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Abstract 

From an operation viewpoint, traffic breakdown (from free-flow) was defined as when the 
average speed of traffic drops below a certain threshold. It is known that traffic breakdown is a 
stochastic phenomenon which can happen even when the traffic flow is below the capacity. The 
capacity has many definitions, such as that in HCM or the average of maximum daily flow. This 
study investigates the probability of breakdown at certain locations of freeway. The motivation is 
to find a practical capacity for each freeway section for active traffic control/operation purposes, 
which could be different from previous viewpoints. Capacity is usually expressed in terms of 
flow rate. Nevertheless, it is well known that a particular value of flow rate could represent two 
different traffic states: uncongested and congested. Therefore, simply considering flow rates as 
the main factor is inadequate for operational purpose. In this study, a bivariate Weibull 
distribution is adopted to model the probability of breakdown as a function of both mean speed 
and occupancy of the incoming traffic. The methodology of constructing and calibrating the 
bivariate distribution is introduced. In addition, three case studies are performed to test the 
methodology proposed herein. The case studies are carried out by using three different datasets: 
PORTAL, PeMS, and BHL (Berkeley Highway Lab). PORTAL is an archived data source 
collected from freeways in Oregon, while the other two are collected from freeways in California 
PATH. The datasets measure and process flow rates, occupancies, and speeds of traffic from the 
loop stations on the freeways. Empirical results derived and their potential applications are 
discussed for developing various traffic control strategies including Variable Speed Limit (VSL) 
and ramp metering. 
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Executive Summary 
 
This study investigates the probability of traffic breakdown from free-flow on a freeway. From 
traffic operation point of view, traffic breakdown occurs when average speed of traffic drops 
rapidly to below a certain threshold. It has been revealed in the literature that such traffic 
breakdown is a stochastic phenomenon which can happen even when the traffic flow is below 
the capacity. The capacity has many definitions, such as that in HCM or the average of 
maximum daily flow. In practice, the capacity of the highway section is very difficult to measure 
due many uncertain factors including driver behaviour, road geometry, weather condition, and 
visibility. The motivation of this study is to find a practical capacity for each freeway section for 
active traffic control/operation purposes, which could be different from previous 
definitions/viewpoints.  
 
Brilon et al. (2005) proposed an empirical approach to analyze the probability of breakdown 
based on univariate Weibull distribution with respect to flow. It looked at the traffic data 
collected from freeways A1 and A3 in Cologne, Germany. Nevertheless, it has been revealed 
that a particular value of flow rate could represent two different traffic states: uncongested and 
congested. Therefore, simply considering flow rates as the main factor is inadequate for 
operational purpose. This study adopts a bivariate Weibull distribution to model the probability 
of breakdown as a function of the combination of mean speed and occupancy (equivalent to 
density) of the incoming traffic. The methodology of constructing and calibrating the bivariate 
distribution is introduced.  
 
Three case studies have been conducted to test the proposed methodology with different datasets: 
PORTAL (Portland Oregon Regional Transportation Archive Listing), PeMS (Freeway 
Performance Measurement System), and BHL (Berkeley Highway Lab). PORTAL is an archived 
data source collected from freeways in Oregon, while the other two are collected from freeways 
in California. Contour plot of the breakdown probability with respect to speed and occupancy of 
approaching traffic are derived at each detector station. The contour plot is useful for designing 
traffic control strategies such as Variable Speed Limit (VSL) and ramp metering. An optimal 
traffic control problem typically can be formulated as an optimization problem with an objective 
to maximize total benefit of the system (e.g. minimizing the total system delay) subject to a set 
of constraints including traffic dynamics and constraints on control variables. This study can be 
used to construct a constraint as upper bounds to occupancies and speeds such that the traffic 
breakdown probability is less than a specified threshold, say 10%.  
 
For real time deployment, the parameters of the Weibull distribution can be updated with real 
time traffic data by using the rolling horizon concept. Progress and results will be reported in the 
future. 
 





  

Chapter 1. Introduction 

This study investigates the probability of traffic breakdown from free-flow on a freeway. 
From traffic operation point of view, traffic breakdown occurs when average speed of traffic 
drops rapidly to below a certain threshold (Banks, 2006). It is widely believed that 
breakdown occurs when the flow rate of traffic passing through a bottleneck exceeds its 
capacity. The Highway Capacity Manual (HCM) defines the capacity of bottleneck as the 
maximum sustainable flow at which vehicles and persons reasonably can be expected to 
traverse it during a specified time period under given roadway, geometric, traffic, 
environment, and control condition (Transportation Research Board, 2000). The Highway 
Capacity Manual assumes that there is no influence from downstream traffic operations, such 
as the backing up of traffic into the analysis point. Further detail of the HCM approach can be 
referred to Section 1.2 in Banks (2006). Jia et al. (2000) reported that such maximum 
throughput occurs at the free flow speed of 60 mph, and not between 35 and 45 mph, as is 
often assumed. Consequently, Jia et al. (2000) suggested that congestion should be measured 
as the additional vehicle-hours of delay traveling below 60 mph. 
 
Nevertheless, the definition of capacity above by the HCM has been criticized as 
unsatisfactory for operational purposes (Zhang and Levinson, 2004; Brilon et al., 2005). The 
reason is that previous definition of capacity is a deterministic value while highway traffic is 
a complicated stochastic process. Therefore, it makes better sense to investigate the 
description of traffic capacity from the other side: traffic breakdown probability. It has been 
revealed in recent studies that breakdown occurrences are stochastic, which can happen even 
when the traffic flow is below the capacity (Elefteriadou et al., 1995). Evans et al. (2001) first 
developed a model to estimate the probability of breakdown at ramps by using Markov 
chains. Lorenz and Elefteriadou (2001) performed an empirical analysis of speed and flow 
data collected from Highway 401 in Toronto, Canada. Based on empirical observations, 
Lorenz and Elefteriadou (2001) defined breakdown occurs when the average speed of all 
lanes drops below  90 km/h (~56 mph) for a period of at least five minutes. The speed 
threshold proposed by Lorenz and Elefteriadou (2001) was indeed close to the one suggested 
by Jia et al. (2000).  
 
Recently, Brilon et al. (2005) proposed an empirical approach to analyze the probability of 
breakdown based on univariate Weibull distribution with respect to flow. It looked at the 
traffic data collected from freeways A1 and A3 in Cologne, Germany. The data included flow 
rates and speeds, which were aggregated into 5-min intervals. The size of the time interval (5-
min) was selected after a series of experiments (Brilon and Zurlinden, 2003). Nevertheless, it 
was known that a particular value of flow rate can represent two different traffic states: 
uncongested and congested. Therefore, simply considering flow rates is inadequate for 
operational purpose.  
 
This study proposes an empirical approach to analyze traffic breakdown based on bivariate 
Weibull distribution with respect to both mean speed and occupancy (equivalent to density) 
of the approaching traffic. A methodology of calibration based on maximum likelihood 
estimation has been developed. The proposed methodology is then applied to three case 
studies using three different datasets: PORTAL, PeMS (Choe et al, 2002), and BHL (2008).  
PORTAL (Portland Oregon Regional Transportation Archive Listing) is an archived data 
source collected from Oregon freeways. PORTAL measures flow, occupancy, and mean 
speed from the loop stations. The data is collected and processed in 20-sec time intervals. 
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Suggested by the PORTAL research team, we select a recurrent bottleneck on Northbound I-
5 near Terwilliger Avenue in Portland, Oregon. It is a large horizontal curve on I-5N just 
south of downtown Portland. PeMS (Freeway Performance Measurement System) is a dataset 
for California freeways. Flow rates and occupancies at single-loop stations are first measured 
every 30-sec. PeMS then processes and aggregates the data into 5-min time intervals. PeMS 
estimates speeds from the occupancy measurements by using a ‘g-factor’ approach (Jia et al., 
2001). With the PeMS data, we select a 4-mile section of I-80 freeway in Berkeley, CA. The 
section starts from Buchanan in Albany to San Francisco Bay Bridge in Emeryville. The 
section is considered to be one of the busiest freeway segments in the Bay Area. The 
Berkeley Highway Laboratory (BHL) data are collected from a 2.7 mile section of Interstate 
80 in west Berkeley and Emeryville. The facility has video cameras and dual-loop installed at 
8 stations to monitor traffic for each lane. The data is updated in 1Hz but contains 10Hz 
information (loop up and down time instant in 100ms), with which the lane (point) speed can 
be directly estimated from the up/down time instant of the dual loops. The outcome of this 
study is expected to be used for developing active traffic control strategies including VSL and 
ramp metering. 
  
This report is organized as follows: Chapter 2 starts with a review of Brilon’s (2005) 
approach. A methodology of constructing and calibrating the bivariate Weibull distribution is 
then introduced. Chapter 3 details the case studies. Empirical results and their implications on 
developing traffic control strategies are discussed. Chapter 4 gives some concluding remarks 
of the study. Finally, Chapter 5 suggests some possible future research direction.  
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Chapter 2. Methodology 

Since the analysis in this report is an extension of Brilon’s (2005) work, this chapter starts 
with a review of Brilon’s (2005) approach on probability distribution analysis of traffic 
breakdown with respect to flow. A methodology of constructing and calibrating bivariate 
Weibull distribution is then introduced, which will be used in our analysis.  
 

2.1 A Review of Brilon’s (2005) Approach 
 
Brilon et al. (2005) analyzed the data collected from freeways A1 and A3 in Cologne, 
Germany. The data includes flow rates and speeds, which are aggregated into 5-min intervals. 
This size of the time interval (5-min) is selected after a series of experiments (Brilon and 
Zurlinden, 2003).  
 
Brilon et al. (2005) classified their traffic data (flow, occupancy, speed) into the following 
three categories for analyzing breakdown:  
 

• Case 1:  ** )1(,)( vtvvtv <+>
Traffic at the current time t is regarded as a realization of traffic flow causing 
breakdown.  
 

• Case 2:  ** )1(,)( vtvvtv >+>
It implies the system is able to accommodate the current traffic state.  
 

• Case 3:  *)( vtv <
Traffic at the current time is in congestion. The associated traffic data is discarded as 
it contains no useful information for analysis.  

 
The notation  is the speed threshold that defines traffic breakdown. Brilon et al. (2005) set 
this threshold to be 70 km/h (~45 mph), which was lower than the one suggested by Jia et al. 
(2000) and Lorenz and Elefteriadou (2001). Brilon et al. (2005) argued that the speed 
threshold of 70 km/h was found to be fairly representative for German freeways although it 
can be different for different situations.  

*v

 
After classifying the traffic data into breakdown and non-breakdown flow, Brilon et al. 
(2005) defined the following cumulative distribution function (CDF),  
 

)()( qcPqFc ≤= ,                                                  (2-1) 
 
where c is the capacity of the bottleneck, q is incoming traffic volume. Brilon et al. (2005) 
assumed that traffic breakdown follows Weibull distribution, and the probability of 
breakdown depends on the flow rate of the incoming traffic q. Consequently,   
 

 

q

q

q

c eqF

α

β ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−=1)(                   (2-2) 

3 
 



 

 
with parameters qα  and qβ , the probabilistic density function of capacity is 
 

q

q

q q

qq

q
c eqqf

α

β
α

ββ
α ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

1

)( .                  (2-3) 

 
Expressions (2-2) and (2-3) are the functional forms of cumulative Weibull distribution and 
its density function respectively. Indeed, Weibull distribution is widely used for analyzing 
system reliability due to its flexibility (Wikipedia, 2008). The distribution can mimic the 
behavior of other statistical distributions such as the normal (with )4.3=qα and the 
exponential (with )1=qα .  
 
For Weibull distribution, the mean of the variable q is given by  
 

⎟
⎟
⎠
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q
qq

α
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where  is the gamma function which is defined as  ( )⋅Γ
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∞ −−=Γ

0
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The standard deviation of q is given by  
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In the work of Brilon et al. (2005), the parameters qα  and qβ  are determined by maximum 
likelihood estimation (MLE). It defined the likelihood function of the Weibull  distribution as 
 

[ ]{ }∏
=

−−=
n

i
icicq

ii qFqfL
1

)1()](1[)( θθ ,                           (2-7) 

 
where  is the flow rate at time interval i; n is the total number of time intervals; iq 1iθ =  if 
traffic at time interval i causes the speed drop below the speed threshold v* at time interval 
i+1, 0iθ =  otherwise. Nevertheless, Brilon et al. (2005) did not give the details of the 
solution procedure.   

2.2 Extension to Bivariate Weibull distribution – Copula Function 
Approach 
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Brilon et al. (2005) adopted a univariate Weibull distribution in which probability of 
breakdown was regarded as a function of incoming flow rate.  
 
As aforementioned, traffic flow was related to the associated density and (space) mean speed 
as  
 

svkq = ,                    (2-8) 
 
where k is the density, and sv  is the space-mean speed. It is known empirically that a 
particular value of flow rate q can represent two different traffic states: uncongested and 
congested. Uncongested state corresponds to traffic with a high speed (free-flow speed) but a 
low density (below critical density); congested state represents traffic with a low speed but a 
high density (above critical density).  As a result, simply considering flow rates may be 
inadequate for operational purpose. This is the motivation to consider traffic breakdown with 
respect to both density and mean speed.  
 
This study extends the univariate Weibull distribution function to bivariate form. Following 
this, the probability of traffic breakdown is represented as a function of the combination of 
mean speed and occupancy1 of incoming traffic.  
 
Copula functions (Sklar, 1973) are used as a general way of formulating a multivariate 
distribution. The structure of a copula function consists of two parts: one describing the 
dependence structure and the other describing the marginal behaviours. Denote the bivariate 
cumulative distribution of traffic breakdown as ),( vH c ρ , which depends on the occupancy 
ρ  and speed v of the approaching traffic. Following Sklar (1973), a bivariate distribution  
can be constructed as  
 

),(),( wuCvH c =ρ .                  (2-9) 
 
The density function ),( vhc ρ  of the cumulative distribution ),( vH c ρ  is  
 

),(''),( wucwuvhc =ρ ,               (2-10) 
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probability density functions.  
 

                                                           
1 In traffic engineering, density refers to the number of vehicles per unit length of road at particular time; 
occupancy refers to the percentage of time that a detector at a particular location is occupied by vehicles within 
a given time period (say 5 mins). Density and occupancy are related in which density is practically taken as the 
associated occupancy divided by an average effective length of vehicles (say ~16 – 17ft) on the road. 
Occupancy is used in the present analysis as it is directly measured from the detectors, while density is not.  
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Many copula functions are available and some of the examples can be referred to Genest and 
Rivest (1993). After comparing some candidate, through literature review and numerical 
experiments, the functional form proposed by Frank (1979) is selected in the present study,  
 

⎥
⎦

⎤
⎢
⎣

⎡
−

−−
+−= −

−−

)1(
)1)(1(1ln1),( δ

δδ

δ e
eewuC

wu

,              (2-11) 

 
in which 0≠δ . The associate density function is derived as  
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The larger the absolute value of δ , the stronger the dependence between the variables, where 

0>δ  implies positive dependence, 0<δ  implies negative dependence, 0→δ  gives 
 which implies independence. The bivariate function is bounded by Frèchet-

Hoeffding boundaries
uw=)wuC ,(

2 as ±∞→δ .     
 
The concordance of the variables )(ρcFu =  and )(vGw c=  can be determined from δ  by the 
Kendall’s tau function,  
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which take values in [-1, 1] and take the value of zero if )(ρcFu =  and  are 
independent of each other

)(vGw c=
3. Two variables are concordant if large values of one variable are 

associated with large values of the other variables, and vice versa. Frank’s bivariate function 
is said to be comprehensive as they accommodate all of the possible dependence. 

2.3 Calibration of the Bivariate Weibull Distribution 
 
The parameters of the bivariate distribution function can be estimated by using the method of 
maximum likelihood.  Those parameters include: ( ), , , ,v vρ ρα β α β δ . For this purpose, define 
the likelihood function as  
 

),()()(),(
11

iiicic

n

i
iic

n

i
h wucvgfvhL ρρ ΠΠ

==

== ,             (2-14) 

                                                          

 

 
2 For bivariate distributions, it means ),min(),()1,0max( wuwuCwu ≤≤−+ . 

3 The term dx
e

x
x∫ −

δ

δ 0 1
1

 in the expression is called Debye function, which does not have a closed form 

expression.  
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which leads to  
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where n is the number of samples, )( ici Fu ρ= and )( ici vGw = .  
 
The first two terms in (2-15) are the log-likelihood functions associated with the marginal 
distributions, while the last term is the log-likelihood function associated with the Copula 
parameter. Since the three terms are independent of each other, the marginal distributions and 
Copula parameter δ  of the bivariate distribution function can be estimated sequentially (i.e. 
with a two-stage estimation). 
 

2.3.1 Estimation of marginal parameters 

 
Brilon et al. (2005) did not detail how they solved the maximum likelihood estimation. 
Following Balakrishnan and Kateri (2008), it can be shown that solving the maximum 
likelihood function (2-7) is equivalent to jointly solving the following set of equations:  
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where r is the total number of time intervals with 1=iθ ;  represents the flow rate at a 
time interval i in which 

niq :

1=iθ .  
 
The derivation is referred to the Appendix A.  
 
Furthermore, define  
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which can be shown to be monotone increasing in qα  (Balakrishnan and Kateri, 2008). 
Balakrishnan and Kateri (2008) also showed that there exists a finite upper limit for ),( qqαΩ ,  
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where  is the maximum number in q .  nq

7 
 



 

 
As 

qα
1  is decreasing in qα , a solution of qα  can be determined by solving  
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α q ,                 (2-20) 

 
and hence qβ  can also be calculated accordingly.  
 
Likewise, for marginal distributions in occupancy and speed, the corresponding parameters 
are determined as:  
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where iρ  and  represent respectively the occupancy and the speed at time interval i;  iv ni:ρ  
and  represents respectively the occupancy and the speed at a time interval i in which n:iv

1=iθ .  
 

2.3.2 Estimation of Copula parameter 

 
The Copula parameter δ  is solved such that the following log-likelihood function  
 

∑
=

=
n

i
ii wucL

1

),(lnln δ .               (2-25) 

 
is maximized. Due to the complicated form of the log-likelihood function  and its 
derivative with respect to 

δLln
δ , the parameter δ  is determined by using a golden section search 

such that  is maximized. Theoretically speaking, the parameter δLln δ  could take any value 
in . However, the searching interval is set to be ),( +∞−∞ ),10000( 10000+−  when the solver 
is implemented.  
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In the proposed two-step calibration, since the marginal parameters can be determined by 
closed-form expressions in Step 1, determining the Copula parameter (i.e. Step 2) will be 
more demanding computationally.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 
 



 

Chapter 3. Case studies 

The methodology introduced in the previous chapter is tested with three case studies with 
three different datasets: PORTAL, PeMS, and BHL. In this chapter, the features of each 
dataset and the associated test site are first introduced, the empirical findings are then 
discussed.   
 

3.1 PORTAL  
 
Portland Oregon Regional Transportation Archive Listing (see PORTAL, 2008) is an 
archived dataset of freeways in Oregon from PORTAL database. PORTAL measures flow, 
occupancy, and mean speed from the loop stations. The data is collected, aggregated, and 
processed into 20s time intervals. Suggested by the PORTAL research team, we select a 
recurrent bottleneck on Northbound I-5 near Terwilliger Avenue in Portland, Oregon. It is a 
large horizontal curve on I-5N just south of downtown Portland. The data analyzed in this 
case study is collected from 0:00 to 23:59 on 4-8 August 2008 (Mon – Fri).  
 
We adopt the classification of Brilon et al. (2005) in Section 2.1 for analyzing breakdown 
flow. It is reckoned that choosing the speed threshold v* for identifying breakdown flow is 
crucial in the present analysis. In a recent study, Dowling et al. (2008) suggested that this 
speed threshold should be determined by looking at the speed variations between sequential 
time intervals. The speed threshold should be located with the greatest speed changes. 
Following Dowling et al. (2008), we select the speed threshold v* based on speed variations 
between sequential time intervals. To illustrate how it is done, Figure 1 plots the speed 
variations between sequential 20-sec intervals at the selected bottleneck by using PORTAL 
data. The scatter plot depicts the greatest variability at around 45 mph. Consequently, we set 
v* to be 45 mph in this case.  
 
After defining the speed threshold, we categorize the traffic data into breakdown and non-
breakdown flow. We then construct the bivariate cumulative distribution of traffic breakdown 

),( vH c ρ  by using Copula approach in Section 2.2. Finally, we calibrate ),( vH c ρ  with the 
categorized data by using the two-stage method in Section 2.3.   
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Figure 3-1: Speed variations at Terwilliger, I-5N, OR 
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Figure 3-2: Contour of breakdown probability – PORTAL data 
 
 
Figure 3-2 shows the contour of the bivariate breakdown probability, ),( vH c ρ , with respect 
to speed and occupancy of approaching traffic. Each coordinate in the plot, which represents 
a combination of speed and occupancy of approaching traffic, on the same contour has the 
same probability of inducing breakdown. The scatter plot in Figure 3-2 provides useful 
information for designing traffic control strategies. For example, it can be seen that the 
probability of breakdown drops below 10% if the speed and the occupancy of the 
approaching traffic are limited to less than 60 mph and 0.15 respectively.   
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3.2 PeMS  
 
Freeway Performance Measurement System (see PeMS, 2008) is a dataset for California 
freeways. Flow rates and occupancies at single-loop stations are first measured every 30-sec. 
PeMS then processes and aggregates the data into 5-min time intervals. PeMS estimates 
speeds from the measurements by using a ‘g-factor’ approach (Jia et al., 2001), in which 
 

ρ
qgv =ˆ ,                   (3-1) 

 
where  is the estimated speed; v̂ ρ , q are the measurements of occupancy and flow rate 
respectively; g is the g-factor.  
 
The g-factor is a combination of the average length of the vehicles in the traffic stream and 
the tuning of the loop detector itself. Typically, a constant value for the g-factor is used which 
leads to inaccurate speeds because the g-factor varies by lane, time-of-day, as well as the loop 
sensitivity. PeMS estimates a g-factor for each loop for every 5 minutes over an average 
week to provide a more accurate speed estimates.  
 
With the PeMS data, we select a 4-mile section of I-80 freeway in West Berkeley, CA, as 
shown in Figure 3-3. The section starts from Buchanan in Albany to San Francisco Bay 
Bridge in Emeryville. This section is considered to be one of the busiest freeway segments in 
San Francisco Bay Area.  
 

vds:401524

vds:400060

vds:400176

vds:401242

vds:400126

vds:400691

vds:400803

Direction 
of traffic

vds:401900

 
                               source: maps.google.com 

 
Figure 3-3: I-80W – Buchanan to Powell, West Berkeley, CA 
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We use PeMS data collected on the weekdays (in total 21 days) in September 2008. There are 
10 vehicle detector  stations (VDSs) within the stretch and the profiles of speed and 
occupancy are plotted over a week (8 Sept 2008 – 12 Sept 2008) in Figure 3-4. The plot 
shows that the congestion is generally a recurrent phenomenon.  
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                      VDS: 401211                                                     VDS 401698 

Figure 3-4: Profiles of speed and occupancy – PeMS data 
 
In the present analysis, we do not include data collected from VDSs 401242, 400126 and 
400803 because the speed estimations at those stations do not appear to be correct. Those 
speed estimates are low even when the occupancy measurements are low at midnight ~21:00 
and 24:00 each day, and then abruptly rise to 70 mph at the beginning of the next day. We 
suspect that the error is due to the ‘g-factor’ calculation in PeMS at those stations.  
 
For readers’ interest, we depict the geographical layout of the loop stations covered in this 
study in Figure 3-5. Each lane on the freeway is 12 ft wide. The 3+ HOV lane is in operation 
on weekdays from 0500 – 1000, and 1500 – 1900.   
 

 
Figure 3-5: Layout of the PeMS stations 

 
Figure 3-6 plots the speed variations between sequential 5-min intervals at the selected 
detector stations. The scatter plots of speed change (difference of two speeds in consecutive 
time steps) versus speed at stations 401900, 401524, and 401698 form a general diamond 
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sharp with the greatest variability at around 45 mph. There are two clusters of stability in the 
15-30 mph range (correspond to congested situations) and 55 – 70 mph (correspond to 
uncongested situations). The other four stations (400060, 400176, 400691, and 401211) 
generally show stability for all ranges of speeds, which suggests that the traffic is 
homogenized at those locations. We reckon those stations are ‘non-critical’ locations. 
Cconsequently, we set v* to be 45 mph.  
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VDS: 401698 

Figure 3-6: Speed variations – West Berkeley, I-80W, CA  
 
Figure 3-7 shows the contour of the breakdown probability with respect to speed and 
occupancy of approaching traffic. It is interesting to note that the shapes of the contours are 
similar to each other along the stretch except station VDS 401211 at which the probability of 
breakdown is significantly lower than the other locations. It is not clear at this stage why the 
breakdown probability contours at VDS 401211 differ from the others significantly. Further 
investigation will be needed, for instance, to examine the data quality, characteristics of that 
site and the frequency of incidents at that location during the study period. 
 
Table 3-1 summarizes the statistics based on Weibull distribution. The table gives the means 
and standard deviations of the variables ρ  and v, which are the breakdown occupancy and 
speed respectively. The means and standard deviations are calculated by using formulae (2-4) 
and (2-6) respectively, in which qα  and qβ  are replaced by vα  and vβ  for speed, and ρα  
and ρβ  for occupancy. Table 3-1 also gives the bounds on speed and occupancy, given 
certain ranges of breakdown probability. In general, the results show that the probability of a 
breakdown occurs can be reduced to below 50% if the approaching traffic speed and 
occupancy are controlled to below 55 mph and 0.10 – 0.13 respectively. The highly negative 
Copula parameters at all stations suggest that the speed and occupancy leading to breakdowns 
are negatively correlated to each other. This implies that a traffic stream travelling at a 
high(low) speed will be associated with a low(high) occupancy, which is no surprise as it is 
the characteristic of traffic. 
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VDS: 401698 
Figure 3-7: Contours of breakdown probability – PeMS data



  

 
 
 
 
 
 
 

Table 3-1: Summary of statistics – PeMS 
 

VDS Mean occ SD occ Mean spd SD spd occ < spd < occ < spd <
401900 -129.75 10.44 0.14 45.86 55.98 0.14 0.016 55.30 1.52 0.13 55 0.13 55
401524 -310.37 10.33 0.17 34.11 58.29 0.16 0.019 57.36 2.11 0.15 55 0.15 55
400060 -326.88 5.23 0.21 46.35 56.29 0.20 0.043 55.61 1.52 0.20 58 0.18 58
400176 -270.84 5.83 0.15 28.81 60.74 0.14 0.028 59.59 2.59 0.14 58 0.13 58
401242 --- N/A  ----
400126 --- N/A  ----
400691 -271.06 6.20 0.15 33.63 58.99 0.14 0.027 58.02 2.17 0.13 65 0.13 65
400803 --- N/A  ----
401211 -341.14 2.42 0.47 22.05 65.66 0.42 0.184 64.07 3.61 0.50 65 0.40 65
401698 -237.40 9.20 0.11 26.08 58.99 0.10 0.013 57.77 2.77 0.10 55 0.10 55

Breakdown prob. < 75% Breakdown prob. < 50% Weibull parameters
δ ρα ρβ vα vβ

 
 

- Note: entries in bold indicate corresponding to the critical locations.  
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3.2.1 An experiment to test the persistence of the method 
 
The contour plots in Figure 3-7 are derived from the 21-weekday data in September 2008 
following the proposed statistical methodology described in Chapter 2. To test the persistence of 
the proposed methodology, we divide the original 21-day dataset into four subsets of weekly data 
in which weekends are excluded. Provided that the congestion is recurrent, the contour plots 
derived from these four sets of weekly data should be similar to each other and to those 
‘aggregated’ ones in Figure 3-7, if the methodology in Chapter 2 is stable.  
 
Stations VDS 400060 and VDS 401900 are chosen for the experiment and the results are shown 
in Figure 3-8 and Figure 3-9. Although there exist some variations from week to week, the 
patterns of the contours resemble each other. This indicates that the bivariate approach and the 
method for calibration in Chapter 2 is stable and persistent over time. 
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Figure 3-8: Comparison of contours over week at VDS 401900 for persistence 
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Figure 3-9: Comparison of contours over week at VDS 401698 for persistence 

3.3 BHL  
We adopt the BHL (Figure 3-10) data collected in the eastbound direction on 17 July 2008. It is 
noted that data on some of the lanes at loop stations 4 and 5 are missing and hence two stations 
are not included in this study. For comparison, we also download the corresponding PeMS data 
at the same loop stations on the same day.  
 

 
 
Figure 3-10: Berkeley Highway Laboratory (source: http://bhl.calccit.org:9006/bhl/) 
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Figure 3-11: Contours of breakdown probability – BHL data 
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Figure 3-12 Contours of breakdown probability – PeMS data 
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It is noted that the BHL detector stations indeed coincide with the PeMS VDSs. The detectors 
are owned and managed by Caltrans. For reference, Table 3-2 lists the BHL stations alongside 
with the PeMS VDSs in both directions. 
 

Table 3-2 BHL stations vs PeMS VDSs 
BHL station PeMS - I80W PeMS - I80E

1 400060 400612
2 400176 400728
3 400009 400432
4 401242 401198
5 400126 400679
6 400691 400367
7 400803 400808
8 401211 401513  

 
 
A summary of statistics with BHL data and PeMS data are shown in Table 3-3 and Table 3-4 
respectively. Again, the highly negative values of the Copula parameter imply that the speeds 
and occupancies of traffic leading to breakdowns are negatively correlated.  
 
BHL data are collected every 30-sec while PeMS data are updated every 5-min. With this 
difference, the contours obtained from BHL data indicate a significantly lower breakdown 
probability with respect to approaching occupancies and speeds. In fact, same observations were 
reported by Kerner (2004, p274) and Brilon et al. (2005), which showed that a finer data 
resolution results in lower estimates of breakdown probability. A possible explanation for this is 
that with finer resolution, the sample size (i.e. total number of time intervals) increases 
significantly while the number of time intervals inducing a traffic breakdown remains about the 
same. As a result, the proportion of breakdown intervals and hence breakdown probability drops. 
On the requirement of data resolution, Brilon et al. (2005) suggested that a 5-min data resolution 
should be enough for operational purpose. Moreover, consider that BHL data are expensive and 
not readily available, we suggest the use of PeMS data for practical purpose. 
 
Finally, it is noticeable that the breakdown probability contours derived from I-80 are 
significantly different from those derived from I-5. It can be due to different characteristics of 
site and different characteristics of drivers. Effects of characteristics of site and driving behaviors 
will be studied in the future.  

 
 



  

 

 
Table 3-3:  Summary of Statistics – BHL data 

 

Station Mean occ SD occ Mean spd SD spd occ < spd < occ < spd <
1 -351.89 12.77 0.30 76.91 55.65 0.29 0.03 55.25 0.91 0.3 58 0.25 58
2 -351.91 16.03 0.28 59.09 57.60 0.27 0.02 57.05 1.22 0.27 55 0.25 55
3 -351.77 14.38 0.27 52.85 57.13 0.26 0.02 56.53 1.35 0.25 58 0.23 58
4 --- N/A  ----
5 --- N/A  ----
6 -351.85 13.14 0.29 81.25 55.01 0.28 0.03 54.63 0.85 0.27 50 0.25 50
7 -351.90 11.81 0.33 44.44 60.30 0.32 0.03 59.54 1.69 0.32 55 0.28 55
8 -351.85 11.65 0.32 23.72 69.02 0.31 0.03 67.46 3.54 0.32 64 0.27 64

Weibull parameters Breakdown prob. < 75% Breakdown prob. < 50% 
δ ρα ρβ vα vβ

 

Table 3-4:  Summary of Statistics – PeMS data 
 

Station Mean occ SD occ Mean spd SD spd occ < spd < occ < spd <
1 -280.92 7.59 0.12 67.12 12.78 0.11 0.018 64.46 6.14 0.13 65 0.12 60
2 -325.49 6.94 0.12 64.42 17.95 0.11 0.019 62.54 4.30 0.13 62 0.12 58
3 -322.92 41.06 0.09 14.14 69.81 0.09 0.003 67.28 5.82 0.25 58 0.23 58
4 --- N/A  ----
5 --- N/A  ----
6 -343.20 54.88 0.10 12.98 77.10 0.10 0.002 74.09 6.96 0.08 75 0.08 70
7 -308.09 4.08 0.03 12.05 60.02 0.03 0.007 57.53 5.80 0.03 58 0.02 55
8 -298.09 0.85 0.27 23.10 52.64 0.29 0.349 51.42 2.77 0.27 53 0.15 50

Weibull parameters Breakdown prob. < 75% Breakdown prob. < 50% 
δ ρα ρβ vα vβ
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Chapter 4. Concluding remarks 

This study analyses the probability of breakdown using bivariate Weibull distribution. 
Contrasting with previous studies in the literature, the probability of breakdown is considered 
here to be a function of the combination of mean speed and occupancy of the approaching traffic, 
which is an extension. Such extension could benefit the development of on-line calibrated 
probability distribution for traffic management and control. 
 
The bivariate Weibull distribution is derived from its univariate components by using a Copula 
function approach. Copula functions (Sklar, 1973) are regarded as a general way to construct 
multivariate distributions. The structure of a Copula function consists of two parts: one 
representing the marginal distributions; and one representing the correlation of the two marginal 
variables. The bivariate Weibull distribution is calibrated using a two-stage maximum likelihood 
estimation. In the first stage, the parameters of the marginal distributions are determined from the 
closed form expressions that we have derived. In the second stage, the correlation, which is 
known as Copula parameter, is determined by a line search such that a predefined log-likelihood 
function is maximized.  
 
The proposed methodology is applied to three case studies with three datasets: PORTAL, PeMS, 
and BHL. PORTAL data is collected from a bottleneck near Terwilliger Avenue on I-5N in 
Portland, Oregon; PeMS and BHL data are collected from a 4-mile section of Freeway I-80W in 
West Berkeley, California. Contour plots of breakdown probability are derived at the locations 
where the data are measured. The contour plots are useful information for developing various 
control strategies including variable speed control and ramp metering. An optimal traffic control 
problem typically can be formulated as an optimization problem with an objective to maximize 
total benefit of the system (e.g. minimizing the total system delay) subject to a set of constraints 
including traffic dynamics and constraints on control variables. This study can be used to 
construct the second kind of constraint as bounds on occupancies and speeds such that the traffic 
breakdown probability is less than a specified threshold, say 10%. Persistence of the distribution 
function for the same location over time has been investigated as well empirically, which is a 
necessary condition for correctness of the approach. Empirical analysis shows that the bivariate 
approach and the method for calibration of the distribution function traffic breakdown proposed 
in Chapter 2 is stable and persistent over time for the selected location. Effect of data resolution 
on the breakdown probability is also investigated.  It is found that lower breakdown probability 
is obtained with finer data. On the requirement of data resolution, Brilon et al. (2005) suggested 
that a 5-min data resolution should be enough for operational purpose. Moreover, consider that 
BHL data are expensive and not readily available, we suggest the use of PeMS data for practical 
purpose. 
 
For real time deployment, the parameters of the Weibull distribution can be updated with real 
time traffic data by using the rolling horizon concept. Progress and results will be reported in the 
future. 
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Chapter 5. Further studies 

Further study will investigate other factors influencing the breakdown in addition to the 
characteristics of traffic covered in this study. The additional information to consider includes:  
 

• Geometric variation effect 
- including lane configurations, curvature, and grades. These data are obtainable 

from the PeMS.  
 

• Truck volume effect 
- PeMS is able to estimate truck volumes at each detector based on the measured 5-

minute, lane-by-lane values of flow and occupancy (see Kwon et al., 2003). If 
there are sensors that do report truck volumes then PeMS will use those directly.  
 
The algorithm attempts to break down the total flow into passenger cars and large 
trucks. The algorithm makes the following assumptions:  
 

• There are no heavy trucks on the inner lanes.  
• For multi-lane freeways, the vehicle speeds over different lanes are 

synchronized.  
• The traffic volume consists mostly of short passenger cars and long 

trucks.  
• The average length of passenger cars is 16 feet and the average 

length of trucks is 60 feet.  
 
With these assumptions, the algorithm estimates the proportion of trucks in each 
lane, starting with the first lane (where by assumption that the proportion of trucks 
is zero), and working to the outer lanes.  

 
• Weather effect such as rainfall  

- Rainfall data consisting of hourly precipitation records can be obtained from the 
California Data Exchange Center (California Department of Water Resources, 
2008).  

 
• Incident effect  

- Incident data will be used to identify periods during which traffic may have been 
affected by incidents. The log records of incidents are generated by the California 
Highway Patrol (CHP) Computer-Aided Dispatch System and can be downloaded 
through PeMS. The log records incident types, post mile location, direction of 
traffic, start times and durations of the incidents.  Types of incidents recorded 
include collisions, debris, and breakdowns of vehicles. However, the log does not 
include incidents related to work zones and adverse weather conditions.  
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Appendix A - Derivation of Closed Form Solutions for Parameters of Weibull 
Distribution  

This appendix derives the closed form solutions (2-16) and (2-17) for the parameters of 
univariate Weibull distribution based on maximum likelihood estimation. Nevertheless, it is 
noted that the closed form solutions derived are applicable for marginal distributions in other 
variables, such as occupancy and speed. 
 
The likelihood function is defined as  
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The parameters qα  and qβ  in the distribution function are determined such that the above log-
likelihood functions are maximized. It is achieved by setting the partial derivatives equal to zero: 
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Following Balakrishnan and Kateri (2008), we let r, where nr ≤≤1 , be the number of time 
intervals with 1=iθ ,  be the associated flow rates in those time intervals. The 
above expressions can then be rewritten as:  
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Appendix B – MATLAB Codes  

This appendix includes the MATLAB codes developed for this study. The set of codes depicted 
herein is for PeMS dataset (Section 3.2). Nevertheless, the only difference between codes for 
different datasets is on reading the input files whose formats are different for different sources.  
 
There are in total six codes:  
 
1. ‘capacity_pdf.m’  
 – it is the main program. It first reads the input file, which is downloaded from PeMS 

website in spreadsheet (*.xls) format. The program then categorizes the traffic data 
according to the classification in Section 2.1. The speed threshold, v*, is predefined at 45 
mph as discussed in Section 3.2.  

 
 After doing a series of numerical experiments, it is found that we need to specify a 

‘maximum censored value’ for both speed and occupancy in the set of ‘non-breakdown 
flow’, otherwise the breakdown probability will be significantly underestimated. These 
‘maximum censored values’ are denoted by ‘max_occ’ and ‘max_spd’ in the code for 
occupancy and speed respectively. The associated values of them are set after 
investigating the empirical data. The necessity of setting those values is subject to further 
investigation. It may be due to the existence of some ‘outliers’ in the dataset that may 
affect the calibration result. 
 
After classifying the data, calibration will be carried out by calling the following 
subroutines.  

  
2. ‘weibull_cal.m’  

– it is a subroutine for calibrating the marginal distributions parameters (i.e. Step 1 in 
Section 2.3.1) 

 
3. ‘bisection_method.m’  

– it is a subroutine to calculate the value of L.H.S. of Equation (2-19) (Step 1) 
 
4. ‘H.m’  
 – it is a subroutine of ‘bisection method’ for solving Equation (2-19) (Step 1) 
 
5. ‘golden_section.m’  

– it is a subroutine of ‘golden section’ for determining the Copula parameter (Step 2 in 
Section 2.3.2) 

 
6. ‘log_likelihood.m’  

– it is a subroutine to calculate the value of the log-likelihood function (2-24) (Step 2 in 
Section 2.3.2) 
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function capacity_pdf() 
 
% This is the main code 
 
% Read input file -  the input file is downloaded from the PeMS dataset in EXCEL: 
% First column: time index (not used)  
% Second column: flow (not used)  
% Third column: occupancy  
% Fourth column: speed 
% We looked at data collected from the weekdays in Sept 2008, in which there are 21 days in total 
% The data are aggregated in 5-min intervals, which gives 21x(24x60)/5 = 6048 rows for each column   
 
datadir = pwd; 
data = xlsread('vds401698_sept08');   
 
% all weekdays in Sept 08  
occ_raw = data(1:6048, 3);   
speed_raw = data(1:6048, 4); 
 
% ======================== 
% Classification of traffic data 
% ======================== 
spd_threshold = 45;   % Speed threshold classifying breakdown flow and non-breakdown flow 
max_occ = 0.15;   % censored value, from observation  (subject to review) 
max_spd = spd_threshold + 5;  % censored value, from observation  (subject to review) 
 
%  uncensored data (‘breakdown’ flow; Case 1 in section 2.1 in the report)  
z=1;     
for c = 1:size(speed_raw,1)-1 

if ( ( (speed_raw(c+1) < spd_threshold) && (speed_raw(c) > spd_threshold) ) && (speed_raw(c+1) <                 
speed_raw(c)-5 )  && (occ_raw(c) > 0) ) 
        speed_jam(z) = speed_raw(c); 
        occ_jam(z) = occ_raw(c);          
        z = z+1; 

end 
end 
 
speed_jam = speed_jam'; occ_jam = occ_jam';  
 
% censored data ('non-breakdown' flow; Case 2 in Section 2.1 in the report)  
z=1;     
for c = 1:size(speed_raw,1)-1 
    if ( ( (speed_raw(c+1) > spd_threshold) && (speed_raw(c) > spd_threshold) ) && (occ_raw(c) > 0) ) 
        speed(z) = min(speed_raw(c), max_spd);    
        occ(z) = min(occ_raw(c), max_occ);              
        z = z+1; 
    end 
end 
 
speed = speed'; occ = occ';  
 
% data belong to Case 1 or Case 2 (i.e. Case 3 is excluded here)  
speed_total = [speed; speed_jam];  occ_total = [occ; occ_jam]; 
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% ========================================== 
% 'weibull calibration' - Balakrishnan and Kateri (2008)   
% ========================================== 
 
% Step 1: Call function ‘weibull_cal’ to determine the marginal parameters 
%------------------------------------------------------------------------------------------------- 
 
[alpha_speed, beta_speed] = weibull_cal(speed_jam, speed_total)  
[alpha_occ, beta_occ] = weibull_cal(occ_jam, occ_total)  
 
% Parameters of the marginal distributions  
 
t1 = beta_speed;         
b1 = alpha_speed;        
t2 = beta_occ;           
b2 = alpha_occ;          
 
% Statistics of the marginal distributions  
wei_mean_spd = beta_speed *  gamma(1 + (1/alpha_speed)) 
wei_sd_spd = beta_speed * ( gamma(1 + (2/alpha_speed)) - (gamma(1 + (1/alpha_speed)) )^2  )^.5 
wei_mean_occ = beta_occ *  gamma(1 + (1/alpha_occ)) 
wei_sd_occ = beta_occ * ( gamma(1 + (2/alpha_occ)) - (gamma(1 + (1/alpha_occ)) )^2  )^.5 
 
 
% Step 2: calculating ‘delta’ (the Copula parameter) by a golden section line search  
%----------------------------------------------------------------------------------------------------------- 
 
delta = golden_section('log_likelihood',-10000,100,speed,occ,t1,b1,t2,b2,0.001,40) 
 
 
% ===================== 
% Generating contour plots 
% ===================== 
 
for e = 1:25           % index for speed  
    for f = 1:55        % index for occupancy     
        capacity_cdf_Weibull(e, f) = -1/delta*log(1+ (exp(-delta*(1- exp(-(e*5/t1)^(b1))))-1)*... 
        (exp(-delta*(1- exp(-(f*0.01/t2)^(b2))))-1)/(exp(-delta)-1) ); 
    end 
end 
 
figure(1); 
[C,h] = contour(0:.01:.54,0:5:120,capacity_cdf_Weibull,5); 
clabel(C,h,'FontSize',25, 'LabelSpacing',1000, 'Rotation',0) 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*20) 
colormap cool 
 
 
end 
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function [alpha, beta] = weibull_cal(u_data, c_data) 
 
%  Function for calibrating  marginal Weibull distributions. (Step 1)  
%   It returns the maximum likelihood estimates of the   
%   parameters of the Weibull distribution given the provided data.   
% 
 
%   Reference: 
%      [1]  Balakrishnan, N and Kateri, M  
%      "On the MLE of parameters of WEibull dist. based on complete and 
%      censored data", Statistics and Probability Letters 
%      2008 p. 2971 - 2975. 
 
 
num_complete = size(c_data,1);  % number of censored (‘non-breakdown’ flow) data 
num_uncensored = size(u_data,1);  % number of uncensored (‘breakdown’ flow) data 
 
alpha = bisection_method('H',u_data,c_data,0.00001,100.0,0.00001);  
 
 t = c_data.^alpha;  
 t = sum(t);  
 
beta = ( t/num_uncensored )^(1/alpha);   
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function c = bisection_method(f,u_data,c_data,a,b,delta) 
 
%     Subroutine of ‘bisection method’ used to solving ‘H = 0’  
%     This subroutine is used in Step 1 – determining the marginal parameters  
%     Input - f is the function input as a string 'f' (H-function in Balakrishnan and Kateri, 2008, see ‘H-function’). 
%        - a and b are the left and right endpoints 
%        - delta is the tolerance 
%          - Output - c is the solution 
%         - yc= f(c) 
%          - err is the error estimate for c 
 
ya=feval(f,a,u_data,c_data); 
yb=feval(f,b,u_data,c_data); 
 
max1 = 100; 
 
for k=1:max1 
    c=(a+b)/2; 
    yc=feval(f,c,u_data,c_data); 
    if yc==0 
        a=c; 
        b=c; 
    elseif yb*yc>0 
        b=c; 
        yb=yc; 
    else 
        a=c; 
        ya=yc; 
    end 
    if b-a < delta, break,end 
end 
 
 
end 
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function H_alpha = H(alpha, uncensored_data, complete_data) 
 
% 
% H-function in Balakrishnman and Kateri (2008) (i.e. Equation (2-19) in the report: Omega – 1/alpha)  
%   Reference: 
%      [1]  Balakrishnan, N and Kateri, M  
%      "On the MLE of parameters of WEibull dist. based on complete and 
%      censored data", Statistics and Probability Letters 
%      2008 p. 2971 - 2975. 
%  
%   This subroutine is used in Step 1 – determining the marginal parameters  
  
uncensored_data_log = log(uncensored_data);  
complete_data_log = log(complete_data);  
  
complete_data_power = complete_data.^alpha; 
product = complete_data_log.*complete_data_power; 
  
r =  size(uncensored_data,1); 
  
H_alpha = sum(product) / sum(complete_data_power) - sum(uncensored_data_log)/r - 1/alpha; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

36 
 



   

function x = golden_section(f,a,b,v,pho,t1,b1,t2,b2,eps,N) 
% 
% Golden section search on the function f (log-likehood function)  to determine Copula parameter: delta (Step 2)  
% t1,b1,t2,b2 are the marginal parameters  
% Assumptions: f is continuous on [a,b]; and 
% f has only one minimum (maximum for -f) in [a,b]. 
% N - maximum number of iterations. 
% When b-a < eps, the iteration stops. 
% 
 
c = (-1+sqrt(5))/2; 
 
x1 = c*a + (1-c)*b; 
fx1 = -feval(f,x1,v,pho,t1,b1,t2,b2); 
 
x2 = (1-c)*a + c*b; 
fx2 = -feval(f,x2,v,pho,t1,b1,t2,b2); 
 
for i = 1:N-2 
    if fx1 < fx2 
        b = x2; 
        x2 = x1; 
        fx2 = fx1; 
        x1 = c*a + (1-c)*b; 
        fx1 = -feval(f,x1,v,pho,t1,b1,t2,b2); 
    else 
        a = x1; 
        x1 = x2; 
        fx1 = fx2; 
        x2 = (1-c)*a + c*b; 
        fx2 = -feval(f,x2,v,pho,t1,b1,t2,b2); 
    end; 
 
    if (abs(b-a) < eps) 
        fprintf('succeeded after %d steps\n', i); 
        x = 1/2*(a+b); 
        return; 
    end; 
     
end; 
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function L = log_likelihood(delta, v, pho, t1, b1, t2, b2) 
 
% 
% return the value of L given the delta, and the marginal parameters   
% This subroutine is used in Step 2 – determining Copula function: delta  
% 
% Parameters of the marginal distributions:  
% t1 = ‘beta’ of the first marginal distribution  
% b1 = ‘alpha’ of the first marginal distribution  
% t2 = ‘beta’ of the second marginal distribution  
% b2 = ‘alpha’ of the second marginal distribution 
 
 
for c = 1:size(v,1)-1 
 

L(c) = -delta*(exp(-delta)-1)*exp(-delta*( 1+(1- exp(-(v(c)/t1)^(b1)))+... 
(1- exp(-(pho(c)/t2)^(b2))) )) / ( exp(-delta)-exp(-delta*(1+1- exp(-(v(c)/t1)^(b1))))-exp(-delta*(1+1- ... 
exp(-(pho(c)/t2)^(b2))))+exp(-delta*(1- exp(-(v(c)/t1)^(b1))+1- exp(-(pho(c)/t2)^(b2))))  )^2; 

 
end  
 
L = log(L); 
L = sum(L); 
 
 
 
 
 




