
UC Berkeley
UC Berkeley Previously Published Works

Title
EPIC 220204960: A Quadruple Star System Containing Two Strongly Interacting Eclipsing 
Binaries

Permalink
https://escholarship.org/uc/item/35h6q22g

Journal
Monthly Notices of the Royal Astronomical Society, 467(2)

ISSN
0035-8711

Authors
Rappaport, S
Vanderburg, A
Borkovits, T
et al.

Publication Date
2017

DOI
10.1093/mnras/stx143

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35h6q22g
https://escholarship.org/uc/item/35h6q22g#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Monthly Notices of the Royal Astronomical Society, ACCEPTED 2016 JANUARY 17
Preprint typeset using LATEX style emulateapj v. 5/2/11

EPIC 220204960: A QUADRUPLE STAR SYSTEM CONTAINING TWO STRONGLY INTERACTING ECLIPSING
BINARIES
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ABSTRACT
We present a strongly interacting quadruple system associated with the K2 target EPIC 220204960. The K2

target itself is a Kp = 12.7 magnitude star at Teff ' 6100 K which we designate as “B-N” (blue northerly image).
The host of the quadruple system, however, is a Kp ' 17 magnitude star with a composite M-star spectrum,
which we designate as “R-S” (red southerly image). With a 3.2′′ separation and similar radial velocities and
photometric distances, ‘B-N’ is likely physically associated with ‘R-S’, making this a quintuple system, but
that is incidental to our main claim of a strongly interacting quadruple system in ‘R-S’. The two binaries in
‘R-S’ have orbital periods of 13.27 d and 14.41 d, respectively, and each has an inclination angle of & 89◦.
From our analysis of radial velocity measurements, and of the photometric lightcurve, we conclude that all
four stars are very similar with masses close to 0.4M�. Both of the binaries exhibit significant ETVs where
those of the primary and secondary eclipses ‘diverge’ by 0.05 days over the course of the 80-day observations.
Via a systematic set of numerical simulations of quadruple systems consisting of two interacting binaries, we
conclude that the outer orbital period is very likely to be between 300 and 500 days. If sufficient time is devoted
to RV studies of this faint target, the outer orbit should be measurable within a year.
Subject headings: stars: binaries (including multiple): close—stars: binaries: eclipsing—stars: binaries:

general—stars: binaries: visual

1. INTRODUCTION

Higher-order multiple star systems are interesting to study
for several reasons. Such systems (i) provide insights into
star-formation processes; (ii) allow for a study of short-
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term (i.e., . few years) perturbative dynamical interactions
among the constituent stars; and (iii) enable us to learn more
about longer-term dynamical interactions that can actually
alter the configuration of the system (e.g., via Kozai-Lidov
cycles; Kozai 1962; Lidov 1962). These multi-component
stellar systems can be discovered, studied, and tracked via a
wide variety of techniques including historical photographic
plates (e.g., Frieboes-Conde & Herczeg 1973; Borkovits &
Hegedüs 1996), searches for common proper motion stellar
systems (e.g., Raghavan et al. 2012); ground-based photo-
metric monitoring programs searching for gravitational mi-
crolensing events (MACHO; e.g., Alcock et al. 2000; OGLE;
e.g., Pietrukowicz et al. 2013) or planet transits (e.g., Super-
WASP, Lohr et al.2015a; HATNet, Bakos et al. 2002; KELT,
Pepper et al. 2007), high-resolution imaging or interferomet-
ric studies (e.g., Tokovinin 2014a, 2014b), and spectroscopy
aimed at measuring radial velocities (Tokovinin 2014a).

Perhaps the quickest pathway to discovering close multiple
interacting star systems is via the study of eclipsing binaries
whose eclipse timing variations (‘ETVs’) indicate the pres-
ence of a relatively nearby third body or perhaps even an-
other binary. In a series of papers based on precision Ke-
pler photometry (see, e.g., Borucki et al. 2010; Batalha et
al. 2011), some 220 triple-star candidates were found via their
ETVs (Rappaport et al. 2013; Conroy et al. 2014; Borkovits et
al. 2015; Borkovits et al. 2016). Several of the Kepler binary
systems turned out to be members of quadruple systems con-
sisting of two gravitationally bound binaries (KIC 4247791:
Lehmann et al. 2012; KIC 7177553: Lehmann et al. 2016:
and quintuple EPIC 212651213: Rappaport et al. 2016). One
of the Kepler systems, KIC 4150611/HD 181469, is arranged
as a triple system bound to two other binaries (Shibahashi &
Kurtz 2012, and references therein; Prsa et al. 2016).

Other interesting quadruple star systems include: 1SWASP
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J093010.78+533859.5 (Lohr et al. 2015b); the young B-star
quintuple HD 27638 (Torres 2006); HD 155448 (Schütz et
al. 2011); 14 Aurigae (Barstow et al. 2001); σ2 Coronae Bo-
realis (Raghavan et al. 2009); GG Tau (Di Folco et al. 2014);
and HIP 28790/28764 and HIP 64478 (Tokovinin 2016).

Perhaps the two quadruples in a binary-binary configuration
(i.e., ‘2+2’) with the shortest known outer periods are V994
Her (1062 days; Zasche & Uhlař 2016) and VW LMi (355
days; Pribulla et al. 2008). ξ-Tau (145 days; Nemravova et
al. 2016) is a quadruple in a ‘2+1+1’ configuration which puts
it in a somewhat different category. The scale of dynamical
perturbations of one binary by the other can be characterized
by the parameter: P2

bin/Pout, where Pbin and Pout are the binary
and outer period, respectively. The values of this quantity are
0.004 d and 0.18 d for V994 Her and VW LMi, respectively.
The value of this parameter for ξ-Tau, where the binary is
largely perturbed by a single star, is 0.35 d.

In this work we report the discovery with K2 of a strongly
interacting quadruple system consisting of two eclipsing bi-
naries, with orbital periods of 13.27 d and 14.41 d and all
four M stars having very similar properties. Both binaries ex-
hibit strong ETVs from which we infer an outer period of ∼ a
year that, in turn, implies P2

bin/Pout ≈ 0.54(Pout/yr)−1 d. Such
a substantial value of this parameter could turn out to be the
largest among the known sample of quadruples.

This work is organized as follows. In Sect. 2 we describe
the 80-day K2 observation of EPIC 220204960 with its two
physically associated eclipsing binaries. Our ground-based
observations of the two stellar images associated with this
target are presented in Sect. 3. These include classification
spectra and Keck AO imaging. In Sect. 4 we discuss the six
radial-velocity spectra that we were able to obtain, and the re-
sultant binary orbital solutions. The discovery of significant
and substantial ETVs in the eclipses of both binaries are pre-
sented in Sect. 5. We use a physically-based model to evaluate
the eclipsing binary lightcurves in Sect. 6, and thereby deter-
mine many of the system parameters of the binaries not avail-
able from the radial velocities, as well as independent mass
determinations. In Sect. 7 we re-introduce a method for si-
multaneously modeling the two eclipsing binary lightcurves,
and the results are compared with those derived in Sect. 6.
In Sect. 8 we simulate via numerical integrations the dynami-
cal interactions of the four stars in the quadruple system, and
set substantial constraints on the outer period of the two bi-
naries orbiting each other. The dynamical perturbations of
each binary on the other are assessed analytically in Sect. 9.
We summarize our results and draw some final conclusions in
Sect. 10.

2. K2 OBSERVATIONS

As part of our ongoing search for eclipsing binaries, we
downloaded all available K2 Extracted Lightcurves common
to Campaign 8 from the MAST18. We utilized both the Ames
pipelined data set and that of Vanderburg & Johnson (2014).
The flux data from all 24,000 targets were searched for period-
icities via Fourier transforms and the BLS algorithm (Kovács
et al. 2002). The folded lightcurves of targets with significant
peaks in their FFTs or BLS transforms were then examined
by eye to look for unusual objects among those with periodic

18 http://archive.stsci.edu/k2/data_search/search.
php

features. In addition, some of us (MHK, DL, and TLJ) vi-
sually inspected all the K2 light curves for unusual stellar or
planetary systems.

Within a few days after the release of the Field 8 data set,
EPIC 220204960 was identified as a potential quadruple star
system by both visual inspection and via the BLS algorith-
mic search. After identifying four sets of eclipses in the K2
light curve, we re-processed the light curve by simultaneously
fitting for long-term variability, K2 roll-dependent systemat-
ics, and the four eclipse shapes in the light curves using the
method described in Vanderburg et al. (2016). For the rest of
the analysis, we use this re-processed light curve and divide
away the best-fit long-term variability, since it was dominated
by an instrumental trend.

The basic lightcurve is shown in Fig. 1, where three fea-
tures are obvious by inspection. (1) All four eclipses of the
two binaries have very similar depths, though the secondary
eclipse in the A binary has about 3/4 the depth of the primary.
(2) The periods of the two binaries are quite comparable with
PA = 13.27 d and PB = 14.41 d. (3) The eclipse depths are re-
markably shallow at ∼0.4%. We rather quickly inferred that
the coincidence of the similar sets of extraordinarily shallow
eclipses indicates a dilution effect from a neighboring star,
rather than two precisely inclined orbits that happen to pro-
duce such tiny eclipse depths. Quantitatively, we note that
for eclipsing binaries with two similar stars the a priori prob-
ability of an undiluted eclipse of 0.4% is only ∼0.02. The
probability of this occurring by chance in two related binaries
is only 5×10−4.

The primary and secondary eclipses in both binaries are
close to being equally spaced, but are measurably different
from being equal. We define the fractional separations be-
tween eclipses as, ∆ts,p/Porb = (tsec − tpri)/Porb, where tsec and
tpri are times of sequential secondary and primary eclipses,
and tsec > tpri. The fitted fractional separations between the
two eclipses are: 0.4633± 0.0001 and 0.4797± 0.0001, for
the A and B binaries, respectively. We can then utilize the
approximate expression (good to 2nd order in eccentricity e):

e cosω ' π

2

[
∆ts,p
Porb

−
1
2

]
(1)

where ω is the argument of periastron of the primary compo-
nent (derived from a Taylor series expansion of Eqn. 14; from
Sterne 1939), to say that ecosωA ' −0.0577 and ecosωB '
−0.0319, for the A and B binaries, respectively.

We can also utilize information from the relative widths of
the two eclipses, w1 and w2, to find a measure of e sinω. For
small e and arbitrary ω:

e sinω '
(1 − wpri/wsec)
(1 + wpri/wsec)

(2)

(see, e.g., Kopal 1959, Chapt. VI). From the K2 photom-
etry, we determine that wA,pri/wA,sec = 1.13 ± 0.05, and
wB,pri/wB,sec = 1.09± 0.04. Therefore, eA sinωA = −0.061±
0.023 and eB sinωB = −0.042± 0.020. Thus, based on the
limits obtained from Eqns. (1) and (2) we can constrain the
orbital eccentricities and arguments of periastron of the A and
B binaries to be

0.058 . eA . 0.10 and 0.032 . eB . 0.07

ωA ' 230+10
−30 deg and ωB ' 240+10

−40 deg

http://archive.stsci.edu/k2/data_search/search.php
http://archive.stsci.edu/k2/data_search/search.php
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FIG. 1.— K2 flux data for EPIC 220204960. The eclipses of the 13.27-day
‘A’ binary are colored in blue, while those of the 14.41-day ‘B’ binary are
in red. All four eclipses are of comparably shallow depth. We note that this
lightcurve contains the light of the bright northerly blue stellar image desig-
nated ‘B-N’ (see Fig. 2). At ∼3′′ separation from the ‘A’ and ‘B’ binaries,
the fluxes are not separable with K2.

TABLE 1
PROPERTIES OF THE EPIC 220204960 SYSTEM

Parameter 220204960 ‘B-N’ 220204960 ‘R-S’
RA (J2000) 00:48:32.65 00:48:32.67
Dec (J2000) 00:10:18.59 00:10:15.20
Kp 12.66 ...
ua 15.08 24.64
Bb 13.31 ...
ga 13.02 18.01
Gb 12.58 16.82
V b 12.76 ...
Rb 12.63 ...
ra 12.71 16.44
za 13.37 15.51
ib 12.54 ...
Jc 11.75 14.2
Hc 11.54 ...
Kc 11.44 13.4
W1d 11.28 ...
W2d 11.30 ...
W3d 11.40 ...
W4d ... ...
Distance (pc)e 560±150 600±150
µα (mas yr−1) f −0.1±1.3 ...
µδ (mas yr−1) f −8.5±1.4 ...

Notes. (a) Taken from the SDSS image (Ahn et al. 2012). (b) From VizieR
http://vizier.u-strasbg.fr/; UCAC4 (Zacharias et al. 2013).
(c) 2MASS catalog (Skrutskie et al. 2006). (d) WISE point source catalog
(Cutri et al. 2013). (e) Based on photometric parallax only. This utilized
adapted V magnitudes of 12.76 and 17.1 for the two stellar images, the

bolometric luminosities for the four M stars given in Table 5, the bolometric
magnitude of the ‘B-N’ image inferred from Table 2, and appropriate
bolometric corrections for the M stars in question. (f) From UCAC4

(Zacharias et al. 2013); Smart & Nicastro (2014); Huber et al. (2015).
Thus, not only are the binaries very similar in other respects,
they both have small, but distinctly non-zero eccentricities.

We return to a more detailed quantitative analysis of the
lightcurves of the two binaries in Sections 5, 6, and 7.

3. GROUND BASED OBSERVATIONS

3.1. SDSS Image

FIG. 2.— SDSS image showing the region near EPIC 220204960. We have
designated the brighter bluish colored image to the north as ‘B-N’ while the
fainter reddish image some 3′′ to the south is designated as ‘R-S’. The ‘R-S’
image hosts both binaries in a bound quadruple system.

The SDSS image of EPIC 220204960 is shown in Fig. 2.
The brighter bluish image to the north (hereafter ‘B-N’) dom-
inates the light, but note the fainter reddish image some 3′′ to
the south (hereafter ‘R-S’). We summarize the available prop-
erties of these two stars in Table 1.

Through the Kepler bandpass, the ‘R-S’ image ranges from
between 2.8 and 5 magnitudes fainter than the ‘B-N’ image.
When we carefully integrate these magnitudes, as well as our
detailed spectra (see Sect. 3.2), more quantitatively over the
Kepler bandpass, we find a flux ratio of 45± 10 (90% confi-
dence) between the ‘B-N’ and ‘R-S’ images. As we will show,
this difference is sufficient to explain the extreme dilution of
the eclipses provided that both binaries are hosted within the
‘R-S’ image.

3.2. MDM Spectra
On 2016 August 31 UT, two 1500-s spectra of EPIC

220204960 were obtained with the Ohio State Multi-Object
Spectrograph (OSMOS) on the 2.4 m Hiltner telescope of the
MDM Observatory on Kitt Peak, Arizona. In long-slit mode,
a 1.′′2 slit was aligned with the two stellar images for the first
exposure. The second exposure had the slit oriented east-west
through image ‘R-S’. A volume phase holographic grism pro-
vided a dispersion of 0.72 Å pixel−1 and a resolution of 2.9
Å on a Silicon Technology Associates STA-0500 CCD with
4064× 4064 15µ pixels. The wavelength coverage is 3967–
6876 Å. The dispersion solution was derived from 28 com-
parison lines of Hg and Ne, yielding rms residuals of 0.02 Å,
although a systematic error of up to 0.4 Å could be present
due to instrument flexure.

The spectra for both the ‘B-N’ image and ‘R-S’ image are
shown in Fig. 3. The east-west slit was used here to extract
the spectrum of ‘R-S,’ as it had less contamination from ‘B-
N’. There is no detectable leakage of the spectrum of ‘B-N’

http://vizier.u-strasbg.fr/
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into ‘R-S’, as the prominent Balmer absorption lines in ‘B-N’
are absent in ‘R-S.’ Although the narrow slit and sky condi-
tions were not conducive to absolute spectrophotometry, the
standard star HD 19445 was used for flux calibration. The
equivalent slit magnitude of ‘B-N’ is V ≈ 12.6, in reasonable
agreement with the value in Table 1 (V = 12.76).

It is clear that the spectrum of ‘R-S’ is that of an early M
star. Examining the Pickles (1998) atlas of stellar spectra, we
find a best match with an M2.5V type. Although, it is worth
noting that this is actually a composite spectrum of four, very
likely similar, stars. By contrast, the ‘B-N’ image is that of a
G2V star.

3.3. Spectral Classification of the ‘B-N’ Image from TRES
Spectrum

We observed the blue northern component of EPIC
220204960 with the Tillinghast Reflector Echelle Spectro-
graph (TRES) on the 1.5 meter telescope on Mt. Hopkins,
AZ. 1500-s and 2000-s exposures were taken on 2016 July 13
UT and 2016 Oct. 24 UT, respectively. These yielded spec-
tra with signal-to-noise ratio of ∼30 per resolution element
at 520 nm, and a spectral resolving power of R = 44,000.
We reduced the spectra following Buchhave et al. (2010).
A portion of one spectrum is shown in Fig. 4. We mea-
sured an absolute radial velocity for the ‘B-N’ image of EPIC
220204960 by cross-correlating the observed TRES spectrum
against a suite of synthetic model spectra based on Kurucz
(1992) model atmospheres. The velocities for the two mea-
surements were −4.505 and −4.516 km s−1, consistent with
no change at 11± 50 m s−1. These have been corrected for
the gravitational blueshift to the barycenter. They also have a
residual, systematic, error (in common) of 100 m s−1.

We measured the stellar parameters of the ‘B-N’ image
using the Stellar Parameter Classification code (SPC, Buch-
have et al. 2010, 2012). SPC cross correlates an observed
spectrum against a grid of synthetic spectra based on Ku-
rucz atmospheric models (Kurucz 1992). The analysis yielded
Teff = 6085±72 K, log g = 4.23±0.02, [m/H] = 0.16±0.13,
and v sin i = 7.6±0.2 km s−1 (see Table 2).

3.4. Adaptive Optics Imaging
We obtained natural guide star observations of both the ‘B-

N’ and ‘R-S’ components of EPIC 220204960 on 2016 July
19 UT to better characterize this quadruple system. We used
the narrow camera setting (10 milliarcseconds, mas, per pixel)
of the NIRC2 camera (PI: Keith Matthews) on Keck II. We
used dome flat fields and dark frames to calibrate the images
and remove artifacts.

We acquired 12 frames of EPIC 220204960 in each of the
J and Ks bands (central wavelengths of 1.250 µm and 2.145
µm, respectively) for a total on-sky integration time of 240
seconds in each band. Figure 5 shows a stacked Ks band
image of both components of this target (cf. the SDSS im-
age in Fig. 2). The northerly ‘B-N’ image is separated by
3.′′359±0.′′002 from the southerly red image ‘R-S’ at a posi-
tion angle of 174.60±0.03 degrees east of north. Photometry
and Ks band astrometry were computed via PSF fitting using
a combined Moffat and Gaussian PSF model following the
techniques described in Ngo et al. (2015) and the NIRC2 dis-
tortion solution presented in Service et al. (2016). The ‘B-N’
component is 2.43± 0.03 magnitudes brighter than ‘R-S’ in
the Ks band (2.50± 0.01 magnitudes in J). The fact that the
‘B-N’/‘R-S’ flux ratio is only ∼10 in the NIR, compared to

FIG. 3.— MDM 2.4-m spectra of the ‘R-S’ image (top panel) and ‘B-N’ star
(bottom panel). The spectra have been corrected for the throughput efficiency
as a function of wavelength. The reference flux density, F0, is 10−14 ergs cm−2

s−1 Å −1. The ratio of detected flux in the two spectra is∼100. This implies a
ratio of ∼60 in the Kepler bandpass after correcting for the red flux between
6800 Å and 8500 Å that is not included in the spectrum.

∼45 in the Kepler band, is an indication of how red the ‘R-S’
image is.

The evidence presented in the next section shows that both
binaries are actually hosted by the ‘R-S’ image. In the bot-
tom panel of Fig. 5, we show a zoomed-in image of the ‘R-S’
component. This blown-up image looks distinctly single, and
shows no sign of the core even being elongated. We have car-
ried out simulations of close pairs of comparably bright im-
ages, at a range of spacings, and we conclude from this that
separations between the two binaries of & 0.05′′ can be con-
servatively ruled out. At a source distance of some 600 pc,
this sets an upper limit on the projected physical separation of
∼30 AU.

4. A FEW RADIAL VELOCITY MEASUREMENTS

Because the ‘R-S’ image, which hosts all four M stars, is
relatively faint, we have been able to obtain only six spectra
at five independent epochs of the quality required for radial
velocity measurements. Two were taken with the IRGINS
spectrograph mounted on the Discovery Channel Telescope,
while four others were acquired with the HIRES spectrome-
ter on Keck. By coincidence, the second of the two IGRINS
spectra was taken within three hours of the first of the HIRES
spectra, and therefore these nearly simultaneous spectra serve
as a consistency check between the two sets of data.
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FIG. 4.— 200 Å segment of the overall TRES spectrum of EPIC 220204960 used to characterize the ‘B-N’ image. Data are plotted in blue while the fitted
model curve is shown in red. The results of the model fit are summarized in Table 2.

TABLE 2
PROPERTIES OF STELLAR IMAGE ‘B-N’

Parameter Value
Teff [K]a 6085±72
log g [cgs]a 4.23±0.02
M [M�]b 1.20±0.07
R [R�]b 1.35±0.18
L [L�]b 2.3±0.7
γ [km/s]a −4.510±0.062
v sin i [km/s]a 7.6±0.2
[m/H]a 0.16±0.13
FBN/FRS

c 45±10
Notes. (a) Taken from the analysis of two TRES spectra acquired on 2016
July 13 and 2016 Oct. 24 (see Sect. 3.3). (b) Derived from Teff and log g

using the Yonsei–Yale tracks (Yi et al. 2001) for an assumed solar
composition. (c) Based on the MDM spectra (see Sect. 3.2), and the

magnitudes given in Table 1.

4.1. IGRINS Spectra
The Immersion Grating Infrared Spectrometer (IGRINS)

employs a silicon immersion grating for broad spectral cov-
erage at high-resolution in the near-infrared. The design pro-
vides high throughput and an unprecedented R≈ 45,000 spec-
trum of both the H and K bands (1.45-2.5 µm). IGRINS was
initially commissioned on the 2.7 m Harlan J. Smith Tele-
scope at McDonald Observatory (Park et al. 2014; Mace et
al. 2016) before being deployed to the Discovery Channel
Telescope (DCT) in September 2016. The ‘R-S’ image was
observed once during IGRINS commissioning at the DCT on
UT 2016 Sept. 19 and again during regular science operation
on UT 2016 Oct. 10. These observations were taken in ABBA
nod sequences with 900 s and 1200 s exposure times. The
spectra were optimally extracted using the IGRINS Pipeline
Package (Lee & Gullikson 2016). Dome-flats were taken at
the start of the night and wavelengths were determined us-
ing sky lines. Telluric correction by A0V stars at similar
air masses to EPIC 220204960 provide a flattened spectrum
with a signal-to-noise of 30-40 per resolution element. The
longer exposure times required for this fainter target resulted
in higher OH residuals in the spectrum from 2016 Oct. 10.

4.2. HIRES Spectrum

We observed the red southern component of EPIC
220204960 with the High Resolution Echelle Spectrometer
(HIRES, Vogt 1994) on the Keck I telescope on Mauna Kea.
We used the standard California Planet Search observing
setup with the red cross disperser and the C2 0.′′86 decker
(Howard et al. 2010). We obtained 20-minute exposures on
2016 Oct. 10, Nov. 21, and Nov. 26 and a 15-minute exposure
on Nov. 5, yielding signal-to-noise ratios that were typically
between 5 and 20 per pixel between 500 and 800 nm.

The cross correlation between the first of the HIRES spectra
and the template from a reference M star is shown in Fig. 6.
We clearly detect four significant peaks in the CCF which we
identify as belonging to the four M stars in the quadruple star
system.

4.3. Radial Velocities
We cross-correlated the four HIRES and two IGRINS spec-

tra of the red southern image of EPIC 220204960 with high
signal-to-noise template spectra of bright, nearby M-dwarfs.
For HIRES, we used a spectrum of GL 694, while for
IGRINS, we used a spectrum of LHS 533. We placed the
cross correlation functions on an absolute velocity frame us-
ing the measured absolute RVs of these two template stars
from Nidever et al. (2002).

We summarize in Table 3 all six sets of RV measurements
taken at five independent epochs. In first discussing these
measurements we refer to only five sets of measurements
since the first of the HIRES spectra is nearly simultaneous
in time with the second of the IGRINS spectra. Thus, in all
there are 5 spectra×4 CCF peaks that each must be identified
with a particular star in one of the two binaries. To accomplish
this, we chose two peaks from each CCF to represent the stars
in binary A, with its known orbital period, temporarily ignor-
ing the other two peaks in the first pass. We then fit simple
circular orbits to (4× 3)5/2 = 124,416 distinct combinations
of choices of stars with CCF peaks19. Once the CCF-peak to
star assignments have been made that work best for binary A,
there are only 16 independent combinations remaining to try

19 The naming convention in the first CCF is a matter of definition, hence
the 1/2 factor.
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FIG. 5.— Top panel: Keck-AO image in Ks-band of EPIC 220204960, in-
cluding the brighter blue image to the north, ‘B-N’, and the fainter red im-
age 3.′′4 to the south, ‘R-S’. A zoom-in on the ‘R-S’ image which hosts the
quadruple system, is shown in the bottom panel. If the two binaries were sep-
arated by 0.′′1 or more, the core of the image would be cleanly split into two
objects. A separation of even 0.′′05 would produce a noticeably elongated
central core, which is not seen.

for binary B.
Each binary fit utilized four free parameters: the two stellar

K-velocities, K1 and K2, the binary’s γ-velocity, and a linear
trend, γ̇, to represent possibly detectable acceleration of the
binary in its outer orbit. Only a few such combinations of
stellar ID and CCF peak yielded decent χ2 values and physi-
cally sensible results for the binary being fitted, but where the
remaining (i.e., unused) CCF peaks could be reasonably fit to
the stars in the other binary. We selected one choice of stellar
IDs with CCF peaks that yielded the best fit for both binaries.
That particular set of RVs matched with stellar components is
summarized in Table 3.

Once the identification of CCF peaks with individual stars
has been uniquely made, there are then 10 RV points that are
associated with each binary (see Table 3 and Fig. 7). In prin-
ciple, we should then fit these curves with 7 free parameters:
K1, K2, γ, γ̇, ω, τ , and e, where τ is the time of periastron
passage and, again, γ̇ (assumed constant) represents the bi-

FIG. 6.— Cross correlation (red curve) between the HIRES spectrum and
the template from a reference M star. After subtracting off a pedestal of
broader features, the green curve shows the four peaks more clearly that cor-
respond to the four M stars in the quadruple star system. The inferred radial
velocities, which range from −50 km s−1 to +50 km s−1, are about as expected
near quadrature for the two binaries.

nary’s acceleration in its outer orbit. In practice, however, we
have found that the RV points are neither numerous enough
nor sufficiently accurate to derive values for ω or e that are
nearly as good as we are able to derive from the lightcurve
analysis (see Sects. 2, 6, and 7). To a lesser extent, the same
is also true of τ .

We therefore restricted our fits of the RV data points to the
four parameters: K1, K2, γ, and γ̇ while fixing ω, τ , and e
at the values given in Tables 5 and 6. The fits were carried
out with an MCMC routine that is described in more detail in
Sect. 6. The results of the fits are shown in Fig. 7 and Table
3. The plotted error bars in Fig. 7 are just the empirical rms
scatter of the data points about the model curve because we
have no other independent way of assessing them. Note the
linear trend (γ̇) for both binaries, but of opposite signs, in
Fig. 7.

In addition to the K velocities and uncertainties given in Ta-
ble 3, we also list the four constituent stellar masses that we
infer from the K-velocities. All four stars seem quite consis-
tent with ∼0.4 M� late-K or early-M stars. We later compare
these stellar masses with those found from our analysis of the
photometric lightcurves. The results are in reasonably good
agreement and have comparable uncertainties.

The γ-velocities of the two binaries are found to be: γA '
+6 km s−1 and γB ' −14 km s−1. We can use these two values
to compute the ‘effective’ γ of the CM of the quadruple sys-
tem from γquad ' (γA +γB)/2 ' −4 km s−1. Since this agrees
very well with the γ velocity of star ‘B-N’ (see Table 2) we
take that as an indication that the two stellar images are part
of a physically bound group of five stars. Finally, with regard
to the γ-velocities, we can also use them to estimate the or-
bital speed of the two binaries around their common center of
mass. A rough estimate of the instantaneous projected (i.e.,
radial) speed of each binary in its orbit can be found from
Kquad ' (γA −γB)/2' 10 km s−1

5. ECLIPSE TIMING VARIATIONS

In order to analyze the lightcurves, we first folded the data
for each binary about the best-determined orbital period. We
quickly discovered, however, that regardless of what fold pe-
riod we used, one eclipse or the other was misshapen or par-



Interacting Quadruple Star System 7

TABLE 3
RESULTS FROM RADIAL VELOCITY STUDY

Star A-1 Star A-2 Star B-1 Star B-2
Radial Velocity Measurementsa:
BJD-2450000 Spectr.
7650.7427 +46.7 −32.2 +18.4 −54.7 IGRINS
7671.8570 −29.3 +47.8 −52.6 +18.1 IGRINS
7671.9812 −27.1 +49.1 −50.6 +20.0 HIRES
7697.9627 −36.3 +49.6 +0.6 −23.3 HIRES
7713.8823 +6.4 −4.2 −25.7 +6.4 HIRES
7718.8820 +21.0 −27.0 −27.0 +16.4 HIRES
Orbit Fitsb:
K [km s−1] 39.5±2.0 46.5±2.0 41.6±2.5 42.8±2.5
γc [km s−1] +6.0±0.8 −13.7±1.0
γ̇d [cm s−2] −0.16±0.03 +0.15±0.04
γquad

e [km s−1] −3.8±1.3
Kquad

f [km s−1] 9.9±1.3
Constituent Stellar Masses:
mass [M�] 0.47±0.05 0.40±0.05 0.45±0.06 0.44±0.06

Notes. (a) Uncertainties are difficult to estimate. Empirically, we found that error bars on the individual RV values of ∼ 3 km s−1 yielded good χ2 values. For a
description of how we assigned specific peaks in the cross-correlation to specific stars see text. (b) The orbit fits for each binary involved four free parameters:

K1, K2, γ, and γ̇. The orbital period, eccentricity, and argument and time of periastron were taken from the light-curve analysis (see Table 5). (c) Center of mass
velocity of each binary. (d) Acceleration of the center of mass of each binary. (e) γquad is the radial velocity of the CM of the entire quadruple system. This

assumes that masses of the two binaries are approximately equal. (f) Kquad is the projected radial speed of either binary in its orbit around the quadruple system.
This also assumes that the masses of the two binaries are the same.

FIG. 7.— Radial velocity measurements from two IGRINS and four HIRES
spectra. The second of the IGRINS spectra has nearly the same epoch as the
HIRES spectrum. Top panel is for the 13-d A binary and bottom panel for
the 14-d B binary. The solid curves are the best fits with only the K velocity
of each star, the γ velocity (black horizontal line), and γ̇ as free parameters
for each binary, while ω, τ , and e are taken from Table 6.

FIG. 8.— Eclipse timing variations in the arrival times of all four eclipses
in the two binaries that comprise EPIC 220204960. In each case the mean
orbital period for each binary has been used to produce the ETV curves.
Note the strong divergence of the ETV curves for the primary and secondary
eclipses of both the A and B binaries. See Table 4 for a summary of periods
and ETVs.

tially filled in. This was true for both binaries. In order to
understand the cause, we then fit each of the 20 observed
eclipses (approximately 5 each for the primary and secondary
eclipses of both binaries), to find accurate arrival times.

To find the arrival times we fit each eclipse with the fol-
lowing non-physical, but symmetric function (i.e., hyperbolic
secant; Rappaport et al. 2014), that has a shape sufficiently
close to the eclipse profile, f (t), to allow for a precise mea-
surement of the eclipse center:

f (t)' B + 2D
[
exp[(t − t0)/w] + exp[−(t − t0)/w]

]−1
(3)

The four free parameters are: B, the out-of-eclipse back-
ground, D, the eclipse depth, t0 the time of the center of the
eclipse, and w a characteristic width of the eclipse.

After subtracting off the expected times of eclipse using the
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FIG. 9.— K2 eclipse profiles for the primary and secondary eclipses in both the A binary (top panels; Porb = 13.27 d) and the B binary (bottom panels;
Porb = 14.41 d). Each profile contains data from ∼5 eclipses. Orbital phase zero is arbitrary, but correctly gives the relative phases of the primary and secondary.
The absolute times of the primary eclipse (defined as those in the left panels) are given in Table 4. The red curve is a best fitting model which includes 6
independent parameters for each binary system (see Sect. 6).

mean orbital periods of PA = 13.2735 d and PB = 14.4158 d, we
find the eclipse timing variations (hereafter ‘ETVs’) shown in
Fig. 8. We were surprised to find that the ETV curves for the
primary and secondary eclipses, for both binaries, ‘diverge’
so clearly and by such a large amount over the course of only
80 days. For both binaries, the divergence in the ETV times
amounts to plus and minus 0.025 days for the primary and
secondary eclipses, respectively. In terms of slopes to the
ETV curves, these correspond to plus and minus ∼0.00032
days/day for both binaries, where the plus and minus signs
are for the primary and secondary eclipses. Finally, we can
determine an apparent ‘local’ (in time) period for each eclipse.
These are: 13.26913 d, 13.27789 d, 14.41130 d, and 14.42024
d. These delays, slopes, and apparent periods are summarized
in Table 4.

Finally, we use these four periods to fold the data, one for
each eclipse, in order to produce the eclipse profiles that we
use to fit for the orbital parameters. For these folds we use an
epoch near the mid point of the 80-day K2 observations. Be-
cause the primary eclipse profile is produced using a slightly
different period from that of the secondary eclipse, the rela-
tive phasing between the two eclipses is only well defined at
the center time of the K2 observations. However the phase
drifts of one eclipse with respect to the other over this time
period amount to only ∼0.0015 cycles, and thus they do not

TABLE 4
ETV DIVERGENCES AND APPARENT ORBITAL PERIODSa

Parameter Star A-1 Star A-2 Star B-1 Star B-2
ETV [d] +0.024 −0.024 −0.024 +0.024
ETV slope [d/d] 0.00033(4) −0.00033 (3) −0.00031(4) 0.00031(9)
∆Porb [d] 0.0044 −0.0044 −0.0045 0.0045
Apparent Porb [d] 13.26913 13.27789 14.41130 14.42024
Epochs [BJD]b 7401.864 7394.718 7403.021 7395.497

Notes. (a) Derived from the 20 total eclipses of binaries A and B. ‘ETV’
refers to the total eclipse timing variations over the 80-day K2 observations.
∆Porb refers to the difference between the mean apparent orbital period and
that derived independently for the primary and secondary eclipses. (b) The

epoch times are actually BJD–2450000.

significantly affect our ability to determine quantities such as
eclipse spacing (related to ecosω) or the eclipse profiles. In
fact, the meaning of the divergence in the ETVs is precisely
the fact that ω is changing by a small, but measurable amount
over the course of the 80-day observation interval.

The results of folding the data about four different periods
leads to the four profiles shown in Fig. 9. Note how similar all
four eclipses look in terms of width, shape, and depth. Only
the eclipse depth for the secondary star in binary A is percep-
tibly more shallow than the other three. In spite of the fact
that only a small portion of the lightcurve is shown around
each eclipse, the orbital phases of one eclipse with respect
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TABLE 5
PROPERTIES OF THE QUADRUPLE STARS

Parameter Binary A Binary B
Porb

a [days] 13.2735±0.0044 14.4158±0.0045
semimajor axisb [R�] 22.8±1.3 23.7±0.8
inclinationb [deg] 89.5+0.4

−0.4 89.7±0.3
ecosωa 0.0577±0.0001 0.0318±0.0001
eb 0.061+0.017

−0.003 0.033+0.007
−0.002

ωb [deg] 208+20
−36 192+32

−26
tprim eclipse

a [BJD] 2457401.864±0.003 2457403.021±0.003
3rd-light factorc 90+23

−25 97+11
−19

individual stars A1 A2 B1 B2
massb [M�] 0.49+0.06

−0.07 0.38+0.07
−0.09 0.45+0.05

−0.06 0.42+0.05
−0.06

radiusb [R�] 0.45+0.05
−0.06 0.35+0.06

−0.07 0.41+0.04
−0.05 0.39+0.04

−0.05
Teff

b [K] 3600+110
−80 3460+70

−60 3540+75
−55 3500+60

−45
luminosityb [L�] 0.031+0.013

−0.010 0.016+0.008
−0.007 0.023+0.008

−0.007 0.020+0.006
−0.006

log gb [cgs] 4.82+0.06
−0.05 4.92+0.08

−0.06 4.86+0.05
−0.04 4.89+0.05

−0.04
Notes. (a) Based on the K2 photometry. (b) Derived from an analysis of the K2 photometric lightcurve (see Sect. 6) and the uncertainties are 90% confidence

limits. This analysis utilized the analytic fitting formulae for R(m) and Teff(m) given in equations (4) and (5). When we modify the R(m) relation slightly to
account for the somewhat larger radii measured for a number of stars in close binaries (see App. A and Fig. 16), the cited masses would decrease by

∼0.03 − 0.04M�. (c) From photometric measurements of the ‘B-N’ and ‘R-S’ flux ratio.

to the other, shown on the x axes are correct, at least for the
mid-time of the 80-day observation.

6. PHYSICALLY BASED FITS TO LIGHTCURVES

In this section we fit the lightcurves shown in Fig. 9 to ex-
tract as many of the system parameters as can be constrained
by the eclipse depths, shapes, and relative phasing. We do not
attempt to fit the out-of-eclipse regions of the lightcurves for
effects such as ellipsoidal light variations (‘ELVs’), Doppler
boosting, or illumination effects (see, e.g., van Kerkwijk et
al. 2010; Carter et al. 2011). The reasons for this are twofold.
First, with orbital periods as long as 13-14 days, such effects
are quite small, i.e., at the ∼ten parts per million level (by
comparison with the eclipses which are typically 4000 ppm),
and these are further seriously diluted by the light from the ‘B-
N’ image. Second, the fidelity of the K2 photometry at these
low frequencies, i.e., on timescales of & 10 days is not to be
trusted at these low levels, and in any case they are largely
filtered out in the processing of the data.

Because of the very large dilution factor in these eclipses
(due to the presence of the ‘B-N’ image in the photometric
aperture), the so-called “3rd light” (‘L3’) parameter is in the
range 0.985-0.992, as we detail below. In principle, binary
lightcurve emulators such as Phoebe (Prša & Zwitter 2005)
can fit for the 3rd light as a free parameter. In practice, how-
ever, we have found that when L3 is so large, and two bi-
nary lightcurves are combined photometrically, Phoebe is
not able to find accurate values for either L3 or the remain-
der of the binary parameters. Thus, we adopt a more physi-
cally motivated approach to fitting the lightcurves which uses
supplemental information to ensure that the L3 parameter is
meaningful.

The approach we utilize to fit the eclipses is closely related
to the one presented by Rappaport et al. (2016) in the study
of the quadruple system in EPIC 212651213. However, it is
sufficiently different that we outline our procedure here.

In brief, the goal is to use the information in the two eclipses
for each binary, including their orbital phase separation, to fit
for 6 free parameters: the two masses, the argument of peri-
astron, the inclination angle, time of periastron passage, and
third light. (The eccentricity is found from the choice of ω and
the already determined value of ecosω – see Sect. 2.) We do
this under the assumption that all the stars are sufficiently low

in mass (i.e., . 0.5M�) that they are substantially unevolved
at the current epoch. This then allows us to determine both the
stellar radius and luminosity from the mass (and an assump-
tion about the metallicity). These 6 parameters are adjusted
via a Markov Chain Monte Carlo (‘MCMC’) routine, which
uses the Metropolis-Hastings algorithm (see, e.g., Ford 2005;
Madhusudhan & Winn 2009, and references therein; Rappa-
port et al. 2016) in order to find the best fitting values and their
uncertainties.

In somewhat more detail, each step in the MCMC proce-
dure goes as follows. We first choose a primary and secondary
mass from within a uniform prior ranging from 0.2 − 0.7M�.
The inclination angle, i, is chosen from within a uniform prior
ranging from 87◦ to 90◦, while the argument of periastron, ω,
can range over 0 to 2π. The dilution factor for either binary is
chosen from within the range 60–120 (equivalent to a 3rd light
of 0.987–0.992). Note that because there are two binaries
within the ‘R-S’ image, this dilution factor is about twice the
ratio of fluxes we find for ‘B-N’/‘R-S’. Finally, the time of pe-
riastron passage, τ , is chosen over a small range based on the
fact that for nearly circular orbits τ ' tecl + Porb(ω/2π − 1/4)
where tecl is the eclipse time.

Once the masses have been chosen, we compute the or-
bital separation from Kepler’s 3rd law using the known or-
bital period. The stellar radii and effective temperatures are
calculated from analytic fitting formulae for low-mass main-
sequence stars. Initially, we utilized the expressions of Tout
et al. (1996) which cover the entire main sequence (0.1 -100
M�), but later switched to our own relations derived more
explicitly for stars on the lower main sequence. We later veri-
fied that the two sets of fitting formulae actually produce fairly
similar results. Our fitting formulae for R(m) and Teff(m), dis-
cussed in Appendix A, are of the form:

log[R(m)] =
5∑

n=1

cn logn(m) (4)

Teff(m) =
b1m4.5 + b2m6 + b3m7 + b4m7.5

1 + b5m4.5 + b6m6.5 K (5)

where m is the mass in M�, R is in units of R�, and the con-
stant coefficients cn and bn are given in the Appendix.
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FIG. 10.— Correlation plot between M1 and M2 for both binaries taken
from the output of the MCMC fit to the eclipses.

The binary lightcurve is generated for two spherical stars
that are limb darkened with a quadratic limb-darkening law
using coefficients appropriate for early M stars and taken from
Claret & Bloemen (2011). As discussed above, no ELVs, il-
lumination, or Doppler boosting effects were computed be-
cause the wide orbit and the low frequency behavior of these
features would not reveal such effects. The lightcurve was
computed in 2-minute steps, and then convolved with the Ke-
pler long cadence time of 29.4 minutes.

After the MCMC parameters have been chosen for a given
binary realization, we use the value of the dilution factor in the
current MCMC step to scale the model lightcurve accordingly.

The model lightcurves are then compared to the observed
lightcurves with χ2 as the quantitative measure of agree-
ment. The Metropolis-Hastings jump conditions (see, e.g.,
Ford 2005) are then used to decide whether a given step will
be accepted or not. If the step is accepted, then that set of
parameters is stored as part of the parameter distributions.

After this process has been repeated many times, the prob-
ability distributions for the parameters of both stars in the bi-
nary under consideration, as well as those for i, ω, and e are
evaluated. The best fitting values and their 1σ uncertainties
are listed in Table 5. The best fits to the lightcurves of the two
binaries are shown in detail in Fig. 9.

Most of the parameter uncertainties, as determined from the
MCMC analysis, are unremarkable, and are given in Table 5.
However, in the case of Binary A, the masses of the two stars
are significantly different. In Fig. 10 we show the correlation
between M1 and M2 in both binaries. Note that the region
of uncertainty in the M1 − M2 plane for Binary A lies entirely
below the M1 = M2 line. This is related to the fact that for
low-mass stars in the mass range 0.3 − 0.5M� the Teff(M) re-
lation is remarkably flat (Baraffe & Chabrier 1996; Baraffe et
al. 1998). Since the ratio of eclipse depths depends only on
the values of Teff for the two stars (assuming circular orbits
or where ω ' 0), in order to explain the 25% more shallow
eclipse depth for star 2 in Binary A, the fitting code needs to
considerably reduce the values of M2 compared to M1.

A rather clear picture emerges of four quite similar M-stars
in two impressively alike binaries. We were gratified that so
much information could be extracted from the measurement
of only ∼10 eclipses for each binary. In particular, we find
impressive agreement with the masses derived independently
from the RV measurements (Table 3), and note that the uncer-
tainties of both determinations are actually quite comparable.

Finally, in regard to the MCMC fits, we have run the code
with the dilution factor as a free parameter with a large prior
range of values (i.e., & 60) as well as with a narrow enough
range so as to force a match with the observed ratio of the
‘B-N’/‘R-S’ fluxes (i.e., dilution = 90± 20). The extraction
of the basic physical results for the binaries is affected only in
an incidental way.

7. SIMULTANEOUS LIGHTCURVE SOLUTION

In this section we present an approach to simultaneously
modeling the lightcurves of two interacting binaries within a
single photometric aperture. As we shall see, this approach
is quite complementary to the physically-based lightcurve so-
lutions discussed in Sect. 6. For this purpose we modified
our Wilson-Devinney- and Phoebe-based lightcurve emula-
tor (see e.g., Wilson & Devinney 1971; Wilson 1979; Wil-
son 2008; Prša & Zwitter 2005), Lightcurvefactory
(Borkovits et al. 2013), to solve both binary lightcurves si-
multaneously. The practical difficulty of such a simultaneous
analysis is that it requires at least twice the number of pa-
rameters to be adjusted (or even more) than in a traditional
analysis of a single EB lightcurve (in this regard, see the
discussion of Cagaš & Pejcha 2012, which to our knowl-
edge is the only prior paper which reports a simultaneous
lightcurve analysis of two blended EBs). However, when ei-
ther overlapping eclipses are present, or there are large out-of-
eclipse variations in the lightcurve(s) which make the simple,
phase-folding-based disentanglement (see, e.g., Rappaport et
al. 2016) impossible, a simultaneous analysis becomes in-
evitably important. In our current situation this is not the case.
As was illustrated in the previous sections, the lightcurves of
the two EBs can, by chance, be nicely separated. On the
other hand, an important coupling remains between the two
lightcurves even in this case, namely the flux ratio of the two
EBs. If the two EB-lightcurves are solved separately for the
two systems it would mean that the value of the ‘third-light’
parameter in each solution would depend on the results of the
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FIG. 11.— Characteristic portions of the K2 lightcurve together with the synthetic simultaneous solution lightcurve (upper panel), and the residual curve
(below). Note that the two eclipses shown in each panel are for two different binaries.

complete solution for the other EB.20

Another reason for carrying out this additional simultane-
ous lightcurve analysis is to model the rapid, dynamically
forced, apsidal motion in both binaries. While the previously
applied physically based lightcurve fit (see Sect. 6) is found to
be highly effective in the quick and accurate determination of
the fundamental astrophysical parameters of the binary mem-
bers, in that method the effect of the apsidal motion was av-
eraged out. This resulted in larger uncertainties in the other
orbital parameters, especially in the arguments of periastron
(ωA,B) and in the eccentricities (eA,B) because of the use of
eclipses that were averaged both in their locations and dura-
tions.

The practical difficulties of the present simultaneous, but
otherwise traditional, lightcurve analysis are twofold. First,
the apsidal motion of the binaries should be modeled over
the complete 80-day-long K2 lightcurve (Fig. 1), i.e., the so-
lution lightcurve should be calculated for all the individual
eclipses, instead of calculating the solution only for the four
averaged eclipsing lightcurves (Fig. 9). The other reason lies
in the large number of parameters that need to be adjusted.
For example, as will be discussed just below, in our case the
number of required parameters to be adjusted is about 20. For
this reason we made an effort to reduce the number of free pa-
rameters and therefore to save computational time. Thus, we
took into account five strictly geometrical constraints among
some of the parameters.

These constraints are as follows. From the K2 lightcurve
we determined the mid-eclipse times of the first primary and
the first secondary eclipse for both binaries and also the dura-
tions of the first primary eclipses. We then used these results
to constrain the periastron passage times (τA,B), arguments of
periastron (ωA,B), and the sum of the fractional stellar radii
(RA1,B1 + RA2,B2)/aA,B in the following manner. First, for the
time offset of a secondary eclipse with respect to the previ-
ous primary eclipse we used an extended third-order relation
(i.e., taking into account the weak inclination dependence, as
well) which, according to Giménez & Garcia-Pelayo (1983)

20 Strictly speaking, another coupling between the two blended lightcurves
comes from both the light-travel time effect and the short timescale gravita-
tional perturbations (see Sect. 8) arising from the outer orbit of the two EBs
which form a tight quadruple system. These effects, however, cannot be mod-
eled due to the insufficient length of the observed dataset; therefore, we do
not take them into account with the only exception being the linear approxi-
mation of the dynamically forced apsidal motion.

is given by:

∆T = 0.5Ps +
Pa

π

[
2F1(e, i)ecosω −

1
3

F3(e, i)e3 cos3ω +O(e5)
]
,

(6)
where the relation between the sidereal (or, eclipsing) Ps and
anomalistic Pa periods is

Ps = Pa

(
1 −

∆ω

2π

)
, (7)

and ∆ω stands for the apsidal motion during one revolu-
tion of the binary. Furthermore, functions F1,3 describe the
very weak (practically negligible) inclination and eccentric-
ity dependence of the occurrence times of eclipsing minima
(see Eqn. 20 of Giménez & Garcia-Pelayo, 1983). Solving
Eqn. (6) which is third order in ecosω, the argument of peri-
astron ω can be determined at each step for the given values
of parameters Ps,e, i, ω̇.

Second, using the relation that at the mid-times of each
eclipse the true anomaly takes the value of

φ =±90◦ −ω + δ(e,ω, i), (8)

and any mid-eclipse times can simply be converted into the
actual time of periastron passage (τ ) with the use of the Ke-
pler’s equation. Note, in our case

δ ≈± ecosω cos2 i
sin2 i± esinω

� 1 (9)

(see e.g. Borkovits et al. 2015, Eqn. 26) and therefore, negli-
gible.

Finally, from the Taylor expansion of the projected separa-
tion of the centres of the stellar disks at the times of the first
and last contact one finds that(

R1 + R2

a

)2

=
(

1 − e2

1± esinω

)2

cos2 i +

[
(1± esinω)2

1 − e2

−

(
1± esinω

1± esinω
1 − e2

)
cos2 i

]
π2

P2
a

(∆t)2

+O
(
cos4 i

)
, (10)

where ∆t stands for the total duration of the given eclipse and,
as above, the upper signs refer to that eclipse which occurs
around φ+ω ≈ +90◦.

With the use of the above relations, the number of parame-
ters to be adjusted was reduced to 14. Eight of them are the
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TABLE 6
PARAMETERS FROM THE 2EB SIMULTANEOUS LIGHTCURVE SOLUTION

Parameter Binary A Binary B
Psid [days] 13.2737±0.0005 14.4161±0.0004
Panom [days] 13.3491±0.014 14.5122±0.017
semimajor axisa [R�] 22.64±0.74 24.18±1.01
i [deg] 89.30±0.39 89.58±0.45
e 0.0636±0.0016 0.0400±0.0018
ωb

0 [deg] 201.1±3.8 211.1±4.4
ω̇c [deg/yr] 56.3±10.7 60.8±11.0
τ b [BJD] 2457392.341±0.005 2457393.207±0.003
tprim eclipse [BJD] 2457401.859±0.005 2457403.020±0.003
individual stars A1 A2 B1 B2
Relative Quantities:
mass ratioa [q = m2/m1] 0.85±0.06 0.97±0.08
fractional radius [R/a] 0.02004±0.00185 0.01607±0.00169 0.01680±0.00132 0.01654±0.00131
fractional luminosity 0.00848 0.00405 0.00563 0.00504
extra light [l5] 0.977+0.005

−0.019
Physical Quantities:
T d

eff [K] 3564±69 3361±97 3471±112 3421±135
massa [M�] 0.47±0.05 0.40±0.04 0.46±0.06 0.44±0.06
radiuse [R�] 0.45±0.04 0.36±0.04 0.41±0.04 0.40±0.04
radius f [R�] 0.43±0.06 0.37±0.05 0.42±0.08 0.41±0.08
luminosityg [L�] 0.036±0.014 0.018±0.007 0.026±0.010 0.024±0.009
log gg [cgs] 4.80±0.10 4.92±0.11 4.88±0.10 4.88±0.10

Notes. (a) Derived from the RV solution; (b) Derived by the use of geometrical constrains, discussed in the text; (c) Determined for the epoch
T0 = 2457401.8642; (d) Teff,A1 was inferred from Eqn. (5), while the others were calculated from the temperature ratios; (e) Stellar radii were derived from the

fractional radii and the orbital separation inferred from the RV solution; (f) Stellar radii were derived directly from the R(m) expression in Eqn. (4) and the
masses obtained from the RV solution; (g) Derived quantities using the first set of stellar radii (determined from the R/a values).

orbital parameters PA,B, eA,B, iA,B, including the apsidal ad-
vance rates ω̇A,B. Another four star-specific adjusted parame-
ters are the ratios of stellar radii (R2/R1)A,B and temperatures
(T2/T1)A,B within each binary. Furthermore, the temperature
ratio of the two primaries (TB1/TA1) was also adjusted. Fi-
nally, we also allowed the extra light in the system to be ad-
justed, which in this special case should be denoted as l5. On
the other hand, we decided not to adjust the mass ratio qA,B,
but rather to fix it at an arbitrary value near unity. This can be
justified by the fact that in the case of such widely detached
systems (the fractional radii of all four stars were found to be
≤ 0.02) the effect of the tidal forces (having a cubic relation to
the fractional radii) on the stellar shapes remains negligible.
Therefore, neither the eclipse geometry, nor the out-of-eclipse
region (where ellipsoidal light variations would be found) is
influenced by the mass ratios (via tidal distortion), and thus
qA,B is practically unconstrained photometrically. (Note, the
same fact also provides a good justification for the use of the
relation in Eqn. (10) which remains valid only insofar as the
stellar disks are undistorted.) We also ceased to take into ac-
count the relations R(m) and Teff(m) in Eqns. (4) and (5) which
had played a key role in the physical lightcurve solution of
the previous section. In such a way, in the present analysis,
we used only strictly geometrical constraints, and omitted the
inclusion of any dimensioned astrophysical quantities.

Considering other parameters, a quadratic limb-darkening
law was applied, for which the coefficients were interpo-
lated from the passband-dependent precomputed tables of the
Phoebe team21 (Prša et al. 2011). Note, these tables are
based on the results of Castelli & Kurucz (2004). The gravity
darkening exponents were set to their traditional values ap-
propriate for such late-type stars (g = 0.32). The illumination
and Doppler-boosting effects were neglected. Even though

21 http://phoebe-project.org/1.0/?q=node/110

the calculation of the ellipsoidal light variations is inherent to
the code, as mentioned above, they do not play any role.

The results of the simultaneous lightcurve analysis are tab-
ulated in Table 6. Short illustrative sections of the solution
lightcurve are also presented in Fig. 11.

Besides the directly adjusted and the geometrically con-
strained quantities, we can take an additional step and also
derive some important physical parameters. The combination
of the photometrically determined inclination with the RV so-
lution yields the stellar masses. If the masses are known, the
semi-major axes can be determined from Kepler’s third law.
(We should keep in mind that for a precise result the anoma-
listic periods should be used; however, this is of theoretical,
but not practical, importance). In the next step, stellar radii
can be derived from their dimensionless fractional counter-
parts, and other quantities (e.g., log g’s) can also be calcu-
lated. Then, the last free physical parameter, i.e., Teff,A1 was
calculated from the Teff(m) relation given by Eqn. (5). Once
Teff,A1 is known, the temperatures of the other three stars can
be directly calculated from the direct outputs (i.e. the temper-
ature ratios) of the lightcurve solution.

Note, the existence of the R(m) and Teff(m) relations
(Eqns. 4 and 5) provides an additional possibility for prob-
ing either the astrophysical reliability of our solution, or the
validity of these relations themselves. For this comparison we
also calculated alternative stellar radii directly from the R(m)
relation and tabulated them in the row just below the other set
of stellar radii (see Table 6).

In net, we find reasonably good agreement between the re-
sults from the simultaneous lightcurve solutions and those
found from the physically-based solutions in Sect. 6. The
main gain of the new approach described in this section is the
much better determination of ωA,B and eA,B using the simulta-
neous solutions. Our solution revealed very rapid rates of ap-
sidal advance. For both binaries the yearly precession of the
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orbital ellipses was found to be about 60◦. At this point, how-
ever, it should be kept in mind that, from this result, it does
not follow that one complete revolution of the apsides would
take only about six years. In the next two sections we discuss
the dynamical properties and consequences of the common
gravitational perturbations in such a tight quadruple system.
We find that such short-term effects as, e.g., the periastron
passage of the two binaries in their outer orbit around each
other, may significantly alter the longer timescale (sometimes
called ‘secular’) apsidal advance rates. This can lead to large
enhancements in apsidal motion on timescales of months or
even weeks.

8. NUMERICAL SIMULATION OF THE ORBITS

Perhaps the most interesting features of this quadruple sys-
tem are the large ETVs measured over an interval of only 80
days (see Fig. 8). This clearly points to the two binaries being
in a relatively close and interactive orbit. Since the Keck AO
image of ‘R-S’ is unresolved at the 0.05′′ level, and the dis-
tance is estimated to be ∼600 pc (Table 2), we already know
that the projected size of the outer orbit of the quadruple can-
not be more than ∼30 AU. However, the question then arises
as to just how close the orbits of the two binaries must be in
order to induce the observed level of ETVs (Table 4).

We have attacked this question using two different ap-
proaches. In the first, we directly simulate, via numerical in-
tegration, a wide range of quadruple systems, each of which
contain binaries closely representing A and B whose prop-
erties we have determined fairly well (see Sects. 6 and 7).
In the second approach we gain some further insight into the
numerical results by the application of a number of analytic
approximations to the orbital perturbations.

For the numerical integrations of the quadruple orbit, we
started with binary A and binary B (of known properties;
see Table 5 and 6) in an outer orbit whose parameters we
choose from a grid. The basic 2D grid parameters are: (1)
the outer orbital period, Pout and (2) its eccentricity, eout. The
known masses of the two constituent binaries then determine
the semimajor axis of the quadruple system. Motivated by
the near 90◦ orbital inclination angles of the two individual
binaries, we arbitrarily took the mutual inclination between
the two binaries to be 0◦ (a reasonable, but still unproven, as-
sumption). We also assume that the inclination of the outer
orbit with respect to us on the Earth is 90◦, but since our ob-
servation is not long enough to observe eclipses of binary A
by binary B, or vice versa, this latter assumption is mostly im-
material. The initial value of the outer argument of periastron,
ωout was simply taken to have an arbitrary value because (i)
we follow the system for many outer orbits during which time
the quadruple system can precess, and (ii) the interactions in
the binary are not materially dependent on ωout so long as we
record our numerical results over a number of complete cycles
of Pout.

The grid of outer orbits we covered ranged from Pout = 100
days to 2000 days, in steps of 100 days, and eout = 0 − 1 in
steps of 0.05. All orbits were integrated for a total duration of
200 years. We used a simple Runge-Kutta 4th order integrator
with a fixed timestep of 4 minutes. The eclipse times were
interpolated to an accuracy of a few seconds.

We did limit the grid of outer orbits to values of Porb and
eout that would be long-term dynamically stable according to

FIG. 12.— Simulated ETV curves for an illustrative outer orbit of binary A
around binary B with Porb = 500 d and eout = 0.58. The red and blue curves
are the ETV differences between the primary and secondary eclipses for the
A and B binaries, respectively (with the mean difference Pbin/2 subtracted).
We plot the ETV differences because that is what the relatively short K2
observations are able to measure.

the criterion22 of Eggleton & Kiseleva (1995):

Pout & 5.0Pbin
(1 + eout)3/5

(1 − eout)9/5 (11)

where we have taken the mass ratio between binary A and bi-
nary B to be unity. Inadvertently, we did attempt to integrate
a couple of systems that were just somewhat beyond this sta-
bility line, and those systems indeed disintegrated.

During the course of each orbital simulation we kept a tab-
ulation of the eclipse times of both the primary and secondary
eclipses, including all physical and light travel time delays.
Because the 80-day K2 observation is so relatively short, we
were able to measure only a linear ‘divergence’ of the ETVs
of the primary eclipse relative to the secondary eclipse. Ac-
cordingly, in the numerical simulations of the orbits, we also
tabulated the differences in ETVs between the primary and the

22 Here we are using the Eggleton & Kiseleva (1995) criteria for 3-body
dynamical stability for our 4-body problem by treating each binary, in turn,
as a point perturber for the other.
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FIG. 13.— Exploration of the Pout − eout plane to determine the importance
of dynamically driven apsidal motion in the EPIC 220204960 quadruple sys-
tem. The colors indicate the fraction of time during Pout when the induced
ETVs over the course of 80 days match or exceed those observed during the
K2 observations. Red, orange, cyan, blue, purple, and dark purple represent
90%, 80%, 40%, 25%, 10%, and 1%, respectively.

secondary. An illustrative example of these ETV differences
is shown in Fig. 12. The top panel shows the ETV differences
over the course of approximately 180 years for the A binary in
red, and the B binary in blue. The assumed values of Pout and
eout for this example were 500 days and 0.58, respectively.
The large sinusoidal features are the approximately 50-year
apsidal motion of the binaries. A zoomed-in view of the ETV
differences are shown in the bottom panel of this same figure.
The large dips in the curve every 500 days are due to the pe-
riastron passage of the two binaries in their outer orbit when
the mutual interactions are the highest.

What we would like to extract from diagrams like this are
the changes in ETV differences from eclipse to eclipse. Even
more important is the maximum ETV difference that can ac-
cumulate over an 80-day interval that matches the K2 obser-
vations. Thus, for each quadruple whose ETVs are followed
for 200 years, we record how often the ETV differences over
the course of 80 days exceed those that are observed (Table
4), and for what fraction of the outer orbital cycle.

We summarize these results of our numerical integrations
of quadruple orbits in Fig. 13. The grid shown in the figure
covers Pout from 100 - 2000 days in steps of 100 days, and eout
from 0 to 1 in steps of 0.05. The color coding of the image
display represents the fraction of time that the ETVs match or
exceed those observed from EPIC 220204960 over an 80-day
interval with K2. Red, orange, cyan, blue, and purple cor-
respond to fractions of the time exceeding 90%, 80%, 40%,
25%, and 10%, respectively. The faintest purple regions are
indicative of the fact that such large ETVs would be rare, i.e.,
occur . 1% of the time. Systems to the left of this colored
region will exhibit such large ETVs either extremely rarely,
or not at all. Systems to the right of the colored region are
unstable.

We conclude from this study that it is most probable that

FIG. 14.— Orbital motion of the EPIC 220204960 quadruple system for an
assumed illustrative outer orbital period of 500 days and eccentricity of 0.3.
The orbital tracks of all four stars are shown in different colors.

the outer orbit in this system has Pout in the range of 300−500
days. It is plausible that Porb could be as long as 2 − 4 years,
but then we would have to have been extremely lucky to see
the large ETVs exhibited by both binaries. Finally, we show in
Fig. 14 a tracing of the four stars in their binary and quadruple
orbits for the illustrative case of Pout = 500 days, and eout = 0.3.

9. ANALYTIC ASSESSMENT OF THE OUTER ORBIT

In order to gain some analytic insight into the ETVs that one
binary induces in the other, we treat each binary as a point per-
turber for the other. We have good reasons for supposing that
both the inner (i.e., binary) orbits and also the outer (quadru-
ple) orbit are coplanar. If this were not so, and at least one
of the two binary orbits were tilted with respect to the outer
orbit, dynamical interactions would drive orbital precession
for both the tilted binary, as well as the outer orbit. There-
fore, even the other binary orbit would no longer be coplanar
with the outer orbit. As a consequence all three orbits would
precess continuously. In such a scenario we would have to
be extremely lucky to observe eclipses in both binaries at the
same time. Thus, a more probable possibility is that all three
orbits should be (nearly) coplanar. For such a configuration,
we need only consider the analytic forms of the perturbations
for the strictly coplanar case.

As is known (see, e.g., Brown 1936), hierarchical triples
exhibit periodic dynamical perturbations on three different
timescales: ∼ Pin,∼ Pout and∼ P2

out/Pin. We omit the smallest
amplitude shortest timescale ones, and consider only the other
two groups.

First we turn to the longest (sometimes called as “apse-
node”) timescale perturbations. In the framework of the
quadrupole-order, hierarchical, three-body approximation for
coplanar orbits, the apsidal precession rate is a pure, algebraic
sum of the relativistic, classical tidal, and dynamical (third
body) contribution, and it is also constant in time apart from
low-amplitude fluctuations on the timescales of the other two,
shorter-period-class perturbations. Therefore, in this scenario,
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TABLE 7
APSIDAL MOTION PROPERTIES OF THE QUADRUPLE STARS

Parameter Binary A Binary B
ω̇GR [rad/day] 1.03×10−7 0.93×10−7

[′′/yr] 7.77 7.00
ω̇tidal [rad/day] 2.40×10−9 1.87×10−9

[′′/yr] 0.18 0.14
ω̇a

dyn [rad/day] 2.37×10−4 2.44×10−4

[deg/yr] 4.97 5.11
ω̇b

dyn [rad/day] 3.21×10−5 3.30×10−5

[deg/yr] 0.67 0.69
Pa

apse [yr] 72.5 70.4
Pb

apse [yr] 535 519
Notes. a: For assumed parameters: Pout = 500 d and eout = 0.58; b:

Pout = 1000 d, eout=0.0.

the rate of apsidal advance of the inner binary can be written
as:

ω̇in = ω̇GR + ω̇tidal + ω̇dyn, (12)

where the contributions from the first two terms are given by
Levi-Civita (1937) and Kopal (1959) for ω̇GR, and Cowling
(1938) and Sterne (1939) for ω̇tidal. The dynamical term due
to driven precession by the presence of the third body is:

ω̇dyn =
3π
2

Mout

Min + Mout

Pin

P2
out

(1 − e2
in)1/2

(1 − e2
out)3/2

(13)

(e.g., Mazeh & Shaham 1979). where Min = m1 + m2 is the
total mass of the inner binary, while Mout is the mass of the
third component, which in our case is the total mass of the
perturbing, other binary system.

We have evaluated ω̇GR, ω̇tidal, and ω̇dyn for a reasonable set
of system parameters, and the results are given in Table 7.
As one can see, the apsidal motion in both binaries is highly
dominated by the dynamical perturbations of the other binary
and therefore, both the relativistic and tidal contributions can
safely be neglected.

In what follows, instead of discussing the ETVs occurring
in the primary and secondary eclipses separately, we concen-
trate on the difference between ETVs of the primary and sec-
ondary eclipses. Such a treatment is quite appropriate in those
cases where the observing window is much shorter than the
period of the ETVs. The subtraction of the primary ETV
from that of the secondary eclipse results in terms which have
similar signs for the primary and secondary ETVs formally
vanishing. The only remaining terms are those which anticor-
relate between the primary and secondary ETV curves. As a
result, the usual light-travel time effect, i.e., the Rømer-delay
is automatically eliminated, together with any other inciden-
tal period-change mechanisms, that would result in correlated
variations in the primary and secondary eclipse timings.

The time displacement between the secondary eclipses and
the mid-time between the primary eclipses is (see e.g., Sterne
1939):

D =
P
π

{
arctan

[
ecosω(

1 − e2
)1/2

]
+
(
1 − e2)1/2 ecosω

1 − e2 sin2ω

}
,

(14)
where we omit the very week inclination dependence (see,
e.g., Giménez & Garcia-Pelayo 1983). Since both binaries
are in low-eccentricity orbits, we can safely use the first order

term of the usual expansion of (14) as,

D' P
π

2ecosω +O(e3), (15)

which, naturally gives back Eqn. (1). In the coplanar case of
our quadruple perturbation model, there are no perturbations
either in the inner eccentricity, or the anomalistic period and,
therefore, for our binaries we find the rate of change in the
ETV differences due to apsidal time-scale forced precession
to be:

Ḋapse ' −
2Pin

π
ω̇inein sinωin (16)

We might next substitute ω̇dyn from Eqn. (13) for ωin in
Eqn. (16), but this will not be necessary as we shall see.

At this point, before trying to compare the observed and
theoretical ETV differences, we must also include the shorter-
term, P2-timescale effects. For the P2-timescale third-body
perturbations in the quadrupole-approximation, the same
ETV-difference in the coplanar case can be calculated from
Eqns. (5–11) of Borkovits et al. (2015):

DPout ' APout

(
−3einMsinωin +

15
2

einC
)

+O(e3
in), (17)

where

APout =
1

2π
Mout

Min + Mout

P2
in

Pout

(1 − e2
in)1/2

(1 − e2
out)3/2

(18)

and furthermore,

M=φout(t) −θout(t) + eout sinφout(t), (19)
C = cos[2φout(t) + 2ωout −ωin] + eout× (20){

cos[φout(t) + 2ωout −ωin] +
1
3

cos[3φout(t) + 2ωout −ωin]
}

where φout(t) and θout(t) are the true and mean anomalies
of the outer orbit. We calculate the temporal variations of
these quantities, in accordance with Eqns. (54) and (55) of
Borkovits et al. (2011), to obtain:

Ṁ' 2π
Pout

[
(1 + eout cosφout)3(

1 − e2
out
)3/2 − 1

]
, (21)

Ċ '−
4π
Pout

(1 + eout cosφout)3(
1 − e2

out
)3/2 sin(2φout + 2ωout −ωin), (22)

where, in the last equation, the much smaller additional terms
due to the apsidal advances of both the inner and outer orbits
are neglected.

If we combine all the terms that contribute to the derivative
of DPout , i.e., ḊPout , from Eqns. (17–18) and Eqns. (21–22), we
find:

ḊPout ' einAPout

2π
Pout
{3sinωin −

(1 + eout cosφout)3(
1 − e2

out
)3/2 (23)

× [3sinωin + 15sin(2φout + 2ωout −ωin)]},

where additional small contributions (in the order of APout ω̇)
have been neglected.

Finally, we can add the Ḋapse term due to the continuous
forced precession of the binaries’ orbits found in Eqn. (16)
with the P2-timescale dynamical effects from Eqn. (17). First,
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FIG. 15.— Plots of F (φout) for 6 different illustrative values of ωout, where
φout is expressed in radians. These curves indicate the dependence of Ḋtot on
the true anomaly of the outer orbit according to Eqn. 26. Ḋtot is the difference
in the ETVs between the primary and secondary eclipses.

however, we express Ḋapse in terms of APout :

Ḋapse ' −
6π
Pout

einAPout sinωin (24)

It is then immediately clear that the Ḋapse term cancels with
the first term in Eqn. (23). Therefore, we find a net difference
in the ETVs of the primary and secondary eclipses of:

Ḋtot ' AetvF(φout) (25)

where F(φout) is given by

F(φout) = (1 + eout cosφout)3 [sinωin + 5sin(2φout + 2ωout −ωin)]
(26)

and the dimensionless Aetv is defined as:

Aetv≡−3ein
Mout

Mout + Min

(
Pin

Pout

)2 (1 − e2
in)1/2

(1 − e2
out)3

'5×10−5
(

500 d
Porb

)2( ein

0.05

)(
1 − e2

out

)−3
d d−1 (27)

The functional part of Ḋtot, F(φout), is plotted in Fig. 15 for
6 illustrative values of the unknown parameter ωout, and the
most likely value of ωin ' 20◦ or, equivalently, 200◦ (see Ta-
ble 6) and with e = 0.58. These functions mimic the periodic
spikes seen in Fig. 8 that are evident on the Pout timescale.

In conclusion, one can see, that the Pout-timescale perturba-
tions significantly alter the instantaneously measurable ETV
difference-variations, and, similarly, the instantaneous apsi-
dal motion rate. We note that this is true even for a circular
outer orbit! In this latter case the first factor in the expression
for Ḋtot in Eqn. (26) would remain constant, but the second
trigonometric term would still result in significant sinusoidal
variations.23

10. SUMMARY AND CONCLUSIONS

We have presented a quadruple system consisting of a
13.27-day binary orbiting a 14.41-day binary in a quadruple
orbit with an outer period that we infer to be about 1 year.

23 Note that even though for eout = 0, ωout loses its meaning, φ+ωout retains
it, and gives the orbital longitude of the third component measured from its
ascending node.

Both binary orbits are slightly eccentric and have inclination
angles that are very close to 90◦. An adaptive optics image
of the host indicates that the current projected separation be-
tween the two binaries is . 0.05′′, implying a projected phys-
ical separation of . 30 AU.

Because of the relatively wide constituent binaries, the dy-
namical interactions are quite substantial, larger than for any
other known quadruple system (Sect. 5). Indeed, large eclipse
timing variations of the order of 0.05 days (over the 80-day
observation interval) are detected in both binaries. As we
showed in Sect. 9, these ETVs are due to a combination of
the so-called ‘physical delay’ over the period of the quadru-
ple orbit, and longer-term driven apsidal motion of the mildly
eccentric binaries.

In spite of the faint magnitude of the quadruple system, we
were able to obtain radial-velocity-quality spectra at five in-
dependent epochs (Sect. 4). By carrying out cross-correlation
functions against a template M-star spectrum, we are able to
see peaks corresponding to all four stars. After checking all
possible combinations of stellar IDs and CCF peaks, we were
able to pin down an apparently unique set of star–CCF iden-
tifications. We then carried out orbital fits to these velocities
with four free parameters for each binary: K1, K2, γ, and γ̇.
Detection of the acceleration of each binary in its outer orbit
seems robust. The K-velocities were then used to determine
the stellar masses which are all close to 0.41±0.05M�.

We have analyzed the K2 photometric lightcurve using a
physically-based lightcurve emulator to evaluate the binary
systems’ parameters (Sect. 6). These allow us to make de-
terminations of the four constituent stellar masses that are in
good agreement with, and of comparable accuracy to, the RV
results. Through this analysis we were also able to measure
the orbital inclination angles of the two binaries, as well as to
make good estimates of the third-light dilution factors.

Also in regard to the determination of the binary systems’
parameters, we re-introduced a technique (to our knowledge
used only once before) to analyze the photometric lightcurves
of both binaries simultaneously (Sect. 7). This analysis led
to a more robust determination of ω, ω̇, and thereby a more
precise value for the orbital eccentricity for both binaries.

We were able to estimate the period of the outer quadru-
ple orbit via numerical simulations of quadruple systems with
constituent binaries of the type we observed in a range of outer
orbits covering a grid in Pout and eout (Sect. 8). After selecting
only those quadruple system parameter values that might lead
to ETVs of the magnitude we observe, we were led to the con-
clusion that Pout is most likely in the range of 300-500 days.
Analytic estimates of the magnitudes of the expected ETVs
are in good accord with the numerical simulations (Sect. 9).

Finally, we urge a two-pronged future investigation of this
system. First, it would indeed help define the whole system if
interested groups with access to large telescopes could track
the radial velocities of these two binaries over an interval of
months to a year. Even 10 RV spectra over the next year might
well be sufficient to characterize the outer orbit. Second, if
groups with access to even modest size telescopes could time
a few of the eclipses over the next next year, that could also
uniquely nail down the outer orbital period. In this regard, we
note that if such photometric observations are made in good
seeing, where the ‘B-N’ image can be excluded from the aper-
ture, the binary A and B eclipse depths of ∼18% should be
relatively easy to measure.
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APPENDIX

MASS-RADIUS-TEMPERATURE RELATIONS FOR LOW-MASS STARS

Motivation
In Section 6 we used a physically-based lightcurve analysis to infer the constituent masses of the quadruple system. As part

of that analysis we adapted relations for R(M) and Teff(M), where both the radius, R, and effective temperature, Teff, are assumed
to be functions of the mass only (aside of course from the assumed chemical composition). This is expected to be an excellent
approximation for stellar masses . 0.6M� which will not evolve significantly over a Hubble time. At the opposite mass end, it is
good to keep in mind that stars with mass . 0.2M� will not have fully joined the main sequence for at least 300 Myr (see, e.g.,
Nelson et al. 1993).

Initially, for the R(M) and Teff(M) relations, we used the analytic fitting formulae for R(M) and L(M) given by Tout et al. (1996),
then solving for Teff, and these provided quite reasonable results. In the case of binary B, both stellar masses are very similar, and
therefore we expect a very similar Teff for both stars, and hence similar masses, regardless of the accuracy of the Teff(M) relation.
However, for binary A, since the two eclipse depths are distinctly different (by ∼25%), we can expect that Teff for the two stars
will be somewhat different (approximately 6%). The difference in mass required to produce this difference in Teff will actually
depend sensitively on the slope of the Teff(M) relation. This is our motivation for re-examining this region of the lower main
sequence.

In what follows, we generate a high density of stellar evolution models, and then fit analytic expressions to the results.

The Stellar Evolution Code
All of the stellar models were computed using the Lagrangian-based Henyey method. The original code has been described

in several papers (see, e.g., Nelson et al. 1985; Nelson et al. 2004) and has been extensively tested (Goliasch & Nelson, 2015).
The major modifications are due primarily to significant improvements in the input physics that are central to the evolution of
low-mass stars and brown dwarfs. In particular, we use the OPAL opacities (Iglesias & Rogers 1996) in conjunction with the
low-temperature opacities of Alexander & Ferguson (1994), the Saumon, Chabrier & Van Horn (1993) equation of state, and the
Allard-Hauschildt library of non-gray atmospheres (Hauschildt & Allard, 1995; Hauschildt et al. 1999). Great care has been taken
to ensure that the physical properties blend smoothly across their respective boundaries of validity. Specifically, our treatment
enforces continuity of the respective first-order partial derivatives over the enormous range of the independent variables (i.e.,
density, temperature, and chemical composition) that are needed to fully describe the evolution of low-mass, solar metallicity
[Z=0.0173], stars (see Maisonneuve 2007).

Results
We plot in Fig. 16 the radius-mass relation from our evolutionary models (at a representative time of 5 Gyr), as bold red circles.

The solid black curve is a fit to a logarithmic polynomial given by the following expression:

log[R(m)] = 1.4296 log(m) + 1.5792 log2(m) + 2.8198 log3(m) + 3.0405 log4(m) + 1.2841 log5(m) (A1)

where R and m are the stellar radius and mass, in solar units, and the logs are to the base 10. The range of applicability should be
limited to 0.1 . m . 0.8. Overplotted as green circles are the corresponding results of Baraffe et al. (1998), which are in rather
good agreement with our models (see Fig. 16). The Tout et al. (1996) R(m) relation (not shown) is also in substantial agreement
with the model results, and it has the benefit of working over a much wider range of masses than our expression. The blue circles,
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FIG. 16.— Model stellar radius vs. mass relation on the lower main sequence for solar metallicity stars. The red circles are models that we generated for this
work (see text). The light green circles are taken from the Baraffe et al. (1998) results. The solid black curve is the log-polynomial fit (Eqn. A1) to our model
points (in red). Blue circles with error bars are well-measured systems (see, e.g., Cakirli et al. 2010; Kraus et al. 2011; Carter et al. 2011b; Dittmann et al. 2016,
and references therein). The grey straight line marks the trend of the data points away from the models.

with error bars represent 27 well-measured systems as tabulated by Cakirli et al. (2010), Kraus et al. (2011), Carter et al. (2011b),
Dittmann et al. (2016), and references found therein. The straight gray line indicates the trend of the data points away from the
models.

We have also fit the empirical R(m) points in Fig. 16 with a function of the same form as in Eqn. (A1). We tested the effect
of using this expression on our physically-based lightcurve fits in Sect. 6, and we find that it typically yields lower masses for
the constituent stars by ∼0.03 − 0.04M� (see the caption to Table 5). However, we do not emphasize these lower masses for two
reasons. First, if anything, the masses determined by the use of Eqn. (A1) itself are in better accord with the masses determined
from the RV measurements, and second, the vast majority of the empirical masses and radii are from stars in short-period binaries
(i.e., with 0.4 . Porb . 3 days) where tidal heating may play a role in enlarging their radii.

The results for the Teff–mass relation for the lower main sequence are shown in Fig. 17. Again, the red and green circles
represent our models in comparison with those of Baraffe et al. (1998). The blue circles with error bars are well-measured
systems along the lower-mass main sequence. We fit an analytic expression of the form:

Teff(m) =
108.727 m4.5 + 109.425 m6 − 109.928 m7 + 109.968 m7.5

1 + 105.284 m4.5 + 105.692 m6.5 (A2)

to these results, where, again, m is in units of M� and Teff is in K. Note the prediction of a rather flat plateau-like region in Teff
over the mass interval ∼1/4-1/2 M�. The mass range of applicability for this expression is the same as for Eqn. (A1). Our model
points are in good agreement with those of Baraffe et al. (1998), except near the turnover point at∼0.15 M�. By contrast, the Tout
et al. (1996) Teff − M relation (not shown), while having a somewhat similar shape, is systematically higher than ours by ∼200
K. This seems likely the result of the Tout et al. (1996) attempt to fit the entire main sequence (covering 3 orders of magnitude
in mass) with a single analytic expression. There are few good empirical Teff − M pairs over this region, but, if anything, they
indicate values of Teff that are ∼100-200 K lower than our analytic relation.

Finally, in Fig. 18 we show how our R − Teff relation (deduced by eliminating mass from Eqns. (A1 and A2), compares with
21 stars measured interferometrically (taken from data compiled by Newton et al. 2015; interferometric data from Demory et
al. 2009; Boyajian et al. 2012). The region we are concerned with in this work is largely confined to within the purple box. Aside
from the outlier star (Gl 876) at R = 0.376M� and Teff = 3176 K, the data are in fairly good agreement with the model curve.



Interacting Quadruple Star System 19

FIG. 17.— Model stellar effective temperature vs. mass relation on the lower main sequence for solar metallicity stars. The symbols and color coding are the
same as in Fig. 16. The solid black curve is the fit of Eqn. (A2) to our model points (in red).

FIG. 18.— Model stellar radius vs. effective temperature relation on the lower main sequence for solar metallicity stars. The red curve is a parametric
expression plotted from Eqns. (A1) and (A2). The blue circles with error bars are taken from the work of Demory et al. (2009), Boyajian et al. (2012), and
Newton et al. (2015). The purple box is the region within which most of our results are derived. The masses listed on the right-hand axis are parametrically
inferred from Eqns. (A1) and (A2) and are not measured.
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