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94 Abstract: 

95 While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent 

96 a large source of uncertainty in the global CH4 budget due to the complex biogeochemical 

97 controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of 

98 how predictors of freshwater wetland CH4 fluxes (FCH4) vary across wetland types at diel, 

99 multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation 

100 analysis, generalized additive modeling, mutual information, random forests) in a wavelet-based 

101 multiresolution framework to assess the importance of environmental predictors, nonlinearities 

102 and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were 

103 dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth 

104 (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in 

105 temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged 

106 fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 

107 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at 

108 the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor 

109 for peat dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the 

110 diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that 

111 physical processes controlling evaporation and boundary layer mixing exert similar controls on 

112 CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous 

113 vegetation. In addition, 1-4 hour lagged relationships with ecosystem photosynthesis indicate 

114 recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of 

115 scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and 
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116 timing of wetland FCH4 that can inform future studies and models, and help constrain wetland 

117 CH4 emissions.
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118 1. Introduction
119
120 Methane (CH4) is responsible for almost one quarter of the cumulative radiative forcing 

121 since the start of the industrial revolution (Etminan et al., 2016). As the largest natural source to 

122 the atmosphere, wetlands are responsible for ~30% of global CH4 emissions, but their 

123 contribution to the global CH4 budget is highly uncertain (Bridgham et al., 2013; Jackson et al., 

124 2020; Saunois et al., 2020). The complexity of wetland CH4 exchange, which is the net result of 

125 CH4 production, consumption, and transport, makes interpreting and predicting fluxes 

126 challenging (Bridgham et al., 2013). 

127 Previous site-level (Chu et al., 2014; Desai et al., 2015; Pugh et al., 2018; Chang et al., 

128 2019) and synthesis studies (Moore & Dalva, 1993; Updegraff et al., 2001; Olefeldt et al., 2013; 

129 Turetsky et al., 2014; Treat et al., 2018; Knox et al., 2019; Peltola et al., 2019) of wetland CH4 

130 exchange have improved understanding of the abiotic and biotic controls on wetland CH4 fluxes 

131 (FCH4). These studies established that temperature, water table position, air pressure and 

132 atmospheric turbulence, sediment biogeochemistry, and vegetation often dominate as coarse 

133 controls on net FCH4 from wetlands, with distinct controls varying by wetland type (Lai, 2009; 

134 Bridgham et al., 2013; Olefeldt et al., 2013; Turetsky et al., 2014; Treat et al., 2018; Wen et al., 

135 2018). Both air and soil temperature (TA and TS, respectively) can influence FCH4, with the 

136 former dominating physical processes of diffusive transport in plants and the latter strongly 

137 influencing microbial processes controlling CH4 production and oxidation and subsequent soil 

138 diffusion and ebullition; thus, both often emerge as dominant predictors of FCH4 within and 

139 across sites (Knox et al., 2019; Morin, 2019). Water table depth (WTD) governs the reduction-

140 oxidation (redox) zones that determine CH4 production and oxidation (Moore & Knowles, 1989; 

141 Bubier et al., 1995; Malhotra & Roulet, 2015; Perryman et al., 2020, etc.). Physical processes 
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142 such as turbulent conditions and atmospheric pressure (PA) fluctuations can influence the 

143 transport of CH4 from the soil profile into the atmosphere, particularly in porous peat soils where 

144 ebullition is often the primary CH4 transport mechanism during the pressure-falling phase (Sachs 

145 et al., 2008; Nadeau et al., 2013; Ueyama et al., 2020b). Biological factors such as plant 

146 community type and primary production also influence CH4 production and consumption 

147 through a variety of mechanisms including: supplying labile carbon compounds that fuel 

148 methanogenesis (Christensen et al., 2003; Tittel et al., 2019); enhancing oxygen transport into 

149 anoxic soil layers via aerenchyma thereby supporting rhizosphere CH4 oxidation (Laanbroek, 

150 2010); and mediating transport of CH4 to the atmosphere via aerenchyma, allowing CH4 to 

151 bypass potential oxidation in surface soils (Knoblauch et al., 2015; Kwon et al., 2017; Villa et 

152 al., 2020).    

153 Determining the environmental controls on FCH4 is critical for understanding and 

154 modeling these fluxes. In addition to considering direct, mechanistic drivers of methanogenesis, 

155 methanotrophy and CH4 transport (e.g., temperature, WTD, PA) (c.f., Table 1), there are also 

156 benefits to understanding alternative variables that are strongly correlated with FCH4 even if 

157 such variables (e.g., latent heat (LE)) are indirectly linked to FCH4 (Table 1). These indirect 

158 variables can be measured alongside FCH4 and its direct drivers to help capture the complex and 

159 nonlinear relationships between environmental drivers and FCH4 and can describe similar 

160 processes to those influencing CH4 exchange (Morin et al., 2014), and therefore are well-suited 

161 for inclusion in data-driven FCH4 models. 

162 While a general concept of the overall controls on wetland FCH4 has been established, 

163 understanding the functional controls on FCH4 is highly influenced by the temporal and spatial 

164 scales of measurements (Turetsky et al., 2014). In particular, until recently, data and synthesis 
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165 studies were largely biased toward chamber-based measurements from temperate and northern 

166 high-latitude regions (Olefeldt et al., 2013; Turetsky et al., 2014). However, manual chamber 

167 measurements are typically discrete in time and space, and therefore may not capture the full 

168 spatiotemporal range of CH4 dynamics, limiting the investigation of the underlying drivers and 

169 patterns of FCH4 in wetlands (Morin, 2019). 

170 Eddy covariance (EC) flux towers provide ecosystem-scale, noninvasive and near-

171 continuous measurements of the exchange of mass (e.g., carbon dioxide (CO2), CH4, water) and 

172 energy between the land surface and the atmosphere (Baldocchi, 2014). Methane exchange in 

173 wetlands often involves nonlinear and asynchronous processes across multiple time scales 

174 (Sturtevant et al., 2016; Schaller et al., 2019). The continuous, high-frequency nature of EC 

175 measurements along with supporting biophysical measurements offer promising datasets for 

176 improving understanding of wetland FCH4 over multiple timescales. For example, water-level 

177 fluctuations correspond with pulses of CH4 with hourly to daily delays (Hatala et al., 2012a), but 

178 also inhibit FCH4 across a range of time scales (Sturtevant et al., 2016; Koebsch et al., 2015). 

179 However, despite the fact that many of these processes and time scales are poorly characterized 

180 at the ecosystem scale, they are important for predicting FCH4 and, therefore, are critical to 

181 include in data-driven and process-based models (Koebsch et al., 2015; Li et al., 2018). While 

182 studies using EC flux data can elucidate these knowledge gaps, most studies focus on single 

183 sites, thus limiting the scope of inference and generalization across multiple wetland types at 

184 regional and global scales. Furthermore, given the complexity of wetland FCH4, more studies 

185 explicitly questioning assumptions of linear, synchronous, and single-scale analyses are needed, 

186 which can provide new insights into interpretations and predictions of CH4 dynamics.  
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187 Robust statistical approaches are required to capture and describe CH4 dynamics. 

188 Numerous statistical methods with known strengths and weaknesses have been used to describe 

189 and model FCH4, ranging from simple correlation analysis to more complex machine-learning 

190 algorithms (Genuer et al., 2010; Peltola et al., 2019; Kim et al., 2020). By implementing and 

191 comparing multiple statistical approaches, it is possible to evaluate how our understanding of the 

192 complex interactions between controls on FCH4 is influenced by the choice of statistical analysis 

193 (Trifunovic et al., 2020). 

194 In this study, we take advantage of near-continuous EC measurements to elucidate the 

195 predictors and timing of wetland CH4 flux dynamics. Here we use the term ‘predictor’ rather 

196 than ‘driver’ or ‘control’ since we are considering direct, indirect and coincident variables 

197 associated with FCH4 (c.f., Table 1). We leverage the FLUXNET-CH4 dataset (Knox et al., 

198 2019; Delwiche et al., in review) and multiple statistical approaches to analyze measurements 

199 from 23 EC sites across the world (representing 107 site-years of data) to better constrain the 

200 dominant predictors of freshwater, non-tidal wetland FCH4 across time scales and wetland types. 

201 Specifically, we address the following questions: i) What are the dominant predictors of FCH4 at 

202 diurnal to seasonal time scales at each wetland? ii) How does the relative dominance of each 

203 predictor vary across wetland types? iii) Is the identification of dominant predictors of FCH4 

204 influenced by the choice of statistical approach? iv) How important are nonlinearities and lags in 

205 interpreting FCH4?  

206 2. Methods
207
208 2.1. Dataset and site description
209
210 Twenty-three sites from the FLUXNET-CH4 database (Table 2, Fig. 1) were selected for 

211 this analysis because they had at least one full year of FCH4 measurements and reported all 
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212 predictors of interest (Table 1). We only analyzed data for non-tidal, freshwater wetlands 

213 because FCH4 from tidal wetlands is influenced by additional factors such as salinity, sulfate 

214 reduction, and tidal action (Seyfferth et al., 2020). Data standardization, gap-filling, and 

215 partitioning of net ecosystem exchange (NEE) of CO2 for the FLUXNET-CH4 dataset are 

216 described in detail in Knox et al. (2019) and Delwiche et al. (in review). Here we considered 

217 physical predictors of FCH4 such as TA, TS, WTD, PA, incoming shortwave radiation (SW_IN), 

218 vapor pressure deficit (VPD), and wind direction (WD), biological predictors such as gross 

219 primary productivity (GPP), NEE, or ecosystem respiration (RECO), and coincident, indirect 

220 variables such as LE, to understand which variables are strongly correlated with FCH4 and under 

221 what conditions and time scales (Table 1). When more than one observation depth for TS was 

222 available, we selected TS at the depth where the statistical dependence of FCH4 on TS was 

223 highest (see Section 2.2.3). As noted above, here we use the term ‘predictor’ rather than the 

224 terms ‘driver’ or ‘control’ since several of the variables considered here do not have a direct 

225 influence on CH4 production, consumption and/or transport, but rather reflect variables that 

226 represent a proxy or are correlated with processes that have a direct influence on FCH4. 

227 However, in the Discussion we emphasize which predictors represent direct drivers of FCH4 and 

228 which reflect proxies (c.f., Table 1). 

229 Sites were classified into bog, fen, marsh, swamp, rice paddy, and drained wetland based 

230 on site-specific literature (Delwiche et al., in review) (Table 2, Fig. 1). Climate was extracted and 

231 modified from Olson et al. (2001) using site coordinates and includes boreal, temperate, and 

232 tropical/subtropical. No tundra sites were included in this analysis due to the lack of key 

233 ancillary variables (e.g., WTD) in the FLUXNET-CH4 database. Management regimes included 

234 natural, managed, and restored freshwater wetlands (Table 2).
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235 2.2. Within-site analysis of the dominant predictors of CH4 fluxes 

236 To investigate the complexity of wetland FCH4, we compared multiple statistical 

237 approaches to analyze the dominant predictors of FCH4 and evaluate whether findings of the 

238 most important predictors of FCH4 were consistent across approaches. We used methods 

239 commonly used in analyses of FCH4 and their drivers, ranging from simple linear correlation to 

240 more complex methods such as generalized additive models (GAM), information theory, and 

241 random forests (RF). For each method, the goal was to identify and rank the importance of 

242 predictors of FCH4 (i.e., independent variables) to explain the variability of FCH4 (i.e., 

243 dependent variable). 

244 Variable importance analyses using each of the four methods were first performed using 

245 daily mean data, a common time step for analyzing FCH4 (Turetsky et al., 2014; Rinne et al., 

246 2018). Analyses were also performed on wavelet-decomposed data using half-hourly data, as 

247 described below, to assess how predictors vary across time scales (i.e., diel to seasonal time 

248 scales), as partitioning variability across scales can help isolate and identify important processes 

249 (Koebsch et al., 2015). 

250 2.2.1. Wavelet-based time-scale decomposition

251 The maximal overlap discrete wavelet transform (MODWT) was used to decompose the 

252 time scales of variability in gap-filled FCH4 and explanatory variables (Sturtevant et al., 2016) 

253 (see Supporting Information for full details and implementation including treatment of gaps). 

254 The MODWT decomposes the time series into the detail added from progressively coarser to 

255 finer scales, and can be either summed or treated individually to explore patterns across scales. 

256 The detail in the half-hourly fluxes were reconstructed for dyadic scales 1 (21 measurements = 1 

257 h) to 14 (214  measurements = 341 days). We summed the detail over adjacent scales to yield four 
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258 general time scales of variation (Sturtevant et al., 2016). Time scales of variation included the 

259 “hourly scale” (1–2 h) representing short-term perturbations such as clouds passing overhead, the 

260 “diel scale” (4 h to 1.3 days) representing the diel cycles in radiation and temperature, the 

261 “multiday scale” (2.7 to 21.3 days) encompassing synoptic weather variability and shorter-term 

262 variations in water levels, and the “seasonal scale” (42.7 to 341 days) representing vegetation 

263 phenology, seasonal hydrological cycle, and the annual solar cycle. Data were wavelet 

264 decomposed into the hourly, diel, multiday, and seasonal scales with the Wavelet Methods for 

265 Time Series Analysis (WMTSA) using the Wavelet Toolkit in MATLAB (Cornish et al., 2003). 

266 We focused predominantly on the predictors of diel to seasonal time scales as the hourly wavelet 

267 scale is often dominated by noise (Hollinger & Richardson, 2005). As such, the hourly scale was 

268 only produced to show the distribution of FCH4 variability across time scales. 

269 Since wavelet decomposition requires special treatment of gaps, we used gap-filled data 

270 from the FLUXNET-CH4 database for the wavelet decomposition. However, following wavelet 

271 decomposition, the original gaps were subsequently re-introduced prior to the analyses described 

272 below in all but the seasonal time scale to minimize biasing the results based on gap-filling 

273 algorithms (Sturtevant et al., 2016). Original gaps at the seasonal scale were not removed 

274 because gap lengths were small relative to this scale.

275 2.2.2. Linear correlation
276
277 A pairwise Pearson’s linear correlation analysis between predictors and FCH4 was 

278 performed on all sites and time scales described above, with predictor importance represented by 

279 the coefficient of determination (Table S1). Log transformation was not performed as difficulties 

280 arise in interpreting log transformed variables. In addition, negative and zero values would need 

281 to be either discarded or manipulated for a log transformation and therefore skew the results. All 
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282 analyses were conducted in Matlab 2019a (Mathwork Inc., Natick, MA, USA). The linear 

283 correlation was deemed significant at an α level of 0.05. 

284 2.2.3. Relative Mutual Information (IR)
285
286 In information theory, mutual information (I), defines the average tendency for paired 

287 states of two variables (e.g., X and Y) to coexist (Fraser & Swinney, 1986). Computed from the 

288 marginal and joint probability distributions of X and Y, relative mutual information (IRXY) 

289 characterizes the proportion of bits required to represent Y that is redundant given the knowledge 

290 of X. Put differently, it is a normalized measure of the statistical dependence of Y on X, with 

291 larger values indicating higher dependence, or in this context, identifying a stronger link to 

292 FCH4. A strength of IXY lies in the lack of parametric assumptions about the relationships 

293 between X and Y, and therefore, it can address both linear and nonlinear interactions. The 

294 strength of IXY and IRXY is further enhanced by adding a time lag (τ) to these metrics, thereby 

295 allowing us to identify both synchronous and asynchronous interactions. A “synchronous” 

296 interaction is defined as one in which the maximum IRXY is found at τ = 0 (i.e., zero-time lag), 

297 indicating that variations in Y are most related to simultaneous variations in X. Otherwise, the 

298 interaction is characterized as “asynchronous”, where maximum IRXY at τ > 0 indicates that the 

299 fluctuations in Y lagged variations in X, while maximum IRXY at τ < 0 implies that variations in 

300 Y lead variations in X. As such, mutual information can identify both the statistical strength (i.e., 

301 predictor importance) and asynchrony of complex biosphere-atmosphere interactions, such as 

302 wetland FCH4 (Sturtevant et al., 2016).

303 IR between FCH4 (X) and biophysical predictors (Y) of interest was calculated for both 

304 daily mean data and wavelet decomposed data over a range of time lags (τ) using version 1.5 of 

305 the ProcessNetwork Software (Table S2) (Ruddell et al., 2008). Details on the lags, 
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306 discretization, statistical significance and bias correction are provided in the Supporting 

307 Information.

308 2.2.4. Generalized additive models (GAMs)
309
310 The third method used to assess important predictors of FCH4 were GAMs. FCH4 often 

311 follows nonlinear relationships with various potential predictor variables. Unlike linear 

312 correlation analysis, GAMs have the capability of describing these nonlinear relationships and 

313 treating the degree of nonlinearity as a quantity to be estimated. We developed GAMs of FCH4 

314 using each predictor individually. Relative predictor importance was determined by comparing 

315 the deviance explained among predictors (Table S3). All GAMs were implemented using the 

316 mgcv package in R version 3.6.2 (Wood, 2011), with details provided in the Supporting 

317 Information. 

318 2.2.5. Random forests (RF)

319 The last method used to assess variable importance and the dominant predictors of FCH4 

320 was random forests (RF), which is a machine learning algorithm that grows an ensemble of 

321 decision trees (Breiman, 2001). A strength of decision trees is that this approach can reproduce 

322 nonlinearities among multiple predictor variables to explain FCH4. For each tree, data are 

323 successively split at decision nodes to minimize variance in the resulting branches. Predictor 

324 variables can be considered at multiple decision nodes within a single tree, allowing the RF 

325 algorithm to thoroughly explore possible predictor conditions. Moreover, the RF algorithm is 

326 less prone to issues of overfitting associated with single trees because it grows an ensemble 

327 (forest) of decision trees and each tree is trained using randomly drawn (bagged) subsamples of 

328 the data.
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329 A RF algorithm was trained for each site using the ranger package in R (Wright & 

330 Ziegler, 2017; R Core Team, 2019) with details provided in the Supporting Information. We 

331 ranked predictors using permutation importance, which avoids bias of other methods (Strobl et 

332 al., 2007) and scaled importances for site comparisons (Table S4). We also provide out-of-bag 

333 model fit metrics (coefficient of determination, mean absolute error, and bias) as a further 

334 evaluation of relative confidence in results between sites (Fig. S13, Fig. S14). 

335 2.2.6. Variable importance standardization

336 Each statistical method was used to provide a numeric ranking of variable importance, 

337 which we used to estimate dominant FCH4 predictors (i.e., the highest ranked covariates) and 

338 assess how predictors vary between statistical methods. However, the statistical approaches have 

339 different scales for variable importance scores and different ranges between sites. As such, 

340 variable importance metrics for each method were normalized between zero and one, and 

341 therefore for all sites and methods, the strongest predictor has a value of one and the lowest a 

342 value of zero. This normalization ensures comparability in scores across wetland sites and 

343 methods.

344 2.3. Visualizing and cross-site synthesis of the dominant predictors of CH4 fluxes

345 To distill the information generated from the variable importance metrics described 

346 above, heatmaps and principal component analysis (PCA) were used to visualize and assess 

347 predictor patterns across sites and wetland types. Here we used the heatmap.2 function in gplots 

348 R package (Warnes et al., 2019) to generate a heatmap (without cluster analysis) of the 

349 normalized variable importance metrics described above to help visualize dominant predictors 

350 across sites. 
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351 PCA analysis was used to summarize and visualize the information contained in the 

352 variable importance analysis. For each method, we compressed the standardized variable 

353 importance scores generated using the statistical approaches described in Sections 2.2.2-2.2.5 

354 into two principal components. The distributions of sites on the principal components visualize 

355 how strongly FCH4 at each site was regulated by the environmental predictors. PCA analysis 

356 was done using the prcomp function in base R. Columns of the normalized matrices were 

357 centered so that the mean of each column was equal to zero (Abdi & Williams, 2010). 

358 3. Results

359 3.1. Magnitude of FCH4 and time scales of variability

360 FCH4 exhibited a wide range of magnitude across the 23 sites, with median FCH4 varying 

361 from 0.5 to 541 nmol m-2 s-1 (Table 2). Median FCH4 averaged within wetland types was highest 

362 in marshes, followed by rice, fens, bogs, and swamps. 

363 FCH4 exhibited strong variation across time scales (Fig. 2). The seasonal time scale tended 

364 to dominate FCH4 variability across wetland sites, although it was notably lower in some 

365 tropical/subtropical sites where the seasonal variability of multiple biophysical predictors (e.g., 

366 radiation, temperature, GPP) tended to be much lower than in temperate and boreal sites. The 

367 variation in FCH4 at multiday and hourly scales was generally low. However, some sites with 

368 low fluxes tended to have higher variation at the hourly scale (e.g., FI-Si2 and US-Uaf) due to 

369 the higher signal to noise ratio (Hollinger & Richardson, 2005). 

370 Variation at the diel scale also varied across sites. Sites with high diel FCH4 variation 

371 typically showed a diurnal pattern of highest fluxes during late-morning to mid-afternoon and 

372 lower fluxes at night (Fig. 2, Fig. S1). Nonetheless, some sites with considerable variation at the 

373 diel scale exhibited different diurnal patterns (Fig. S1). At some sites, the proportion of variance 
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374 in FCH4 at the diel scale appeared large despite a lack of a typical diurnal pattern (e.g., ID-Pag, 

375 FI-Si2, MY-MLM, US-Uaf). This was largely attributed to the fact that at these sites variation at 

376 other scales (e.g., seasonal) was low (Fig. 2) and/or the magnitude of FCH4 was low (Table 2). 

377 3.2. Dominant predictors of FCH4 across time scales

378 3.2.1. Summary across sites, time scales and methods

379 To assess the dominant predictors at each time scale, we averaged normalized variable 

380 importance scores across sites for each method (Table 3). At the seasonal scale, TS always 

381 ranked as the dominant predictor. TA alternated as either the second or third most important 

382 predictor along with LE or NEE.  Overall, the different approaches tended to converge on the top 

383 predictors, with each of these dominant predictors explaining on average >50% of the variance in 

384 seasonal FCH4 based on the linear correlation and GAM analyses (Tables S1 and S3). 

385 Similar to the seasonal scale, there was also general consistency between methods at the 

386 multiday scale, with all approaches again identifying temperature (TS and/or TA) in the top three 

387 predictors (Table 3). Other key predictors that emerged at the multiday scale included PA, LE, 

388 WTD, and wind direction (WD). While overall less of the variability in multiday FCH4 was 

389 explained by each of the individual predictors, the top predictor at each site generally explained 

390 between 10 and 50% of the variance in multiday FCH4 (Table S1 and S3), with site-level R2 > 

391 0.95 for the RF model with all predictors (Fig. S13). 

392 At the diel scale, all approaches identified LE and NEE as the top two predictors of FCH4, 

393 and with GPP or SW_IN as the third most important predictor depending on the method (Table 

394 3). While the explanatory power of individual predictors was lowest at the diel scale, predictors 

395 did explain up to 50% of the variability in FCH4 for sites with a typical diurnal pattern (i.e., 

396 lower fluxes at night and higher during the day) (Table S1 and S3). 
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397 Daily averaged data are often used for analysis of FCH4 variation at the seasonal scale (Chu 

398 et al., 2014; Rinne et al., 2018). However, unlike wavelet seasonal transformed data, daily 

399 averages also include influences from other time scales of variation. As such, although 

400 temperature (TS or TA) was consistently found to be the top driver across methods at this time 

401 step, other variables such as GPP, NEE and WTD, which were identified as key controls of 

402 FCH4 at the multiday and diel scales, were also identified in the top three drivers for daily 

403 averaged data (Table 3).

404 Given the consistent patterns across methods (Table 3), we focus on the findings of the IR 

405 method for the remainder of the results. The IR approach is explicitly designed to identify both 

406 synchronous and asynchronous relationships (Sturtevant et al., 2016), representing an advantage 

407 over the other statistical methods where accounting for lags is possible but it is not among their 

408 inherent strengths. However, results from the other statistical approaches are presented as 

409 necessary (primarily in the SI) to show consistency or highlight differences in the methods.     

410 3.2.2. Patterns within and across sites at the seasonal scale

411 Figure 3 shows a detailed picture of the dominant predictors within and across sites 

412 determined by maximum IR between FCH4 and biophysical variables. The heatmap at the 

413 seasonal scale for both maximum IR (Fig. 3a) and synchronous IR (Fig. S2a) shows that 

414 temperature (TS or TA) was the dominant predictor across the majority of sites at this scale, with 

415 LE, NEE, and GPP also among top predictors, corroborating the broader patterns across sites 

416 shown in Table 3. The dominance of temperature, LE, NEE, and GPP was also apparent in the 

417 other statistical approaches (Fig. S3). However, Fig. 3a and Fig. S2a also revealed other patterns 

418 which were obscured when averaging variable rankings across sites; notably, WTD was a 
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419 dominant predictor at the swamp and drained sites and two of the rice paddy sites. The 

420 importance of WTD at these sites was also consistent across statistical methods (Fig. S3).     

421 The importance of temperature and WTD was also evident in the PCA analysis of IR 

422 results (Fig. 4).  Sites clustered along PC1 (29% of explained variance) which corresponds 

423 predominantly with WTD, TA, LE and VPD (highly correlated with TA) as dominant predictors 

424 of FCH4 at the seasonal scale (Table S5). This clustering by wetland type further supports the 

425 finding above that, while temperature was a dominant predictor at most sites, WTD was a key 

426 control at the swamp, drained but seasonally inundated, and two of the rice paddy sites. Sites 

427 where WTD is a dominant predictor at the seasonal scale also tended to have a greater ratio in 

428 the variation of WTD relative to TA (Fig. 4). This visible clustering along axes of WTD and 

429 temperature (and variables correlated with temperature) was also apparent in the PCA analysis of 

430 the results from the linear correlation, GAM, and RF analyses (Fig. S4), again supporting the 

431 findings of the IR analysis of the dominant predictors of FCH4 at the seasonal scale (Table 3, 

432 Fig.S3, Fig. S4). 

433 The results of the PCA analysis also suggested other clusters across wetland types. Fens 

434 and most bogs tended to cluster together along PC2 in the bottom right corner of the scatter plot 

435 indicating the importance of GPP and RECO as secondary predictors of FCH4 in these wetland 

436 types (Fig. 4, Fig. 3a, Table S5). However, except for GAM, similar clustering for bogs and fens 

437 was less apparent in the other statistical approaches (Fig. S4). 

438 For sites where WTD was among the higher ranked predictors (the swamp and drained 

439 sites, two rice paddy sites, and the bog NZ-Kop; Fig. S6), seasonal FCH4 lagged WTD by an 

440 average of approximately 17 ± 11 days (standard deviation) (Fig. 5a, Fig. S5, Fig. S6). The lag at 

441 peak IRWTD,FCH4 at individual sites ranged from 2 to 35 days (Fig.5a, Fig. S5, Fig. S6). The 
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442 median lag between seasonal FCH4 and TA was 8 ± 16 days (Fig. 5b), and the median lag with 

443 TS was 5 ± 15 days (Fig. 5c). These findings suggest a more synchronous relationship between 

444 FCH4 and temperature at the seasonal scale relative to WTD (Fig. 5). As noted in the methods, 

445 here we selected TS at the depth where IRTS,FCH4 was greatest. We hypothesize this is the depth 

446 where CH4 production was greatest but acknowledge the lack of information on the depth profile 

447 of CH4 oxidation and labile carbon supply. With respect to negative lags with TS, a negative lag 

448 does not indicate that seasonal FCH4 began to increase before TS; for all sites and site years, 

449 seasonal FCH4 began to increase after TS, and therefore negative lags with TS reflected the fact 

450 that seasonal FCH4 peaked prior to TS and/or began to decrease prior to the decrease in TS at the 

451 end of the growing season (Fig. S7). Lags were also observed with respect to other top predictors 

452 of seasonal FCH4 (Fig. 5d,e), where both LE and GPP tended to increase and/or peak prior to 

453 FCH4 (Fig. S8). The median lag between FCH4 and LE was 17 ± 18 days (Fig. 5d), while FCH4 

454 lagged GPP by 12.5 ± 23 days (Fig. 5e). 

455 3.2.3. Patterns within and across sites at the multiday scale
456
457 WTD, TA, and PA were among the top predictors at the multiday scale (Table 3, Table 

458 S6, Fig. 3b, Fig. 4b) and were generally consistent across statistical approaches. However,  the 

459 relationships with WTD and PA were less apparent for linear correlation analysis and GAMs, 

460 respectively (Table S6, Fig. S9). While clustering across wetland types was less pronounced at 

461 the multiday scale (Fig, 4b, Fig. S10), some patterns emerged. Notably, PA was in the top three 

462 predictors at several peat-dominated sites, including bogs, fens, a peat swamp, and a restored 

463 marsh underlain by peat (Fig. 3a, Fig. S10). The relationship between FCH4 and PA was near-

464 synchronous. Although Fig. 6a suggests that FCH4 slightly led drops in PA (on the order of ~4 ± 

465 2 hours), these lags are not significantly different from zero at the multiday scale (Sturtevant et 
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466 al., 2016). As such, drops in PA coincided with synchronous releases of FCH4 (Fig. 6b, Fig. 

467 S10). Pressure fluctuations on the order of 0.5 to 2 kPa resulted in pulses of CH4 on the order of 

468 5 to 100 nmol m-2 s-1, with larger pulses in CH4 at high emitting sites (Fig. S10). 

469 Similar to the relationship with PA, there was a near-synchronous relationship between 

470 multiday temperature (both TA and TS) and FCH4 (Fig. 6c). WTD was also one of the top 

471 predictors at several sites (Fig. 3b, Fig. 4b, Fig S9) but had a slightly more complex, nonlinear 

472 relationship than those described previously at the multiday scale. Examination of IRWTD,FCH4 

473 with lag (Fig. 6e) generally showed both a primary interaction where variation in FCH4 slightly 

474 led variation in WTD (a lag of ~8 hours), and a secondary interaction where FCH4 lagged WTD. 

475 As illustrated for US-Tw1, the wavelet detail reconstruction for these variables (Fig. 6f) showed 

476 pulses in CH4 generally coinciding or occurring slightly before minima in WTD. There also 

477 tended to be a secondary peak in IRWTD,FCH4 on the order of 4-6 days (Fig. 6e). This secondary 

478 lagged interaction was frequently the result of lower FCH4 after a subsequent rise in WTD (Fig. 

479 6f). The one exception to this pattern was at the rice paddy site (US-Twt), where IR as a function 

480 of lag only had a single peak (Fig. 6e), with maximum IRWTD,FCH4 occurring at a lag of ~5 days.      

481 3.2.4. Patterns within and across sites at the diel scale

482 Some sites had more variation at the diel scale than others. Sites which exhibited a typical 

483 diurnal pattern primarily included fens, marshes, swamps, and rice paddies, with amplitudes in 

484 the diel pattern ranging between ~8 to 172 nmol m-2 s-1 (Fig. 7, Fig. S1). While not all fens, 

485 marshes, and swamps exhibited diel variation, only one of the bogs had a typical diurnal pattern 

486 (Fig. 7, Table 2). All sites with a typical diurnal pattern had aerenchymatous vegetation and only 

487 JP-BBY had mosses (Sphagnum) present. 
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488 Across statistical methods, top predictors of FCH4 at the diel scale included LE, NEE, 

489 GPP, although in some cases SW_IN and VPD were also among the top predictors of diel FCH4 

490 (Table 3). Of the sites characterized by a typical diurnal pattern the dominant relationship 

491 observed were between FCH4 and LE (5 sites), GPP (3 sites), net ecosystem production (NEP, or 

492 negative NEE) (2 sites), VPD (1 site), and SW_IN (1 site) (Fig. 7). The relationship between 

493 FCH4 and LE was approximately synchronous (� ~ 0 hours), with lags ranging between -1 and 

494 0.5 hours, and a median lag of 0 hours. Lags were slightly longer for the other biophysical 

495 predictors, ranging up to 4 hours for GPP, 3 hours for NEP, 2 hours for SW_IN and 1 hour for 

496 VPD. 

497 While in most cases the mean diel pattern of the biophysical predictor with maximum IR 

498 closely matched that of FCH4, in some cases the diel patterns were less well aligned (e.g., DE-

499 Zrk) (Fig. 7). This discrepancy occurs because IR reflects not only similarity in the shape of the 

500 diel pattern, but also in the magnitude of the diel variability (Fig. S11) (Sturtevant et al., 2016). 

501 For example, at DE-Zrk, the shape of the diel pattern in FCH4 appears to be more strongly 

502 related to VPD while the amplitude of the pattern was more closely related to GPP (Fig. S11). 

503 This discrepancy between the mean diel pattern of the biophysical predictor with maximum IR  

504 and FCH4 was observed in some other sites as well (e.g., KR-CRK; US-Twt); however, when 

505 considering synchronous relationships (i.e., � = 0), in most cases the diel pattern in FCH4 

506 closely matched that of LE or VPD (Fig. S12). 

507 4. Discussion

508 Methane exchange in wetlands is complex, and often involves nonlinear and lagged 

509 interactions across a range of time scales (Sturtevant et al., 2016). While several studies have 

510 explored environmental controls on FCH4 across wetland types and biomes (Olefeldt et al., 
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511 2013; Turetsky et al., 2014; Treat et al., 2018), this is the first multi-site synthesis study that 

512 explores how predictors of non-tidal, freshwater wetland FCH4 vary across time scales, assesses 

513 how the relative dominance of these predictors vary across wetland types, and identifies 

514 nonlinear and asynchronous characteristics of these relationships. 

515 4.1. Comparison of approaches

516 A unique feature of this study is the use of multiple statistical approaches, ranging from 

517 simple (linear correlation) to more complex (GAM, IR, RF), to investigate if our understanding 

518 of the predictor FCH4 relationships are influenced by the method of analysis. All statistical 

519 approaches generally converged on the top predictors of FCH4 across sites and time scales 

520 (Table 3). However, when considering patterns and clustering across sites, there were some 

521 differences between approaches, most notably at the multiday scale (Fig. S9). For example, at the 

522 multiday scale, linear correlation did not identify WTD among the top predictors (Fig. S9). The 

523 lack of agreement between linear correlation and IR is similar to a previous study that combined 

524 wavelet analysis and IR to investigate site-level FCH4 (Sturtevant et al., 2016). They  found that, 

525 while linear correlation analysis was generally capable of capturing the major diel and seasonal 

526 relationships, multiday and asynchronous relationships were unresolved using linear correlation 

527 (Sturtevant et al., 2016). Therefore, more complex approaches such as IR, GAM and RF may be 

528 better suited for investigating complex CH4 dynamics in wetlands. 

529 4.2. Dynamics of CH4 exchange and influence of temperature on FCH4

530 As observed previously (Knox et al., 2019; Sturtevant et al., 2016), the seasonal time 

531 scale tended to dominate FCH4 variability across sites. The notable exceptions were some 

532 tropical and subtropical sites which is expected since they typically do not experience the large 
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533 seasonal variations in temperature, radiation, and GPP that contribute to the FCH4 seasonality 

534 observed at higher latitude sites (Delwiche et al., in review). 

535 Across all statistical methods, temperature (TS or TA) was a dominant predictor of FCH4 

536 at the seasonal scale (Table 3, Fig. 8). This finding agrees with other studies across a range of 

537 temperate and boreal wetland ecosystems that identified TS as the dominant control over wetland 

538 FCH4 (Sachs et al., 2008; Chu et al., 2014; Turetsky et al., 2014; Knox et al., 2019; Morin, 

539 2019). This relationship is expected because microbial activity is stimulated by increased 

540 temperature when there is no water limitation and the seasonal temperature variation is relatively 

541 large (Table 1) (Yvon-Durocher et al., 2014). However, the dominance of temperature as a driver 

542 of seasonal FCH4 in this study and earlier studies is influenced by the bias of a larger number of 

543 sites located at higher latitudes which exhibit a distinct seasonal pattern in temperature. As 

544 discussed below, FCH4 in seasonally-inundated wetlands, particularly those at lower latitudes 

545 with relatively uniform year-round temperature, were strongly influenced by WTD (Fig. 3, Fig. 

546 4).    

547 Across sites, lags between FCH4 and temperature at the seasonal scale were 

548 predominantly positive, with a median lag of 8 ± 16 days for TA and 5 ± 15 days for TS (Fig. 5, 

549 Fig. 8). These positive lags are generally consistent with results from a synthesis of FCH4 

550 seasonality in freshwater wetlands of the FLUXNET-CH4 dataset that found the spring onset of 

551 FCH4 lags the increase in TS by an average of 31 ± 40 days (Delwiche et al., in review). 

552 However, the shorter median lags in this study can be explained by the fact that there was a 

553 wider range in lags observed in the FLUXNET-CH4 dataset (Delwiche et al., in review). 

554 Moreover, the lags in this study reflect the alignment between the FCH4 and TS seasonal 

555 wavelet detail which resulted in the highest IR (i.e., the lag reflects the best alignment of the 
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556 variability in the two timeseries and therefore greatest statistical dependence), rather than reflect 

557 the numbers of days FCH4 lagged the spring increase in temperature. In the fewer instances 

558 where we did observe negative lags between FCH4 and temperature, FCH4 peaked slightly 

559 before TS or TA. This is  also consistent with the findings of Delwiche et al. (in review) who 

560 observed that for 36% of the wetland sites in the FLUXNET-CH4 database, the timing of peak 

561 seasonal FCH4 led the soil temperature peak, and the findings of (Chang et al., 2021) who 

562 observed a negative seasonal FCH4 hysteresis with temperature (for both the shallowest and 

563 deepest TS used) at a number of sites. However, as discussed in Section 4.6, further research is 

564 needed to better mechanistically constrain the causes of the observed lags, in particular for 

565 factors affecting CH4 production, oxidation, and transport (Chang et al., 2019).

566 Across multiple sites, including a range of wetland types, temperature was also a 

567 dominant predictor at the multiday scale, with synoptic variations in temperature coinciding with 

568 near-synchronous fluctuations in FCH4 (Fig. 6, Fig. 8). While this pattern can be in part related 

569 to changes in CH4 production with temperature (Yvon-Durocher et al., 2014), changes in 

570 temperature can also influence ebullition rates and diffusive fluxes in wetlands through changes 

571 in CH4 solubility, thermal expansion and contraction of free-phase gas, and the transfer of gas 

572 across the air-water interface (Table 1) (Barber et al., 1988; Chanton et al., 1989; Fechner-Levy 

573 & Hemond, 1996; McNicol et al., 2017).

574 4.3. Influence of water table dynamics on CH4 exchange

575 Coupling wavelet analysis with IR identified nonlinear responses of FCH4 to WTD 

576 across multiple time scales (Fig.8). At the seasonal scale, WTD was the dominant driver of 

577 FCH4 in wetland types and regions with pronounced seasonal variations in WTD and lower 

578 variations in temperature (e.g., in seasonal wetlands and rice paddies; Bansal et al. 2018; Runkle 
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579 et al. 2019) (Fig. 3, Fig. 4). For sites where WTD was a major predictor at the seasonal scale, 

580 FCH4 lagged WTD on the order of 17 ± 11 days (Fig. 5). Lags reported here are within the range 

581 reported by other studies that found that FCH4 lagged WTD by approximately 10-11 days 

582 (Moore & Dalva, 1993; Schäfer et al., 2014; Goodrich et al., 2015). Water table fluctuations also 

583 modulated FCH4 at shorter time scales (Fig. 4). Notably, sites with fluctuating water levels 

584 tended to show pulses in FCH4 coinciding or occurring slightly before minimums in WTD, 

585 followed by a recovery in FCH4 with a lag of ~4-6 days following rising water levels (Fig. 6). 

586 This result is similar to other studies which have also found FCH4 pulses during water table 

587 drawdown (Moore & Dalva, 1993; Hatala et al., 2012b; Knox et al., 2016; Sturtevant et al., 

588 2016; Bansal et al., 2020). These interactions are consistent with the release of stored CH4 as 

589 hydrostatic pressure drops, with peak release occurring as the water table crosses the soil surface 

590 (Knox et al., 2016; Chen et al., 2017; Ueyama et al., 2020b). As illustrated in Fig. 6f, different 

591 magnitudes of FCH4 pulses are therefore likely dependent on the current CH4 pool in porewater 

592 and CH4 production rates (Sturtevant et al., 2016; Bansal et al., 2020). Furthermore, sustained 

593 reduction in FCH4 following rises in water levels likely result from the time taken to deplete 

594 reoxidized alternative electron acceptors or replenish the soil CH4 pool, causing a slow return to 

595 higher CH4 fluxes (Moore & Dalva, 1993; Sturtevant et al., 2016; Koebsch et al., 2020a). This 

596 mechanism can also explain the delay in the rise in FCH4 following the rise in WTD at the 

597 seasonal scale, which is consistent with studies that show recovery time of FCH4 from weeks to 

598 months following re-wetting (Table 1) (Kim et al., 2012). 

599 While saturated conditions are generally a prerequisite for CH4 production (Bridgham et 

600 al., 2013), although not exclusively (Angle et al., 2017), WTD did not appear as an important 

601 predictor for sites exhibiting relatively low variation in WTD (Fig. 4). This is similar to other 
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602 studies of wetland CH4 exchange where the water table remained above the surface or showed 

603 little variation (Song et al., 2011; Strachan et al., 2015;  Knox et al., 2016; Yang et al., 2017). 

604 This result highlights the limitation of these types of observational studies to identify controls 

605 that do not vary, and underscores the need for experimental studies and long-term continuous 

606 measurements of ecosystem-scale FCH4 to capture a wide range of environmental conditions 

607 (Sturtevant et al., 2016). 

608 4.4. Role of pressure fluctuations on CH4 exchange 

609 Atmospheric pressure is often observed to be an important control on FCH4 from 

610 peatlands, with ebullition being the main transport mechanisms during the pressure-falling phase 

611 (Table 1) (Tokida, 2005; Tokida et al., 2007; Sachs et al., 2008; Nadeau et al., 2013). Decreasing 

612 PA can lead to gas release from solution and the enlargement of the volume of gas, resulting in 

613 increased ebullition (Tokida et al., 2007). Similarly, in freshwater lake environments, a 

614 correlation between low PA and increased rates of FCH4 is frequently observed (Mattson & 

615 Likens, 1990; Casper et al., 2000; Engle & Melack, 2000). We found that PA was a dominant 

616 predictor on FCH4 in several peat dominated sites across a range of wetland types (Fig. 4, Fig. 

617 8). As in other studies (Nadeau et al., 2013), we found that drops in PA coincided with 

618 synchronous releases of CH4, with synoptic variations in PA resulting in CH4 pulses on the order 

619 of 5 to 100 nmol m-2 s-1 (Fig. S10). 

620 4.5. Influence of plant activity on FCH4 and the relationship between LE and FCH4

621 At the seasonal scale, LE, GPP and NEE were generally found to be secondary predictors 

622 of FCH4 (Table 3, Fig. 8). While LE does not directly drive FCH4, the few studies that have 

623 examined the relationship between FCH4 and LE have always found it to be significant (Morin 

624 et al., 2014; Sturtevant et al., 2016; Morin, 2019). This strong association between LE and FCH4 
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625 is due to the fact that evaporation of water and CH4 volatilization from water and plant surfaces 

626 are driven by similar physical mechanisms and therefore tend to covary (Table 1) (Morin, 2019). 

627 LE is also linked to plant activity (e.g., Leaf Area Index (LAI) is a strong determinant of LE) at 

628 the seasonal scale, and hence LE can represent a proxy for CH4 transport through 

629 aerenchymatous vegetation (Table 1) (Morin et al., 2014; Morin, 2019).    

630 GPP represents a proxy for the mechanisms of carbon inputs and root exudates to fuel 

631 methanogenesis, plant-mediated transport of CH4 to the atmosphere via aerenchymatous tissue, 

632 and oxygen transport via aerenchyma into the soil fuel methane oxidation and/or reduce methane 

633 production (Table 1) (Turetsky et al., 2014). The first two mechanisms increase FCH4 while the 

634 latter decrease FCH4. Similar to other studies (Chu et al., 2014; Morin et al., 2014; Rinne et al., 

635 2018), GPP was found to be among the top predictors of FCH4 at the seasonal scale across 

636 multiple sites, although it always followed temperature in relative importance (Fig. 3, Fig. S3). 

637 The relationship between GPP and FCH4 observed in this study supports earlier studies 

638 suggesting that the relationship between GPP and FCH4 is dominated by either the addition of 

639 root exudates to the rhizosphere, particularly for deeper rooted plants, or the result of increased 

640 CH4 transport through aerenchymatous vegetation (Bellisario et al., 1999; Hargreaves et al., 

641 2001; Hatala et al., 2012a; Chu et al., 2014)  

642 At the seasonal scale, FCH4 lagged both LE (17 ± 18 days) and GPP (~13 ± 23 days) 

643 considerably. These lags reflect the fact that GPP and LE peaked before FCH4, similar to the 

644 findings of Delwiche et al. (in review) and Mitra et al. (2020). At the seasonal scale, this lag 

645 suggests a delay between labile organic carbon inputs from plants (either in the form of exudates 

646 or fresh detritus) and FCH4 (Megonigal et al., 2004). Alternatively, this delay could be caused 

647 by confounding variables such as temperature (Rinne et al., 2018), again highlighting the 
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648 importance of considering direct drivers of CH4 production, oxidation and transport (e.g., 

649 substrate availability, microbial composition, redox) rather than proxies (e.g., GPP) for these 

650 controls as we were limited to in this study. 

651 As observed in other studies, plant activity was linked to FCH4 at the diel scale (Table 3, 

652 Fig. 3, Fig. 8). While studies generally agree that plant activity controls diel variations in wetland 

653 FCH4, it is challenging to identify whether the direct mechanism is the strength of internal gas 

654 transport, stomatal conductance, or stimulation of CH4 production through a supply of 

655 photosynthate as root exudates (Van der Nat & Middelburg, 2000; Hatala et al., 2012a; Morin et 

656 al., 2014; Koebsch et al., 2015). Our observation that LE and VPD were generally the strongest 

657 synchronous diel predictors of FCH4 suggests that internal gas transport rather than stomatal 

658 conductance (as represented by synchronous coupling between FCH4 and GPP, NEE or SW_IN) 

659 generally controls FCH4 at the diel scale (Table 1) (Sturtevant et al., 2016; Villa et al., 2020). If 

660 we consider maximum IR at the diel scale, lags with LE and VPD were small, again supporting 

661 the role of VPD-pressurized ventilation mechanism as an important mechanism driving CH4 

662 exchange in these sites with aerenchymatous vegetation (Table 1, Table 2). The strong co-

663 variance of FCH4 with LE and VPD also suggests that the physical processes that control 

664 evaporation and boundary layer mixing exert very similar controls on CH4 volatilization (Table 

665 1). At four sites, maximum IR was between GPP or NEP and FCH4, suggesting that recent 

666 photosynthates may also control FCH4 at the diel scale (Table 1), with a lag on the order of 1 to 

667 4 hours (Fig. 8). These lags are comparable to other studies which found that GPP caused a 

668 diurnal pattern in CH4 emissions (Hatala et al., 2012a; Knox et al., 2016, Mitra et al. 2020). 

669 However, in some cases where GPP was identified as a dominant predictor of FCH4 at the diel 
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670 scale, GPP seemed to modulate the amplitude of the diel pattern rather than the shape of the diel 

671 pattern in FCH4 (Fig. S11). 

672 4.6. Limitations and next steps 

673 Though separating the time scales of variation was useful for isolating and identifying 

674 dominant predictors of FCH4, one limitation of these approaches is that they do not explicitly 

675 account for dependencies and interactions among drivers (Sturtevant et al., 2016). For example, 

676 temperature may be a confounding effect when interpreting the importance of LE and GPP at the 

677 seasonal scale since temperature influences both of these variables. Similarly, RF variable 

678 importance rankings can be susceptible to shuffling when highly correlated predictors are 

679 present, though this was not observed in this study. While in this study we assume that a stronger 

680 variable importance metric provides evidence that a given predictor is more important, future 

681 work could explicitly consider partial or interactive effects among drivers. For instance, future 

682 studies could test approaches such as conditional or partial mutual information (Frenzel & 

683 Pompe, 2007; Sharma & Mehrotra, 2014; Zhao et al., 2016), conditional variable importance for 

684 RF (Strobl et al., 2008), or commonality analysis and structural equation modeling (Koebsch, 

685 Sonnentag, et al., 2020) to characterize interactions and interdependencies among multiple 

686 predictors. 

687 Additionally, future research could focus on addressing causation in a similar nonlinear, 

688 multiresolution framework. While the methods selected here were used due to their widespread 

689 application and intuitive statistical interpretation, other methods are better suited for assessing 

690 causation (Runge et al. 2019). For instance, Granger causality has been used for assigning 

691 causation in environmental time series (Molini et al., 2010; Detto et al., 2012; Hatala et al., 

692 2012a). Transfer entropy, which quantifies information flow rather than simply overlap, is a 
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693 nonparametric information theory metric that implies causation (Schreiber, 2000). Here, we 

694 focused on mutual information over transfer entropy due to its lower data requirements (Ruddell 

695 & Kumar, 2009) and greater ease of interpretation (Sturtevant et al., 2016). However, future 

696 work could focus on more explicitly addressing causation.      

697 While 42 freshwater wetland sites are currently included in the FLUXNET-CH4 dataset 

698 (Delwiche et al., in review), the lack of ancillary measurements (most notably WTD) precluded 

699 the inclusion of many sites from our analysis. Furthermore, the dataset contains far fewer sites in 

700 the tropics relative to higher latitude regions (Delwiche et al., in review). As such, our analysis is 

701 limited to a subset of 23 sites, predominantly located in temperate and boreal latitudes (Fig. 1). 

702 The inclusion of a handful of subtropical and tropical sites in this study highlights the differences 

703 in the dominant predictors of FCH4 at the seasonal scale between low latitude, seasonal wetlands 

704 and higher latitude sites (i.e., the relative importance of WTD vs. temperature). Moving forward, 

705 we encourage site principal investigators to measure and report the full suite of variables listed in 

706 Table 1 and to expand the number of low latitude sites so that future studies can include a larger 

707 number of sites with greater spatial coverage in the tropics. This expansion can improve the 

708 spatial representativeness of sites in future analyses ensuring that our understanding of wetland 

709 FCH4 does not remain biased towards temperate and high latitude regions, particularly in North 

710 America and Europe (Fig. 1). It can also increase the statistical power of future studies.

711 Finally, while coupling wavelet decomposition and the statistical analyses presented here 

712 provides a valuable post hoc tool for inferring controls on FCH4 and can generally explain much 

713 of the variability in FCH4 across scales, they are empirical approaches focused on net FCH4, and 

714 therefore do not explicitly allow for direct assessment of the drivers of CH4 production, 

715 oxidation, and transport (Table 1). As mentioned above, future work could focus on better 
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716 integrating eddy covariance FCH4 measurements across sites with critical but often missing 

717 drivers of FCH4. For instance, this includes direct measurements of redox potential and oxygen 

718 content, substrate availability, and detailed information on soil microbial communities driving 

719 CH4 production and consumption (Kwon et al., 2017; Nemitz et al., 2018). Furthermore, this 

720 could be done in a spatially explicit manner to better understand site-level heterogeneity, which 

721 is something that was not directly addressed in this study due to the integrative nature of eddy 

722 covariance measurements (although we did explore site-level heterogeneity to some extent by 

723 including wind direction, but these variables did not come up as dominant variables in the 

724 analyses). Future research should also focus on pairing eddy covariance observations with stable 

725 isotope analyses of CH4, and incubation, chamber, and leaf level measurements to provide 

726 improved understanding of the direct mechanisms of CH4 production, transport and oxidation 

727 (Chanton et al., 1997; Marushchak et al., 2016; Villa et al., 2020). In particular, with respect to 

728 CH4 transport and controls on FCH4 at the diel scale, given that the majority of the sites 

729 measured FCH4 using an open-path sensor, it is also possible that density corrections may have 

730 influenced diel patterns in CH4 exchange, and in turn the evaluation of biophysical predictors of 

731 FCH4 and associated lags (Chamberlain et al., 2017). As such, coupling eddy covariance 

732 measurements with leaf chamber measurements or isotope analyses is especially useful for better 

733 identifying controls on diel scale FCH4. 

734 Nonetheless, by combining multiple statistical methods in a wavelet-based multi-

735 resolution framework, this study contributes to an improved understanding of the predictors of 

736 FCH4 across a wide range of non-tidal, freshwater wetlands, which can help inform empirical 

737 and process-based models of FCH4 (Oikawa et al., 2017). As such, while our analysis does not 

738 provide an explicit predictive model, it does provide the timing and scale-dependent information 
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739 that can help guide modeling efforts toward better representing scale-dependent, asynchronous 

740 and nonlinear processes inherent in FCH4 (Sturtevant et al., 2016), thereby helping better 

741 constrain wetland CH4 emissions. 
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1228 Tables

1229 Table 1. Physical and biological predictors included in this analysis and references from studies 
1230 that have previously identified these variables as predictors of methane fluxes (FCH4). Here we 
1231 consider variables that have a direct influence on methane (CH4) production, consumption and/or 
1232 transport (white cells associated with each predictor), and variables that represent a proxy or are 
1233 correlated with a process that has a direct influence on FCH4 (gray cells). We also include scales 
1234 at which we hypothesize that these predictors will be dominant. 

Predictor Mechanism(s) & hypothesized scale References

Biological predictors 

● Oxygenation of zone around roots (direct driver of CH4 
consumption) (diel to seasonal scale)

Gross primary 
productivity 
(GPP)

● Carbon substrate for methanogens (i.e., root exudates, root 
mortality, plant residue) (proxy for CH4 production) (diel to 
seasonal scale)

● Coupling between FCH4 and leaf photosynthesis may 
indicate that FCH4 is regulated by stomatal conductance 
(proxy for CH4 transport) (diel scale)

● CH4 transport through aerenchymatous vegetation will lead to 
coupling between vegetation development (e.g., stalk 
diameter, Leaf area index (LAI)) and FCH4 since seasonal 
development of the vegetation will increase the available 
aerenchyma area (proxy for CH4 transport) (seasonal scale)

(Hatala et al., 
2012b; Malhotra & 
Roulet, 2015; Knox 
et al., 2016; Rinne 
et al., 2018)

Ecosystem 
respiration 
(RECO)

● May describe similar effects to those that influence CH4 
production/consumption/flux (proxy for FCH4) (diel to 
seasonal scale)

● Breakdown of complex carbon compounds provides simple 
carbon substrates that fuel methanogenesis and CH4 
production (diel to seasonal scale)

(Villa et al., 2020)

Net ecosystem 
exchange 
(NEE)

● NEE is linked to plant activity (GPP) (direct effect and proxy 
for FCH4) and respiration (RECO) (proxy for FCH4) (diel to 
seasonal scale)

(Pypker et al., 
2013)

Biological and physical predictors

Latent heat 
turbulent flux
(LE)

● Evaporation of water and CH4 volatilization from the water 
and plant surfaces are driven by similar physical mechanisms 
and tend to covary (proxy for CH4 transport) (diel to seasonal 
scale)

● LE is linked to plant activity (e.g., LAI is a strong 
determinant of LE) (proxy for CH4 transport) (seasonal 
scale) 

● Influence of vapor pressure deficit (VPD)/humidity gradients 
on pressurized ventilation in aerenchymatous vegetation 
(proxy for CH4 transport) (diel scale)

● In some species, stomatal conductance of water vapor from 
the vegetation is correlated with CH4 transport through plant 
tissue (proxy for CH4 transport) (diel scale)

(Morin et al., 2014; 
Savi et al., 2016; 
Sturtevant et al., 
2016; Morin, 2019; 
Villa et al., 2020)
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Physical predictors

Air 
temperature 
(TA)

● Temperature-dependence of microbial CH4 production and 
consumption (direct driver of CH4 production and 
consumption) (multiday to seasonal scale)

● Influence on diffusive transport in plants (direct driver of 
CH4 transport) (multiday to seasonal scale)

(Pugh et al., 2018, 
Koebsch et al. 
2015)

Soil 
temperature
(TS) 

● Temperature-dependence of microbial processes controlling 
CH4 production and oxidation (direct driver of CH4 
production and consumption) (multiday to seasonal scale)

● Influence on soil diffusion and ebullition of CH4 (direct 
driver of CH4 transport) (multiday to seasonal scale)

(Olefeldt et al., 
2013; Turetsky et 
al., 2014; Goodrich 
et al., 2015; Zona et 
al., 2016)

Water table 
depth (WTD)

● Influence on soil redox conditions (direct driver of CH4 
production and consumption) (multiday to seasonal scale)

● Influence on slow vs. rapid diffusion of CH4 through water 
vs. soils, respectively (CH4 transport) (diel to multiday scale) 

● Influence on the rates of ebullition (CH4 transport) (diel to 
multiday scale)

(Olefeldt et al., 
2013; Turetsky et 
al., 2014; Goodrich 
et al., 2015; Bansal 
et al. 2020;Villa et 
al 2021)

Incoming 
shortwave 
radiation
(SW_IN) 

● Influence on TA, TS, GPP, LE, and mixing of the water 
column (proxy for FCH4) (diel to seasonal scale)

● Influence of light on plant activity (proxy for CH4 transport) 
(diel and seasonal scale)

(Savi et al., 2016)

● Influence on pressurized ventilation of CH4 in 
aerenchymatous vegetation (direct influence on CH4 
transport) (diel scale)

Vapor pressure 
deficit (VPD)

● Influence on GPP and LE (proxy for FCH4) (diel to seasonal 
scale)

● Covaries with near-surface CH4 concentration in the air 
through boundary layer growth and depth (proxy for CH4 
transport) (diel scale)

(Chanton et al., 
1997; Sturtevant et 
al., 2016; Chen et 
al., 2019; Morin, 
2019)

Friction 
velocity
(USTAR)

● Near surface turbulence can influence ebullition and 
diffusion, and increased turbulence can lead to increased 
aeration and transient flushing of CH4 stored in soil (direct 
driver of CH4 transport) (diel to multiday scale)

(Sachs et al., 2008; 
Nadeau et al., 2013, 
Koebsch et al. 
2015)

Atmospheric 
pressure (PA)

● Atmospheric pressure (falling pressure) as a trigger for 
methane ebullition (direct driver of CH4 transport) (diel to 
multiday scale)

(Tokida, 2005; 
Tokida et al., 2007; 
Sachs et al., 2008; 
Linkhorst et al., 
2020;)

Wind direction 
(WD)*

● Related to site heterogeneity (indirect relationship with 
FCH4) (diel to seasonal scale) 

*Note that WD was separated into sine and cosine of wind 
direction (sinWD, cosWD) to represent WD as a continuous 
function.

(Jammet et al., 
2017; Tuovinen et 
al., 2019)
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1236 Table 2. Description of study sites. For vegetation cover, 0 = absent and 1 = present.

Site ID Country Lat Long
Wetland 
Type Biome

Management 
regime

Start 
year

End 
year

Mean 
CH4 
flux 
(nmol 
m-2 s-1)

Median 
CH4 flux 
(nmol m-2 
s-1)

CA-SCB Canada 61.308 -121.298 Bog Boreal Natural 2014 2016 53.71 52.02
FI-Si2 Finland 61.837 24.197 Bog Boreal Natural 2012 2016 46.11 34.40
US-Uaf USA 64.866 -147.856 Bog Boreal Natural 2011 2018 2.66 1.80
JP-BBY Japan 43.323 141.811 Bog Temperate Natural 2015 2018 64.99 58.13
NZ-Kop New Zealand -37.388 175.554 Bog Temperate Natural 2012 2015 47.03 43.84
FI-Sii Finland 61.833 24.193 Fen Boreal Natural 2013 2018 35.40 19.10
SE-Deg Sweden 64.182 19.557 Fen Boreal Natural 2014 2018 31.65 21.63
US-Los USA 46.083 -89.979 Fen Boreal Natural 2014 2018 18.43 8.63
DE-Hte Germany 54.210 12.176 Fen Temperate Restored 2011 2018 166.88 123.77
DE-Zrk Germany 53.876 12.889 Fen Temperate Restored 2016 2018 80.70 21.30
FI-Lom Finland 67.997 24.209 Fen Temperate Natural 2006 2010 49.71 31.50
US-Myb USA 38.050 -121.765 Marsh Temperate Restored 2011 2018 154.70 130.42
US-OWC USA 41.380 -82.513 Marsh Temperate Natural 2015 2016 627.33 540.92
US-Tw1 USA 38.107 -121.647 Marsh Temperate Restored 2012 2018 170.80 149.84
US-Tw4 USA 38.103 -121.641 Marsh Temperate Restored 2014 2018 98.63 79.88
US-WPT USA 41.465 -82.996 Marsh Temperate Natural 2011 2013 127.61 35.90
JP-Mse Japan 36.054 140.027 Rice Temperate Managed 2012 2012 59.35 35.00
KR-CRK Korea 38.201 127.251 Rice Temperate Managed 2015 2018 98.80 37.10
US-Twt USA 38.109 -121.653 Rice Temperate Managed 2009 2017 37.71 14.29
US-MAC USA 27.163 -81.187 Drained Temperate Managed 2013 2016 52.8 20.2

BR-Npw Brazil -16.498 -56.412 Swamp
Tropical & 
Subtropical Natural 2015 2016 63.55 15.42

ID-Pag Indonesia -2.32 113.9 Swamp
Tropical & 
Subtropical Natural 2016 2017 -0.42 0.49

MY-MLM Malaysia 1.454 111.150 Swamp
Tropical & 
Subtropical Natural 2014 2015 28.94 17.76

1237
1238
1239
1240
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1241 Table 2. (cont.)

Site ID
Moss 
(None)

Moss 
(Brown)

Moss 
(Sphagnum)

Aerenchy-
matous

Erica-
ceous 
Shrub Tree Data DOI/location Data DOI Reference

CA-SCB 0 0 1 1 1 0 10.18140/FLX/1669613 Sonnentag et al., 2020
FI-Si2 0 0 1 1 1 1 10.18140/FLX/1669639 Vesala et al., 2020b
US-Uaf 0 1 1 1 1 1 10.18140/FLX/1669701 Iwata et al., 2020b
JP-BBY 0 0 1 1 1 0 10.18140/FLX/1669646 Ueyama et al., 2020a
NZ-Kop 0 0 1 1 0 0 10.18140/FLX/1669652 Campbell et al., 2020
FI-Sii 0 0 1 1 0 0 10.18140/FLX/1669640 Vesala et al., 2020a
SE-Deg 0 0 1 1 1 0 10.18140/FLX/1669659 Nilsson et al., 2020
US-Los 1 0 0 1 1 1 10.18140/FLX/1669682 Desai et al., 2020
DE-Hte 1 0 0 1 0 0 10.18140/FLX/1669634 Koebsch et al., 2020b
DE-Zrk 1 0 0 1 0 0 10.18140/FLX/1669636 Sachs et al., 2020
FI-Lom 0 1 1 1 1 0 10.18140/FLX/1669638 Aurela et al., 2020
US-Myb 1 0 0 1 0 0 10.18140/FLX/1669685 Matthes et al., 2020
US-OWC 1 0 0 1 0 0 10.18140/FLX/1669690 Bohrer et al., 2020
US-Tw1 1 0 0 1 0 0 10.18140/FLX/1669696 Valach et al., 2020
US-Tw4 1 0 0 1 0 0 10.18140/FLX/1669698 Eichelmann et al., 2020
US-WPT 1 0 0 1 0 0 10.18140/FLX/1669702 Chen et al., 2020
JP-Mse 1 0 0 1 0 0 10.18140/FLX/1669647 Iwata, 2020a
KR-CRK 1 0 0 1 0 0 10.18140/FLX/1669649 Ryu et al., 2020
US-Twt 1 0 0 1 0 0 10.18140/FLX/1669700 Knox et al., 2020
US-MAC 1 0 0 1 0 0 10.18140/FLX/1669683 Sparks 2020
BR-Npw 1 0 0 1 0 1 10.18140/FLX/1669368 Vourlitis et al., 2020
ID-Pag 1 0 0 1 0 1 10.18140/FLX/1669643 Sakabe et al., 2020
MY-MLM 1 0 0 0 0 1 10.18140/FLX/1669650 Wong et al., 2020
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1243 Table 3. Summary of top three dominant significant predictors (p < 0.05) of methane flux across 
1244 sites for each time scale and statistical methods of correlation, synchronous and maximum 
1245 information theory (IR), generalized additive modeling (GAM) and random forest (RF). 
1246 Variables are defined in Table 1. Note that significance was not assessed for RF based on the 
1247 method of estimating variable importance. Analyses for ‘Seasonal’, ‘Multiday’ and ‘Diel’ time 
1248 scales were on wavelet transformed data. 

Seasonal Multiday Diel Daily average
Statistical 
Method #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3
Correlation TS LE TA PA TA LE LE NEE SW_IN TS TA GPP
Synchronous IR TS TA LE TS TA PA LE NEE GPP TS TA GPP
Maximum IR TS TA LE TS TA LE NEE LE GPP TS GPP NEE
GAM TS TA LE TA sinWD TS LE NEE SW_IN TA TS GPP
RF TS NEE TA WTD TS TA NEE LE GPP TS GPP WTD

1249

1250
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1251 Figure legends

1252 Figure 1. Locations of non-tidal, freshwater wetland eddy covariance sites included in this 
1253 analysis of methane flux, with sites colored by wetland type. More information on these sites is 
1254 provided in Table 2. 
1255
1256 Figure 2. Variance of methane flux (FCH4) wavelet coefficients at each time scale of interest as 
1257 a percentage of the total variance for all sites in Table 2. The color of site labels indicates 
1258 wetland type as defined in Table 2, and include bogs (pink), drained (orange), fens (green), 
1259 marshes (blue), rice paddies (red), and swamps (gray). Note that the time scales of variation are 
1260 described in Section 2.2.1. See Table 2 for site information and Table 1 for predictor variable 
1261 information.
1262
1263 Figure 3. Heatmap of normalized, maximum relative mutual information (IR) between methane 
1264 flux (FCH4) and biophysical variables within sites for the (a) seasonal scale, (b) multiday scale, 
1265 (c) diel scale, and (d) daily average scale. Analyses for a-c were conducted on wavelet 
1266 transformed data. Colors range from light yellow (lowest normalized IR) to dark red (highest 
1267 normalized IR). Note that non-significant IR values are shaded white. Sites are colored by 
1268 wetland type as defined in Table 2 and Fig. 1, which includes bogs (pink), drained (orange), fens 
1269 (green), marshes (blue), rice paddies (red), and swamps (gray). See Table 2 for site information 
1270 and Table 1 for predictor variable information.
1271
1272 Figure 4. Biplots showing the two largest components from the principal component analysis of 
1273 the matrix of normalized, maximum IR at the (a) seasonal scale, and (b) multiday scale. In (a) 
1274 sites are colored by wetland type and the size of the dots represent the ratio of the standard 
1275 deviation (SD) in WTD to SD in TA at the site. Direction and importance of normalized, 
1276 maximum IR is illustrated by the vectors. See Table 2 for site information and Table 1 for 
1277 predictor variable information.

1278 Figure 5. Histogram of the lag (inferred from maximum IR) between methane flux (FCH4) and 
1279 (a) WTD (7 sites, median lag = 17 days and mean lag = 18.3 days), (b) TA (19 sites, median lag 
1280 = 8 days and mean lag = 10.8 days), (c) TS at depth where IR at zero lag was greatest (17 sites, 
1281 median lag = 5 days and mean lag = 5.4 days), (d) LE (16 sites, median lag = 17 days and mean 
1282 lag = 20.2 days), and (e) GPP (10 sites, median lag = 12.5 days and mean lag = 20.7 days). Red 
1283 line indicates zero lag, dashed black line represents median lag across sites, and solid black line 
1284 represents mean lag across sites. Note that the variable number of sites is due to the fact that we 
1285 only included sites where the driver of interest (i.e., WTD, TA or TS) was statistically significant 
1286 and in the top five highest ranked predictors.  See Table 2 for site information and Table 1 for 
1287 predictor variable information. 

1288 Figure 6. Relative mutual information (IR) as a function of lag between wavelet transformed 
1289 multiday methane flux (FCH4) and (a) PA, (c) temperature (TA or TS depending on which had 
1290 the highest IR, and (e) WTD. For ease of visualization only sites where drivers were the top 
1291 predictor of multiday FCH4 are included here. Vertical lines represent zero lag (𝜏 = 0) (dotted 
1292 red line), and the mean (black line) and median (dashed black line) lag of maximum IR across 
1293 sites. IR across all sites and lags were significant. Wavelet detail reconstruction of FCH4 and (b) 
1294 PA (note the negative sign for ease of visualization) for JP-BBY, (d) TS for DE-Zrk, and (f) 
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1295 WTD for US-Tw1. Note that the mean is removed in wavelet detail reconstructions, therefore the 
1296 y-axes are relative rather than absolute. Panels (b), (d), and (f) illustrate an example of the 
1297 relationships observed in panels (a), (c), and (e). See Table 2 for site information and Table 1 for 
1298 predictor information. 

1299 Figure 7. Average diel variation in the wavelet detail reconstruction for methane flux (FCH4) 
1300 and the predictor at maximum IR, with the lead or lag (𝜏) at which it occurred (in hours, positive 
1301 and negative values indicate FCH4 lagging and leading predictors, respectively). Note that the 
1302 mean is removed in wavelet detail reconstructions; therefore, the y-axes are relative rather than 
1303 absolute. Sites are colored by wetland type as defined in Table 2, bogs (pink), drained (orange), 
1304 fens (green), marshes (blue), rice paddies (red), and swamps (gray). Also note that we used net 
1305 ecosystem production (NEP) (i.e., -net ecosystem exchange [NEE]) for ease of visualization.  
1306 See Table 2 for site information and Table 1 for predictor variable information.
1307
1308 Figure 8. Conceptual diagram summarizing the dominant predictors of methane flux (FCH4) 
1309 across methods, including median leads and lags identified from the IR analysis, across sites and 
1310 time scales. Variables are sorted by importance by the most dominant (outer ring) to least (inner 
1311 ring). Directional arrows indicate significant leads (right arrow) and lags (left arrow) of 
1312 corresponding predictor with the same color. Predictors are air temperature (TA), soil 
1313 temperature (TS), water table depth (WTD), latent heat turbulent flux (LE), gross primary 
1314 productivity (GPP), net ecosystem exchange (NEE), air pressure (PA), and vapor pressure deficit 
1315 (VPD); more predictor details in Table 1.
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Figure 1. Locations of non-tidal, freshwater wetland eddy covariance sites included in this analysis of 
methane flux, with sites colored by wetland type. More information on these sites is provided in Table 2. 
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Figure 2. Variance of methane flux (FCH4) wavelet coefficients at each time scale of interest as a percentage 
of the total variance for all sites in Table 2. The color of site labels indicates wetland type as defined in Table 
2, and include bogs (pink), drained (orange), fens (green), marshes (blue), rice paddies (red), and swamps 
(gray). Note that the time scales of variation are described in Section 2.2.1. See Table 2 for site information 

and Table 1 for predictor variable information. 
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Figure 3. Heatmap of normalized, maximum relative mutual information (IR) between methane flux (FCH4) 
and biophysical variables within sites for the (a) seasonal scale, (b) multiday scale, (c) diel scale, and (d) 

daily average scale. Analyses for a-c were conducted on wavelet transformed data. Colors range from light 
yellow (lowest normalized IR) to dark red (highest normalized IR). Note that non-significant IR values are 

shaded white. Sites are colored by wetland type as defined in Table 2 and Fig. 1, which includes bogs (pink), 
drained (orange), fens (green), marshes (blue), rice paddies (red), and swamps (gray). See Table 2 for site 

information and Table 1 for predictor variable information. 
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Figure 4. Biplots showing the two largest components from the principal component analysis of the matrix of 
normalized, maximum IR at the (a) seasonal scale, and (b) multiday scale. In (a) sites are colored by 

wetland type and the size of the dots represent the ratio of the standard deviation (SD) in WTD to SD in TA 
at the site. Direction and importance of normalized, maximum IR is illustrated by the vectors. See Table 2 

for site information and Table 1 for predictor variable information. 
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Figure 5. Histogram of the lag (inferred from maximum IR) between methane flux (FCH4) and (a) WTD (7 
sites, median lag = 17 days and mean lag = 18.3 days), (b) TA (19 sites, median lag = 8 days and mean 
lag = 10.8 days), (c) TS at depth where IR at zero lag was greatest (17 sites, median lag = 5 days and 

mean lag = 5.4 days), (d) LE (16 sites, median lag = 17 days and mean lag = 20.2 days), and (e) GPP (10 
sites, median lag = 12.5 days and mean lag = 20.7 days). Red line indicates zero lag, dashed black line 
represents median lag across sites, and solid black line represents mean lag across sites. Note that the 

variable number of sites is due to the fact that we only included sites where the driver of interest (i.e., WTD, 
TA or TS) was statistically significant and in the top five highest ranked predictors.  See Table 2 for site 

information and Table 1 for predictor variable information. 
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Figure 6. Relative mutual information (IR) as a function of lag between wavelet transformed multiday 
methane flux (FCH4) and (a) PA, (c) temperature (TA or TS depending on which had the highest IR, and (e) 
WTD. For ease of visualization only sites where drivers were the top predictor of multiday FCH4 are included 

here. Vertical lines represent zero lag (�� = 0) (dotted red line), and the mean (black line) and median 
(dashed black line) lag of maximum IR across sites. IR across all sites and lags were significant. Wavelet 

detail reconstruction of FCH4 and (b) PA (note the negative sign for ease of visualization) for JP-BBY, (d) TS 
for DE-Zrk, and (f) WTD for US-Tw1. Note that the mean is removed in wavelet detail reconstructions, 

therefore the y-axes are relative rather than absolute. Panels (b), (d), and (f) illustrate an example of the 
relationships observed in panels (a), (c), and (e). See Table 2 for site information and Table 1 for predictor 

information. 
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Figure 7. Average diel variation in the wavelet detail reconstruction for methane flux (FCH4) and the 
predictor at maximum IR, with the lead or lag (��) at which it occurred (in hours, positive and negative 

values indicate FCH4 lagging and leading predictors, respectively). Note that the mean is removed in 
wavelet detail reconstructions; therefore, the y-axes are relative rather than absolute. Sites are colored by 

wetland type as defined in Table 2, bogs (pink), drained (orange), fens (green), marshes (blue), rice 
paddies (red), and swamps (gray). Also note that we used net ecosystem production (NEP) (i.e., -net 
ecosystem exchange [NEE]) for ease of visualization.  See Table 2 for site information and Table 1 for 

predictor variable information. 
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Figure 8. Conceptual diagram summarizing the dominant predictors of methane flux (FCH4) across methods, 
including median leads and lags identified from the IR analysis, across sites and time scales. Variables are 
sorted by importance by the most dominant (outer ring) to least (inner ring). Directional arrows indicate 

significant leads (right arrow) and lags (left arrow) of corresponding predictor with the same color. 
Predictors are air temperature (TA), soil temperature (TS), water table depth (WTD), latent heat turbulent 
flux (LE), gross primary productivity (GPP), net ecosystem exchange (NEE), air pressure (PA), and vapor 

pressure deficit (VPD); more predictor details in Table 1. 
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