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Abstract

Phylogenetic diversity—patterns of phylogenetic relatedness among organisms in ecological communities—provides
important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in
microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA
gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for
inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA
fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced
bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from
multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the
phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand
patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our
findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic
diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured
by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity
estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting
that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences
are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a
phylogenetic context.
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Introduction

In recent years there have been significant advances in the

development of phylogenetic diversity statistics to quantify the

relative importance of processes such as dispersal, competition and

environmental filtering in shaping community structure [1,2].

These tools have been applied to the study of microbial

communities in ecosystems ranging from mountains to ocean

depths [3–7], and within hosts including the human microbiome

[8] and plant phyllosphere [9]. While these studies have provided

great insight into the processes responsible for microbial diversity,

they have almost exclusively used a single gene, the 16S SSU-

rRNA gene [10], as a phylogenetic marker to study microbial

community structure [3,4,8,11,12].

As sequencing costs have declined and novel technologies

developed, a new field has emerged in the study of microbial

communities wherein DNA isolated from environmental samples

is randomly sequenced using the same shotgun approaches used to

sequence the human and other genomes [13]. This metagenomic

sequencing offers many advantages when studying microbial

diversity [14], including the potential to provide insights into the

ecological distribution of multiple gene families simultaneously.

Metagenomic data also allows one to sample a broad diversity of

genes at once, rather than focusing on one (e.g., SSU-rRNA) or a

few genes. SSU-rRNA genes, though very powerful, are not

perfect indicators of phylogenetic relatedness [15], and variance in

copy number between taxa makes SSU-rRNA genes less than

ideal for assessing relative abundance patterns [16]. The non-

targeted nature of shotgun sequencing allows a more representa-

tive sample of entire communities than can be obtained using

targeted methods such as PCR amplification [13,16], although

metagenomic studies are not without their own biases, including

the fact that not all genes or clades can be sequenced equally well

by metagenomic techniques [17].

The decreasing cost of sequencing technologies will lead to a

massive increase in the sequencing depth and overall availability of

metagenomic data [13,18,19]. Complete microbial genomes will

also become increasingly easy to sequence [20], which in turn will

allow improved alignment, taxonomic identification, and phylo-

genetic placement of metagenomic reads from multiple gene

families. Despite the promise of metagenomic data to provide

insights into microbial ecology and evolution, methods to measure

phylogenetic diversity based on metagenomic data remain in their

infancy [21]. Previous studies of microbial diversity using

metagenomic data have generally quantified the structure of

microbial assemblages by binning metagenomic sequences into
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taxonomically or functionally similar groups based on overall

sequence similarity [22,23], or on single marker genes [24], and to

date it has been challenging to apply phylogenetic diversity

statistics to metagenomic data sets. To address this challenge, we

present a novel approach for inferring phylogenetic relationships

among assemblages of microorganisms based on metagenomic

data, and apply this method to illuminate patterns of microbial

phylogenetic diversity along an oceanic depth gradient [22].

Results and Discussion

Phylogenetic inference from metagenomic data
To study the phylogenetic diversity of microbial communities,

one needs to first generate hypotheses regarding the phylogenetic

relationships among the organisms in those communities. While in

theory metagenomics has enormous potential for such studies, in

practice making use of metagenomic data to quantify phylogenetic

diversity has been challenging. A key challenge is which gene or

genes to study. While previous studies have constructed phyloge-

netic trees for single genes based on metagenomic data [16,24],

this approach uses only a small fraction of the data available from

metagenomic sampling. Another challenge relates to the frag-

mented nature of reads produced by shotgun sequencing of

environmental samples, which results in many reads being

mutually non-overlapping, making estimation of the phylogenetic

distance among those reads difficult.

To overcome these challenges, we took advantage of the rapidly

increasing availability of fully sequenced bacterial genomes [20].

Specifically, we used full-length gene sequences from these genomes

as a phylogenetic scaffold to allow inference of phylogenetic

relationships among metagenomic sequences from different gene

families (Figure 1). This approach extends and unifies the

approaches used by existing studies of phylogenetic relationships

among metagenomic reads, which have generally focused on

discovering novel functional gene families in metagenomic data sets

based on individual genes [24,25] or on phylogenetically-informed

taxonomic identification of metagenomic reads [16,26–28].

For our analysis, we began with a set of 31 gene families (which

we refer to as ‘marker’ genes) chosen based on their universality,

low copy number, phylogenetic signal, and low rates of horizontal

gene transfer [26]. We built alignments and inferred a phylogeny

linking the sequences from these marker gene families across 571

fully sequenced bacterial genomes (which we refer to as ‘reference’

sequences). We then derived marker gene models from the

reference sequences and employed the AMPHORA bioinfor-

matics pipeline [26] to identify metagenomic sequences belonging

to each marker gene family in the seven environmental samples of

the Hawaii Ocean Time-series (HOT) ALOHA station data set

[22]. Next, we aligned the metagenomic sequences to the gene

models and placed each of them on the reference phylogeny using

maximum likelihood short-read-placement methods [29] to

account for variation in evolutionary rates across sites and gene

families (Figure 2). Because these marker genes are almost

exclusively single-copy genes [26], we expect to sample sequences

from organisms in the environment in proportion to their relative

abundance. Following this assumption, this approach allowed us to

measure diversity directly from individual sequences rather than

binning them into taxonomic groups or OTUs.

Measuring phylogenetic diversity using metagenomic
data

We next evaluated the ability of our phylogenetic marker gene

approach to detect patterns of diversity along the HOT ALOHA

ocean depth gradient, and compared our approach to existing

approaches to analyzing microbial data, including SSU-rRNA-

gene-based measures of phylogenetic diversity and taxonomic

composition. By analysis of phylogenetic relatedness among

metagenomic sequences from the 31 marker gene families

(Figure 2), we measured phylogenetic diversity within each

environmental sample as the mean pairwise phylogenetic distance

(MPD) separating all pairs of sequences in the sample [1,30]. As

with most phylogenetic diversity metrics, this widely-used measure

of phylogenetic diversity is correlated with the number of

Figure 1. Conceptual overview of approach to infer phylogenetic relationships among sequences from metagenomic data sets.
doi:10.1371/journal.pone.0023214.g001

Measuring Phylogenetic Diversity with Metagenomes
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sequences present in a sample [2,31,32]. Since both sampling

intensity and the number of metagenomic sequences identified

varied among samples, we standardized the observed phylogenetic

diversity in each sample by comparing it to the values expected

from 999 random draws of an equal number of sequences from the

pool of all metagenomic reads to calculate a standardized effect

size (SES) of phylogenetic diversity [33]:

SESMPD~
MPDobserved{mean(MPDrandomizations)

sd(MPDrandomizations)

The resulting standardized phylogenetic diversity measure

(SESMPD) expresses how different the observed phylogenetic

diversity value is (in units of standard deviations (sd)) from the

average (mean) phylogenetic diversity in the randomly generated

communities. Positive values of SESMPD indicate phylogenetic

evenness (co-occurring sequences more phylogenetically distantly

related than expected by chance), while negative values indicate

phylogenetic clustering (co-occurring sequences more closely

related than expected by chance).

Standardized phylogenetic diversity peaks at intermediate

oceanic depth, with the lowest phylogenetic diversity in the

shallowest samples (Figure 3). Phylogenetic diversity in the deepest

samples is slightly less than at intermediate depth samples. This

trend was observed for phylogenetic diversity calculated based on

both PCR-derived SSU-rRNA gene sequences and metagenomic

marker sequences, indicating that comparable results can be

obtained from both types of sequence data. Phylogenetic diversity

calculated for metagenomic sequences indicated that compared to

a null model of drawing the observed number of sequences in each

sample randomly from the entire phylogeny, samples from the

photic zone (,200 m depth) were phylogenetically clustered

(SESMPD,0), meaning that the sequences were more closely

related than expected by chance. In contrast, samples from

intermediate depths were phylogenetically even (SESMPD.0),

meaning that the sequences were more distantly related than

expected by chance. The deepest sample from 4000 m did not

show a clear difference from the null model; it was either

phylogenetically clustered or even relative to this null model

depending on the method used to measure phylogenetic

relatedness (SSU-rRNA gene and metagenomic ML phylogeny:

SESMPD,0; metagenomic bootstrap phylogenies: SESMPD.0).

Phylogenetic diversity calculated for SSU-rRNA gene sequences

showed a similar unimodal pattern with highest diversity at

intermediate depths, although SSU-rRNA gene phylogenetic

Figure 2. Phylogenetic tree linking metagenomic sequences from 31 gene families along an oceanic depth gradient at the HOT
ALOHA site [22]. The depth from which sequences were collected is indicated by bar color (green = photic zone (,200 m depth), blue = nonphotic
zone). The displayed tree is the one that was identified as having the maximum likelihood by placing metagenomic reads on a reference phylogeny
inferred with a WAG + G model partitioned by gene family in RAxML [29]. The phylogeny is arbitrarily rooted at Thermus for display purposes.
doi:10.1371/journal.pone.0023214.g002

Measuring Phylogenetic Diversity with Metagenomes
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Figure 3. Taxonomic diversity and standardized phylogenetic diversity versus depth in environmental samples along an oceanic
depth gradient at the HOT ALOHA site. axonomic diversity is calculated as OTU richness (number of OTUs) based on binning of SSU-rRNA gene
sequences into OTUs at a 95% and 99% similarity cutoff. Phylogenetic diversity is calculated as the standardized effect size of the mean pairwise
phylogenetic distances (SESMPD) among SSU-rRNA gene sequences (blue symbols) and metagenomic sequences from the 31 AMPHORA gene families
(red symbols). Standardized phylogenetic diversity values less than zero indicate phylogenetic clustering (sequences more closely related than
expected); values greater than zero indicate phylogenetic evenness (sequences more distantly related than expected). Phylogenetic diversity was
estimated from the maximum likelihood phylogenies for SSU-rRNA gene and metagenomic data, as well as for 100 replicate phylogenies inferred
from the metagenomic data with a phylogenetic bootstrap (black symbols). Lines indicate best-fit from quadratic regressions of diversity versus
depth; the slopes of regressions of taxonomic diversity versus depth were not significantly different than zero (P.0.05). At all depths, standardized
phylogenetic diversity across 100 bootstrap phylogenies differed significantly from the null expectation of zero (t-test, P,0.05). Phylogenetic diversity
based on the 100 bootstrap phylogenies differed significantly among samples that do not share a letter label at the top of the panel (Tukey’s HSD
test, P,0.05).
doi:10.1371/journal.pone.0023214.g003
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diversity within samples was phylogenetically clustered relative to

the null expectation at all depths.

The non-random phylogenetic diversity we observed along the

depth gradient provides evidence for the role of different niche-

based community assembly processes structuring these microbial

communities. The phylogenetic clustering of sequences in the

shallowest and deepest samples is consistent with the pattern

expected if closely related species are ecologically similar [34], and

the environment in these habitats select for a subset of bacteria

which are able to survive in the relatively stressful conditions in

these two habitats [1,35]. This pattern is in line with predictions

that the extremes of disturbance and resource availability gradients

should select for a limited subset of taxa that possess the traits that

allow them to survive in those habitats. In the case of the oceanic

depth gradient, these extremes reflect the turbid and high-

resource-availability photic zone, versus the low-resource-avail-

ability abyssal zone.

Phylogenetic diversity makes sense of conflicting
patterns of taxonomic diversity along depth gradients

Our approach provides a phylogenetic framework that makes

sense of the inconsistent results of previous studies of microbial

diversity along oceanic depth gradients. Studies using fingerprint-

ing technologies such as T-RFLP to measure microbial diversity

along depth gradients have found inconsistent results ranging from

increasing to decreasing diversity with depth [36,37]. Similarly, a

recent study using pyrosequencing of SSU-rRNA gene PCR

products from the HOT ALOHA transect [38] found differences

in patterns of diversity with depth for different domains of

microbial life and depending on the sequence similarity cutoff used

to define OTUs. The unimodal relationship between bacterial

phylogenetic diversity and depth we observed was predominantly

driven by the lower phylogenetic diversity in samples at depths of

10 m and 70 m relative to deeper samples. The deepest samples

showed phylogenetic diversity only slightly lower than the

intermediate depth samples (Figure 3), although the deepest

samples were phylogenetically clustered while the intermediate

depth samples were phylogenetically overdispsersed based on our

null-model analyses. These findings, which are based on a

phylogenetic approach, provide a framework for interpreting the

results of a recent SSU-rRNA pyrosequencing-based taxonomic

diversity study at the same site by Brown et al. [38]. They found

that when a high OTU similarity cutoff was used (100% or 98%),

bacterial diversity decreased with depth, whereas when a lower

similarity cutoff was used to define OTUs (80%), bacterial

diversity increased with depth. Phylogenetic diversity can explain

this pattern; we found that the shallowest samples were

phylogenetically clustered, dominated by sequences from a few

closely related clades. Thus, these samples should contain

taxonomically similar organisms at a high similarity cutoff, and

the high OTU diversity at a 100% or 98% cutoff in shallow waters

is driven by the presence of numerous very closely related taxa at

those depths. But an 80% OTU cutoff shows an increase in

diversity with depth due to organisms from distantly related clades

dominating communities at greater depths. In other words,

shallow waters are occupied by a group of very closely related

microbial taxa, whereas deeper waters contain a broader range of

more distantly related taxa.

Phylogenetic diversity measures have commonly been applied in

the analysis of SSU-rRNA data, but not for metagenomic data

sets. A phylogenetic approach to measuring diversity from

metagenomic data enables the detection of environmental

diversity patterns that could be missed by commonly used

methods that bin metagenomic sequences into OTUs or other

taxonomic groupings. Since taxonomic binning methods estimate

diversity using the number of distinct taxa in each community,

they can provide similar measures of diversity for a sample of

related versus the same number of divergent taxa. In other words,

when the phylogenetic relatedness of taxa varies across commu-

nities, taxonomic binning methods may fail to detect this variation

and will be sensitive to the choice of threshold for identifying

distinct taxa. An added benefit of the phylogenetic approach is

that it avoids the issue of choosing a similarity threshold to define

OTUs or other ecologically relevant taxonomic groups, which can

be extremely challenging in microbial diversity studies [39].

Phylotyping using SSU-rRNA gene versus metagenomic
marker genes

In addition to analyses of phylogenetic diversity, we examined

variation in community composition with depth based on

phylotyping of sequences using a phylogenetic framework. The

AMPHORA bioinformatics pipeline performs phylotyping, which

uses phylogenetic placement of the metagenomic reads to identify

the taxonomic groups to which they belong. This approach is

conceptually similar to existing tools for taxonomic classification of

metagenomic sequences (e.g. MEGAN [40]), with important

differences. First, it makes use of phylogenetic trees and placement

of sequences on these trees under a quantitative evolutionary

model rather than surrogates for phylogeny (e.g., BLAST

similarity scores). Second, AMPHORA focuses on analyzing a

set of phylogenetic marker genes chosen for their utility in

phylogenetic classification, while other binning methods generally

make use of sequences from many gene families, not all of which

are phylogenetically informative, when binning sequences.

Phylotyping of metagenomic sequences sheds further light on

the patterns of taxonomic and phylogenetic diversity we observed

along the depth gradient (Figure 4). Samples from the photic zone

(10 m–150 m depth) were generally dominated by sequences

assigned to a few clades of highly phylogenetically similar groups,

in particular to Prochlorococcus. Samples from greater depths were

dominated by a variety of groups including a- and b-proteobac-

teria and Chloroflexi. These differences in taxonomic composition

explain the differences we observed between taxonomic and

phylogenetic diversity versus depth. Taxonomic binning at a 95%

or 99% sequence similarity cutoff is only able to detect overlap

between samples when they share extremely phylogenetically

similar sequences, such as the closely related Prochlorococcus

sequences that occurred primarily in the shallowest samples.

Thus, taxonomic diversity is driven primarily by the presence of

these closely related sequences, whereas phylogenetic diversity

detected the evolution of associations with photic and non-photic

habitats at deeper phylogenetic levels. Taxonomic binning

approaches to analyzing metagenomic data ignore ecological

variation that occurs at a level deeper than the similarity cutoff

being used for binning, and in this data set ecologically important

differences among organisms occurred at different levels of

sequence similarity than the commonly used 5% SSU-rRNA gene

similarity cutoff.

Based on taxonomic binning of the SSU-rRNA gene, DeLong

et al. [22] detected only a handful of sequences from the SAR11 or

Pelagibacter ubique clades, and SSU-rRNA gene sequences from

these clades occurred in samples from depths .500 m [22], which

is surprising given the usual abundance of these organisms in

shallow ocean habitats [37]. Conversely, based on phylotyping

of the metagenomic data, we found that sequences assigned to

the broader taxonomic groups containing SAR11, including the

a-proteobacteria, Rickettsiales and Pelagibacter, were among the

most abundant in samples at depths shallower than 200 m

Measuring Phylogenetic Diversity with Metagenomes
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(Figure 4). In samples from 10 m–130 m depth, 2%–6% of the

sequences detected had Pelagibacter ubique as their closest relative

across 571 reference genomes (Table S1). Differences in

community structure measured using the SSU-rRNA gene versus

metagenomic gene families could be explained by amplification

bias or copy number variation in the SSU-rRNA gene [15] or

overall differences in phylogenetic signal among gene families [41];

future simulation and phylogenomic studies will be required to

distinguish among these possibilities.

Conclusions
In summary, our results highlight the utility of metagenomic data

for studies of microbial phylogenetic diversity and community

assembly along environmental gradients. By combining phylogenetic

information across multiple phylogenetic marker gene families in a

metagenomic data set, we demonstrate that microbial communities

show strong and consistent patterns of diversity variation along

environmental gradients, patterns that may not be captured by

taxonomic measures of diversity or by diversity measures based on a

single marker gene. Thus, our approach allows the study of microbial

diversity and community structure based on metagenomic data

without the need to make assumptions about how to bin sequences

into taxonomic or functional groups. Given the increasing

availability of fully sequenced genomes and massive metagenomic

data sets from high-throughput sequencing projects, the ability to

estimate phylogenetic diversity from these data sets offers the

potential to greatly improve our understanding of patterns of

microbial diversity. A phylogenetic approach to measuring microbial

Figure 4. Relative abundance of metagenomic bacterial sequences from different taxonomic groups in samples along an oceanic
depth gradient at the HOT ALOHA site, identified by phylotyping of sequences by AMPHORA [26]. Sequences that could not be placed
reliably (phylotyping bootstrap ,70%, only placed to ‘Bacteria’ level) were excluded.
doi:10.1371/journal.pone.0023214.g004
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diversity will make it possible to move beyond traditional taxonomic

classification, towards understanding where on the tree of life habitat

differentiation and adaptation are taking place.

Methods

Sequence identification and alignment
We analyzed a publicly available data set of DNA sequences

from microbial communities in seven oceanic water samples along

a depth gradient from 10 m to 4000 m depth at the HOT

ALOHA site in the tropical Pacific [22]. This data set is comprised

of both ribosomal DNA sequences obtained by PCR amplification

and sequencing of the 16S SSU-rRNA gene (419 sequences total)

and metagenomic sequences obtained by environmental shotgun

sequencing of a large-insert fosmid clone library (64 Mbp of

sequences total from the same environmental samples as the SSU-

rRNA sequences). Analysis of the metagenomic data with the

STAP pipeline [42] identified 30 bacterial SSU-rRNA gene

sequences, which was insufficient to permit diversity analyses. We

obtained the data, including unaligned SSU-rRNA gene sequences

and translated peptide sequences of ORFs predicted from

metagenomic reads, from CAMERA (http://camera.calit2.net/;

CAMERA dataset node ID 1055661998626308448). Our taxo-

nomic diversity analyses were based on analysis of the SSU-rRNA

gene sequences and our phylogenetic diversity analyses were based

on analysis of both the SSU-rRNA gene sequences and

metagenomic data.

The 419 SSU-rRNA gene sequences were aligned using the

STAP rRNA gene alignment and taxonomy pipeline [42]. For the

phylogenetic diversity analyses of metagenomic data, we used the

AMPHORA pipeline [26] to identify and align sequences from 31

gene families in the metagenomic data set. AMPHORA uses a

hidden Markov model trained on a reference database of 571 fully

sequenced bacterial genomes to identify and align metagenomic

reads belonging to 31 marker gene families chosen based on their

universality, low copy number, phylogenetic signal, and low rates

of horizontal gene transfer [26]. From the 449,086 ORFs

identified from the 65,674 reads in the full metagenomic data

set, 497 reads could be assigned to one of the 31 gene families in

the AMPHORA reference database.

Phylogenetic tree inference
Phylogenetic relationships among SSU-rRNA gene sequences

were inferred using FastTree version 2.0.1 [43] with a GTR+G

substitution model and pseudocount distance estimation. The

resulting phylogenetic tree was used to estimate branch length

distances separating sequences for OTU binning, as well as for

analyses of SSU-rRNA gene phylogenetic diversity.

Phylogenetic tree inference for metagenomic sequences re-

quired a different approach due to the fact that metagenomic

sequences were relatively fragmentary and non-overlapping

compared to the full-length SSU-rRNA gene sequences. Using

aligned reference and metagenomic sequences from the 31

AMPHORA gene families, we combined reference sequences

with metagenomic reads into a single large alignment (Data Set

S1). Reference sequences were concatenated across all gene

families for the organisms included in the reference database, and

metagenomic reads were tiled against this alignment. Phylogenetic

relationships among metagenomic sequences were then inferred

by placing metagenomic sequence on a well-supported reference

phylogeny. First, we inferred the reference sequence genome

phylogeny using RAxML version 7.2.2 [29] to carry out a

maximum likelihood tree inference using a WAG+G model

partitioned by gene family on the 571 reference sequences. We

compared the likelihood of phylogenetic trees linking all reference

sequences inferred with a partitioned model (separate substitution

rate and G parameter estimation for each gene family) to a non-

partitioned model. The reference phylogeny obtained with a

partitioned model of evolution had a higher likelihood than the

phylogeny obtained from a non-partitioned model, supporting the

use of the partitioned model for all subsequent analyses (log-

likelihood of partitioned model phylogeny = 21,968,521, log-

likelihood of non-partitioned model phylogeny = 21,969,550,

likelihood ratio test P,0.001).

We placed all metagenomic reads on the reference phylogeny

using the single-sequence likelihood insertion heuristic implement-

ed in RAxML version 7.2.2 [29,44]. This algorithm places query

sequences (metagenomic reads) onto the reference phylogeny by

evaluating the likelihood of query sequence placement on each

edge of the phylogeny with optimization of query sequence branch

length under the partitioned evolutionary model used to generate

the reference phylogeny. We created one phylogeny based on the

maximum likelihood placement of metagenomic reads onto the

reference phylogeny (Data Set S2). We also created a distribution

of replicate phylogenies where sequence placement uncertainty on

the reference phylogeny was evaluated using a phylogenetic

bootstrap [45]. The bootstrap analysis was repeated 100 times,

resulting in 100 likely trees generated by placing bootstrap-

resampled sequences on the reference tree with probability

weighted by bootstrap placement at each edge for each sequence.

For all phylogenies, we then pruned reference sequences from the

tree leaving only the metagenomic sequences. The resulting

phylogeny containing only the metagenomic sequences was used

for subsequent analyses. We repeated all analyses on the

maximum likelihood metagenomic tree and across the 100

bootstrap trees.

There were some metagenomic sequences that were either

highly divergent or poorly placed on the reference phylogeny,

resulting in a relatively long branch length subtending the

sequence or relatively high uncertainty in placement of the

sequence on the reference phylogeny. To assess the effect of these

sequences on our results, we repeated analyses with a more

conservative set of sequences by dropping the sequences whose

subtending branch length connecting them to the reference

phylogeny was in the top 5th percentile of subtending branch

lengths, as well as sequences with fewer than 50 unmasked amino

acids. Using a more conservative set of sequences did not change

the trends we observed.

Diversity analyses
Taxonomic classification of the aligned SSU-rRNA gene

sequences by the STAP rRNA alignment and taxonomy pipeline

[42] indicated that 67 of 419 SSU-rRNA gene sequences were

archaeal and 352 were bacterial. To allow direct comparison of

taxonomic diversity with the metagenomic bacterial sequences

identified by AMPHORA, we analyzed only the bacterial SSU-

rRNA gene sequences. Including archaeal sequences in calcula-

tions of diversity did not have an effect on the trends we observed.

Taxonomic diversity was estimated based on operational taxo-

nomic unit (OTU) binning of bacterial SSU-rRNA gene sequences

at 95% and 99% similarity cutoffs with a complete linkage

algorithm using mothur version 1.6.0 [46] with distances among

sequences based on the phylogeny linking all SSU-rRNA gene

sequences. Based on the SSU-rRNA gene OTU data we

calculated taxonomic richness (the number of OTUs) for each

environmental sample. Phylotyping and taxonomic identification

of metagenomic sequences were performed as part of the

AMPHORA algorithm, which places each sequence onto the

Measuring Phylogenetic Diversity with Metagenomes
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reference bacterial genome phylogeny and determines taxonomic

affiliation based on the NCBI taxonomy with bootstrapping to

confirm confidence in taxonomic placement [26]. For subsequent

analyses of taxonomic composition of the metagenomic sequences,

we excluded 21% of the metagenomic sequences identified by

AMPHORA that could be not be phylotyped with bootstrap

support .70% to a taxonomic rank more precise than Bacteria.

We used the Picante software package [33] to calculate

phylogenetic diversity within communities as the standardized

effect size of mean pairwise phylogenetic distance (SESMPD)

separating all pairs of sequences in each sample [1,30]. SESMPD

was calculated by simulation, based on a comparison of observed

phylogenetic diversity with the phylogenetic diversity in 999

random draws of the observed number of sequences in a sample

from the phylogeny including all metagenomic sequences.

Standardized phylogenetic diversity was calculated for each

sample based on the SSU-rRNA gene phylogeny, the maximum

likelihood metagenomic phylogeny, and across the 100 replicate

metagenomic phylogenies inferred with a phylogenetic bootstrap.

Relationships between diversity and depth were calculated for

all diversity measures. We compared linear and quadratic

regressions of taxonomic and phylogenetic diversity versus log10-

transformed depth to determine how diversity varied with depth,

and whether the diversity-depth relationship was linear or

quadratic (i.e., unimodal). While sample sizes were too small to

allow formal model comparisons for taxonomic diversity and

phylogenetic diversity based on the maximum likelihood tree, for

the bootstrap replicate phylogenies the quadratic model of the

phylogenetic diversity - depth relationship was a more parsimo-

nious fit to the observed data than the linear model (SESMPD versus

log10(depth): AIC of quadratic model: 2171.9, AIC of linear

model: 2256.3).

Supporting Information

Table S1 Relative abundances of sequences assigned to
differenet outgroups on a reference phylogenetic tree by
AMPHORA [26] for metagenomic sequences collected
along an oceanic depth gradient at the HOT ALOHA site
[22]. Outgroups represent the reference sequence most closely

related to each metagenomic sequence based on a phylogenetic

placement of each sequence on a phylogeny based on 31 gene

families from 571 fully sequenced bacterial genomes.

(PDF)

Data Set S1 FASTA alignment file containing aligned
AMPHORA [26] reference sequences and metagenomic
sequences from 31 gene families along an oceanic depth
gradient at the HOT ALOHA site [22].
(FASTA)

Data Set S2 Newick-format phylogenetic tree linking
metagenomic sequences from 31 gene families along an
oceanic depth gradient at the HOT ALOHA site [22]. The

tree is the one that was identified as having the maximum

likelihood by placing metagenomic reads on a reference phylogeny

inferred with a WAG + G model partitioned by gene family in

RAxML [29].
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