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CogNGen: Constructing the Kernel of a Hyperdimensional
Predictive Processing Cognitive Architecture

Alexander Ororbia (ago@cs.rit.edu)
Rochester Institute of Technology, New York, United States

M. Alex Kelly (alex.kelly@carleton.ca)
Carleton University, Ottawa, ON, Canada

Abstract

We present a new cognitive architecture that combines two
neurobiologically-plausible computational elements: (1) a
variant of predictive processing known as neural generative
coding (NGC) and (2) hyperdimensional / vector-symbolic
models of human memory. We draw inspiration from well-
known cognitive architectures such as ACT-R, Soar, Leabra,
and Spaun/Nengo. Our cognitive architecture, the COGni-
tive Neural GENerative system (CogNGen), is in broad agree-
ment with these architectures, but provides a level of detail
between ACT-R’s high-level, symbolic description of human
cognition and Spaun’s low-level neurobiological description.
CogNGen creates the groundwork for developing agents that
learn continually from diverse tasks and model human per-
formance at larger scales than what is possible with existent
cognitive architectures. We aim to develop a cognitive archi-
tecture that has the power of modern machine learning tech-
niques while retaining long-term memory, single-trial learn-
ing, transfer-learning, planning, and other capacities associ-
ated with high-level cognition. We test CogNGen on a set
of maze-learning tasks, including mazes that test short-term
memory and planning, and find that the synergy between its
predictive processing and vector-symbolic components allow it
to master the maze tasks. Future work includes testing CogN-
Gen on more tasks and exploring methods for efficiently scal-
ing hyperdimensional memory models to lifetime learning.
Keywords: Artificial Intelligence; Cognitive Architectures;
Predictive Processing; Memory; Reinforcement Learn-
ing; Active Inference; Neural Generative Coding; Vector-
Symbolic Architectures; MINERVA

Introduction
Machine learning methods based on artificial neural networks
(ANNs) are implemented through algebraic manipulations of
vectors, matrices, and tensors in high-dimensional spaces.
While ANNs have an impressive ability to process data to find
patterns, they do not typically model high-level cognition and
are usually models of only a single task. Otherwise, when an
ANN is trained to learn a series of tasks, catastrophic interfer-
ence occurs, with each new task causing the ANN to forget all
previous tasks (French, 1999; Mannering & Jones, 2021; Mc-
Closkey & Cohen, 1989). Conversely, symbolic cognitive ar-
chitectures, such as the widely used ACT-R (Anderson, 2009;
Ritter, Tehranchi, & Oury, 2019), can capture the complexi-
ties of high-level cognition but scale poorly to the naturalistic,
non-symbolic data of sensory perception (e.g., images) or to
big datasets necessary for modelling learning over a lifetime
(e.g., corpora with billions of words).

Are symbolic and ANN approaches compatible? Symbolic
and neural models can be understood as theories of cognition

operating at different levels of description (Kersten, West, &
Brook, 2016). Is it possible to provide a theory that bridges
these two levels, a reduction of the symbolic to the neural,
while retaining the strengths and capabilities of each?

We propose a cognitive architecture that is built on two
neurobiologically and cognitively plausible models, namely
a variant of predictive processing known as neural genera-
tive coding (NGC) (Ororbia, Mali, Giles, & Kifer, 2020) and
vector-symbolic (a.k.a. hyperdimensional) models of mem-
ory (Hintzman, 1986; Jamieson & Mewhort, 2011; Kelly,
Mewhort, & West, 2017). Desirably, the use of these par-
ticular building blocks yields naturally scalable, local update
rules, based on variants of Hebbian learning (Hebb, 1949), to
adjust the overall system’s synaptic weight parameters while
facilitating robustness in acquiring, storing, and composing
distributed representations of tasks that the system encoun-
ters. Our intent is to advance towards a cognitive architec-
ture capable of modeling human performance at all scales of
learning, from the half-hour lab experiment to skills acquired
gradually over a lifetime. By combining predictive process-
ing with vector-symbolic models, we aim to create a model
of cognition that has the power of modern machine learn-
ing techniques while retaining long-term memory, single-trial
and transfer learning, planning, and high-level cognition.

While our ultimate aims are lofty, in this paper we demon-
strate proof of concept. We show that our architecture, CogN-
Gen (the COGnitive Neural GENerative system), is able to
learn variants of a maze-learning task, including mazes that
require planning (getting a key to open a locked door) and
short-term memory (picking the correct path based on an ear-
lier cue). In the context of reinforcement learning, our re-
sults further demonstrate that the synergy between predictive
processing circuits and vector-symbolic models of short and
long-term memory is competitive with several powerful in-
trinsic curiosity deep learning approaches, offering promising
performance when the problem-specific reward is sparse.

The Common Model of Cognition
Since Newell (Newell, 1973) first argued that good empiri-
cal work and piecemeal theoretical work are insufficient to
understand the mind, researchers in cognitive science have
sought to develop functional, testable theories of cognition as
a whole. Cognitive architectures serve as both unified theo-
ries of cognition and as computational frameworks for imple-
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Figure 1: Common Model of Cognition (Laird et al., 2017),
associated brain areas (Stocco et al., 2021; Steine-Hanson et
al., 2018; Stocco et al., 2018) and our approach to modelling
each module. Solid arrows are data passing. Dashed arrows
are modulation of data passing.

menting models of specific experimental tasks. Forty years of
research has developed hundreds of cognitive architectures,
many with strong similarities to each other (Kotseruba &
Tsotsos, 2018), suggesting an emerging consensus on the ba-
sic principles of cognition. The Common Model of Cognition
(Laird et al., 2017) is a high-level theory of the modules of
the mind and how they interact (see Fig. 1), proposed on the
basis of commonalities between three cognitive architectures:
ACT-R (Anderson & Lebiere, 1998), Soar (Laird, 2012), and
SIGMA (Rosenbloom, Demski, & Ustun, 2016).

The Common Model of Cognition consists of perceptual
and motor modules that interact with the agent’s environment,
short-term or working memory buffers which hold the active
data in the agent’s mind, a declarative or long-term memory
module that holds the agent’s world knowledge, and a proce-
dural memory module that controls the flow of information
and evaluates possible actions (Laird et al., 2017). An evalu-
ation of fMRI data from 200 participants across diverse tasks
found correlations in patterns of activity across brain areas
consistent with the Common Model of Cognition’s modules
and their interactions (Stocco et al., 2021).

Neural Building Blocks
We start by first formally describing the fundamental neural
circuits that are used to construct the modules of the CogN-
Gen kernel instantiation of the Common Model of Cognition.
In this work,← is assignment, ⊙ is a Hadamard product, · is
a matrix/vector multiplication (or dot product if operators are
vectors of the same shape), and vT is the transpose.

Neural Generative Coding (NGC)
Neural generative coding (NGC) is an instantiation of the pre-
dictive processing brain theory (Rao & Ballard, 1999; Fris-
ton, 2005; Clark, 2015), yielding an efficient, robust form of
predict-then-correct learning and inference. An NGC circuit
in CogNGen receives two sensory vectors, an input xi ∈R I×1

(I is the input dimensionality) and an output xo ∈ R O×1 (O
is the output or target dimensionality). Compactly, an NGC
circuit is composed of L layers of feedforward neuronal units,

i.e., layer ℓ is represented by the state vector zℓ ∈ R Hℓ×1 con-
taining Hℓ total units. Given the input–output pair of sensory
vectors xi and xo, the circuit clamps the last layer zL to the
input, i.e, zL = xi, and clamps the first layer z0 to the output,
i.e., z0 = xo. Once clamped, the NGC circuit will undergo
a settling cycle where it processes the input and output vec-
tors for K steps in time, i.e., it process sensory signals over
a stimulus window of K discrete time steps. The activities
of the internal neurons (all neurons in between the clamped
layers, i.e., ℓ= L−1 . . .1) are updated as follows:

zℓ← zℓ+β

(
− γzℓ+(Eℓ · eℓ−1)⊗∂φ

ℓ(zℓ)− eℓ
)

(1)

where Eℓ is a matrix containing error synapses that pass along
mismatch signals from layer ℓ−1 to ℓ (this can be learnable
or set to the scaled transpose of the predictive synaptic ma-
trix, i.e., Eℓ = λe(Wℓ)T ). β is the neural state update coef-
ficient and set according to β = 1

τ
, where τ is the integra-

tion time constant in the order of milliseconds. This update
equation indicates that a vector of neural activity changes, at
each step within a settling cycle, according to (from left to
right in Equation 1), a leak term (modulated by the factor
γ), the bottom-up pressure from mismatch signals in lower
level neural regions, and a top-down pressure from the neu-
ral region above. eℓ ∈ R Hℓ×1 are an additional population
of special neurons that are tasked entirely with calculating
mismatch signals at a layer ℓ, i.e., eℓ = zℓ − z̄ℓ, the differ-
ence between a layer’s current activity (or clamped value)
and an expectation/prediction produced from another layer.
Specifically, the layer-wise prediction z̄ℓ is computed as:
z̄ℓ = gℓ(Wℓ+1 · φℓ+1(zℓ+1)) (Wℓ denotes the matrix of pre-
dictive synapses). φℓ+1 is the activation function (and ∂φℓ+1

is its derivative) for state variables and gℓ (set to the identity)
is applied to predictive outputs.

After processing the input–output pair for K steps (repeat-
edly applying Equation 1 K times), the synaptic weight ma-
trices are adjusted with a Hebbian-like update rule as follows:

∆W = eℓ · (φℓ+1(zℓ+1))T ⊙MW (2)

∆E = γe(∆W)T ⊙ME (3)
where γe is a factor (less than one) to control the time-scale
of the error synaptic evolution (ensuring they change more
slowly than the predictive ones). MW and ME are modulation
matrices that perform synaptic scaling to ensure additional
stability in the learning process (Ororbia & Mali, 2021). Note
that all NGC circuits in CogNGen are implemented according
to the mechanistic process described above.

Another important functionality of an NGC circuit is its
ability to ancestrally project a vector (akin to a feedforward
pass, since no settling process is required) through the under-
lying directed generative model – we represent this process
as fpro j(xi;Θ). Formally, ancestrally projecting a vector xi

through an NGC circuit proceeds as follows:
zℓ = z̄ℓ = gℓ(Wℓ+1 ·φℓ+1(zℓ+1)), ∀ℓ= (L−1), ...,0 (4)

where zL = xi (only the input/top-most layer is clamped to a
specific vector, such as current input xi).
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Memory

We simulate both declarative (long-term) and working (short-
term) memory using the MINERVA 2 model of human mem-
ory (Hintzman, 1984). We choose MINERVA 2 since it cap-
tures a wide variety of human memory phenomena across
different settings and, as such, seems a good candidate
for integration into a cognitive architecture. MINERVA 2
has been applied to many experimental paradigms, includ-
ing judgement of frequency and recognition (Hintzman,
1984), category learning (Hintzman, 1986), implicit learn-
ing (Jamieson & Mewhort, 2009, 2011), associative and re-
inforcement learning phenomena from both the animal and
human learning literature (Collins, Milliken, & Jamieson,
2020; Jamieson, Crump, & Hannah, 2012), heuristics and
biases in decision-making (Dougherty, Gettys, & Ogden,
1999), hypothesis-generation (Thomas, Dougherty, Sprenger,
& Harbison, 2008), learning word meanings (Jamieson, Av-
ery, Johns, & Jones, 2018; Kwantes, 2005), and production
of grammatical sentences (Johns, Jamieson, Crump, Jones, &
Mewhort, 2016a; Kelly, Ghafurian, West, & Reitter, 2020).

Adding to Memory MINERVA 2 stores memory traces:
observations or sequence of observations of the state of the
world. Each memory trace is represented as an array of real
numbers (i.e., a vector). MINERVA 2 stores all memory
traces separately as rows in a continuously growing table.

The continuous growth of the memory table results in a
scaling problem for CogNGen, with significant slow downs
even in the small maze learning tasks under consideration
in this paper. Most MINERVA 2 models store only a small
number of memory traces, though a few MINERVA 2 mod-
els used for language processing have stored up to between
20000 (Jamieson et al., 2018) and 500000s traces (Johns,
Jamieson, Crump, Jones, & Mewhort, 2016b; Kelly, Ghafu-
rian, et al., 2020). With a persistent long-term memory store
across learning the maze task, in the worst case, as many as
millions of traces might be stored into CogNGen’s memory.

We use MINERVA 2’s forgetting mechanism (Hintzman,
1986) to randomly delete values from memory each time
memory is updated at a sufficiently high probability to impose
a computationally tractable limit on MINERVA 2’s memory
size. Other possible solutions to the unbounded growth of
memory are to use a compressed, scale-invariant approxima-
tion to MINERVA 2 (Kelly et al., 2017) or to adopt a different
memory system that grows only with the number of unique
stimuli, rather than with each new sequence of observations
(Kelly, Arora, West, & Reitter, 2020). However, exploring
these alternatives for improving the CogNGen memory’s abil-
ity to scale to larger problems is a matter for future work.

Retrieval from Memory In MINERVA 2, memory re-
trieval is not a look-up process, it is a reconstruction process.
When a retrieval cue or probe is presented, each vector in the
memory table is activated in proportion to its similarity to the
cue (Hintzman, 1986). Similarity is computed as a normal-
ized dot-product of the cue’s vector with the stored vector.

Each stored vector is activated by its similarity to the probe
raised to a power p ≥ 3. By raising the similarity to some
power, the contribution of the most similar vectors is empha-
sized. An echo is retrieved from memory as a weighted sum:

me =
m

∑
i=1

(
mp ·mi√mp ·mp
√

mi ·mi
)pmi (5)

where me is the echo or output from memory, mi is the i-th
trace in memory, mp is the probe or input to memory, and m
is the number of traces in the memory table.

MINERVA 2 is equivalent to a type of Hebbian associa-
tive memory with a fixed number of neurons and a limited
storage capacity (Kelly et al., 2017). The Hebbian network is
so large that it is more efficient to simulate the network’s be-
haviour as a growing table of memory traces. However, MIN-
ERVA 2 can be noisily approximated using smaller, more
tractable Hebbian associative memory models (Kelly et al.,
2017), which we will explore in future versions of CogNGen.

Discrepancy Encoding In CogNGen, we combine in-
sights from several versions of MINERVA 2. We make an
architecture-wide commitment to predict-then-correct learn-
ing. Predict-then-correct can be implemented in MINERVA 2
as discrepancy encoding (Collins et al., 2020; Jamieson et al.,
2012). Given a sequence of observations, MINERVA 2 can
predict the next observation based on past experience. Af-
ter the prediction, a new observation is made. We update
memory with the difference between observation mx and pre-
diction me, mx−me, such that if the prediction is correct,
no change is made to memory, whereas if the prediction is
wrong, that prediction is inhibited in similar future contexts.

Short-Term vs. Long-Term Memory For CogNGen, we
adopt (Collins et al., 2020)’s approach and model both work-
ing and declarative memory using MINERVA 2. Our work-
ing MINERVA 2 is cleared after a task is completed (i.e., a
maze is solved), whereas the contents of the declarative MIN-
ERVA 2 (which serves as the episodic memory in this paper’s
instantiation of CogNGen) persist across tasks.

The CogNGen Kernel
Perception
In this study, since the environment that we investigate, Gym-
Minigrid, provides a fixed, problem-specific encoder fe and
decoder fg, we use a fixed encoding and decoding scheme to
simplify our simulations. Future work will investigate learn-
ing the perception modules as NGC circuits instead.

Neural Generative Procedural Memory
Neuro-behavioral studies find that reward signals are used (by
the brain) to evaluate whether or not an action (motor activ-
ity) is desirable/undesirable (Rangel, Camerer, & Montague,
2008). Action selection is driven by changes in the neural
activity of the basal ganglia which estimate the value of the
expected reward (Hikosaka, Nakamura, & Nakahara, 2006).
Motivated by the finding of expected value estimation in the
brain, the CogNGen’s procedural module implements a neu-
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Figure 2: The CogNGen kernel architecture, depicted in its
information processing mode (see Appendix for depiction of
its learning mode). Black solid arrows indicate passing of
data (which could be one or more vectors of information).
Note that episodic memory is used to instantiate/drive CogN-
Gen’s learning step (not shown) by forcing it to recollect sam-
ples of transition sequences, transferring these to a working
buffer that transfers relevant portions of its contents to the
procedural memory and the motor-action modules.

ral circuit that produces intrinsic reward signals. At a high
level, this neural machinery facilitates some of the functional-
ity offered by the basal ganglia and procedural memory, sim-
ulating an internal reward-creation process (Schultz, 2016).

We implement an NGC dynamics model (see Appendix1

for details) from which a reward signal is calculated as a func-
tion of its own error neurons. We couple the dynamics model
with a short-term memory module, based on MINERVA 2,
which adjusts the reward value produced by the dynamics cir-
cuit by determining if an observed state is familiar or not.

In Figure 3 (Left), we graphically depict the design of the
NGC dynamics model used to generate epistemic rewards
(or intrinsic reward values meant to encourage exploration).
This circuit takes in as input the current latent state zt and
the current external action aext

t
2 to be taken by CogNGen

and predicts the value of the future next step, zt+1, leverag-
ing Equation 1 to compute its internal state layer values, i.e.,
z3

t ,z2
t ,z1

t .Upon receiving zt+1, the MINERVA 2 model cou-
pled to the dynamics circuit stores the state vector, updating
its current knowledge about the episode, and outputs a simi-
larity score srecall . Crucially, the contents of this MINERVA 2
are cleared upon termination of a task/maze.

To generate the value of the epistemic reward (Ororbia &
Mali, 2021), the dynamics model first settles to a prediction
ẑt+1 (as per the process described in Section ) given the value

1https://www.cs.rit.edu/∼ago/cogngnen cogsci2022 append.pdf
2aext

t ∈ {0,1}Aext×1 is a one-hot encoding of discrete action aext
t

and Aext is the number of possible actions, as defined by the task.

zta t
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Figure 3: (Left) The CogNGen dynamics model. (Right) The
CogNGen motor-action model. Arrows transform data across
synapses. Gray circles represent stateful neurons and green
diamonds represent error neurons. In the motor model, the
internal control portion produces signals cint

t that manipulate
working memory and the external control portion transmits
signals cext

t that affect the environment. Note that both inter-
nal and external control share the same working memory.

of CogNGen’s next latent state zt+1. After its settling process
has finished, the activity signals of its (squared) error neurons
are summed to obtain the circuit’s total discrepancy (Ororbia
& Mali, 2021). This signal is next modified by the short-term
MINERVA 2 memory (filter) module as follows:

rep =

{
ηerep srecall ≤ sθ

−0.1 otherwise
(6)

where sθ is an adjustable threshold that srecall is compared
against and 0 ≤ ηe ≤ 1 is meant to weight the epistemic sig-
nal. In essence, if srecall ≤ sθ, then zt+1 is deemed unfamil-
iar/surprising and the agent is positively rewarded with the
epistemic reward for uncovering a new (latent) state repre-
sentation of its environment. Whereas if the opposite is true
(srecall > sθ), then the latent state is deemed familiar and the
agent is provided with a negative penalty. Finally, the ulti-
mate reward signal is computed by combining the epistemic
signal with the problem-specific, instrumental (or extrinsic)
reward value rin

t , i.e., rt = rin
t + rep

t .

Neural Generative Motor Control
An agent must not only react to its environment but must also
manipulate it. To do so, the agent needs circuits to drive its
actuators. Building upon the notion of planning-as-inference
(Botvinick & Toussaint, 2012), as in (Ororbia & Mali, 2021),
we generalize NGC to the case of action-driven tasks, which
we call active neural generative coding (ANGC).

Specifically, we design a motor-action model fa : zt 7→
(cint

t ,cext
t ) (which offers some of the functionality provided

by the motor cortex) that outputs two control signals at each
time step, i.e., internal control signal cint

t ∈R Aint×1 and exter-
nal control signal cext

t ∈ R Aext×1. Note that a discrete internal
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action aint
t ∈ {1,2, ...,Aint} is extracted via aint

t = argmaxi cint
t

and external action aext
t ∈{1,2, ...,Aext} is extracted via aext

t =
argmax j cext

t where Aint is the number of discrete internal ac-
tions and Aext is the number of discrete external, allowable
actions. Action aext

t impacts the environment that the CogN-
Gen system is currently interacting with while action aint

t ma-
nipulates the action model’s working memory.

Notably, within the NGC action-motor model is a modifi-
able working memory that allows the model to store a finite
quantity Mw of projected latent state vectors into a set of self-
recurrent memory vector slots. This particular working mem-
ory module, which we call the self-recurrent slot buffer (see
Figures 1 & 2 and Appendix for details) serves as the glue that
joins the modules of CogNGen together. Working memory in
the Common Model of Cognition can be implemented in a
variety of ways (Laird et al., 2017). In ACT-R (Anderson &
Lebiere, 1998; Anderson, 2009), for example, the mind/brain
is understood as consisting of modules connected by buffers,
each storing data in a small, finite number of slots. Collec-
tively, the buffers serve as ACT-R’s working memory. The
recurrent slot buffers in CogNGen serve the same purpose as
ACT-R’s buffers and are inspired by the memory model of
Kruijne, Bohte, Roelfsema, and Olivers (2021).

Explicit Declarative Memory: Episodic Memory
In reinforcement learning, in order to improve the stability
and convergence of ANNs trained over many episodes, each
episode containing many transitions, experience replay is typ-
ically used (Mnih et al., 2015). In early studies of rats, neural
replay sequences were detected in the hippocampus (Skaggs
& McNaughton, 1996) during rest, where “place” cells spon-
taneously and rapidly fired in such a way so as to represent the
previous paths traversed by the animals while awake. These
“replay” sequences would only last nearly a fraction of a sec-
ond but covered several seconds of real-world experience.
Similar replay effects have been been detected in human sub-
jects (Kurth-Nelson, Economides, Dolan, & Dayan, 2016),
providing further biological justification of the replay buffer
used in modern-day RL neural systems.

CogNGen also implements a replay mechanism in the form
an episodic memory constructed with MINERVA. Informa-
tion is transferred to this memory through an intermedi-
ate working buffer, where pieces of a transition (partial ex-
perience) are progressively stored as they are encountered
throughout the agent-environment interaction process.

We do not update the motor-action and dynamics models
online but instead update their parameters only when episodic
memory is sampled. Thus, the CogNGen computational pro-
cess has two phases at each time step of simulation: the pro-
cessing step (Figure 2) and the learning step (see Appendix).

Experimental Results
The Mini GridWorld Problem
To evaluate CogNGen, we adapt a simulated environ-
ment from the OpenAI Gym extension, Mini-GridWorld

Avg. Success Rate Avg. Episode Length
DK Mem DK Mem

DQN 0.00 40.0 100.0 41.14
RnD 100.0 48.5 3.71 2.78
BeBold 100.0 48.0 3.93 2.92
CogNGen 100.0 98.5 5.48 2.96

Table 1: In the top row, examples of the two tasks we experi-
mented with are presented graphically – from left to right, the
door-key task (DK) and the memory task (Mem). In the bot-
tom row, we present results for the: (Left) Average success
rate (%) over the last 100 episodes. (Right) Average episode
length (% of maximum/worst-case episode length - closer to
0 is better/more efficient) over the last 100 episodes.

(Chevalier-Boisvert, Willems, & Pal, 2018). We investigate
two problems/tasks within its collection to evaluate the agents
constructed using CogNGen, namely the Door-Key task and
the Memory task. The format of each task’s observation space
(which is fundamentally an N×M tile grid) is a partially ob-
servable view of the agent’s environment, which is created via
a compact, efficient encoding of the original pixel space to a
7×7×3 tensor (a 3-channel object that is created by mapping
each visible grid cell to 3 integer values). Each tile contains
either nothing (represented as zero) or one object (which has
an associated discrete color and a discrete object type). Ulti-
mately, each tile is encoded to an object index (0 = unseen,
1 = empty, 2 = wall, etc.), a color index (0 = red, 1 = green,
etc.), and a state index (0 = open, 1 = closed, 2 = locked).

The agent itself is restricted to picking up one single ob-
ject, such as a key, and may open a locked door if it carries a
key that matches the door’s color. The discrete action space
for our agent can be summarized as a set of six actions: 1)
turn left, 2) turn right, 3) move forward, 4) pick up an object,
5) drop the object that the agent is currently carrying, and
6) toggle/activate (such as opening a door/interacting with an
object).3 The reward signal provided by all tasks in the Mini-
GridWorld environment is sparse – the agent is only given a
positive 1 extrinsic reward if it reaches the green goal tile and
0 otherwise, making all problems difficult from a reinforce-
ment learning perspective. Each problem has a specific time
step limit allotted to allow the agent to complete the task.

Problem Tasks For the “door-key” problem, the agent must
find a key (the position of which changes across episodes)
inside a locked room and then pick up the key in order to
unlock the door so that it may leave the first room. Upon
entering the second room, the agent must find the green tile in
order to successfully exit, terminating the episode by reaching

3Note: we omitted the optional action of raising a “done” signal.
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(a) DK task - ep. reward. (b) DK task - ep. length.

(c) Mem task - ep. reward. (d) Mem task - ep. length.

Figure 4: (Left) Average reward and (Right) episode length
(values are smoothed with an averaging window of 100) for
(top-to-bottom): the door-key (DK) and memory (Mem) task
(Right). Curves depict the mean (solid colored line) and stan-
dard deviation (light colored envelope) over five trials.

the goal state to receive a positive reward. For this study, we
focus on the 6×6 room variant of the problem.

The memory task is, in contrast, posed as a memory test.
The agent starts in a small room where it sees an object (a key
or a ball) – note that we slightly modified the problem to en-
sure the agent starts the episode looking in the direction of the
object. After perceiving the object, the agent must then turn
around, exit the room and go through a narrow hallow that
ends in a split. At the end of this split, the agent can either go
up or go down, and at the end of each of these splits is a dif-
ferent object (either a key or a ball). To successfully complete
the episode (and receive a positive reward), the agent must re-
member the initial object that it saw and go to the split that
contains the correct matching object. For this study, we focus
on the size 7 problem (7×7 room variant).

Baseline Models
We compare the CogNGen to several baseline models: a stan-
dard deep Q-network (DQN; Mnih et al., 2015), a DQN that
leverages an intrinsic reward generated through random net-
work distillation (RnD; a powerful intrinsic curiosity model;
Burda, Edwards, Storkey, & Klimov, 2018), and a DQN
that learns through a count-based formulation of the Be-
Bold exploration framework (BeBold DQN-CNT; Zhang et
al., 2020). In order to obtain robust and stable performance,
we had to modify the RnD and BeBold intrinsic bonus cal-
culations in order to learn in the above tasks by imposing
a small negative penalty on discrete states that were visited
more than once within an episode (meaning that a hash table
had to be used to track global state coordinates and visitation
counts of each previously seen state, which was reset at an
episode’s end). RnD and BeBold have access to problem-

specific/global information from the Mini GridWorld envi-
ronments whereas CogNGen and the DQN do not.

For details related to the settings as well as the specific
values chosen for the hyper-parameters of the baselines and
CogNGen’s various modules, please see the Appendix.

Results and Discussion
In Table 1, we report the average success rate (at solving the
task/reaching the goal state) as well as the average episode
length (average measurements were computed over the last
100 simulated episodes for all models). In Figure 4, we
present the reward curves, computed as the mean and stan-
dard deviation across five simulation runs.

Based on the results of our simulations, we find that (1)
CogNGen is able to learn the grid-world tasks, (2) the per-
formance is comparable to / on par with powerful deep in-
trinsic curiosity RL methods that have access to problem-
specific, global information, and (3) that CogNGen can suc-
cessfully solve and outperform all baselines on the mem-
ory task. Given that CogNGen approximates much of the
functionality of modern-day RL tricks and mechanisms with
large auto-associative Hebbian memory modules and predic-
tive processing circuits, the results uncovered are promising.
When comparing the baselines to CogNGen, we notice that
there are some instances where the powerful BeBold DQN-
CNT and RnD baselines yield shorter episodes or yield higher
episodic rewards earlier (after converging to an optimal pol-
icy). We reason that this small gap/difference is likely due to:
1) BeBold DQN/RnD have access to global, problem-specific
information (the agent’s x-y coordinates within the world in
order to calculate state visitation counts) whereas CogNGen
only operates with local information/observations, 2) CogN-
Gen’s mechanism to update synapses relies on an episodic
memory system that is imperfect (which is arguably more
human-like yet introduces error in the recollections as com-
pared to a standard experience replay buffer), and 3) CogN-
Gen’s motor-action model must also learn how to manipulate
its coupled working memory (via internal actions) in addition
to how to interact with its environment (via external actions),
which requires learning a more complex policy.

Conclusions and Future Research
In this work, we presented CogNGen (the COGnitive Neural
GENerative system), a novel cognitive architecture, or rather,
its “kernel” (or core) composed of circuits based on neu-
ral generative coding (i.e., predictive processing) and auto-
associative Hebbian memory (MINERVA 2). CogNGen lays
down the groundwork for designing intelligent agents, com-
posed of neurobiologically-plausible building blocks, that
learn across diverse tasks as well as potentially model human
performance at larger scales. Our results, on a challenging set
of sparse reward reinforcement learning problems, show that
the synergy between a classic model of human memory and
predictive processing neural circuits can yield viable adaptive
systems that elicit goal-directed behavior.
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