1411 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1412 !
         June 2016
1413 !
1414 !
         .. Scalar Arguments ..
1415
         INTEGER
                          INFO, LDA, M, N
1416 !
1417 !
         .. Array Arguments ..
                          IPIV( * )
1418
         INTEGER
         DOUBLE PRECISION
1419
                         A( LDA, * )
1420 !
1421 !
1422 ! -----
1423 !
1424 !
        .. Parameters ..
```

```
1425
           DOUBLE PRECISION
                             ONE, ZERO
1426
           PARAMETER
                              ( ONE = 1.0D+0, ZERO = 0.0D+0 )
1427 !
1428 !
           .. Local Scalars ..
1429
           DOUBLE PRECISION
                            SFMIN, TEMP
1430
           INTEGER
                              I, IINFO, N1, N2
1431 !
1432 !
           .. External Functions ..
1433 !
           DOUBLE PRECISION
                               DLAMCH
1434 !
           INTEGER
                               IDAMAX
1435 !
           EXTERNAL
                               DLAMCH, IDAMAX
1436 !
           .. External Subroutines ..
1437 !
1438 !
           EXTERNAL
                               DGEMM, DSCAL, DLASWP, DTRSM, XERBLA
1439 !
1440 !
           .. Intrinsic Functions ..
1441
           INTRINSIC
                              MAX, MIN
1442 !
          .. Executable Statements ..
1443 !
1444
1445 !
          Test the input parameters
1446 !
1447
           INFO = ∅
1448
           IF( M.LT.∅ ) THEN
1449
              INFO = -1
1450
           ELSE IF( N.LT.0 ) THEN
1451
              INFO = -2
1452
           ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
1453
              INFO = -4
           END IF
1454
1455
           IF( INFO.NE.0 ) THEN
1456
              CALL XERBLA( 'DGETRF2', -INFO )
1457
              RETURN
1458
           END IF
1459 !
1460 !
           Quick return if possible
1461 !
1462
           IF( M.EQ. 0 .OR. N.EQ. 0 )&
1463
              RETURN
1464
1465
           IF ( M.EQ.1 ) THEN
1466 !
1467 !
              Use unblocked code for one row case
1468 !
              Just need to handle IPIV and INFO
1469 !
1470
              IPIV(1) = 1
1471
              IF ( A(1,1).EQ.ZERO )&
1472
                 INFO = 1
1473 !
1474
           ELSE IF( N.EQ.1 ) THEN
1475 !
1476 !
              Use unblocked code for one column case
1477 !
1478 !
1479 !
              Compute machine safe minimum
1480 !
              SFMIN = DLAMCH('S')
1481
1482 !
1483 !
              Find pivot and test for singularity
1484 !
              I = IDAMAX(M, A(1, 1), 1)
1485
```

```
1486
              IPIV(1) = I
1487
              IF( A( I, 1 ).NE.ZERO ) THEN
1488 !
1489 !
                 Apply the interchange
1490 !
                 IF( I.NE.1 ) THEN
1491
                    TEMP = A(1, 1)
1492
1493
                    A(1, 1) = A(I, 1)
                    A( I, 1 ) = TEMP
1494
1495
                 END IF
1496 !
1497 !
                 Compute elements 2:M of the column
1498 !
1499
                 IF( ABS(A( 1, 1 )) .GE. SFMIN ) THEN
1500
                    CALL DSCAL( M-1, ONE / A( 1, 1 ), A( 2, 1 ), 1 )
1501
                 ELSE
1502
                    DO 10 I = 1, M-1
                       A(1+I, 1) = A(1+I, 1) / A(1, 1)
1503
1504
       10
                    CONTINUE
                 END IF
1505
1506 !
              ELSE
1507
                 INFO = 1
1508
              END IF
1509
1510 !
1511
           ELSE
1512 !
1513 !
              Use recursive code
1514 !
              N1 = MIN(M, N) / 2
1515
              N2 = N-N1
1516
1517 !
1518 !
                     [ A11 ]
1519 !
              Factor [ --- ]
                     [ A21 ]
1520 !
1521 !
1522
              CALL DGETRF2( M, N1, A, LDA, IPIV, IINFO )
1523
1524
              IF ( INFO.EQ.⊘ .AND. IINFO.GT.⊘ )&
1525
                 INFO = IINFO
1526 !
1527 !
                                    [ A12 ]
1528 !
              Apply interchanges to [ --- ]
1529 !
                                    [ A22 ]
1530 !
              CALL DLASWP( N2, A( 1, N1+1 ), LDA, 1, N1, IPIV, 1 )
1531
1532 !
1533 !
              Solve A12
1534 !
              CALL DTRSM( 'L', 'L', 'N', 'U', N1, N2, ONE, A, LDA,&
1535
1536
                          A( 1, N1+1 ), LDA )
1537 !
1538 !
              Update A22
1539 !
              CALL DGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( N1+1, 1 ), LDA,&
1540
1541
                          A(1, N1+1), LDA, ONE, A(N1+1, N1+1), LDA)
1542 !
1543 !
              Factor A22
1544 !
              CALL DGETRF2( M-N1, N2, A( N1+1, N1+1 ), LDA, IPIV( N1+1 ),&
1545
1546
                            IINFO )
```

```
1547 !
1548 !
            Adjust INFO and the pivot indices
1549 !
1550
            IF ( INFO.EQ. ⊘ .AND. IINFO.GT. ⊘ )&
1551
               INFO = IINFO + N1
1552
            DO 20 I = N1+1, MIN( M, N )
               IPIV(I) = IPIV(I) + N1
1553
1554 20
            CONTINUE
1555 !
1556 !
            Apply interchanges to A21
1557 !
1558
            CALL DLASWP( N1, A( 1, 1 ), LDA, N1+1, MIN( M, N), IPIV, 1 )
1559 !
         END IF
1560
1561
         RETURN
1562 !
1563 !
        End of DGETRF2
1564 !
         END SUBROUTINE DGETRF2
1565
1566
1567 ! ------
        INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4)
1568
1570 ! -- LAPACK auxiliary routine (version 3.8.0) --
1571! -- LAPACK is a software package provided by Univ. of Tennessee,
1572 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1573 !
         November 2017
1574 !
1575 !
          .. Scalar Arguments ..
         CHARACTER*( * )
                         NAME, OPTS
1576
1577
         INTEGER
                           ISPEC, N1, N2, N3, N4
1578 !
1579 !
1580 ! -----
          .. Local Scalars ..
1582 !
1583
         INTEGER
                           I, IC, IZ, NB, NBMIN, NX
1584
         LOGICAL
                           CNAME, SNAME, TWOSTAGE
         CHARACTER
                          C1*1, C2*2, C4*2, C3*3, SUBNAM*16
1587 !
          .. Intrinsic Functions ..
1588
         INTRINSIC
                          CHAR, ICHAR, INT, MIN, REAL
1589 !
1590 !
         .. External Functions ..
1591 !
         INTEGER
                            IEEECK, IPARMQ, IPARAM2STAGE
1592 !
         EXTERNAL
                            IEEECK, IPARMQ, IPARAM2STAGE
1593 !
1594 !
         .. Executable Statements ..
1595 !
1596
         GO TO ( 10, 10, 10, 80, 90, 100, 110, 120,&
1597
                 130, 140, 150, 160, 160, 160, 160, 160) ISPEC
1598 !
1599 !
         Invalid value for ISPEC
1600 !
1601
         ILAENV = -1
1602
         RETURN
1603 !
1604 10 CONTINUE
1605 !
1606 !
         Convert NAME to upper case if the first character is lower case.
1607 !
```

```
1608
           ILAENV = 1
1609
           SUBNAM = NAME
1610
           IC = ICHAR( SUBNAM( 1: 1 ) )
1611
           IZ = ICHAR('Z')
1612
           IF( IZ.EQ.90 .OR. IZ.EQ.122 ) THEN
1613 !
1614 !
              ASCII character set
1615 !
1616
              IF( IC.GE.97 .AND. IC.LE.122 ) THEN
1617
                 SUBNAM(1:1) = CHAR(IC-32)
                 DO 20 I = 2, 6
1618
1619
                    IC = ICHAR( SUBNAM( I: I ) )
1620
                    IF( IC.GE.97 .AND. IC.LE.122 )&
1621
                       SUBNAM( I: I ) = CHAR(IC-32)
1622
                 CONTINUE
1623
              END IF
1624 !
1625
           ELSE IF( IZ.EQ.233 .OR. IZ.EQ.169 ) THEN
1626 !
              EBCDIC character set
1627 !
1628 !
              IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.&
1629
                  ( IC.GE.145 .AND. IC.LE.153 ) .OR.&
1630
                  ( IC.GE.162 .AND. IC.LE.169 ) ) THEN
1631
                 SUBNAM( 1: 1 ) = CHAR(IC+64)
1632
1633
                 DO 30 I = 2, 6
                    IC = ICHAR( SUBNAM( I: I ) )
1634
                    IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.&
1635
1636
                        ( IC.GE.145 .AND. IC.LE.153 ) .OR.&
1637
                        ( IC.GE.162 .AND. IC.LE.169 ) )SUBNAM( I:&
                        I) = CHAR(IC+64)
1638
1639
                 CONTINUE
              END IF
1640
1641 !
1642
           ELSE IF ( IZ.EQ.218 .OR. IZ.EQ.250 ) THEN
1643 !
1644 !
              Prime machines: ASCII+128
1645 !
              IF( IC.GE.225 .AND. IC.LE.250 ) THEN
1646
1647
                 SUBNAM(1:1) = CHAR(IC-32)
1648
                 DO 40 I = 2, 6
1649
                    IC = ICHAR( SUBNAM( I: I ) )
1650
                    IF( IC.GE.225 .AND. IC.LE.250 )&
1651
                       SUBNAM( I: I ) = CHAR(IC-32)
1652
                 CONTINUE
1653
              END IF
1654
           END IF
1655 !
1656
           C1 = SUBNAM(1:1)
           SNAME = C1.EQ.'S' .OR. C1.EQ.'D'
CNAME = C1.EQ.'C' .OR. C1.EQ.'Z'
1657
1658
1659
           IF( .NOT. ( CNAME .OR. SNAME ) )&
1660
              RETURN
1661
           C2 = SUBNAM(2:3)
1662
           C3 = SUBNAM(4:6)
1663
           C4 = C3(2:3)
1664
           TWOSTAGE = LEN( SUBNAM ).GE.11&
1665
                      .AND. SUBNAM( 11: 11 ).EQ.'2'
1666 !
1667
           GO TO (50, 60, 70 )ISPEC
1668 !
```

```
50 CONTINUE
1669
1670 !
1671 !
           ISPEC = 1: block size
1672 !
1673 !
           In these examples, separate code is provided for setting NB for
           real and complex. We assume that NB will take the same value in
1674 !
1675 !
           single or double precision.
1676 !
           NB = 1
1677
1678 !
           IF( C2.EQ.'GE' ) THEN
1679
              IF( C3.EQ.'TRF' ) THEN
1680
                 IF( SNAME ) THEN
1681
1682
                    NB = 64
1683
                 ELSE
1684
                    NB = 64
1685
                 END IF
              ELSE IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR.&
1686
                       C3.EQ.'QLF' ) THEN
1687
                 IF( SNAME ) THEN
1688
1689
                    NB = 32
                 ELSE
1690
                    NB = 32
1691
                 END IF
1692
1693
              ELSE IF( C3.EQ.'QR ') THEN
1694
                 IF( N3 .EQ. 1) THEN
1695
                    IF( SNAME ) THEN
1696 !
           M*N
1697
                       IF ((N1*N2.LE.131072).OR.(N1.LE.8192)) THEN
1698
                          NB = N1
                       ELSE
1699
1700
                          NB = 32768/N2
1701
                       END IF
1702
1703
                       IF ((N1*N2.LE.131072).OR.(N1.LE.8192)) THEN
1704
                          NB = N1
1705
                       ELSE
1706
                          NB = 32768/N2
1707
                       END IF
1708
                    END IF
                 ELSE
1709
1710
                    IF( SNAME ) THEN
1711
                       NB = 1
1712
                    ELSE
1713
                       NB = 1
                    END IF
1714
1715
                 END IF
              ELSE IF( C3.EQ.'LQ ') THEN
1716
1717
                 IF( N3 .EQ. 2) THEN
1718
                    IF( SNAME ) THEN
           M*N
1719 !
1720
                       IF ((N1*N2.LE.131072).OR.(N1.LE.8192)) THEN
1721
                          NB = N1
1722
                       ELSE
1723
                          NB = 32768/N2
1724
                       END IF
1725
                    ELSE
1726
                       IF ((N1*N2.LE.131072).OR.(N1.LE.8192)) THEN
1727
                          NB = N1
                       ELSE
1728
                          NB = 32768/N2
1729
```

```
1730
                        END IF
1731
                    END IF
1732
                 ELSE
1733
                    IF( SNAME ) THEN
1734
                       NB = 1
1735
                     ELSE
1736
                       NB = 1
                    END IF
1737
                 END IF
1738
1739
              ELSE IF( C3.EQ.'HRD' ) THEN
                 IF( SNAME ) THEN
1740
1741
                    NB = 32
1742
                 ELSE
1743
                    NB = 32
1744
                 END IF
1745
              ELSE IF( C3.EQ.'BRD' ) THEN
1746
                 IF( SNAME ) THEN
1747
                    NB = 32
1748
                 ELSE
1749
                    NB = 32
1750
                 END IF
1751
              ELSE IF( C3.EQ.'TRI' ) THEN
1752
                 IF( SNAME ) THEN
1753
                    NB = 64
1754
                 ELSE
1755
                    NB = 64
1756
                 END IF
1757
              END IF
1758
           ELSE IF( C2.EQ. 'PO' ) THEN
1759
              IF( C3.EQ.'TRF' ) THEN
1760
                 IF( SNAME ) THEN
1761
                    NB = 64
1762
                 ELSE
1763
                    NB = 64
1764
                 END IF
1765
              END IF
           ELSE IF( C2.EQ.'SY' ) THEN
1766
              IF( C3.EQ.'TRF' ) THEN
1767
1768
                 IF( SNAME ) THEN
1769
                     IF( TWOSTAGE ) THEN
1770
                        NB = 192
1771
                     ELSE
1772
                        NB = 64
1773
                    END IF
1774
                 ELSE
                    IF( TWOSTAGE ) THEN
1775
1776
                        NB = 192
                     ELSE
1777
1778
                       NB = 64
1779
                    END IF
1780
                 END IF
1781
              ELSE IF ( SNAME .AND. C3.EQ.'TRD' ) THEN
1782
                 NB = 32
              ELSE IF ( SNAME .AND. C3.EQ.'GST' ) THEN
1783
1784
                 NB = 64
              END IF
1785
           ELSE IF ( CNAME .AND. C2.EQ. 'HE' ) THEN
1786
1787
              IF( C3.EQ.'TRF' ) THEN
                 IF( TWOSTAGE ) THEN
1788
1789
                    NB = 192
                 ELSE
1790
```

```
1791
                    NB = 64
1792
                 END IF
              ELSE IF( C3.EQ.'TRD' ) THEN
1793
1794
                 NB = 32
1795
              ELSE IF( C3.EQ.'GST' ) THEN
1796
                 NB = 64
              END IF
1797
1798
           ELSE IF ( SNAME .AND. C2.EQ.'OR' ) THEN
1799
              IF( C3( 1: 1 ).EQ.'G' ) THEN
1800
                 IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.&
                      'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )&
1801
1802
                      THEN
1803
                    NB = 32
                 END IF
1804
1805
              ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
                 IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.&
1806
1807
                      'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )&
1808
1809
                    NB = 32
                 END IF
1810
1811
              END IF
           ELSE IF ( CNAME .AND. C2.EQ.'UN' ) THEN
1812
              IF( C3( 1: 1 ).EQ.'G' ) THEN
1813
                 IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.&
1814
1815
                      'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )&
1816
                      THEN
                    NB = 32
1817
1818
                 END IF
              ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
1819
1820
                 IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.&
                      'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )&
1821
1822
                      THEN
1823
                    NB = 32
1824
                 END IF
1825
              END IF
1826
           ELSE IF( C2.EQ.'GB' ) THEN
              IF( C3.EQ.'TRF' ) THEN
1827
1828
                 IF( SNAME ) THEN
1829
                     IF( N4.LE.64 ) THEN
1830
                       NB = 1
1831
                     ELSE
1832
                        NB = 32
1833
                    END IF
1834
                 ELSE
1835
                    IF( N4.LE.64 ) THEN
1836
                        NB = 1
1837
                     ELSE
1838
                        NB = 32
1839
                    END IF
1840
                 END IF
1841
              END IF
1842
           ELSE IF( C2.EQ. 'PB' ) THEN
1843
              IF( C3.EQ.'TRF' ) THEN
1844
                 IF( SNAME ) THEN
1845
                     IF( N2.LE.64 ) THEN
1846
                        NB = 1
1847
                     ELSE
1848
                        NB = 32
1849
                    END IF
1850
                 ELSE
1851
                    IF( N2.LE.64 ) THEN
```

```
1852
                       NB = 1
1853
                    ELSE
1854
                       NB = 32
1855
                    END IF
1856
                 END IF
              END IF
1857
           ELSE IF( C2.EQ.'TR' ) THEN
1858
              IF( C3.EQ.'TRI' ) THEN
1859
                 IF( SNAME ) THEN
1860
1861
                    NB = 64
                 ELSE
1862
1863
                    NB = 64
                 END IF
1864
              ELSE IF ( C3.EQ.'EVC' ) THEN
1865
1866
                 IF( SNAME ) THEN
1867
                    NB = 64
1868
                 ELSE
1869
                    NB = 64
1870
                 END IF
1871
              END IF
1872
           ELSE IF( C2.EQ.'LA' ) THEN
1873
              IF( C3.EQ.'UUM' ) THEN
1874
                 IF( SNAME ) THEN
1875
                    NB = 64
1876
                 ELSE
1877
                    NB = 64
1878
                 END IF
1879
              END IF
1880
           ELSE IF ( SNAME .AND. C2.EQ.'ST' ) THEN
1881
              IF( C3.EQ.'EBZ' ) THEN
1882
                 NB = 1
1883
              END IF
1884
           ELSE IF( C2.EQ.'GG' ) THEN
1885
              NB = 32
1886
              IF( C3.EQ.'HD3' ) THEN
1887
                 IF( SNAME ) THEN
1888
                    NB = 32
1889
                 ELSE
1890
                    NB = 32
1891
                 END IF
1892
              END IF
1893
           END IF
1894
           ILAENV = NB
1895
           RETURN
1896 !
       60 CONTINUE
1897
1898 !
           ISPEC = 2: minimum block size
1899 !
1900 !
           NBMIN = 2
1901
           IF( C2.EQ.'GE' ) THEN
1902
1903
              IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. C3.EQ.&
1904
                  'QLF' ) THEN
1905
                 IF( SNAME ) THEN
                    NBMIN = 2
1906
                 ELSE
1907
1908
                    NBMIN = 2
1909
                 END IF
              ELSE IF( C3.EQ.'HRD' ) THEN
1910
                 IF( SNAME ) THEN
1911
                    NBMIN = 2
1912
```

```
1913
                 ELSE
1914
                    NBMIN = 2
1915
                 END IF
1916
              ELSE IF( C3.EQ.'BRD' ) THEN
1917
                 IF( SNAME ) THEN
1918
                    NBMIN = 2
1919
                 ELSE
1920
                    NBMIN = 2
1921
                 END IF
1922
              ELSE IF( C3.EQ.'TRI' ) THEN
1923
                 IF( SNAME ) THEN
1924
                    NBMIN = 2
1925
                 ELSE
1926
                    NBMIN = 2
1927
                 END IF
              END IF
1928
1929
           ELSE IF( C2.E0.'SY' ) THEN
              IF( C3.EQ. 'TRF' ) THEN
1930
                 IF( SNAME ) THEN
1931
                    NBMIN = 8
1932
1933
                    NBMIN = 8
1934
                 END IF
1935
              ELSE IF ( SNAME .AND. C3.EQ. 'TRD' ) THEN
1936
                 NBMIN = 2
1937
1938
              END IF
1939
           ELSE IF ( CNAME .AND. C2.EQ. 'HE' ) THEN
1940
              IF( C3.EQ.'TRD' ) THEN
1941
                 NBMIN = 2
              END IF
1942
           ELSE IF ( SNAME .AND. C2.EQ.'OR' ) THEN
1943
              IF( C3( 1: 1 ).EQ.'G' ) THEN
                 IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.&
1946
                     'OL' .OR. C4.EO.'HR' .OR. C4.EO.'TR' .OR. C4.EO.'BR' )&
1947
                      THEN
1948
                    NBMIN = 2
                 END IF
1949
1950
              ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
                 IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.&
1952
                     'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )&
1953
                      THEN
1954
                    NBMIN = 2
1955
                 END IF
1956
              END IF
1957
           ELSE IF ( CNAME .AND. C2.EQ. 'UN' ) THEN
1958
              IF( C3( 1: 1 ).EQ.'G' ) THEN
1959
                 IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.&
                      'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )&
1960
1961
                      THEN
1962
                    NBMIN = 2
1963
                 END IF
              ELSE IF( C3( 1: 1 ).EQ.'M' ) THEN
1965
                 IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.&
                     'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )&
1966
1967
                      THEN
1968
                    NBMIN = 2
1969
                 END IF
1970
              END IF
1971
           ELSE IF( C2.EQ.'GG' ) THEN
1972
              NBMIN = 2
              IF( C3.EQ.'HD3' ) THEN
1973
```

```
1974
                 NBMIN = 2
              END IF
1975
           END IF
1976
1977
           ILAENV = NBMIN
1978
           RETURN
1979 !
        70 CONTINUE
1980
1981 !
1982 !
           ISPEC = 3: crossover point
1983 !
1984
           NX = ∅
           IF( C2.EQ.'GE' ) THEN
1985
              IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR. C3.EQ.&
1986
                  'OLF' ) THEN
1987
1988
                 IF( SNAME ) THEN
1989
                    NX = 128
1990
                 ELSE
1991
                    NX = 128
                 END IF
1992
              ELSE IF( C3.EQ.'HRD' ) THEN
1993
                 IF( SNAME ) THEN
1994
1995
                    NX = 128
1996
                 ELSE
1997
                    NX = 128
1998
                 END IF
              ELSE IF( C3.EQ.'BRD' ) THEN
2000
                 IF( SNAME ) THEN
2001
                    NX = 128
2002
                 ELSE
2003
                    NX = 128
2004
                 END IF
2005
              END IF
2006
           ELSE IF( C2.E0.'SY' ) THEN
2007
              IF( SNAME .AND. C3.EQ.'TRD' ) THEN
2008
                 NX = 32
2009
              END IF
2010
           ELSE IF ( CNAME .AND. C2.EQ. 'HE' ) THEN
2011
              IF( C3.EQ.'TRD' ) THEN
2012
                 NX = 32
2013
              END IF
2014
           ELSE IF ( SNAME .AND. C2.EQ. 'OR' ) THEN
2015
              IF( C3( 1: 1 ).EQ.'G' ) THEN
                 IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.&
2016
2017
                      'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )&
2018
                      THEN
2019
                    NX = 128
2020
                 END IF
2021
              END IF
2022
           ELSE IF ( CNAME .AND. C2.EQ.'UN' ) THEN
2023
              IF( C3( 1: 1 ).EQ.'G' ) THEN
                 IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR. C4.EQ.&
2024
2025
                      'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR. C4.EQ.'BR' )&
2026
                      THEN
2027
                    NX = 128
                 END IF
2028
2029
              END IF
2030
           ELSE IF( C2.EQ.'GG' ) THEN
2031
              NX = 128
2032
              IF( C3.EQ.'HD3' ) THEN
2033
                 NX = 128
              END IF
2034
```

```
END IF
2035
2036
          ILAENV = NX
          RETURN
2037
2038 !
2039
       80 CONTINUE
2040 !
          ISPEC = 4: number of shifts (used by xHSEQR)
2041 !
2042 !
2043
          ILAENV = 6
2044
          RETURN
2045 !
       90 CONTINUE
2046
2047 !
          ISPEC = 5: minimum column dimension (not used)
2048 !
2049 !
2050
          ILAENV = 2
2051
          RETURN
2052 !
2053 100 CONTINUE
2054 !
2055 !
          ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD)
2056 !
2057
          ILAENV = INT( REAL( MIN( N1, N2 ) )*1.6E0 )
2058
          RETURN
2059 !
2060 110 CONTINUE
2061 !
2062 !
          ISPEC = 7: number of processors (not used)
2063 !
2064
          ILAENV = 1
2065
          RETURN
2066 !
2067 120 CONTINUE
2068 !
2069 !
          ISPEC = 8: crossover point for multishift (used by xHSEQR)
2070 !
2071
          ILAENV = 50
2072
          RETURN
2073 !
2074 130 CONTINUE
2075 !
2076 !
          ISPEC = 9: maximum size of the subproblems at the bottom of the
2077 !
                      computation tree in the divide-and-conquer algorithm
2078 !
                       (used by xGELSD and xGESDD)
2079 !
2080
          ILAENV = 25
2081
          RETURN
2082 !
2083 140 CONTINUE
2084 !
2085 !
          ISPEC = 10: ieee NaN arithmetic can be trusted not to trap
2086 !
2087 !
          ILAENV = 0
2088
          ILAENV = 1
2089
          IF( ILAENV.EQ.1 ) THEN
2090
             ILAENV = IEEECK(1, 0.0, 1.0)
2091
          END IF
2092
          RETURN
2093!
2094 150 CONTINUE
2095 !
```

```
ISPEC = 11: infinity arithmetic can be trusted not to trap
2097 !
2098 !
        ILAENV = 0
2099
         ILAENV = 1
2100
         IF( ILAENV.EQ.1 ) THEN
           ILAENV = IEEECK( 0, 0.0, 1.0 )
2101
2102
         RETURN
2103
2104 !
2105 160 CONTINUE
2106 !
         12 <= ISPEC <= 16: xHSEQR or related subroutines.
2107 !
2108 !
         ILAENV = IPARMQ( ISPEC, NAME, OPTS, N1, N2, N3, N4)
2109
2110
         RETURN
2111 !
2112 !
        End of ILAENV
2113 !
         END FUNCTION ILAENV
2114
2115
2116 !
2117 ! ------
        INTEGER FUNCTION IEEECK( ISPEC, ZERO, ONE )
2120 ! -- LAPACK auxiliary routine (version 3.7.0) --
2121 ! -- LAPACK is a software package provided by Univ. of Tennessee,
2122 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
2123 !
        December 2016
2124 !
2125 !
        .. Scalar Arguments ..
2126
        INTEGER
                          ISPEC
2127
         REAL
                          ONE, ZERO
2128 !
2129 !
2130 ! -----
2132 !
         .. Local Scalars ..
2133
         REAL
                          NAN1, NAN2, NAN3, NAN4, NAN5, NAN6, NEGINF,&
2134
                          NEGZRO, NEWZRO, POSINF
2135 !
         .. Executable Statements ..
2136 !
2137
        IEEECK = 1
2138 !
        POSINF = ONE / ZERO
2139
2140
         IF( POSINF.LE.ONE ) THEN
2141
            IEEECK = 0
2142
            RETURN
         END IF
2143
2144 !
2145
         NEGINF = -ONE / ZERO
2146
         IF( NEGINF.GE.ZERO ) THEN
2147
            IEEECK = ∅
2148
            RETURN
         END IF
2149
2150 !
         NEGZRO = ONE / ( NEGINF+ONE )
2151
2152
         IF( NEGZRO.NE.ZERO ) THEN
2153
            IEEECK = ∅
2154
           RETURN
         END IF
2155
2156 !
```

```
NEGINF = ONE / NEGZRO
2157
           IF( NEGINF.GE.ZERO ) THEN
2158
2159
              IEEECK = ∅
2160
              RETURN
2161
           END IF
2162 !
           NEWZRO = NEGZRO + ZERO
2163
2164
           IF( NEWZRO.NE.ZERO ) THEN
2165
              IEEECK = ∅
2166
              RETURN
           END IF
2167
2168 !
           POSINF = ONE / NEWZRO
2169
2170
           IF( POSINF.LE.ONE ) THEN
2171
              IEEECK = 0
2172
              RETURN
2173
           END IF
2174 !
2175
           NEGINF = NEGINF*POSINF
2176
           IF( NEGINF.GE.ZERO ) THEN
2177
              IEEECK = ∅
2178
              RETURN
2179
           END IF
2180 !
2181
           POSINF = POSINF*POSINF
2182
           IF( POSINF.LE.ONE ) THEN
2183
              IEEECK = 0
2184
              RETURN
2185
           END IF
2186 !
2187 !
2188 !
           Return if we were only asked to check infinity arithmetic
2189 !
2190
           IF( ISPEC.EQ.∅ )&
2191
          & RETURN
2192 !
2193
           NAN1 = POSINF + NEGINF
2194 !
2195
           NAN2 = POSINF / NEGINF
2196 !
2197
           NAN3 = POSINF / POSINF
2198 !
           NAN4 = POSINF*ZERO
2199
2200 !
           NAN5 = NEGINF*NEGZRO
2201
2202 !
2203
           NAN6 = NAN5*ZERO
2204 !
2205
           IF( NAN1.EQ.NAN1 ) THEN
2206
              IEEECK = ∅
2207
              RETURN
2208
           END IF
2209 !
           IF( NAN2.EQ.NAN2 ) THEN
2210
2211
              IEEECK = ∅
2212
              RETURN
2213
           END IF
2214 !
           IF( NAN3.EQ.NAN3 ) THEN
2215
2216
              IEEECK = ∅
2217
              RETURN
```

```
END IF
2218
2219 !
         IF( NAN4.EQ.NAN4 ) THEN
2220
2221
            IEEECK = ∅
2222
            RETURN
         END IF
2223
2224 !
2225
         IF( NAN5.EQ.NAN5 ) THEN
2226
           IEEECK = ∅
2227
            RETURN
         END IF
2228
2229 !
2230
         IF( NAN6.EQ.NAN6 ) THEN
            IEEECK = 0
2231
2232
            RETURN
2233
         END IF
2234 !
         RETURN
2235
         END FUNCTION IEEECK
2236
2238 ! ------
        INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK )
2241 ! -- LAPACK auxiliary routine (version 3.7.1) --
2242 ! -- LAPACK is a software package provided by Univ. of Tennessee,
2243 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        June 2017
2245 !
2246 !
        .. Scalar Arguments ..
2247
         INTEGER
                          IHI, ILO, ISPEC, LWORK, N
2248
         CHARACTER
                          NAME*( * ), OPTS*( * )
2249 !
2250 ! -----
2251 ! .. Parameters ..
2252
         INTEGER
                          INMIN, INWIN, INIBL, ISHFTS, IACC22
2253
         PARAMETER
                          ( INMIN = 12, INWIN = 13, INIBL = 14,&
2254
                          ISHFTS = 15, IACC22 = 16)
2255
         INTEGER
                          NMIN, K22MIN, KACMIN, NIBBLE, KNWSWP
2256
         PARAMETER
                          ( NMIN = 75, K22MIN = 14, KACMIN = 14,&
2257
                          NIBBLE = 14, KNWSWP = 500)
2258
        REAL
                          TWO
2259
        PARAMETER
                          (TWO = 2.0)
2260 !
2261 !
         .. Local Scalars ..
2262
        INTEGER
                          NH, NS
2263
         INTEGER
                          I, IC, IZ
2264
         CHARACTER
                          SUBNAM*6
2265 !
2266 !
         .. Intrinsic Functions ..
2267
         INTRINSIC
                         LOG, MAX, MOD, NINT, REAL
2268 !
2269 !
         .. Executable Statements ..
2270
         IF( ( ISPEC.EQ.ISHFTS ) .OR. ( ISPEC.EQ.INWIN ) .OR.&
2271
        & ( ISPEC.EQ.IACC22 ) ) THEN
2272 !
            ==== Set the number simultaneous shifts ====
2273 !
2274 !
2275
            NH = IHI - ILO + 1
2276
            NS = 2
            IF( NH.GE.30 )&
2277
               NS = 4
2278
```

```
2279
              IF( NH.GE.60 )&
2280
                NS = 10
2281
              IF( NH.GE.150 )&
2282
                NS = MAX( 10, NH / NINT( LOG( REAL( NH ) ) / LOG( TWO ) ) )
2283
             IF( NH.GE.590 )&
2284
                NS = 64
             IF( NH.GE.3000 )&
2285
2286
          &
                NS = 128
2287
             IF( NH.GE.6000 )&
2288
                NS = 256
2289
              NS = MAX(2, NS-MOD(NS, 2))
2290
          END IF
2291 !
2292
          IF( ISPEC.EQ.INMIN ) THEN
2293 !
2294 !
2295 !
             ==== Matrices of order smaller than NMIN get sent
2296 !
                   to xLAHQR, the classic double shift algorithm.
2297 !
                    This must be at least 11. ====
2298 !
2299
             IPARMO = NMIN
2300 !
          ELSE IF( ISPEC.EQ.INIBL ) THEN
2301
2302 !
2303 !
             ==== INIBL: skip a multi-shift gr iteration and
             . whenever aggressive early deflation finds
                  at least (NIBBLE*(window size)/100) deflations. ====
2306 !
2307
             IPARMQ = NIBBLE
2308 !
          ELSE IF ( ISPEC.EQ.ISHFTS ) THEN
2310 !
             ==== NSHFTS: The number of simultaneous shifts =====
2311 !
2312 !
2313
             IPARMQ = NS
2314 !
2315
          ELSE IF ( ISPEC.EQ.INWIN ) THEN
2316 !
2317 !
             ==== NW: deflation window size. ====
2318 !
2319
             IF( NH.LE.KNWSWP ) THEN
2320
                IPARMQ = NS
2321
              ELSE
2322
                IPARMQ = 3*NS / 2
2323
             END IF
2324 !
2325
          ELSE IF( ISPEC.EQ.IACC22 ) THEN
2326 !
2327 !
              ==== IACC22: Whether to accumulate reflections
2328 !
                    before updating the far-from-diagonal elements
2329 !
                    and whether to use 2-by-2 block structure while
2330 !
                    doing it. A small amount of work could be saved
2331 !
                    by making this choice dependent also upon the
2332 !
                   NH=IHI-ILO+1.
2333 !
2334 !
2335 !
             Convert NAME to upper case if the first character is lower case.
2336 !
2337
             IPARMQ = ∅
2338
              SUBNAM = NAME
             IC = ICHAR( SUBNAM( 1: 1 ) )
2339
```

```
2340
              IZ = ICHAR('Z')
2341
              IF( IZ.EQ.90 .OR. IZ.EQ.122 ) THEN
2342 !
2343 !
                 ASCII character set
2344 !
                 IF( IC.GE.97 .AND. IC.LE.122 ) THEN
2345
2346
                    SUBNAM(1:1) = CHAR(IC-32)
2347
                    DO I = 2, 6
2348
                       IC = ICHAR( SUBNAM( I: I ) )
2349
                       IF( IC.GE.97 .AND. IC.LE.122 )&
2350
          &
                          SUBNAM( I: I ) = CHAR(IC-32)
2351
                    END DO
                 END IF
2352
2353 !
2354
              ELSE IF( IZ.EQ.233 .OR. IZ.EQ.169 ) THEN
2355 !
2356 !
                 EBCDIC character set
2357 !
2358
                 IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.&
                     ( IC.GE.145 .AND. IC.LE.153 ) .OR.&
2359
          &
2360
          &
                     ( IC.GE.162 .AND. IC.LE.169 ) ) THEN
                    SUBNAM( 1: 1 ) = CHAR(IC+64)
2361
2362
                    DO I = 2, 6
                       IC = ICHAR( SUBNAM( I: I ) )
2363
2364
                       IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.&
2365
          &
                           ( IC.GE.145 .AND. IC.LE.153 ) .OR.&
2366
          &
                           ( IC.GE.162 .AND. IC.LE.169 ) )SUBNAM( I:&
2367
                           I) = CHAR(IC+64)
2368
                    END DO
                 END IF
2369
2370 !
2371
              ELSE IF( IZ.EQ.218 .OR. IZ.EQ.250 ) THEN
2372 !
2373 !
                 Prime machines: ASCII+128
2374 !
2375
                 IF( IC.GE.225 .AND. IC.LE.250 ) THEN
2376
                    SUBNAM(1:1) = CHAR(IC-32)
2377
                    DO I = 2, 6
2378
                       IC = ICHAR( SUBNAM( I: I ) )
2379
                       IF( IC.GE.225 .AND. IC.LE.250 )&
2380
                          SUBNAM( I: I ) = CHAR(IC-32)
2381
                    END DO
2382
                 END IF
2383
              END IF
2384 !
2385
              IF( SUBNAM( 2:6 ).EQ.'GGHRD' .OR.&
2386
                  SUBNAM( 2:6 ).EQ.'GGHD3' ) THEN
2387
                 IPARMQ = 1
2388
                 IF( NH.GE.K22MIN )&
2389
                    IPARMQ = 2
2390
              ELSE IF ( SUBNAM( 4:6 ).EQ.'EXC' ) THEN
2391
                 IF( NH.GE.KACMIN )&
2392
          &
                    IPARMQ = 1
2393
                 IF( NH.GE.K22MIN )&
2394
          &
                    IPARMO = 2
              ELSE IF ( SUBNAM( 2:6 ).EQ. 'HSEQR' .OR.&
2395
2396
          &
                        SUBNAM( 2:5 ).EQ.'LAQR' ) THEN
2397
                 IF( NS.GE.KACMIN )&
2398
          &
                    IPARMQ = 1
2399
                 IF( NS.GE.K22MIN )&
2400
          &
                    IPARMQ = 2
```

```
END IF
2401
2402 !
2403
         ELSE
2404 !
           ==== invalid value of ispec =====
           IPARMO = -1
2406 !
         END IF
2407
2408 !
2409 !
        ==== End of IPARMO ====
2410 !
2411
        END FUNCTION IPARMQ
2412
2413 !
INTEGER FUNCTION IPARAM2STAGE( ISPEC, NAME, OPTS,&
                                   NI, NBI, IBI, NXI)
2417 #if defined( OPENMP)
      use omp_lib
2419 #endif
         IMPLICIT NONE
2420
2421 !
2422 ! -- LAPACK auxiliary routine (version 3.8.0) --
2423 ! -- LAPACK is a software package provided by Univ. of Tennessee,
2424 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        June 2016
2426 !
2427 !
      .. Scalar Arguments ..
2428
         CHARACTER*( * )
                        NAME, OPTS
         INTEGER
                         ISPEC, NI, NBI, IBI, NXI
2431 ! -----
         .. Local Scalars ..
2434
                        I, IC, IZ, KD, IB, LHOUS, LWORK, NTHREADS,&
2435
                         FACTOPTNB, QROPTNB, LQOPTNB
2436
        LOGICAL
                         RPREC, CPREC
2437
        CHARACTER
                         PREC*1, ALGO*3, STAG*5, SUBNAM*12, VECT*1
2438 !
2439! .. Intrinsic Functions ..
2440
        INTRINSIC
                         CHAR, ICHAR, MAX
2441 !
        .. External Functions ..
2442 !
2443 !
        INTEGER
                          ILAENV
2444 !
        EXTERNAL
                          ILAENV
2445 !
        .. Executable Statements ..
2446 !
2447 !
        Invalid value for ISPEC
2448 !
2449 !
2450
        IF( (ISPEC.LT.17).OR.(ISPEC.GT.21) ) THEN
2451
            IPARAM2STAGE = -1
2452
            RETURN
2453
        ENDIF
2454 !
2455 !
         Get the number of threads
2456 !
2457
         NTHREADS = 1
2458 #if defined( OPENMP)
2459 !$OMP PARALLEL
         NTHREADS = OMP_GET_NUM_THREADS()
2460
2461 !$OMP END PARALLEL
```

```
2462 #endif
           WRITE(*,*) 'IPARAM VOICI NTHREADS ISPEC ',NTHREADS, ISPEC
2463 !
2464 !
2465
          IF( ISPEC .NE. 19 ) THEN
2466 !
             Convert NAME to upper case if the first character is lower case.
2467 !
2468 !
2469
             IPARAM2STAGE = -1
2470
             SUBNAM = NAME
2471
             IC = ICHAR( SUBNAM( 1: 1 ) )
2472
             IZ = ICHAR('Z')
             IF( IZ.EQ.90 .OR. IZ.EQ.122 ) THEN
2473
2474 !
2475 !
                ASCII character set
2476 !
2477
                 IF( IC.GE.97 .AND. IC.LE.122 ) THEN
2478
                    SUBNAM(1:1) = CHAR(IC-32)
2479
                   DO 100 I = 2, 12
                       IC = ICHAR( SUBNAM( I: I ) )
2480
                       IF( IC.GE.97 .AND. IC.LE.122 )&
2481
                          SUBNAM( I: I ) = CHAR( IC-32 )
2482
                   CONTINUE
2483 100
                 END IF
2484
2485 !
             ELSE IF( IZ.EQ.233 .OR. IZ.EQ.169 ) THEN
2486
2487 !
2488 !
                 EBCDIC character set
2489 !
2490
                 IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.&
                     ( IC.GE.145 .AND. IC.LE.153 ) .OR.&
2491
                     ( IC.GE.162 .AND. IC.LE.169 ) ) THEN
2492
2493
                   SUBNAM( 1: 1 ) = CHAR(IC+64)
                   DO 110 I = 2, 12
2494
2495
                       IC = ICHAR( SUBNAM( I: I ) )
                       IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.&
2496
2497
                           ( IC.GE.145 .AND. IC.LE.153 ) .OR.&
2498
         &
                           ( IC.GE.162 .AND. IC.LE.169 ) )SUBNAM( I:&
2499
         &
                           I) = CHAR(IC+64)
2500 110
                   CONTINUE
2501
                 END IF
2502 !
2503
             ELSE IF( IZ.EQ.218 .OR. IZ.EQ.250 ) THEN
2504 !
2505 !
                 Prime machines: ASCII+128
2506 !
2507
                 IF( IC.GE.225 .AND. IC.LE.250 ) THEN
2508
                    SUBNAM(1:1) = CHAR(IC-32)
2509
                   DO 120 I = 2, 12
2510
                      IC = ICHAR( SUBNAM( I: I ) )
2511
                      IF( IC.GE.225 .AND. IC.LE.250 )&
2512
                        SUBNAM( I: I ) = CHAR(IC-32)
2513 120
                   CONTINUE
2514
                 END IF
2515
             END IF
2516 !
             PREC = SUBNAM( 1: 1 )
2517
2518
             ALGO = SUBNAM(4:6)
2519
             STAG = SUBNAM(8:12)
2520
             RPREC = PREC.EQ.'S' .OR. PREC.EQ.'D'
             CPREC = PREC.EQ.'C' .OR. PREC.EQ.'Z'
2521
2522 !
```

```
Invalid value for PRECISION
2523 !
2524 !
2525
              IF( .NOT.( RPREC .OR. CPREC ) ) THEN
2526
                  IPARAM2STAGE = -1
2527
                  RETURN
              ENDIF
2528
           ENDIF
2529
           WRITE(*,*),'RPREC,CPREC ',RPREC,CPREC,&
2530 !
                          ALGO ',ALGO,'
2531 !
                                         STAGE ',STAG
2532 !
2533 !
           IF (( ISPEC .EQ. 17 ) .OR. ( ISPEC .EQ. 18 )) THEN
2534
2535 !
2536 !
           ISPEC = 17, 18: block size KD, IB
2537 !
           Could be also dependent from N but for now it
2538 !
           depend only on sequential or parallel
2539 !
              IF( NTHREADS.GT.4 ) THEN
2540
                 IF( CPREC ) THEN
2541
                    KD = 128
2542
2543
                    IB = 32
2544
                 ELSE
2545
                    KD = 160
2546
                    IB = 40
2547
                 ENDIF
2548
              ELSE IF( NTHREADS.GT.1 ) THEN
2549
                 IF( CPREC ) THEN
2550
                    KD = 64
2551
                    IB = 32
2552
                 ELSE
2553
                    KD = 64
2554
                    IB = 32
2555
                 ENDIF
2556
              ELSE
2557
                 IF( CPREC ) THEN
2558
                    KD = 16
2559
                    IB = 16
2560
                 ELSE
2561
                    KD = 32
2562
                    IB = 16
2563
                 ENDIF
2564
              ENDIF
2565
              IF( ISPEC.EQ.17 ) IPARAM2STAGE = KD
2566
              IF( ISPEC.EQ.18 ) IPARAM2STAGE = IB
2567 !
2568
           ELSE IF ( ISPEC .EQ. 19 ) THEN
2569 !
           ISPEC = 19:
2570 !
2571 !
           LHOUS length of the Houselholder representation
2572 !
           matrix (V,T) of the second stage. should be >= 1.
2573 !
2574 !
           Will add the VECT OPTION HERE next release
2575
              VECT = OPTS(1:1)
2576
              IF( VECT.EQ.'N' ) THEN
2577
                 LHOUS = MAX(1, 4*NI)
2578
2579 !
                 This is not correct, it need to call the ALGO and the stage2
2580
                 LHOUS = MAX(1, 4*NI) + IBI
2581
2582
              IF( LHOUS.GE.0 ) THEN
2583
                 IPARAM2STAGE = LHOUS
```

```
2584
              ELSE
2585
                 IPARAM2STAGE = -1
2586
              ENDIF
2587 !
           ELSE IF ( ISPEC .EQ. 20 ) THEN
2588
2589 !
           ISPEC = 20: (21 for future use)
2590 !
2591 !
           LWORK length of the workspace for
2592 !
           either or both stages for TRD and BRD. should be >= 1.
2593 !
           TRD:
2594 !
           TRD stage 1: = LT + LW + LS1 + LS2
2595 !
                        = LDT*KD + N*KD + N*MAX(KD, FACTOPTNB) + LDS2*KD
2596 !
                          where LDT=LDS2=KD
2597 !
                        = N*KD + N*max(KD, FACTOPTNB) + 2*KD*KD
2598 !
           TRD stage 2: = (2NB+1)*N + KD*NTHREADS
2599 !
           TRD both
                      : = \max(\text{stage1}, \text{stage2}) + AB (AB=(KD+1)*N)
2600 !
                        = N*KD + N*max(KD+1, FACTOPTNB)
2601 !
                          + max(2*KD*KD, KD*NTHREADS)
2602 !
                          + (KD+1)*N
2603
              LWORK
                           = -1
2604
              SUBNAM(1:1) = PREC
              SUBNAM(2:6) = 'GEORF'
2605
                           = ILAENV( 1, SUBNAM, ' ', NI, NBI, -1, -1)
2606
              QROPTNB
              SUBNAM(2:6) = 'GELQF
2607
                           = ILAENV( 1, SUBNAM, ' ', NBI, NI, -1, -1)
2608
              LQOPTNB
2609 !
              Could be QR or LQ for TRD and the max for BRD
              FACTOPTNB
                           = MAX(QROPTNB, LQOPTNB)
2610
2611
              IF( ALGO.EQ.'TRD' ) THEN
2612
                 IF( STAG.EO.'2STAG' ) THEN
2613
                    LWORK = NI*NBI + NI*MAX(NBI+1, FACTOPTNB)&
                         + MAX(2*NBI*NBI, NBI*NTHREADS)
2614
2615
          &
                          + (NBI+1)*NI
                 ELSE IF( (STAG.EQ. 'HE2HB').OR. (STAG.EQ. 'SY2SB') ) THEN
2616
                    LWORK = NI*NBI + NI*MAX(NBI, FACTOPTNB) + 2*NBI*NBI
2617
2618
                 ELSE IF( (STAG.EQ.'HB2ST').OR.(STAG.EQ.'SB2ST') ) THEN
2619
                    LWORK = (2*NBI+1)*NI + NBI*NTHREADS
2620
                 ENDIF
2621
              ELSE IF( ALGO.EQ. 'BRD' ) THEN
2622
                 IF( STAG.EQ.'2STAG' ) THEN
2623
                    LWORK = 2*NI*NBI + NI*MAX(NBI+1, FACTOPTNB) &
2624
                          + MAX(2*NBI*NBI, NBI*NTHREADS)
2625
          &
                          + (NBI+1)*NI
2626
                 ELSE IF ( STAG. EQ. 'GE2GB' ) THEN
2627
                    LWORK = NI*NBI + NI*MAX(NBI, FACTOPTNB) + 2*NBI*NBI
2628
                 ELSE IF ( STAG. EQ. 'GB2BD' ) THEN
2629
                    LWORK = (3*NBI+1)*NI + NBI*NTHREADS
2630
                 ENDIF
              ENDIF
2631
2632
              LWORK = MAX ( 1, LWORK )
2633
2634
              IF( LWORK.GT.∅ ) THEN
2635
                 IPARAM2STAGE = LWORK
2636
              FLSE
2637
                 IPARAM2STAGE = -1
2638
              ENDIF
2639 !
2640
           ELSE IF ( ISPEC .EQ. 21 ) THEN
2641 !
2642 !
           ISPEC = 21 for future use
2643
              IPARAM2STAGE = NXI
           ENDIF
2644
```

```
2645 !
       ==== End of IPARAM2STAGE ====
2646 !
2647 !
2648
        END FUNCTION IPARAM2STAGE
2649
2650 !
2652
       SUBROUTINE DSWAP(N,DX,INCX,DY,INCY)
2653 !
2654 ! -- Reference BLAS level1 routine (version 3.8.0) --
2655! -- Reference BLAS is a software package provided by Univ. of Tennessee,
2656 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        November 2017
2658 !
2659! .. Scalar Arguments ..
2660
       INTEGER INCX, INCY, N
2661 !
2662 ! .. Array Arguments ..

DOUBLE PRECISION DX(*),DY(*)
2664 !
2665 !
2668 ! .. Local Scalars ..

2669 DOUBLE PRECISION DTEMP
2669
2670
       INTEGER I,IX,IY,M,MP1
2671 !
2672! .. Intrinsic Functions ..
2673
        INTRINSIC MOD
2674 !
2675
       IF (N.LE.0) RETURN
2676
        IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
2677 !
2678 !
         code for both increments equal to 1
2679 !
2680 !
2681 !
         clean-up loop
2682 !
2683
          M = MOD(N,3)
          IF (M.NE.⊘) THEN
2685
             DOI=1,M
               DTEMP = DX(I)
2687
                DX(I) = DY(I)
2688
                DY(I) = DTEMP
2689
              END DO
2690
             IF (N.LT.3) RETURN
2691
          END IF
2692
          MP1 = M + 1
2693
          DO I = MP1, N_{1}
2694
           DTEMP = DX(I)
2695
             DX(I) = DY(I)
2696
            DY(I) = DTEMP
2697
            DTEMP = DX(I+1)
2698
            DX(I+1) = DY(I+1)
2699
            DY(I+1) = DTEMP
            DTEMP = DX(I+2)
2700
2701
             DX(I+2) = DY(I+2)
2702
              DY(I+2) = DTEMP
           END DO
2703
2704
       ELSE
2705 !
```

```
code for unequal increments or equal increments not equal
2707 !
            to 1
2708 !
2709
           IX = 1
2710
           IY = 1
           IF (INCX.LT.\emptyset) IX = (-N+1)*INCX + 1
2711
           IF (INCY.LT.0) IY = (-N+1)*INCY + 1
2712
2713
          DOI=1,N
2714
              DTEMP = DX(IX)
2715
              DX(IX) = DY(IY)
2716
              DY(IY) = DTEMP
               IX = IX + INCX
2717
              IY = IY + INCY
2718
            END DO
2719
       END IF
2720
2721
         RETURN
2722
         END SUBROUTINE DSWAP
2723
2724 !
SUBROUTINE DGEMV(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
2727 !
2728 ! -- Reference BLAS level2 routine (version 3.7.0) --
2729 ! -- Reference BLAS is a software package provided by Univ. of Tennessee,
2730 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
2731 !
        December 2016
2732 !
2733 !
        .. Scalar Arguments ..
2734
         DOUBLE PRECISION ALPHA, BETA
         INTEGER INCX,INCY,LDA,M,N
2735
         CHARACTER TRANS
2736
2737 !
2738 !
         .. Array Arguments ..
2739
         DOUBLE PRECISION A(LDA,*),X(*),Y(*)
2740 !
2741 !
2742 ! -----
2743 !
2744 !
         .. Parameters ..
2745
         DOUBLE PRECISION ONE, ZERO
         PARAMETER (ONE=1.0D+0, ZERO=0.0D+0)
2746
2747 !
2748 !
         .. Local Scalars ..
2749
         DOUBLE PRECISION TEMP
2750
         INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY
2751 !
2752 !
        .. External Functions ..
2753 !
         LOGICAL LSAME
2754 !
         EXTERNAL LSAME
2755 !
2756 !
        .. External Subroutines ..
2757 !
         EXTERNAL XERBLA
2758 !
2759 !
         .. Intrinsic Functions ..
2760
        INTRINSIC MAX
2761 !
2762 !
2763 !
         Test the input parameters.
2764 !
         INFO = ∅
2765
         IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.&
2766
```

```
2767
               .NOT.LSAME(TRANS, 'C')) THEN
2768
               INFO = 1
           ELSE IF (M.LT.∅) THEN
2769
2770
               INFO = 2
           ELSE IF (N.LT.0) THEN
2771
2772
               INFO = 3
2773
           ELSE IF (LDA.LT.MAX(1,M)) THEN
2774
               INFO = 6
2775
           ELSE IF (INCX.EQ.0) THEN
2776
               INFO = 8
2777
           ELSE IF (INCY.EQ.0) THEN
2778
               INFO = 11
2779
           END IF
           IF (INFO.NE.0) THEN
2780
2781
               CALL XERBLA('DGEMV ',INFO)
               RETURN
2782
2783
           END IF
2784 !
2785 !
           Quick return if possible.
2786 !
2787
           IF ((M.EQ.0) .OR. (N.EQ.0) .OR.&
2788
               ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
2789 !
2790 !
           Set LENX and LENY, the lengths of the vectors x and y, and set
2791 !
           up the start points in X and Y.
2792 !
2793
           IF (LSAME(TRANS, 'N')) THEN
2794
               LENX = N
2795
               LENY = M
2796
           ELSE
2797
               LENX = M
2798
               LENY = N
2799
           END IF
2800
           IF (INCX.GT.∅) THEN
2801
               KX = 1
2802
           ELSE
2803
               KX = 1 - (LENX-1)*INCX
2804
           END IF
2805
           IF (INCY.GT.0) THEN
2806
               KY = 1
2807
           ELSE
2808
               KY = 1 - (LENY-1)*INCY
2809
           END IF
2810 !
2811 !
           Start the operations. In this version the elements of A are
2812 !
           accessed sequentially with one pass through A.
2813 !
2814 !
          First form y := beta*y.
2815 !
2816
           IF (BETA.NE.ONE) THEN
2817
               IF (INCY.EQ.1) THEN
2818
                   IF (BETA.EQ.ZERO) THEN
2819
                       DO 10 I = 1, LENY
2820
                           Y(I) = ZERO
                       CONTINUE
2821
        10
                   ELSE
2822
2823
                       DO 20 I = 1, LENY
2824
                           Y(I) = BETA*Y(I)
                       CONTINUE
2825
        20
2826
                   END IF
               ELSE
2827
```

```
2828
                   IY = KY
2829
                   IF (BETA.EQ.ZERO) THEN
2830
                        DO 30 I = 1, LENY
2831
                            Y(IY) = ZERO
2832
                            IY = IY + INCY
2833
                        CONTINUE
        30
2834
                   ELSE
                        DO 40 I = 1, LENY
2835
2836
                            Y(IY) = BETA*Y(IY)
                            IY = IY + INCY
2837
2838
        40
                        CONTINUE
2839
                   END IF
               END IF
2840
           END IF
2841
2842
           IF (ALPHA.EQ.ZERO) RETURN
2843
           IF (LSAME(TRANS, 'N')) THEN
2844 !
2845 !
              Form y := alpha*A*x + y.
2846 !
2847
               JX = KX
2848
               IF (INCY.EQ.1) THEN
                   DO 60 J = 1, N
                        TEMP = ALPHA*X(JX)
2850
2851
                        D0 50 I = 1,M
2852
                            Y(I) = Y(I) + TEMP*A(I,J)
2853
        50
                        CONTINUE
2854
                        JX = JX + INCX
2855
        60
                   CONTINUE
2856
               ELSE
2857
                   D0 80 J = 1,N
2858
                        TEMP = ALPHA*X(JX)
2859
                        IY = KY
                        DO 70 I = 1, M
2860
2861
                            Y(IY) = Y(IY) + TEMP*A(I,J)
2862
                            IY = IY + INCY
2863
        70
                        CONTINUE
2864
                        JX = JX + INCX
2865
        80
                   CONTINUE
2866
               END IF
2867
           ELSE
2868 !
2869 !
              Form y := alpha*A**T*x + y.
2870 !
2871
               JY = KY
               IF (INCX.EQ.1) THEN
2872
2873
                   DO 100 J = 1, N
2874
                        TEMP = ZERO
2875
                        DO 90 I = 1,M
2876
                            TEMP = TEMP + A(I,J)*X(I)
2877
        90
                        CONTINUE
2878
                        Y(JY) = Y(JY) + ALPHA*TEMP
2879
                        JY = JY + INCY
2880
       100
                   CONTINUE
               ELSE
2881
                   DO 120 J = 1, N
2882
                        TEMP = ZERO
2883
2884
                        IX = KX
2885
                        DO 110 I = 1,M
2886
                            TEMP = TEMP + A(I,J)*X(IX)
2887
                            IX = IX + INCX
                        CONTINUE
2888
      110
```

```
2889
                    Y(JY) = Y(JY) + ALPHA*TEMP
2890
                    JY = JY + INCY
2891 120
                CONTINUE
2892
             END IF
2893
        END IF
2894 !
        RETURN
2895
2896 !
2897 !
        End of DGEMV .
2898 !
2899
         END SUBROUTINE DGEMV
2901 ! -----
         SUBROUTINE DTRTRI( UPLO, DIAG, N, A, LDA, INFO )
2904 ! -- LAPACK computational routine (version 3.7.0) --
2905! -- LAPACK is a software package provided by Univ. of Tennessee,
2906! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        December 2016
2908 !
       .. Scalar Arguments .. CHARACTER DIA
2909 !
                          DIAG, UPLO
2910
                          INFO, LDA, N
2911
        INTEGER
2912 !
2913 ! .. Array Arguments ..
2914
         DOUBLE PRECISION A( LDA, * )
2915 !
2916 !
2917 ! -----
2918 !
2919 !
         .. Parameters ..
2920
         DOUBLE PRECISION ONE, ZERO
2921
         PARAMETER
                         ( ONE = 1.0D+0, ZERO = 0.0D+0 )
2922 !
2923 ! .. Local Scalars ..
2924
        LOGICAL
                          NOUNIT, UPPER
2925
         INTEGER
                          J, JB, NB, NN
2926 !
        .. External Functions ..
2927 !
2928 !
         LOGICAL
                          LSAME
2929 !
        INTEGER
                          ILAENV
2930 !
         EXTERNAL
                          LSAME, ILAENV
2931 !
        .. External Subroutines ..
2932 !
2933 !
         EXTERNAL
                         DTRMM, DTRSM, DTRTI2, XERBLA
2934 !
2935 !
         .. Intrinsic Functions ..
2936
        INTRINSIC
                          MAX, MIN
2937 !
2938 !
        .. Executable Statements ..
2939 !
2940 !
        Test the input parameters.
2941 !
         INFO = ∅
2942
         UPPER = LSAME( UPLO, 'U' )
2943
         NOUNIT = LSAME( DIAG, 'N')
2944
         IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
2945
2946
           INFO = -1
         ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
2947
2948
            INFO = -2
2949
         ELSE IF( N.LT.0 ) THEN
```

```
2950
              INFO = -3
2951
           ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
2952
              INFO = -5
2953
           END IF
2954
           IF( INFO.NE.∅ ) THEN
              CALL XERBLA( 'DTRTRI', -INFO )
2955
2956
              RETURN
2957
           END IF
2958 !
2959 !
          Quick return if possible
2960 !
          IF( N.EQ.0 )&
2961
2962
          & RETURN
2963 !
2964 !
          Check for singularity if non-unit.
2965 !
2966
           IF( NOUNIT ) THEN
              DO 10 INFO = 1, N
2967
2968
                 IF( A( INFO, INFO ).EQ.ZERO )&
2969
          &
                    RETURN
2970
       10
              CONTINUE
              INFO = ∅
2971
           END IF
2972
2973 !
2974 !
          Determine the block size for this environment.
2975 !
2976
          NB = ILAENV( 1, 'DTRTRI', UPLO // DIAG, N, -1, -1, -1 )
2977
           IF( NB.LE.1 .OR. NB.GE.N ) THEN
2978 !
2979 !
              Use unblocked code
2980 !
2981
              CALL DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
           ELSE
2982
2983 !
2984 !
             Use blocked code
2985 !
2986
              IF( UPPER ) THEN
2987 !
2988 !
                 Compute inverse of upper triangular matrix
2989 !
2990
                 DO 20 J = 1, N, NB
2991
                    JB = MIN(NB, N-J+1)
2992 !
2993 !
                    Compute rows 1:j-1 of current block column
2994 !
                    CALL DTRMM( 'Left', 'Upper', 'No transpose', DIAG, J-1,&
2995
2996
                                JB, ONE, A, LDA, A( 1, J ), LDA )
2997
                    CALL DTRSM( 'Right', 'Upper', 'No transpose', DIAG, J-1,&
2998
                                JB, -ONE, A( J, J ), LDA, A( 1, J ), LDA )
2999!
3000 !
                    Compute inverse of current diagonal block
3001 !
3002
                    CALL DTRTI2( 'Upper', DIAG, JB, A( J, J ), LDA, INFO )
3003
        20
                 CONTINUE
3004
              ELSE
3005 !
3006 !
                 Compute inverse of lower triangular matrix
3007 !
3008
                 NN = ((N-1)/NB)*NB + 1
3009
                 DO 30 J = NN, 1, -NB
3010
                    JB = MIN(NB, N-J+1)
```

```
3011
                  IF( J+JB.LE.N ) THEN
3012 !
                     Compute rows j+jb:n of current block column
3013 !
3014 !
3015
                     CALL DTRMM( 'Left', 'Lower', 'No transpose', DIAG, &
                                N-J-JB+1, JB, ONE, A( J+JB, J+JB ), LDA,&
3016
                                A( J+JB, J ), LDA )
3017
                     CALL DTRSM( 'Right', 'Lower', 'No transpose', DIAG, &
3018
                                N-J-JB+1, JB, -ONE, A(J, J), LDA,
3019
3020
                                A(J+JB, J), LDA)
                  END IF
3021
3022 !
                  Compute inverse of current diagonal block
3023 !
3024 !
3025
                  CALL DTRTI2( 'Lower', DIAG, JB, A( J, J ), LDA, INFO )
3026
               CONTINUE
3027
             END IF
          END IF
3028
3029 !
          RETURN
3030
3031 !
         End of DTRTRI
3032 !
3033 !
3034
          END SUBROUTINE DTRTRI
3035
3037 ! -----
          SUBROUTINE DTRMM(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
3040 ! -- Reference BLAS level3 routine (version 3.7.0) --
3041! -- Reference BLAS is a software package provided by Univ. of Tennessee,
3042 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
3043 !
         December 2016
3044 !
3045 !
          .. Scalar Arguments ..
3046
          DOUBLE PRECISION ALPHA
3047
          INTEGER LDA, LDB, M, N
3048
          CHARACTER DIAG, SIDE, TRANSA, UPLO
3049 !
3050 !
          .. Array Arguments ..
3051
          DOUBLE PRECISION A(LDA,*),B(LDB,*)
3052 !
3053 !
3055 !
3056 !
        .. External Functions ..
3057 !
         LOGICAL LSAME
          EXTERNAL LSAME
3058 !
3059 !
3060 !
         .. External Subroutines ..
3061 !
          EXTERNAL XERBLA
3062 !
3063 !
          .. Intrinsic Functions ..
3064
          INTRINSIC MAX
3065 !
3066 !
          .. Local Scalars ..
3067
          DOUBLE PRECISION TEMP
3068
          INTEGER I, INFO, J, K, NROWA
3069
          LOGICAL LSIDE, NOUNIT, UPPER
3070 !
3071 !
         .. Parameters ..
```

```
3072
           DOUBLE PRECISION ONE, ZERO
3073
           PARAMETER (ONE=1.0D+0, ZERO=0.0D+0)
3074 !
3075 !
3076 !
           Test the input parameters.
3077 !
3078
           LSIDE = LSAME(SIDE, 'L')
3079
           IF (LSIDE) THEN
3080
               NROWA = M
3081
           ELSE
3082
               NROWA = N
           END IF
3083
3084
           NOUNIT = LSAME(DIAG, 'N')
           UPPER = LSAME(UPLO, 'U')
3085
3086 !
3087
           INFO = ∅
3088
           IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE, 'R'))) THEN
3089
               INFO = 1
           ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO, 'L'))) THEN
3090
3091
               INFO = 2
3092
           ELSE IF ((.NOT.LSAME(TRANSA, 'N')) .AND.&
                     (.NOT.LSAME(TRANSA, 'T')) .AND.&
3093
          &
3094
                    (.NOT.LSAME(TRANSA, 'C'))) THEN
3095
               INFO = 3
3096
           ELSE IF ((.NOT.LSAME(DIAG, 'U')) .AND. (.NOT.LSAME(DIAG, 'N'))) THEN
3097
               INFO = 4
3098
           ELSE IF (M.LT.0) THEN
3099
               INFO = 5
           ELSE IF (N.LT.0) THEN
3100
               INFO = 6
3101
           ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
3102
3103
               INFO = 9
3104
           ELSE IF (LDB.LT.MAX(1,M)) THEN
3105
               INFO = 11
3106
           END IF
3107
           IF (INFO.NE.0) THEN
3108
               CALL XERBLA('DTRMM ',INFO)
3109
               RETURN
3110
           END IF
3111 !
3112 !
           Quick return if possible.
3113 !
3114
           IF (M.EQ. 0 .OR. N.EQ. 0) RETURN
3115 !
3116 !
           And when alpha.eq.zero.
3117 !
3118
           IF (ALPHA.EQ.ZERO) THEN
3119
               DO 20 J = 1,N
3120
                   D0\ 10\ I = 1,M
3121
                        B(I,J) = ZERO
3122
        10
                   CONTINUE
3123
        20
               CONTINUE
3124
               RETURN
           END IF
3125
3126 !
3127 !
           Start the operations.
3128 !
3129
           IF (LSIDE) THEN
3130
               IF (LSAME(TRANSA, 'N')) THEN
3131 !
                 Form B := alpha*A*B.
3132 !
```

```
3133 !
                    IF (UPPER) THEN
3134
3135
                        DO 50 J = 1,N
3136
                            DO 40 K = 1,M
3137
                                IF (B(K,J).NE.ZERO) THEN
3138
                                     TEMP = ALPHA*B(K,J)
                                     DO 30 I = 1, K - 1
3139
3140
                                         B(I,J) = B(I,J) + TEMP*A(I,K)
3141
        30
                                     CONTINUE
3142
                                     IF (NOUNIT) TEMP = TEMP*A(K,K)
3143
                                     B(K,J) = TEMP
3144
                                END IF
3145
                            CONTINUE
3146
        50
                        CONTINUE
3147
                    ELSE
                        DO 80 J = 1,N
3148
                            00 70 K = M, 1, -1
3149
3150
                                IF (B(K,J).NE.ZERO) THEN
                                    TEMP = ALPHA*B(K,J)
3151
3152
                                     B(K,J) = TEMP
3153
                                     IF (NOUNIT) B(K,J) = B(K,J)*A(K,K)
3154
                                     DO 60 I = K + 1, M
3155
                                         B(I,J) = B(I,J) + TEMP*A(I,K)
3156
        60
                                     CONTINUE
3157
                                END IF
3158
        70
                            CONTINUE
3159
        80
                        CONTINUE
3160
                    END IF
3161
               ELSE
3162 !
3163 !
                  Form B := alpha*A**T*B.
3164 !
3165
                    IF (UPPER) THEN
3166
                        DO 110 J = 1,N
                            DO 100 I = M, 1, -1
3167
3168
                                TEMP = B(I,J)
3169
                                IF (NOUNIT) TEMP = TEMP*A(I,I)
3170
                                DO 90 K = 1, I - 1
3171
                                    TEMP = TEMP + A(K,I)*B(K,J)
3172
        90
                                CONTINUE
3173
                                B(I,J) = ALPHA*TEMP
                            CONTINUE
3174
       100
                        CONTINUE
3175
       110
                    ELSE
3176
                        DO 140 J = 1, N
3177
                            DO 130 I = 1,M
3178
3179
                                TEMP = B(I,J)
                                IF (NOUNIT) TEMP = TEMP*A(I,I)
3180
3181
                                D0 \ 120 \ K = I + 1, M
3182
                                    TEMP = TEMP + A(K,I)*B(K,J)
3183
       120
                                CONTINUE
3184
                                B(I,J) = ALPHA*TEMP
3185
       130
                            CONTINUE
                        CONTINUE
3186
       140
3187
                    END IF
               END IF
3188
           ELSE
3189
3190
               IF (LSAME(TRANSA, 'N')) THEN
3191 !
                  Form B := alpha*B*A.
3192 !
3193 !
```

```
IF (UPPER) THEN
3194
                        DO 180 J = N_1, -1
3195
3196
                            TEMP = ALPHA
3197
                            IF (NOUNIT) TEMP = TEMP*A(J,J)
3198
                            DO 150 I = 1,M
                                B(I,J) = TEMP*B(I,J)
3199
3200
       150
                            CONTINUE
3201
                            DO 170 K = 1, J - 1
3202
                                IF (A(K,J).NE.ZERO) THEN
3203
                                    TEMP = ALPHA*A(K,J)
                                    DO 160 I = 1,M
3204
3205
                                        B(I,J) = B(I,J) + TEMP*B(I,K)
3206
                                    CONTINUE
       160
3207
                                END IF
3208
       170
                            CONTINUE
3209
       180
                        CONTINUE
3210
                   ELSE
3211
                        DO 220 J = 1,N
3212
                            TEMP = ALPHA
3213
                            IF (NOUNIT) TEMP = TEMP*A(J,J)
3214
                            D0 190 I = 1,M
                                B(I,J) = TEMP*B(I,J)
3215
3216
                            CONTINUE
                            DO 210 K = J + 1,N
3217
3218
                                IF (A(K,J).NE.ZERO) THEN
3219
                                    TEMP = ALPHA*A(K,J)
3220
                                    DO 200 I = 1, M
3221
                                        B(I,J) = B(I,J) + TEMP*B(I,K)
3222
       200
                                    CONTINUE
3223
                                END IF
3224
       210
                            CONTINUE
3225
       220
                        CONTINUE
3226
                   END IF
3227
               ELSE
3228 !
3229 !
                 Form B := alpha*B*A**T.
3230 !
                   IF (UPPER) THEN
3231
3232
                        DO 260 K = 1,N
3233
                            DO 240 J = 1, K - 1
3234
                                IF (A(J,K).NE.ZERO) THEN
3235
                                    TEMP = ALPHA*A(J,K)
3236
                                    DO 230 I = 1,M
3237
                                        B(I,J) = B(I,J) + TEMP*B(I,K)
3238
       230
                                    CONTINUE
                                END IF
3239
3240
       240
                            CONTINUE
3241
                            TEMP = ALPHA
3242
                            IF (NOUNIT) TEMP = TEMP*A(K,K)
3243
                            IF (TEMP.NE.ONE) THEN
3244
                                DO 250 I = 1,M
3245
                                    B(I,K) = TEMP*B(I,K)
3246
       250
                                CONTINUE
                            END IF
3247
                        CONTINUE
3248
       260
                   ELSE
3249
3250
                        DO 300 K = N, 1, -1
3251
                            DO 280 J = K + 1, N
3252
                                IF (A(J,K).NE.ZERO) THEN
3253
                                    TEMP = ALPHA*A(J,K)
                                    DO 270 I = 1, M
3254
```

```
3255
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
                               CONTINUE
3256
     270
                           END IF
3257
3258
     280
                        CONTINUE
3259
                        TEMP = ALPHA
                        IF (NOUNIT) TEMP = TEMP*A(K,K)
3260
                        IF (TEMP.NE.ONE) THEN
3261
3262
                           DO 290 I = 1,M
                               B(I,K) = TEMP*B(I,K)
3263
3264 290
                           CONTINUE
3265
                        END IF
                    CONTINUE
3266 300
                END IF
3267
             END IF
3268
3269
         END IF
3270 !
3271
         RETURN
3272 !
3273 !
        End of DTRMM .
3274 !
3275
         END SUBROUTINE DTRMM
3276
3277 !
3278 ! ------
         SUBROUTINE DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
3281 ! -- LAPACK computational routine (version 3.7.0) --
3282 ! -- LAPACK is a software package provided by Univ. of Tennessee,
3283 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
3284 !
        December 2016
3285 !
3286 !
         .. Scalar Arguments ..
3287
         CHARACTER
                          DIAG, UPLO
3288
         INTEGER
                          INFO, LDA, N
3289 !
3290 !
          .. Array Arguments ..
3291
         DOUBLE PRECISION A( LDA, * )
3292 !
3293 !
3294 ! -----
3295 !
3296 !
         .. Parameters ..
3297
         DOUBLE PRECISION
                         ONE
3298
         PARAMETER
                          (ONE = 1.0D+0)
3299 !
3300 !
         .. Local Scalars ..
3301
         LOGICAL
                          NOUNIT, UPPER
3302
         INTEGER
3303
         DOUBLE PRECISION
3304 !
         .. External Functions ..
3305 !
3306 !
         LOGICAL
                           LSAME
3307 !
          EXTERNAL
                           LSAME
3308 !
        .. External Subroutines ..
3309 !
3310 !
         EXTERNAL
                          DSCAL, DTRMV, XERBLA
3311 !
3312 !
         .. Intrinsic Functions ..
3313
        INTRINSIC
3314 !
        .. Executable Statements ..
3315 !
```

```
3316 !
3317 !
           Test the input parameters.
3318 !
3319
           INFO = ∅
3320
           UPPER = LSAME( UPLO, 'U' )
           NOUNIT = LSAME( DIAG, 'N')
3321
           IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
3322
3323
              INFO = -1
           ELSE IF ( .NOT.NOUNIT .AND. .NOT.LSAME ( DIAG, 'U' ) ) THEN
3324
3325
              INFO = -2
3326
           ELSE IF( N.LT.0 ) THEN
3327
              INFO = -3
3328
           ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
3329
              INFO = -5
3330
           END IF
3331
           IF( INFO.NE.∅ ) THEN
3332
              CALL XERBLA( 'DTRTI2', -INFO )
              RETURN
3333
           END IF
3334
3335 !
3336
           IF( UPPER ) THEN
3337 !
3338 !
              Compute inverse of upper triangular matrix.
3339 !
3340
              DO 10 J = 1, N
3341
                 IF( NOUNIT ) THEN
                    A(J,J) = ONE / A(J,J)
3342
3343
                    AJJ = -A(J, J)
3344
                 ELSE
                    AJJ = -ONE
3345
                 END IF
3346
3347 !
3348 !
                 Compute elements 1:j-1 of j-th column.
3349 !
                 CALL DTRMV( 'Upper', 'No transpose', DIAG, J-1, A, LDA,&
3350
3351
                             A(1, J), 1)
3352
                 CALL DSCAL( J-1, AJJ, A( 1, J ), 1 )
3353
        10
              CONTINUE
3354
           ELSE
3355 !
3356 !
              Compute inverse of lower triangular matrix.
3357 !
3358
              DO 20 J = N, 1, -1
3359
                 IF( NOUNIT ) THEN
3360
                    A(J,J) = ONE / A(J,J)
3361
                    AJJ = -A(J, J)
3362
                 ELSE
3363
                    AJJ = -ONE
3364
                 END IF
3365
                 IF( J.LT.N ) THEN
3366 !
3367 !
                    Compute elements j+1:n of j-th column.
3368 !
                    CALL DTRMV( 'Lower', 'No transpose', DIAG, N-J, &
3369
3370
                                A(J+1, J+1), LDA, A(J+1, J), 1)
3371
                    CALL DSCAL( N-J, AJJ, A( J+1, J ), 1 )
3372
                 END IF
3373
              CONTINUE
3374
           END IF
3375 !
           RETURN
3376
```

```
3377 !
        End of DTRTI2
3378 !
3379 !
3380
         END SUBROUTINE DTRTI2
3381 !
SUBROUTINE DTRMV(UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
3384 !
3385 ! -- Reference BLAS level2 routine (version 3.7.0) --
3386 ! -- Reference BLAS is a software package provided by Univ. of Tennessee,
3387 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
         December 2016
3388 !
3389 !
       .. Scalar Arguments ..
3390 !
3391
        INTEGER INCX, LDA, N
         CHARACTER DIAG, TRANS, UPLO
3392
3393 !
3394 !
         .. Array Arguments ..
         DOUBLE PRECISION A(LDA,*),X(*)
3395
3396 !
3397 !
3398! -----
3400 !
        .. Parameters ..
        DOUBLE PRECISION ZERO
3401
3402
        PARAMETER (ZERO=0.0D+0)
3403 !
3404 !
         .. Local Scalars ..
3405
         DOUBLE PRECISION TEMP
         INTEGER I,INFO,IX,J,JX,KX
         LOGICAL NOUNIT
3407
3408 !
        .. External Functions ..
3409 !
3410 !
         LOGICAL LSAME
3411 !
         EXTERNAL LSAME
3412 !
        .. External Subroutines ..
3413 !
3414 !
         EXTERNAL XERBLA
3415 !
3416 !
         .. Intrinsic Functions ..
3417
        INTRINSIC MAX
3418 !
3419 !
3420 !
        Test the input parameters.
3421 !
        INFO = ∅
3422
3423
        IF (.NOT.LSAME(UPLO, 'U') .AND. .NOT.LSAME(UPLO, 'L')) THEN
3424
             INFO = 1
3425
         ELSE IF (.NOT.LSAME(TRANS, 'N') .AND. .NOT.LSAME(TRANS, 'T') .AND. &
3426
                .NOT.LSAME(TRANS, 'C')) THEN
3427
             INFO = 2
3428
         ELSE IF (.NOT.LSAME(DIAG, 'U') .AND. .NOT.LSAME(DIAG, 'N')) THEN
3429
             INFO = 3
3430
         ELSE IF (N.LT.0) THEN
3431
            INFO = 4
        ELSE IF (LDA.LT.MAX(1,N)) THEN
3432
3433
             INFO = 6
3434
        ELSE IF (INCX.EQ.0) THEN
3435
             INFO = 8
3436
        END IF
         IF (INFO.NE.0) THEN
3437
```

```
3438
               CALL XERBLA('DTRMV ',INFO)
3439
               RETURN
           END IF
3440
3441 !
3442 !
           Quick return if possible.
3443 !
           IF (N.EQ.⊘) RETURN
3444
3445 !
3446
           NOUNIT = LSAME(DIAG, 'N')
3447 !
3448 !
           Set up the start point in X if the increment is not unity. This
           will be (N - 1)*INCX too small for descending loops.
3449 !
3450 !
3451
           IF (INCX.LE.0) THEN
3452
               KX = 1 - (N-1)*INCX
3453
           ELSE IF (INCX.NE.1) THEN
3454
               KX = 1
           END IF
3455
3456 !
           Start the operations. In this version the elements of A are
3457 !
3458 !
           accessed sequentially with one pass through A.
3459 !
3460
           IF (LSAME(TRANS, 'N')) THEN
3461 !
3462 !
              Form x := A*x.
3463 !
3464
               IF (LSAME(UPLO, 'U')) THEN
3465
                   IF (INCX.EQ.1) THEN
3466
                       DO 20 J = 1,N
                           IF (X(J).NE.ZERO) THEN
3467
                                TEMP = X(J)
3468
3469
                                DO 10 I = 1, J - 1
3470
                                    X(I) = X(I) + TEMP*A(I,J)
        10
3471
                                CONTINUE
3472
                                IF (NOUNIT) X(J) = X(J)*A(J,J)
3473
                           END IF
3474
        20
                       CONTINUE
3475
                   ELSE
3476
                       JX = KX
3477
                       DO 40 J = 1, N
3478
                           IF (X(JX).NE.ZERO) THEN
3479
                                TEMP = X(JX)
3480
                                IX = KX
3481
                                DO 30 I = 1, J - 1
3482
                                    X(IX) = X(IX) + TEMP*A(I,J)
3483
                                    IX = IX + INCX
3484
        30
3485
                                IF (NOUNIT) X(JX) = X(JX)*A(J,J)
3486
                            END IF
3487
                           JX = JX + INCX
3488
        40
                       CONTINUE
3489
                   END IF
3490
               ELSE
3491
                   IF (INCX.EQ.1) THEN
3492
                       DO 60 J = N_1, -1
3493
                           IF (X(J).NE.ZERO) THEN
3494
                                TEMP = X(J)
3495
                                DO 50 I = N,J + 1,-1
3496
                                    X(I) = X(I) + TEMP*A(I,J)
3497
        50
                                CONTINUE
3498
                                IF (NOUNIT) X(J) = X(J)*A(J,J)
```

```
3499
                            END IF
3500
                        CONTINUE
        60
                    ELSE
3501
3502
                        KX = KX + (N-1)*INCX
3503
                        JX = KX
                        DO 80 J = N, 1, -1
3504
                            IF (X(JX).NE.ZERO) THEN
3505
                                TEMP = X(JX)
3506
3507
                                IX = KX
3508
                                DO 70 I = N_{J} + 1_{J} - 1
                                    X(IX) = X(IX) + TEMP*A(I,J)
3509
3510
                                     IX = IX - INCX
                                CONTINUE
3511
        70
3512
                                IF (NOUNIT) X(JX) = X(JX)*A(J,J)
3513
                            END IF
3514
                            JX = JX - INCX
3515
        80
                        CONTINUE
3516
                   END IF
3517
               END IF
3518
           ELSE
3519 !
3520 !
              Form x := A^{**}T^*x.
3521 !
3522
               IF (LSAME(UPLO, 'U')) THEN
3523
                    IF (INCX.EQ.1) THEN
3524
                        DO 100 J = N, 1, -1
3525
                            TEMP = X(J)
3526
                            IF (NOUNIT) TEMP = TEMP*A(J,J)
                            DO 90 I = J - 1, 1, -1
3527
3528
                                TEMP = TEMP + A(I,J)*X(I)
3529
        90
                            CONTINUE
3530
                            X(J) = TEMP
3531
       100
                        CONTINUE
3532
                    ELSE
3533
                        JX = KX + (N-1)*INCX
3534
                        DO 120 J = N_1, -1
3535
                            TEMP = X(JX)
3536
                            IX = JX
3537
                            IF (NOUNIT) TEMP = TEMP*A(J,J)
3538
                            DO 110 I = J - 1,1,-1
3539
                                IX = IX - INCX
3540
                                TEMP = TEMP + A(I,J)*X(IX)
3541
       110
                            CONTINUE
3542
                            X(JX) = TEMP
3543
                            JX = JX - INCX
                        CONTINUE
3544
     120
3545
                    END IF
               ELSE
3546
3547
                    IF (INCX.EQ.1) THEN
3548
                        D0 140 J = 1,N
3549
                            TEMP = X(J)
3550
                            IF (NOUNIT) TEMP = TEMP*A(J,J)
3551
                            DO 130 I = J + 1,N
                                TEMP = TEMP + A(I,J)*X(I)
3552
3553
       130
                            CONTINUE
3554
                            X(J) = TEMP
3555
                        CONTINUE
       140
3556
                    ELSE
3557
                        JX = KX
3558
                        DO 160 J = 1, N
                            TEMP = X(JX)
3559
```

```
3560
                       IX = JX
                       IF (NOUNIT) TEMP = TEMP*A(J,J)
3561
3562
                       DO 150 I = J + 1,N
3563
                           IX = IX + INCX
                           TEMP = TEMP + A(I,J)*X(IX)
3564
                       CONTINUE
3565 150
3566
                       X(JX) = TEMP
                       JX = JX + INCX
3567
3568 160
                    CONTINUE
3569
                END IF
             END IF
3570
         END IF
3571
3572 !
3573
         RETURN
3574 !
        End of DTRMV .
3575 !
3576 !
         END SUBROUTINE DTRMV
3577
3578
3579 !
SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
3583 ! -- LAPACK computational routine (version 3.7.0) --
3584 ! -- LAPACK is a software package provided by Univ. of Tennessee,
3585 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        December 2016
3587 !
3588 !
       .. Scalar Arguments ..
        INTEGER
                          INFO, LDA, LWORK, N
3589
3590 !
3591 !
         .. Array Arguments ..
3592
         INTEGER
                          IPIV( * )
3593
         DOUBLE PRECISION A( LDA, * ), WORK( * )
3594 !
3595 !
3596 ! -----
3597 !
3598 !
         .. Parameters ..
3599
         DOUBLE PRECISION ZERO, ONE
                         (ZERO = 0.0D+0, ONE = 1.0D+0)
         PARAMETER
3601 !
3602 !
         .. Local Scalars ..
3603
        LOGICAL
                          LOUERY
3604
        INTEGER
                          I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB, &
3605
                          NBMIN, NN
3606 !
3607 !
        .. External Functions ..
3608 !
         INTEGER
                          ILAENV
3609 !
         EXTERNAL
                          ILAENV
3610 !
3611 !
         .. External Subroutines ..
3612 !
         EXTERNAL
                           DGEMM, DGEMV, DSWAP, DTRSM, DTRTRI, XERBLA
3613 !
3614 !
         .. Intrinsic Functions ..
3615
        INTRINSIC
                          MAX, MIN
3616 !
3617 !
        .. Executable Statements ..
3618 !
3619 !
        Test the input parameters.
3620 !
```

```
3621
           INFO = ∅
           NB = ILAENV( 1, 'DGETRI', ' ', N, -1, -1, -1 )
3622
3623
           LWKOPT = N*NB
3624
           WORK(1) = LWKOPT
           LQUERY = (LWORK.EQ.-1)
3625
3626
           IF( N.LT.∅ ) THEN
3627
              INFO = -1
3628
           ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
3629
              INFO = -3
3630
           ELSE IF ( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
3631
              INFO = -6
3632
           END IF
3633
           IF( INFO.NE.0 ) THEN
              CALL XERBLA( 'DGETRI', -INFO )
3634
3635
              RETURN
3636
           ELSE IF( LQUERY ) THEN
3637
              RETURN
           END IF
3638
3639 !
           Quick return if possible
3640 !
3641 !
3642
          IF( N.EQ.∅ ) &
3643
          & RETURN
3644 !
3645 !
           Form inv(U). If INFO > 0 from DTRTRI, then U is singular,
3646 !
           and the inverse is not computed.
3647 !
3648
           CALL DTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
3649
          IF( INFO.GT.∅ ) &
3650
               RETURN
3651 !
3652
           NBMIN = 2
3653
           LDWORK = N
3654
           IF( NB.GT.1 .AND. NB.LT.N ) THEN
3655
              IWS = MAX( LDWORK*NB, 1 )
              IF( LWORK.LT.IWS ) THEN
3656
3657
                 NB = LWORK / LDWORK
                 NBMIN = MAX( 2, ILAENV( 2, 'DGETRI', ' ', N, -1, -1, -1 ) )
3658
3659
              END IF
           ELSE
3660
3661
              IWS = N
3662
           END IF
3663 !
3664 !
           Solve the equation inv(A)*L = inv(U) for inv(A).
3665 !
           IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
3666
3667 !
              Use unblocked code.
3668 !
3669 !
3670
              DO 20 J = N, 1, -1
3671 !
3672 !
                 Copy current column of L to WORK and replace with zeros.
3673 !
3674
                 DO \ 10 \ I = J + 1, N
3675
                    WORK(I) = A(I, J)
3676
                    A(I, J) = ZERO
3677
        10
                 CONTINUE
3678 !
3679 !
                 Compute current column of inv(A).
3680 !
                 IF( J.LT.N ) &
3681
```

```
3682
         &
                   CALL DGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ), &
3683
         &
                               LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
3684
        20
             CONTINUE
3685
           ELSE
3686 !
             Use blocked code.
3687 !
3688 !
3689
             NN = ((N-1)/NB)*NB + 1
             DO 50 J = NN, 1, -NB
3690
                JB = MIN(NB, N-J+1)
3691
3692 !
3693 !
                Copy current block column of L to WORK and replace with
3694 !
                zeros.
3695 !
3696
                DO \ 40 \ JJ = J, \ J + JB - 1
3697
                   DO 30 I = JJ + 1, N
                      WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
3698
3699
                      A(I, JJ) = ZERO
3700
                    CONTINUE
                CONTINUE
3701
       40
3702 !
3703 !
                Compute current block column of inv(A).
3704 !
3705
                IF( J+JB.LE.N ) &
3706
                   CALL DGEMM( 'No transpose', 'No transpose', N, JB,
                               N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
3707
         &
3708
         &
                               WORK( J+JB ), LDWORK, ONE, A( \frac{1}{2}, J ), LDA )
                CALL DTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB, &
3709
                            ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
3710
       50
             CONTINUE
3711
           END IF
3712
3713 !
3714 !
          Apply column interchanges.
3715 !
           DO 60 J = N - 1, 1, -1
3716
3717
              JP = IPIV(J)
3718
              IF( JP.NE.J ) &
3719
                CALL DSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
3720
       60 CONTINUE
3721 !
3722
          WORK(1) = IWS
3723
          RETURN
3724 !
3725 !
          End of DGETRI
3726 !
3727
          END SUBROUTINE DGETRI
3728 !
3729 ! -----
3730
          SUBROUTINE DPBTF2( UPLO, N, KD, AB, LDAB, INFO )
3731 !
3732 ! -- LAPACK computational routine (version 3.7.0) --
3733 ! -- LAPACK is a software package provided by Univ. of Tennessee,
3734 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
3735 !
          December 2016
3736 !
3737 !
           .. Scalar Arguments ..
3738
          CHARACTER
                             UPLO
3739
          INTEGER
                             INFO, KD, LDAB, N
3740 !
3741 !
           .. Array Arguments ..
          DOUBLE PRECISION AB( LDAB, * )
3742
```

```
3743 !
3744 !
3745 | -----
3746 !
3747 !
          .. Parameters ..
                            ONE, ZERO
3748
          DOUBLE PRECISION
          PARAMETER
                             ( ONE = 1.0D+0, ZERO = 0.0D+0 )
3749
3750 !
3751 !
          .. Local Scalars ..
3752
          LOGICAL
                             UPPER
3753
          INTEGER
                             J, KLD, KN
          DOUBLE PRECISION
3754
                            AJJ
3755 !
          .. External Functions ..
3756 !
3757 !
           LOGICAL
                              LSAME
3758 !
           EXTERNAL
                              LSAME
3759 !
          .. External Subroutines ..
3760 !
                             DSCAL, DSYR, XERBLA
3761 !
           EXTERNAL
3762 !
          .. Intrinsic Functions ..
3763 !
3764
          INTRINSIC
                            MAX, MIN, SQRT
3765 !
3766 !
          .. Executable Statements ..
3767 !
3768 !
          Test the input parameters.
3769 !
3770
          INFO = ∅
3771
          UPPER = LSAME( UPLO, 'U' )
3772
          IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
3773
             INFO = -1
3774
          ELSE IF( N.LT.0 ) THEN
3775
             INFO = -2
3776
          ELSE IF( KD.LT.0 ) THEN
3777
             INFO = -3
3778
          ELSE IF( LDAB.LT.KD+1 ) THEN
3779
             INFO = -5
3780
          END IF
3781
          IF( INFO.NE.0 ) THEN
3782
             CALL XERBLA( 'DPBTF2', -INFO )
3783
             RETURN
3784
          END IF
3785 !
3786 !
          Quick return if possible
3787 !
3788
          IF( N.EQ.∅ ) &
3789
         & RETURN
3790 !
3791
          KLD = MAX(1, LDAB-1)
3792 !
3793
          IF( UPPER ) THEN
3794 !
3795 !
             Compute the Cholesky factorization A = U^{**}T^*U.
3796 !
             DO 10 J = 1, N
3797
3798 !
3799 !
                Compute U(J,J) and test for non-positive-definiteness.
3800 !
                AJJ = AB(KD+1, J)
3801
3802
                IF( AJJ.LE.ZERO ) &
3803
                   GO TO 30
```

```
3804
                AJJ = SQRT(AJJ)
3805
                AB(KD+1, J) = AJJ
3806 !
3807 !
                Compute elements J+1:J+KN of row J and update the
3808 !
                trailing submatrix within the band.
3809 !
                KN = MIN(KD, N-J)
3810
3811
                IF( KN.GT.0 ) THEN
3812
                   CALL DSCAL( KN, ONE / AJJ, AB( KD, J+1 ), KLD )
3813
                   CALL DSYR( 'Upper', KN, -ONE, AB( KD, J+1 ), KLD, &
                             AB( KD+1, J+1 ), KLD )
3814
3815
                END IF
       10
             CONTINUE
3816
          ELSE
3817
3818 !
3819 !
             Compute the Cholesky factorization A = L*L**T.
3820 !
             DO 20 J = 1, N
3821
3822 !
                Compute L(J,J) and test for non-positive-definiteness.
3823 !
3824 !
3825
                AJJ = AB(1, J)
                IF( AJJ.LE.ZERO ) &
3826
                   GO TO 30
3827
3828
                AJJ = SQRT(AJJ)
3829
                AB(1, J) = AJJ
3830 !
3831 !
                Compute elements J+1:J+KN of column J and update the
3832 !
                trailing submatrix within the band.
3833 !
                KN = MIN(KD, N-J)
3834
3835
                IF( KN.GT.0 ) THEN
                   CALL DSCAL( KN, ONE / AJJ, AB( 2, J ), 1 )
3836
3837
                   CALL DSYR( 'Lower', KN, -ONE, AB( 2, J ), 1, &
3838
                             AB(1, J+1), KLD)
3839
                END IF
3840
       20
             CONTINUE
3841
          END IF
3842
          RETURN
3843 !
3844
       30 CONTINUE
3845
          INFO = J
3846
          RETURN
3847 !
3848 !
          End of DPBTF2
3849 !
3850
          END SUBROUTINE DPBTF2
3851 !
3853
          SUBROUTINE DSYR(UPLO,N,ALPHA,X,INCX,A,LDA)
3854 !
3855 ! -- Reference BLAS level2 routine (version 3.7.0) --
3856 ! -- Reference BLAS is a software package provided by Univ. of Tennessee,
3857 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
3858 !
          December 2016
3859 !
3860 !
          .. Scalar Arguments ..
3861
          DOUBLE PRECISION ALPHA
3862
          INTEGER INCX, LDA, N
3863
          CHARACTER UPLO
3864 !
```

```
.. Array Arguments ..
3866
          DOUBLE PRECISION A(LDA,*),X(*)
3867 !
3868 !
3870 !
3871 !
          .. Parameters ..
3872
          DOUBLE PRECISION ZERO
3873
          PARAMETER (ZERO=0.0D+0)
3874 !
3875 !
          .. Local Scalars ..
          DOUBLE PRECISION TEMP
3876
3877
          INTEGER I,INFO,IX,J,JX,KX
3878 !
3879 !
          .. External Functions ..
3880 !
          LOGICAL LSAME
3881 !
          EXTERNAL LSAME
3882 !
         .. External Subroutines ..
3883 !
         EXTERNAL XERBLA
3884 !
3885 !
          .. Intrinsic Functions ..
3886 !
         INTRINSIC MAX
3887
3888 !
3889 !
3890 !
         Test the input parameters.
3891 !
3892
         INFO = ∅
3893
         IF (.NOT.LSAME(UPLO, 'U') .AND. .NOT.LSAME(UPLO, 'L')) THEN
3894
              INFO = 1
3895
          ELSE IF (N.LT.0) THEN
3896
             INFO = 2
3897
          ELSE IF (INCX.EQ.0) THEN
3898
             INFO = 5
3899
          ELSE IF (LDA.LT.MAX(1,N)) THEN
3900
              INFO = 7
3901
          END IF
3902
          IF (INFO.NE.0) THEN
3903
              CALL XERBLA('DSYR ', INFO)
3904
              RETURN
3905
          END IF
3906 !
3907 !
         Quick return if possible.
3908 !
         IF ((N.EQ.∅) .OR. (ALPHA.EQ.ZERO)) RETURN
3909
3910 !
3911 !
          Set the start point in X if the increment is not unity.
3912 !
3913
          IF (INCX.LE.0) THEN
3914
             KX = 1 - (N-1)*INCX
3915
          ELSE IF (INCX.NE.1) THEN
3916
             KX = 1
3917
          END IF
3918 !
3919 !
          Start the operations. In this version the elements of A are
3920 !
          accessed sequentially with one pass through the triangular part
3921 !
          of A.
3922 !
3923
          IF (LSAME(UPLO, 'U')) THEN
3924 !
3925 !
             Form A when A is stored in upper triangle.
```

```
3926 !
3927
              IF (INCX.EQ.1) THEN
3928
                  DO 20 J = 1,N
3929
                      IF (X(J).NE.ZERO) THEN
3930
                          TEMP = ALPHA*X(J)
3931
                          D0 \ 10 \ I = 1,J
3932
                              A(I,J) = A(I,J) + X(I)*TEMP
3933
       10
                          CONTINUE
                      END IF
3934
3935
       20
                  CONTINUE
              ELSE
3936
3937
                  JX = KX
3938
                  DO 40 J = 1,N
3939
                      IF (X(JX).NE.ZERO) THEN
3940
                          TEMP = ALPHA*X(JX)
3941
                          IX = KX
                          DO 30 I = 1, J
3942
3943
                              A(I,J) = A(I,J) + X(IX)*TEMP
3944
                              IX = IX + INCX
3945
                          CONTINUE
       30
3946
                      END IF
3947
                      JX = JX + INCX
3948
                  CONTINUE
3949
              END IF
3950
          ELSE
3951 !
3952 !
             Form A when A is stored in lower triangle.
3953 !
3954
              IF (INCX.EQ.1) THEN
3955
                  DO 60 J = 1, N
3956
                      IF (X(J).NE.ZERO) THEN
3957
                          TEMP = ALPHA*X(J)
3958
                          DO 50 I = J,N
3959
                              A(I,J) = A(I,J) + X(I)*TEMP
3960
       50
                          CONTINUE
3961
                      END IF
3962
       60
                  CONTINUE
              ELSE
3963
3964
                  JX = KX
3965
                  D0 80 J = 1,N
3966
                      IF (X(JX).NE.ZERO) THEN
3967
                          TEMP = ALPHA*X(JX)
3968
                          IX = JX
3969
                          DO 70 I = J, N
3970
                              A(I,J) = A(I,J) + X(IX)*TEMP
                              IX = IX + INCX
3971
3972
       70
                          CONTINUE
                      END IF
3973
3974
                      JX = JX + INCX
                  CONTINUE
3975
       80
3976
              END IF
3977
           END IF
3978 !
          RETURN
3979
3980 !
          End of DSYR
3981 !
3982 !
3983
           END SUBROUTINE DSYR
3984
3985 !
3986 ! -----
```

```
SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
3988 !
3989 ! -- LAPACK computational routine (version 3.7.0) --
3990 ! -- LAPACK is a software package provided by Univ. of Tennessee,
3991 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
          December 2016
3992 !
3993 !
3994 !
          .. Scalar Arguments ..
3995
          CHARACTER
                            UPLO
3996
          INTEGER
                             INFO, LDA, N
3997 !
3998!
          .. Array Arguments ..
          DOUBLE PRECISION A( LDA, * )
3999
4000 !
4001 !
4002 ! -----
4004 !
          .. Parameters ..
4005
          DOUBLE PRECISION
                            ONE, ZERO
          PARAMETER
                             ( ONE = 1.0D+0, ZERO = 0.0D+0 )
4006
4007 !
          .. Local Scalars ..
4008!
          LOGICAL
                             UPPER
4009
4010
          INTEGER
          DOUBLE PRECISION
4011
4012 !
4013 !
          .. External Functions ..
4014 !
           LOGICAL
                              LSAME, DISNAN
4015 !
          DOUBLE PRECISION
4016 !
           EXTERNAL
                             LSAME, DDOT, DISNAN
4017 !
4018 !
          .. External Subroutines ..
4019 !
                             DGEMV, DSCAL, XERBLA
           EXTERNAL
4020 !
4021 !
          .. Intrinsic Functions ..
4022
          INTRINSIC
                             MAX, SQRT
4023 !
4024 !
          .. Executable Statements ..
4025 !
4026 !
          Test the input parameters.
4027 !
4028
          INFO = ∅
4029
          UPPER = LSAME( UPLO, 'U' )
          IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
4030
4031
             INFO = -1
4032
          ELSE IF( N.LT.0 ) THEN
4033
             INFO = -2
          ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
4034
4035
             INFO = -4
4036
          END IF
4037
          IF( INFO.NE.0 ) THEN
4038
             CALL XERBLA( 'DPOTF2', -INFO )
4039
             RETURN
          END IF
4040
4041 !
4042 !
          Quick return if possible
4043 !
4044
          IF( N.EQ.∅ ) &
4045
         & RETURN
4046 !
          IF( UPPER ) THEN
4047
```

```
4048 !
              Compute the Cholesky factorization A = U**T *U.
4049 !
4050 !
4051
              DO 10 J = 1, N
4052 !
                 Compute U(J,J) and test for non-positive-definiteness.
4053 !
4054 !
4055
                 AJJ = A(J, J) - DDOT(J-1, A(1, J), 1, A(1, J), 1)
4056
                 IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
4057
                    A(J,J) = AJJ
                    GO TO 30
4058
                 END IF
4059
4060
                 AJJ = SQRT(AJJ)
4061
                 A(J,J) = AJJ
4062 !
4063 !
                 Compute elements J+1:N of row J.
4064 !
                 IF( J.LT.N ) THEN
4065
4066
                    CALL DGEMV( 'Transpose', J-1, N-J, -ONE, A( 1, J+1 ), &
                                LDA, A(1, J), 1, ONE, A(J, J+1), LDA)
4067
4068
                    CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
                 END IF
4069
4070
              CONTINUE
           ELSE
4071
4072 !
4073 !
              Compute the Cholesky factorization A = L*L**T.
4074 !
4075
              DO 20 J = 1, N
4076 !
4077 !
                 Compute L(J,J) and test for non-positive-definiteness.
4078 !
4079
                 AJJ = A(J, J) - DDOT(J-1, A(J, 1), LDA, A(J, 1), &
4080
                       LDA )
                 IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
4081
                    A(J, J) = AJJ
4082
4083
                    GO TO 30
4084
                 END IF
4085
                 AJJ = SQRT(AJJ)
                 A(J,J) = AJJ
4086
4087 !
4088 !
                 Compute elements J+1:N of column J.
4089 !
4090
                 IF( J.LT.N ) THEN
4091
                    CALL DGEMV( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ), &
4092
                                LDA, A(J, 1), LDA, ONE, A(J+1, J), 1)
                    CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
4093
4094
                 END IF
              CONTINUE
4095
        20
4096
           END IF
4097
           GO TO 40
4098!
4099
        30 CONTINUE
4100
           INFO = J
4101 !
       40 CONTINUE
4102
4103
          RETURN
4104 !
4105 !
          End of DPOTF2
4106 !
           END SUBROUTINE DPOTF2
4107
4108 !
```

```
4109 ! -----
4110
         DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
4111 !
4112 ! -- Reference BLAS level1 routine (version 3.8.0) --
4113! -- Reference BLAS is a software package provided by Univ. of Tennessee,
4114 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        November 2017
4116 !
4117 !
        .. Scalar Arguments ..
4118
        INTEGER INCX, INCY, N
4119 !
         .. Array Arguments ..
4120 !
         DOUBLE PRECISION DX(*),DY(*)
4121
4122 !
4123 !
4124 ! -----
4125 !
4126 !
         .. Local Scalars ..
        DOUBLE PRECISION DTEMP
4127
4128
        INTEGER I, IX, IY, M, MP1
4129 !
         .. Intrinsic Functions ..
4130 !
        INTRINSIC MOD
4131
4132 !
4133
        DDOT = 0.0d0
4134
        DTEMP = 0.0d0
4135
        IF (N.LE.0) RETURN
4136
        IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
4137 !
4138 !
          code for both increments equal to 1
4139 !
4140 !
4141 !
           clean-up loop
4142 !
4143
           M = MOD(N,5)
4144
           IF (M.NE.0) THEN
4145
              DOI = 1,M
                 DTEMP = DTEMP + DX(I)*DY(I)
4146
4147
               END DO
4148
              IF (N.LT.5) THEN
                 DDOT=DTEMP
4149
4150
               RETURN
4151
               END IF
4152
           END IF
4153
           MP1 = M + 1
4154
            DO I = MP1, N, 5
4155
            DTEMP = DTEMP + DX(I)*DY(I) + DX(I+1)*DY(I+1) + &
4156
                    DX(I+2)*DY(I+2) + DX(I+3)*DY(I+3) + DX(I+4)*DY(I+4)
4157
            END DO
4158
        ELSE
4159 !
4160 !
            code for unequal increments or equal increments
4161 !
             not equal to 1
4162 !
           IX = 1
4163
4164
           IY = 1
4165
           IF (INCX.LT.0) IX = (-N+1)*INCX + 1
4166
           IF (INCY.LT.0) IY = (-N+1)*INCY + 1
4167
           DO I = 1,N
              DTEMP = DTEMP + DX(IX)*DY(IY)
4168
4169
               IX = IX + INCX
```

```
IY = IY + INCY
4170
          END DO
4171
      END IF
DDOT = DTEMP
4172
4173
4174
       RETURN
       END FUNCTION DDOT
4175
4176
4177 !
4178 ! -----
4179
       LOGICAL FUNCTION DISNAN( DIN )
4180 !
4181 ! -- LAPACK auxiliary routine (version 3.7.1) --
4182 ! -- LAPACK is a software package provided by Univ. of Tennessee,
4183 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
       June 2017
4186 ! .. Scalar Arguments ..
4187 DOUBLE PRECISION, INTENT(IN) :: DIN
4189 !
4192 ! .. External Functions ..
4193 ! LOGICAL DLAISNAN
         EXTERNAL DLAISNAN
4195 ! ..
4196 ! .. Executable Statements ..
4197 DISNAN = DLAISNAN(DIN,DIN)
4198 RETURN
       END FUNCTION DISNAN
4199
4202 ! -----
       LOGICAL FUNCTION DLAISNAN( DIN1, DIN2 )
4205 ! -- LAPACK auxiliary routine (version 3.7.1) --
4206! -- LAPACK is a software package provided by Univ. of Tennessee,
4207 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
4208 !
       June 2017
4209 !
4210! .. Scalar Arguments ..
4211
       DOUBLE PRECISION, INTENT(IN) :: DIN1, DIN2
4212 !
4213 !
4214 ! -----
4215 !
4216 ! .. Executable Statements ..
4217 DLAISNAN = (DIN1.NE.DIN2)
4218
       RETURN
4219
       END FUNCTION DLAISNAN
4220
4221 !
4222 ! -----
4223
       SUBROUTINE DSYRK(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
4224 !
4225 ! -- Reference BLAS level3 routine (version 3.7.0) --
4226 ! -- Reference BLAS is a software package provided by Univ. of Tennessee,
4227 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
4228 ! December 2016
4229 !
4230! .. Scalar Arguments ..
```

```
4231
          DOUBLE PRECISION ALPHA, BETA
4232
          INTEGER K, LDA, LDC, N
4233
          CHARACTER TRANS, UPLO
4234 !
4235 !
          .. Array Arguments ..
          DOUBLE PRECISION A(LDA,*),C(LDC,*)
4236
4237 !
4238 !
4239 ! -----
4240 !
         .. External Functions ..
4241 !
4242 !
          LOGICAL LSAME
         EXTERNAL LSAME
4243 !
4244 !
         .. External Subroutines ..
4245 !
4246 !
          EXTERNAL XERBLA
4247 !
4248 !
          .. Intrinsic Functions ..
          INTRINSIC MAX
4249
4250 !
4251 !
          .. Local Scalars ..
4252
          DOUBLE PRECISION TEMP
4253
          INTEGER I, INFO, J, L, NROWA
4254
          LOGICAL UPPER
4255 !
4256 !
          .. Parameters ..
4257
          DOUBLE PRECISION ONE, ZERO
4258
          PARAMETER (ONE=1.0D+0, ZERO=0.0D+0)
4259 !
4260 !
4261 !
          Test the input parameters.
4262 !
4263
          IF (LSAME(TRANS, 'N')) THEN
4264
              NROWA = N
4265
          ELSE
4266
              NROWA = K
4267
          END IF
4268
          UPPER = LSAME(UPLO, 'U')
4269 !
4270
          INFO = ∅
4271
          IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO, 'L'))) THEN
4272
              INFO = 1
4273
          ELSE IF ((.NOT.LSAME(TRANS, 'N')) .AND. &
                   (.NOT.LSAME(TRANS, 'T')) .AND. &
4274
                   (.NOT.LSAME(TRANS, 'C'))) THEN
4275
4276
              INFO = 2
4277
          ELSE IF (N.LT.0) THEN
4278
              INFO = 3
4279
          ELSE IF (K.LT.0) THEN
4280
              INFO = 4
4281
          ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
4282
              INFO = 7
4283
          ELSE IF (LDC.LT.MAX(1,N)) THEN
4284
              INFO = 10
4285
          END IF
4286
          IF (INFO.NE.∅) THEN
4287
              CALL XERBLA('DSYRK ', INFO)
4288
              RETURN
4289
          END IF
4290 !
4291 !
          Quick return if possible.
```

```
4292 !
4293
           IF ((N.EQ.∅) .OR. (((ALPHA.EQ.ZERO).OR. &
4294
               (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
4295 !
4296 !
           And when alpha.eq.zero.
4297 !
4298
           IF (ALPHA.EQ.ZERO) THEN
4299
               IF (UPPER) THEN
4300
                   IF (BETA.EQ.ZERO) THEN
4301
                        DO 20 J = 1, N
                            DO 10 I = 1,J
4302
                                C(I,J) = ZERO
4303
4304
                            CONTINUE
        10
4305
                        CONTINUE
        20
4306
                   ELSE
                        DO 40 J = 1, N
4307
                            DO 30 I = 1,J
4308
4309
                                C(I,J) = BETA*C(I,J)
4310
                            CONTINUE
        30
4311
                        CONTINUE
        40
4312
                   END IF
4313
               ELSE
4314
                   IF (BETA.EQ.ZERO) THEN
4315
                        DO 60 J = 1,N
4316
                            DO 50 I = J, N
4317
                                C(I,J) = ZERO
4318
        50
                            CONTINUE
4319
        60
                        CONTINUE
4320
                   ELSE
                        DO 80 J = 1,N
4321
4322
                            DO 70 I = J,N
4323
                                C(I,J) = BETA*C(I,J)
4324
        70
                            CONTINUE
4325
        80
                        CONTINUE
4326
                   END IF
4327
               END IF
4328
               RETURN
4329
           END IF
4330 !
4331 !
           Start the operations.
4332 !
4333
           IF (LSAME(TRANS, 'N')) THEN
4334 !
              Form C := alpha*A*A**T + beta*C.
4335 !
4336 !
               IF (UPPER) THEN
4337
4338
                   DO 130 J = 1,N
                        IF (BETA.EQ.ZERO) THEN
4339
4340
                            DO 90 I = 1,J
4341
                                C(I,J) = ZERO
4342
        90
                            CONTINUE
4343
                        ELSE IF (BETA.NE.ONE) THEN
4344
                            D0 \ 100 \ I = 1, J
4345
                                C(I,J) = BETA*C(I,J)
4346
       100
                            CONTINUE
                        END IF
4347
4348
                        D0 120 L = 1, K
4349
                            IF (A(J,L).NE.ZERO) THEN
4350
                                TEMP = ALPHA*A(J,L)
4351
                                DO 110 I = 1,J
                                    C(I,J) = C(I,J) + TEMP*A(I,L)
4352
```

```
4353
                                CONTINUE
       110
4354
                            END IF
4355
                        CONTINUE
       120
4356
      130
                   CONTINUE
4357
               ELSE
4358
                   DO 180 J = 1, N
4359
                        IF (BETA.EQ.ZERO) THEN
                           DO 140 I = J,N
4360
4361
                                C(I,J) = ZERO
4362
       140
                            CONTINUE
4363
                        ELSE IF (BETA.NE.ONE) THEN
4364
                            DO 150 I = J,N
4365
                                C(I,J) = BETA*C(I,J)
4366
                            CONTINUE
       150
4367
                        END IF
                        DO 170 L = 1, K
4368
4369
                            IF (A(J,L).NE.ZERO) THEN
                                TEMP = ALPHA*A(J,L)
4370
                                DO 160 I = J,N
4371
4372
                                    C(I,J) = C(I,J) + TEMP*A(I,L)
4373
       160
                                CONTINUE
4374
                            END IF
4375
       170
                        CONTINUE
4376
      180
                   CONTINUE
4377
               END IF
           ELSE
4378
4379 !
4380 !
              Form C := alpha*A**T*A + beta*C.
4381 !
4382
               IF (UPPER) THEN
4383
                   DO 210 J = 1, N
4384
                        DO 200 I = 1,J
4385
                            TEMP = ZERO
4386
                            D0 190 L = 1, K
4387
                                TEMP = TEMP + A(L,I)*A(L,J)
4388
       190
                            CONTINUE
4389
                            IF (BETA.EQ.ZERO) THEN
4390
                                C(I,J) = ALPHA*TEMP
4391
                            ELSE
4392
                                C(I,J) = ALPHA*TEMP + BETA*C(I,J)
4393
                            END IF
4394
       200
                        CONTINUE
4395
                   CONTINUE
       210
               ELSE
4396
                   DO 240 J = 1, N
4397
                       DO 230 I = J,N
4398
4399
                            TEMP = ZERO
4400
                            DO 220 L = 1, K
4401
                                TEMP = TEMP + A(L,I)*A(L,J)
4402
       220
                            CONTINUE
4403
                            IF (BETA.EQ.ZERO) THEN
4404
                                C(I,J) = ALPHA*TEMP
4405
                            ELSE
4406
                                C(I,J) = ALPHA*TEMP + BETA*C(I,J)
4407
                            END IF
4408
     230
                        CONTINUE
4409
      240
                   CONTINUE
4410
               END IF
           END IF
4411
4412 !
           RETURN
4413
```

```
4414 !
        End of DSYRK .
4415 !
4416 !
4417
        END SUBROUTINE DSYRK
4418
4419 !
4420 !
SUBROUTINE DPBTRF( UPLO, N, KD, AB, LDAB, INFO )
4423 !
4424 ! -- LAPACK computational routine (version 3.7.0) --
4425 ! -- LAPACK is a software package provided by Univ. of Tennessee,
4426 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        December 2016
4427 !
4428 !
       .. Scalar Arguments .. CHARACTER UPL
4429 !
                          UPLO
                          INFO, KD, LDAB, N
4431
        INTEGER
4432 !
4433 !
         .. Array Arguments ..
         DOUBLE PRECISION AB( LDAB, * )
4435 !
4436 !
4437 ! ------
4439 !
         .. Parameters ..
4440
         DOUBLE PRECISION
                         ONE, ZERO
4441
        PARAMETER
                          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
        INTEGER
                         NBMAX, LDWORK
4443
                         ( NBMAX = 32, LDWORK = NBMAX+1 )
        PARAMETER
4444 !
         .. Local Scalars ..
4445 !
4446
        INTEGER
                          I, I2, I3, IB, II, J, JJ, NB
4447 !
         .. Local Arrays ..
4448 !
4449
         DOUBLE PRECISION WORK ( LDWORK, NBMAX )
4450 !
        .. External Functions ..
4451 !
4452 !
         LOGICAL
4453 !
        INTEGER
                           ILAENV
4454 !
         EXTERNAL
                           LSAME, ILAENV
4455 !
        .. External Subroutines ..
4456 !
                           DGEMM, DPBTF2, DPOTF2, DSYRK, DTRSM, XERBLA
4457 !
         EXTERNAL
4458 !
4459 !
        .. Intrinsic Functions ..
4460
        INTRINSIC
4461 !
4462 !
         .. Executable Statements ..
4463 !
4464 !
        Test the input parameters.
4465 !
4466
        INFO = ∅
        IF( ( .NOT.LSAME( UPLO, 'U' ) ) .AND. &
4467
        & ( .NOT.LSAME( UPLO, 'L' ) ) THEN
4468
4469
            INFO = -1
4470
         ELSE IF( N.LT.0 ) THEN
4471
           INFO = -2
4472
         ELSE IF( KD.LT.0 ) THEN
4473
            INFO = -3
         ELSE IF( LDAB.LT.KD+1 ) THEN
4474
```

```
4475
              INFO = -5
4476
           END IF
4477
           IF( INFO.NE.0 ) THEN
4478
              CALL XERBLA( 'DPBTRF', -INFO )
4479
              RETURN
           END IF
4480
4481 !
4482 !
           Quick return if possible
4483 !
4484
          IF( N.EQ.∅ ) &
4485
          & RETURN
4486 !
           Determine the block size for this environment
4487 !
4488 !
4489
           NB = ILAENV( 1, 'DPBTRF', UPLO, N, KD, -1, -1)
4490 !
4491 !
           The block size must not exceed the semi-bandwidth KD, and must not
4492 !
           exceed the limit set by the size of the local array WORK.
4493 !
          NB = MIN( NB, NBMAX )
4494
4495 !
          IF( NB.LE.1 .OR. NB.GT.KD ) THEN
4496
4497 !
4498 !
              Use unblocked code
4499 !
4500
              CALL DPBTF2( UPLO, N, KD, AB, LDAB, INFO )
           ELSE
4501
4502 !
4503 !
             Use blocked code
4504 !
              IF( LSAME( UPLO, 'U' ) ) THEN
4505
4506 !
4507 !
                 Compute the Cholesky factorization of a symmetric band
4508 !
                 matrix, given the upper triangle of the matrix in band
4509 !
                 storage.
4510 !
4511 !
                 Zero the upper triangle of the work array.
4512 !
4513
                 DO 20 J = 1, NB
4514
                    DO 10 I = 1, J - 1
                       WORK( I, J ) = ZERO
4515
4516
       10
                    CONTINUE
4517
       20
                 CONTINUE
4518 !
4519 !
                 Process the band matrix one diagonal block at a time.
4520 !
4521
                 DO 70 I = 1, N, NB
4522
                    IB = MIN(NB, N-I+1)
4523 !
4524 !
                    Factorize the diagonal block
4525 !
4526
                    CALL DPOTF2 (UPLO, IB, AB(KD+1, I), LDAB-1, II)
4527
                    IF( II.NE.∅ ) THEN
4528
                       INFO = I + II - 1
4529
                       GO TO 150
4530
                    END IF
4531
                    IF( I+IB.LE.N ) THEN
4532 !
4533 !
                       Update the relevant part of the trailing submatrix.
4534 !
                       If A11 denotes the diagonal block which has just been
4535 !
                       factorized, then we need to update the remaining
```

```
4536 !
                       blocks in the diagram:
4537 !
4538 !
                          A11 A12
                                      A13
4539 !
                                A22
                                      A23
4540 !
                                      A33
4541 !
4542 !
                       The numbers of rows and columns in the partitioning
4543 !
                       are IB, I2, I3 respectively. The blocks A12, A22 and
4544 !
                       A23 are empty if IB = KD. The upper triangle of A13
4545 !
                       lies outside the band.
4546 !
4547
                       I2 = MIN(KD-IB, N-I-IB+1)
4548
                       I3 = MIN(IB, N-I-KD+1)
4549 !
4550
                       IF( I2.GT.∅ ) THEN
4551 !
4552 !
                          Update A12
4553 !
                          CALL DTRSM( 'Left', 'Upper', 'Transpose',
4554
                                      'Non-unit', IB, I2, ONE, AB( KD+1, I ), &
4555
4556
                                      LDAB-1, AB( KD+1-IB, I+IB ), LDAB-1 )
4557 !
4558 !
                          Update A22
4559 !
                          CALL DSYRK( 'Upper', 'Transpose', I2, IB, -ONE,
4560
4561
                                      AB( KD+1-IB, I+IB ), LDAB-1, ONE,
                                      AB( KD+1, I+IB ), LDAB-1 )
4562
                       END IF
4563
4564 !
                       IF( I3.GT.∅ ) THEN
4565
4566 !
4567 !
                          Copy the lower triangle of A13 into the work array.
4568 !
4569
                          DO 40 JJ = 1, I3
4570
                             DO 30 II = JJ, IB
4571
                                WORK( II, JJ ) = AB( II-JJ+1, JJ+I+KD-1 )
4572
        30
                             CONTINUE
4573
        40
                          CONTINUE
4574 !
4575 !
                          Update A13 (in the work array).
4576 !
4577
                          CALL DTRSM( 'Left', 'Upper', 'Transpose',
4578
                                      'Non-unit', IB, I3, ONE, AB( KD+1, I ), &
4579
                                      LDAB-1, WORK, LDWORK)
4580 !
4581 !
                          Update A23
4582 !
4583
                          IF( I2.GT.∅ )
                             CALL DGEMM( 'Transpose', 'No Transpose', I2, I3, &
4584
4585
                                         IB, -ONE, AB(KD+1-IB, I+IB),
4586
                                         LDAB-1, WORK, LDWORK, ONE,
                                                                               &
4587
                                         AB( 1+IB, I+KD ), LDAB-1 )
4588 !
4589 !
                          Update A33
4590 !
                          CALL DSYRK( 'Upper', 'Transpose', I3, IB, -ONE,
4591
4592
                                      WORK, LDWORK, ONE, AB( KD+1, I+KD ),
4593
                                      LDAB-1 )
4594 !
4595 !
                          Copy the lower triangle of A13 back into place.
4596 !
```

```
4597
                          DO 60 JJ = 1, I3
4598
                             DO 50 II = JJ, IB
4599
                                 AB( II-JJ+1, JJ+I+KD-1 ) = WORK( II, JJ )
4600
                             CONTINUE
4601
        60
                          CONTINUE
                       END IF
4602
                    END IF
4603
4604
                 CONTINUE
4605
              ELSE
4606 !
4607 !
                 Compute the Cholesky factorization of a symmetric band
4608 !
                 matrix, given the lower triangle of the matrix in band
4609 !
                 storage.
4610 !
4611 !
                 Zero the lower triangle of the work array.
4612 !
4613
                 DO 90 J = 1, NB
4614
                    DO 80 I = J + 1, NB
                       WORK( I, J ) = ZERO
4615
4616
                    CONTINUE
4617
                 CONTINUE
4618 !
4619 !
                 Process the band matrix one diagonal block at a time.
4620 !
4621
                 DO 140 I = 1, N, NB
4622
                    IB = MIN(NB, N-I+1)
4623 !
4624 !
                    Factorize the diagonal block
4625 !
                    CALL DPOTF2( UPLO, IB, AB( 1, I ), LDAB-1, II )
4626
4627
                    IF( II.NE.∅ ) THEN
4628
                       INFO = I + II - 1
4629
                       GO TO 150
4630
                    END IF
                    IF( I+IB.LE.N ) THEN
4631
4632 !
4633 !
                       Update the relevant part of the trailing submatrix.
4634 !
                       If A11 denotes the diagonal block which has just been
4635 !
                       factorized, then we need to update the remaining
4636 !
                       blocks in the diagram:
4637 !
4638 !
                          A11
4639 !
                          A21
                                A22
4640 !
                          A31
                                A32
4641 !
4642 !
                       The numbers of rows and columns in the partitioning
4643 !
                       are IB, I2, I3 respectively. The blocks A21, A22 and
4644 !
                       A32 are empty if IB = KD. The lower triangle of A31
4645 !
                       lies outside the band.
4646 !
4647
                       I2 = MIN(KD-IB, N-I-IB+1)
4648
                       I3 = MIN(IB, N-I-KD+1)
4649 !
4650
                       IF( I2.GT.∅ ) THEN
4651 !
4652 !
                          Update A21
4653 !
4654
                          CALL DTRSM( 'Right', 'Lower', 'Transpose',
                                       'Non-unit', I2, IB, ONE, AB( 1, I ),
4655
4656
          &
                                       LDAB-1, AB( 1+IB, I ), LDAB-1 )
4657 !
```

```
4658 !
                         Update A22
4659 !
4660
                         CALL DSYRK( 'Lower', 'No Transpose', I2, IB, -ONE, &
                                    AB( 1+IB, I ), LDAB-1, ONE,
4661
4662
                                    AB( 1, I+IB ), LDAB-1 )
                      END IF
4663
4664 !
4665
                      IF( I3.GT.∅ ) THEN
4666 !
4667 !
                         Copy the upper triangle of A31 into the work array.
4668 !
4669
                         DO 110 JJ = 1, IB
4670
                            DO 100 II = 1, MIN( JJ, I3 )
4671
                              WORK( II, JJ ) = AB( KD+1-JJ+II, JJ+I-1 )
4672
      100
                            CONTINUE
4673
      110
                         CONTINUE
4674 !
4675 !
                         Update A31 (in the work array).
4676 !
                         CALL DTRSM( 'Right', 'Lower', 'Transpose',
4677
                                     'Non-unit', I3, IB, ONE, AB( 1, I ),
4678
                                    LDAB-1, WORK, LDWORK )
4679
4680 !
                         Update A32
4681 !
4682 !
4683
                         IF( I2.GT.∅ )
                            CALL DGEMM( 'No transpose', 'Transpose', I3, I2, &
4684
4685
                                       IB, -ONE, WORK, LDWORK,
                                       AB( 1+IB, I ), LDAB-1, ONE,
4686
         &
                                       AB( 1+KD-IB, I+IB ), LDAB-1 )
4687
4688 !
4689 !
                         Update A33
4690 !
4691
                         CALL DSYRK( 'Lower', 'No Transpose', I3, IB, -ONE,
4692
                                    WORK, LDWORK, ONE, AB( 1, I+KD ),
4693
                                    LDAB-1 )
4694 !
4695 !
                         Copy the upper triangle of A31 back into place.
4696 !
4697
                         DO 130 JJ = 1, IB
4698
                            DO 120 II = 1, MIN( JJ, I3 )
4699
                               AB( KD+1-JJ+II, JJ+I-1 ) = WORK(II, JJ)
4700 120
                            CONTINUE
4701
                         CONTINUE
4702
                      END IF
4703
                   END IF
4704 140
                CONTINUE
             END IF
4705
4706
          END IF
4707
          RETURN
4708 !
4709 150 CONTINUE
4710
          RETURN
4711 !
4712 !
          End of DPBTRF
4713 !
4714
          END SUBROUTINE DPBTRF
4715 !
4716 ! -----
4717
          REAL FUNCTION SDSDOT(N,SB,SX,INCX,SY,INCY)
4718 !
```

```
4719! -- Reference BLAS level1 routine (version 3.8.0) --
4720 ! -- Reference BLAS is a software package provided by Univ. of Tennessee,
4721 ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
4722 !
          November 2017
4723 !
4724 !
           .. Scalar Arguments ..
4725
          REAL SB
4726
          INTEGER INCX, INCY, N
4727 !
4728 !
          .. Array Arguments ..
          DOUBLE PRECISION SX(:), SY(:)
4729
4730
4731 !
          .. Local Scalars ..
4732
          DOUBLE PRECISION DSDOT
4733
          INTEGER I,KX,KY,NS
4734 !
           .. Intrinsic Functions ..
4735 !
          INTRINSIC DBLE
4736
4737 !
          DSDOT = SB
4738
          IF (N.LE.0) THEN
4739
4740
             SDSDOT = DSDOT
4741
             RETURN
4742
          END IF
4743
          IF (INCX.EQ.INCY .AND. INCX.GT.0) THEN
4744 !
4745 !
         Code for equal and positive increments.
4746 !
4747
             NS = N*INCX
4748
              DO I = 1, NS, INCX
4749
                DSDOT = DSDOT + DBLE(SX(I))*DBLE(SY(I))
4750
              END DO
4751
          ELSE
4752 !
4753 !
          Code for unequal or nonpositive increments.
4754 !
4755
             KX = 1
4756
             KY = 1
4757
             IF (INCX.LT.0) KX = 1 + (1-N)*INCX
4758
             IF (INCY.LT.0) KY = 1 + (1-N)*INCY
             DOI = 1,N
4759
                DSDOT = DSDOT + DBLE(SX(KX))*DBLE(SY(KY))
4760
4761
                 KX = KX + INCX
4762
                 KY = KY + INCY
             END DO
4763
4764
          END IF
4765
           SDSDOT = DSDOT
4766
          RETURN
4767
           END FUNCTION SDSDOT
4768
4769 END MODULE ModuleLapack
```

8.12 makefile

```
1 all: multi-pred clean
3
  multi-pred: ModuleIO.o ModuleGlobalParameters.o ModuleErrors.o ModuleFiles.o
               files.o ModuleReadWrite.o ModuleLapack.o ReadInput.o ModuleMultiPred.o\
5
               MultiPredSolver.o multi-pred.o
               ifort ModuleIO.o ModuleGlobalParameters.o ModuleErrors.o ModuleFiles.o\
6
7
               files.o ModuleReadWrite.o ModuleLapack.o ReadInput.o ModuleMultiPred.o\
8
               MultiPredSolver.o multi-pred.o -o multi-pred
10 ModuleIO.o: ModuleIO.f90
       ifort -03 -fast -c ModuleI0.f90
11
12
13 ModuleGlobalParameters.o: ModuleGlobalParameters.f90
       ifort -03 -fast -c ModuleGlobalParameters.f90
15
16 ModuleErrors.o: ModuleErrors.f90
17
       ifort -03 -fast -c ModuleErrors.f90
18
19 ModuleFiles.o: ModuleFiles.f90
       ifort -03 -fast -c ModuleFiles.f90
20
21
22 files.o: files.f90
       ifort -03 -fast -c files.f90
23
24
25 ModuleReadWrite.o: ModuleReadWrite.f90
       ifort -03 -fast -c ModuleReadWrite.f90
26
27
28 ModuleLapack.o: ModuleLapack.f90
       ifort -03 -fast -cpp -c ModuleLapack.f90
29
30
31 ReadInput.o: ReadInput.f90
       ifort -03 -fast -c ReadInput.f90
32
33
34 ModuleMultiPred.o: ModuleMultiPred.f90
       ifort -03 -fast -c ModuleMultiPred.f90
35
36
37 MultiPredSolver.o: MultiPredSolver.f90
       ifort -03 -fast -c MultiPredSolver.f90
38
39
40 multi-pred.o: multi-pred.f90
41
       ifort -03 -fast -c multi-pred.f90
42
43 clean:
       rm -f *.o *.mod
44
45
```