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Vitrification is a spontaneous non-equilibrium transition

driven by osmotic pressure

J. Galen Wang and Roseanna N. Zia∗

Department of Chemical Engineering, Stanford University, Stanford, CA 94305

February 28, 2021

Abstract

Persistent dynamics in colloidal glasses suggest the existence of a non-equilibrium driving force
for structural relaxation during glassy aging. But the implicit assumption in the literature that
colloidal glasses form within the metastable state bypasses the search for a driving force for vit-
rification and glassy aging and its connection with a metastable state. The natural relation of
osmotic pressure to number-density gradients motivates us to investigate the osmotic pressure
as this driving force. We use dynamic simulation to quench a polydipserse hard-sphere colloidal
liquid into the putative glass region while monitoring structural relaxation and osmotic pressure.
Following quenches to various depths in volume fraction φ (where φRCP ≈ 0.678 for 7% poly-
dispersity), the osmotic pressure overshoots its metastable value, then decreases with age toward
the metastable pressure, driving redistribution of coordination number and interparticle voids
that smooths structural heterogeneity with age. For quenches to 0.56 ≤ φ ≤ 0.58, accessible
post-quench volume redistributes with age, allowing the glass to relax into a strong supercooled
liquid and easily reach a metastable state. At higher volume fractions, 0.59 ≤ φ < 0.64, this
redistribution encounters a barrier that is subsequently overcome by osmotic pressure, allowing
the system to relax toward the metastable state. But for φ ≥ 0.64, the overshoot is small com-
pared to the high metastable pressure; redistribution of volume stops as particles acquire contacts
and get stuck, freezing the system far from the metastable state. Overall, the osmotic pressure
drives structural rearrangements responsible for both vitrification and glassy age-relaxation. We
leverage the connection of osmotic pressure to energy density to put forth the mechanistic view
that relaxation of structural heterogeneity in colloidal glasses occurs via individual particle motion
driven by osmotic pressure, and is a spontaneous energy minimization process that drives the glass
off and back to the metastable state. This connection of energy, pressure, and structure identify
the glass transition, 0.63 < φg ≤ 0.64.

∗rzia@stanford.edu
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1 Introduction

Molecular theories have been successfully adapted to predict phase separation and crystallization

in colloidal dispersions and other complex fluids, resulting in powerful tools for engineering in-

dustrial materials. However, sometimes the liquid-to-solid transition in colloids occurs without

crystallization, leading to formation of a solid with amorphous structure — a colloidal glass. The

ability to model and predict the colloidal glass transition is a broadly impactful problem both

scientifically and industrially: vitrification plays a role in bacterial fitness and other biological soft

matter [1–4], geophysical dynamics, and is central to industrial coatings [5–7], food processing

[8, 9], and materials engineering. Unlike molecular materials, both crystallization and vitrification

can be induced in colloids simply by changing particle concentration [10]. But as with molecular

glasses, attempts to adapt equilibrium theories to describe and predict the colloidal glass transi-

tion have met with limited success, because equilibrium models — typically utilizing free-energy

minimization approaches — fail to predict a glassy state; instead, they predict that there is always

a crystalline state at the lowest free energy for volume fractions φ > 0.494, for both monodispserse

[11] and polydisperse colloidal systems up to 14% polydispersity [12–14]. These findings support

the now widely-accepted idea that glasses do not form in thermodynamic equilibrium and the

glassy ‘state’ cannot be located via an equilibrium free-energy minimization arguments.

More successful models assume that the glass is in a metastable equilibrium state by way of

being an extrapolation of the equilibrium liquid state. The most prominent of these include Mode-

Coupling Theory (MCT) [15, 16], Random First Order Transition Theory (RFOT) [17–19] and

Activated Barrier Hopping Theory (ABHT) [20–23]. The assumption of metastable equilibrium

permits such approaches to adapt equilibrium liquid theories to the colloidal glass transition. For

example, both MCT and ABHT employ a dense form of the Percus-Yevick closure for the radial

distribution function (which is formally correct only for the liquid) with no change in the partition

function. A discussion of these theories can be found in [24], among others. The glassy phase can

thus appear as a metastable line that ostensibly can be followed via a presumably infinitely slow

quench, where equilibrium is achieved upon each sequentially small increase in volume fraction.

The problem with the idea of glass formation in a metastable state becomes clear when one

attempts to describe how a system achieves and remains ‘arrested’ in the metastable state without

falling to the lower free-energy crystalline state: a monodisperse set of colloids easily crystallizes,

falling nearly instantaneously off the metastable line to the underlying crystalline state. Weak

polydispersity delays this fall but permits eventual crystallization, offering some hope for the

idea of metastability. But for a colloidal system at polydispersity between 7% and 14%, where

crystallization is theoretically possible, quenches into the solid region do not permit crystallization

or even a metastable state, over observable time scales. Overall, we suspect that the metastable

state itself may be an underlying or fictitious state, because in practice the metastable line is

difficult to construct: a system will either near-instantaneously fall down to the crystalline state

due to thermal fluctuations, or get pushed off the metastable line onto a non-equilibrium glassy

branch.

The difficulty of achieving the metastable line evinces a qualitative shift in dynamics, for which
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we have already found evidence in our prior work: a qualitative change of particle dynamics in

quenches deeper than the liquid [24]. This leads to our primary objection to the use of equilibrium

liquid-state dynamics in glass theories to predict the behavior of the solid state. The use of the

assumption that liquid dynamics are qualitatively the same as glassy dynamics — along with the

ad hoc enforcement of divergent extrapolation of dynamics from the liquid state to the solid state

— are directly linked to very wide variations in the prediction of the volume fraction at which

putatively divergent relaxation time emerges. An equally serious consequence is that the implicit

assumption typically invoked, that colloidal glasses form within the metastable state, effectively

bypasses the search for a driving force for vitrification and glassy aging, much less its connection

to the long-time metastable state. Indeed, these equilibrium approaches fail to identify a driving

force that could give a path to the crystallization they themselves hypothesize exists.

But the fact that some glasses give way to crystals with time [25, 26] suggests that aging is

a key behavior that must be captured in models of vitrification. In fact, it has been thoroughly

demonstrated in experiments that molecular glass-formers age to a lower energy state following

any quench that is not infinitely slow [27, 28], suggesting that some force pushes the system off

the metastable “supercooled” liquid line. Only after this occurs can the system age toward the

metastable state. This behavior evinces the hindered ability of the system particles to diffuse into

an equilibrium arrangement before getting locked into position, similar to the role played by size

polydispersity and fast quenches in colloidal glasses. As with molecular glasses, colloidal glasses

age with time. But few glass theories address aging [29, 30] or explicitly study the impact of the

actual quench, which takes time. Instead, numerical approaches form glassy configurations via

event-driven energy minimization algorithms, without Brownian dynamics. The few studies that

report the effect of quench rate in colloidal glasses conclude that long-time structure as well as

the glass transition volume fraction φg is independent of the quench rate [31, 32]. Subsequent

studies identified that the quench-rate dependence of glass properties is more relevant in soft

colloids [33], but the effects of quench rate on the dynamics of vitrification or crystallization are

not discussed. Overall, post-quench aging suggests that colloidal glasses are spontaneously driven

off some metastable path; this mechanism could also drive structural age-evolution toward the

metastable state. Understanding the interplay between quench rate and particle dynamics could

thus be valuable for developing predictive theory, which is why in the present work we form

colloidal glasses interrogating this behavior by explicitly quenching from the liquid into the solid

region.

We showed in our prior work that, after a quench from the liquid into the colloidal glass [24],

aging is a process during which the system relaxes via long-time but short-range self-diffusion

(“dense diffusion”) toward an intransient state, as the system explores many configurations. Re-

laxation time remains finite – it does not diverge, even deep into the glass, reinforcing the need

for a more complete mechanistic model of vitrification. It is reasonable to infer that the evolution

to an intransient state is a process that smooths local concentration gradients. The idea that

number-density gradients in osmotic pressure drive diffusive colloidal migration was first put forth

by Einstein in his theory of Brownian motion [34]. Temporary number-density gradients arise

from the separation between the time scale of colloidal inertial relaxation and the solvent time
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scale. The Brownian relaxation time scale determines how quickly these gradients are smoothed

by Brownian diffusion, and the denser the suspension, the slower the relaxation. The connection

between osmotic pressure and number-density fluctuations has since been successfully expanded to

semi-dilute-to-moderately-concentrated colloids and flowing colloidal suspensions [35–39], which

inspired us to hypothesize that a similar process takes place in colloidal glasses involving vol-

ume fraction quenches: as the heterogeneous void density forms during the concentration quench,

osmotic pressure accumulates and pushes the system out of equilibrium and remains “arrested”

there. This accumulated or non-equilibrium osmotic pressure subsequently provides a driving force

for a minimization process back towards the metastable equilibrium state through age relaxation.

The connection between osmotic pressure and energy density suggests the possibility of a spon-

taneous process of energy minimization. We test our hypotheses utilizing dynamic simulations to

access the particle-scale detail of coordination number, local number density and void space, and

particle-phase osmotic pressure, quantities that are challenging to measure in experiments.

The remainder of this paper is organized as follows: In §2 we present the model system as well

as our simulation method. Results are presented in §3, divided into two parts. In the first, we

examine structural evolution. In the second, we report the evolution of osmotic pressure following

the quench. The study is concluded with a discussion in §4.

2 Methodology

2.1 Model system

We consider a colloidal suspension composed of 55,000 neutrally buoyant, hard colloidal spheres of

radius a and density ρp suspended in a Newtonian solvent of density ρ and viscosity η. Fluid motion

is governed by the Stokes equations owing to a vanishingly small Reynolds number and Stokes

number associated with the small size of colloids, Re = ρUa/η � 1 and St = ρp/ρRe� 1. Here,

U is the characteristic particle velocity set by Brownian diffusion. The colloid volume fraction

is defined as φ = 4/3nπηa3, where n is the particle number density. The initial volume fraction

of the system is φ = 0.35, which is subsequently quenched to final values in the range 0.40 ≤
φ = 0.68, spanning the liquid to the highly concentrated glassy state. Particle-size polydispersity

s = 7% is implemented to represent experimental systems that do not readily crystallize. The

particles interact via an interparticle potential V (r). The purpose of this work is to study the

most fundamental aspects of the colloidal glass transition, the entropic exclusion and Brownian

motion that determine phase behavior. To that end, we utilize a strongly repulsive, short-range

Morse potential:

V (r) = −V0
(
2e−κ[r−(ai+aj)] − e−2κ[r−(ai+aj)]

)
, (1)

which describes a nearly-hard sphere interaction between particles i and j separated by a distance

r. Here V0 indicates the minimum of the potential and κ−1 represents the “width” of the potential

well. The combination of these two parameters control how hard the particles are; the larger V0
and κ, the harder the particles. We choose V0 = 6kT and κ = 30/a; these parameters, together
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(a) (b)

Figure 1: Simulation model system. (a) Snapshot of one periodic simulation cell at the final volume fraction
φfinal = 0.63. The color indicates the number of contacts of each particle; the color changes from red to white to
blue as the number of contacts varies from 0 to 12. (b) 10x magnification. From [24], with permission.

with the exponential nature of the Morse potential, give a good approximation to hard spheres

[40]. We set a cutoff distance at exactly the minimum of the potential to model a purely repulsive

system. Each particle experiences hydrodynamic drag and undergoes Brownian motion; many-

body hydrodynamic interactions are neglected.

2.2 Dynamic simulation method

We conduct Brownian Dynamics simulations utilizing the LAMMPS molecular dynamics package

[41] which provides an ideal platform due to its parallelization scheme that is highly optimized

to handle large particle systems. 55,000 Brownian particles are randomly distributed throughout

the simulation box, which is periodically replicated to model an infinite system. To suppress

crystallization, we implemented 7% size polydispersity, the lowest value of polydispersity shown

to prevent crystallization [13, 14, 42, 43]. We assign each particle to one of five evenly distributed

sizes 0.9a, 0.95a, 1.0a, 1.05a, 1.1a, with each size group containing one-fifth of the total number

of particles. Measurements of particle separation take into account this size distribution. To

confirm that 7% size polydispersity is sufficient to suppress crystallization, we monitored the

crystal fraction throughout the system by measuring the 6-point local order parameter q6 [44]. We

found that the crystal fraction remains less than 0.01% (less than 0.01% of particles have a local

order of q6 > 0.3) throughout the simulation. Figure 1 shows a rendered image of one simulation

cell and a zoomed-in snapshot, showing the crowded structure of a colloidal glass at φ = 0.63.

Colloidal particles interact via hydrodynamic FH , Brownian FB, and interparticle F P forces,

which subsequently produce motion governed by the Langevin equation, a stochastic force balance
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on each particle:

m · dU
dt

= FH + FB + FP . (2)

Hydrodynamic interactions play a role in suspension mechanics even up to (and likely beyond)

volume fractions as high as 55%. But when the repulsion range between particles keeps their

no-slip surfaces separated by at least twenty percent of their size, these interactions become quite

weak. The study of such freely-draining suspensions is often essential to gleaning fundamental

insights about entropic forces and has led to many landmark discoveries [45–48] We take the

freely-draining approach in the present study and thus make the simplifying assumption that the

hydrodynamic force on each particle is determined by Stokes’ drag law:

FH
i = −6πηai [U i − u∞(X i)] . (3)

Here, U i − u∞(X i) represents the particle velocity U i relative to the fluid velocity u∞(X i). In

this work, there is no imposed flow, u∞(Xi) = 0, in order to avoid structural bias induced by flow

that could seed crystallization or otherwise alter the glass transition. The Brownian force obeys

Gaussian statistics [49]:

FB
i = 0, FB

i (0)FB
i (t) = 2kT (6πηai)I δ(t), (4)

where the overbars indicate averaging over a time period larger than the solvent timescale and I

is the identity tensor. The Dirac delta distribution δ(t) indicates that the Brownian impacts are

instantaneously correlated. The interparticle force is defined as the negative gradient of the inter-

particle potential V (r), and because the Morse potential is spherically symmetric, we incorporate

its derivative in the spherical coordinate system:

FP
i = −

∑
j

∂V (rij)

∂rij
r̂ ij. (5)

Here, rij = rij/rij, where rij = X i −Xj is the separation vector from the center of particle i to

the center of particle j, and rij = |rij|. The summation is over all the interacting pairs involving

particle i. In LAMMPS, particle velocities and positions are advanced in time numerically using

Verlet integration [50]. To faithfully model colloidal physics, both the Reynolds number and the

Stokes number must be small; in LAMMPS, this requires careful selection of the integration time

step, which we set to be ∆t = 10−6a2/D, where a2/D is the diffusive time required for a single

particle of size a diffusing its size in a pure solvent with diffusion coefficient D = kT/6πηa. The

small time step permits only very small particle overlaps, which is resolved via a standard Heyes-

Melrose algorithm [51]. This overlap resolution represents an entropic encounter that contributes

appropriately to the osmotic pressure[38, 40].

Our simulation of colloidal glass comprises two physical processes. First, the system is “quenched”

from the moderate-volume fraction liquid state to a high-volume fraction solid state. We effect

the glass transition using an algorithm we previously developed [24], in which we rapidly increase
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the size of each particle at fixed system volume, thus effecting a volume fraction jump. In this

study, we fix the initial volume fraction φinitial = 0.50, which is a liquid state for our polydisperse

system [13, 14, 52]. We vary the final volume fraction in the range 0.56 ≤ φfinal ≤ 0.68, which

spans the supercooled liquid to the putative glass transition (φ = 0.58) to the jamming transition

at φ = 0.68 [53]. Choosing the initial liquid state as close as possible to the glassy state mitigates

the effect of “τ -effective paradox” [27], which describes the undesirable history dependence of ma-

terial’s equilibrium mobility. We execute a fast quench rate dφ/dt = 0.25D/a2, which permits the

volume fraction quenches to take place between 0.04 ≤ t/(a2/D) ≤ 0.72 so that the structure does

not have time to relax during the quench, freezing in liquid structure. Overall, our particle-size

jump method minimizes the bias from external shear that is often employed in experiments. The

second process modeled in our simulations is aging. After the final volume fraction is reached, we

hold the system at an iso-volume-fraction condition, letting it evolve under the action of Brownian

motion, hard-sphere repulsion, and Stokes drag, allowing it to age to t/(a2/D) = 20, 000.

During and following each jump, the positions, velocities, and particle-phase stress are tracked

and utilized to characterize age relaxation. We quantify the detailed particle structure by measur-

ing the particle coordination number, which is defined as the number of particles with surface-to-

surface separation of 0.05a from a reference particle. Because particles undergo Brownian motion,

the first shell of nearest neighbors around a particle are not located precisely at r = 2a, which

would lead to a sharp peak in the structure. Instead, they fluctuate about r = 2a, which gives the

familiar, slightly broader peak. Conventional structural measurements like the static structure

factor or radial distribution function require averaging over the entire domain, which obscures

localized variations. Instead, we monitor the detailed positions for all particles throughout the

simulation and, from it, infer the temporal evolution of coordination number and heterogeneous

free volume throughout the glass.

To explore the relationship between osmotic pressure and structural relaxation, we monitor

the particle-phase stress ΣP , above and beyond the fluid stress and, from it, compute the particle-

phase osmotic pressure averaged over the entire suspension. The particle-phase stress ΣP in a

freely-draining suspension arises from the ideal osmotic pressure nkT I and the interparticle elastic

stress rFP :

〈Σ〉 = −nkTI − n
〈
rFP

〉
, (6)

where the angle brackets indicate an average over all particles. The particle-phase osmotic pressure

is defined as negative one third of the trace of particle-phase stress ΣP :

〈ΠP 〉 = −1

3
I : 〈ΣP 〉. (7)

The osmotic pressure, with units of energy per unit volume, is closely related to the free energy,

which has both an energy term and an entropy term. In our freely-draining model, the osmotic

pressure only depends on the interparticle stress ΣP = 〈rFP 〉, where r is the vector connecting

the centers of an interacting pair of particles and FP is the interparticle force which is derived

from the interparticle potential (Equation 5). This can be an attractive potential as in the case
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of gels, or it can be a repulsive potential that is steep or soft, short- or long-ranged. Indeed, other

mechanisms such as particle deformability influence the location of the glass transition and the

relaxation spectrum available to the material [54–58], and the contribution of these mechanisms are

included in osmotic pressure. Thus, the average potential energy of the system 〈V 〉 is determined

given the particle configuration, which comes from a configurational space that is related to the

entropy S. The free energy 〈F 〉 can then be written as 〈F 〉 = 〈V 〉 − TS [59]. We propose that

osmotic pressure acts to minimize this free energy in a glass, which it does by smoothing the local

concentration gradient, acting to reduce the average potential energy and increase the entropy.

3 Results

We have hypothesized that the heterogeneous number-density gradients in newly-formed colloidal

glasses give rise to osmotic pressure gradients that drive structural relaxation toward a metastable

state that has homogeneous particle distribution. In this section we present our results that connect

measurements of particle distribution, mesoscale structure, and osmotic pressure to a mechanistic

explanation for vitrification. In order to investigate the idea that heterogeneous cages form and

relax during vitrification, we monitor structural relaxation via two measurements: coordination

number and void distribution. This is followed by a study of the osmotic pressure as it evolves with

age. We start our simulations of hard-sphere colloids with in the liquid state, φ = 0.50 with 7%

polydispersity, and quench rapidly into more concentrated states near and into the putative glass,

with a final volume fraction ranging from 0.56 ≤ φ ≤ 0.68 (recalling that with 7.5% polydispersity,

random-close packing occurs at φrcp ≈ 0.676 [53]). We then monitor particle positions and osmotic

pressure as the glass ages over time. We remark that our particle-size quench model represents

a physical process that mimics experiments to generate a non-equilibrium configuration, and we

emphasize that a fast “quench” is necessary to form a glass; otherwise a crystalline state will form.

Thus, the post-quench aging behavior reveals a spontaneous mechanism that drives the colloidal

glass transition.

3.1 Structural relaxation

To get a sense of how quench depth affects the post-quench structural evolution of a colloidal glass,

we examine the coordination-number distribution, P (Nc), which gives one measure of how caged

each particle is. The number of particles with a given coordination number Nc gives a distribution

P (Nc) that offers additional information beyond the pair-distribution function (PDF). The PDF

emerges from (but smears out) a tabulation of the distribution of distances between particle pairs,

giving an average cage size around a reference particle, as well as for larger and larger surrounding

cages, but cannot give information about heterogeneity. In Figure 2, we plot the evolution of

the coordination number distribution P (Nc) for several values of final volume fraction. Going

from panel (a) to (b) to (c) to (d), the long-time peak coordination number moves monotonically

to the right with increasing quench depth. However, the wait-time evolution of P (Nc) gives a
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Figure 2: Evolution of coordination number distribution as a function of wait time, at volume fractions (a)
φ = 0.56, (b) φ = 0.58, (c) φ = 0.64, and (d) φ = 0.68. The arrow in each panel indicates the direction (increase or
decrease) toward which the contact number evolves. The dashed lines indicate the peak location of the coordination
number distribution at the longest wait time (4, 000a2/D).

surprising result: it is non-monotonic in volume fraction. For 0.56 ≤ φ ≤ 0.58, P (Nc) relaxes

to lower values with wait time, with the most significant change shortly post quench, followed

by less obvious change thereafter. This relaxation to fewer neighbors for all particles suggests

quenching just into the glassy region produces a structure with appreciable interstitial free volume

that is heterogeneous immediately post quench, which then produces a strong initial driving force

to relax the system to a less frustrated state. However, this trend reverses for φ ≥ 0.64, where

Nc shifts toward larger values. The amount of the shift decreases with volume fraction, which

reflects the physically intuitive result that there is much less interstitial free volume deep into

the glass. As a result, the driving force to redistribute volume is frustrated: the nearest-neighbor

cages become so tight that steric hindrance prevents particles from further relaxation. The change

in the distribution of coordination numbers shows that structural heterogeneity manifested in the

abundance of “looser” cages (lower coordination number) and “tighter” cages (higher coordination

number) get redistributed, presumably to produce a more homogeneous structure. To get an idea of

how relaxation homogenizes the structure for each coordination number group, we interrogate the

average coordination number, which tells us how, on average, the amount of caging has changed.

The coordination number is monitored throughout simulation and we compute its average over
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all particles for all quench depths studied. We normalize it on its initial value Nc,0 immediately

following the quench, and plot this quantity, 〈Nc〉/〈Nc,0〉 as a function of wait time (age) in Figure

3. For volume fractions below 58%, there is a monotonic decrease in the average coordination num-

ber over time, suggesting that the post-quench cages are loose enough to easily permit relaxation.

Interestingly, at long times, a deeper quench results in a more complete relaxation, suggesting

that structural heterogeneity provides a driving force for relaxation, with stronger heterogeneity

providing a stronger driving force. We identify these glasses as being in a strong or supercooled

liquid state. However, the long-time trend in φ reverses at φ = 0.59, suggesting that the driving

force cannot fully overcome glassy frustration. Somewhere between 58.5% and 59% is a “sweet

spot” where the energy stored in heterogenous structural relaxation is most able to relax it toward

homogeneity, and is likely to drive the system to an intransient (metastable) state. This idea is

reinforced by an initial increase in average coordination number for φ > 0.58: the duration of the

early-time growth of average coordination number increases with increasing volume fraction, which

suggests that cages get more and more stiff and durable. But eventually, at least for φ < 0.64, the

driving force can ultimately relax the structure to a lower average coordination number, loosening

particle cages. We identify this region as a “loose glass”. But the degree of glassy frustration,

indicated by the long-time value of normalized mean coordination number, reflects the weakening

ability of the driving force to relax the structure as volume fraction increases. For very deep

quenches, φ ≥ 0.64, the initial increase in coordination number is very slow to decay and may

never relax below the initial value — giving very tight cages — and this condition worsens as the

quench deepens further. This behavior suggests the emergence of an energy barrier that must be
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overcome by a non-equilibrium driving force, a point we return to shortly. Overall, the long-time

value of the average post-quench coordination number first goes up then goes down with increasing

quench depth, giving an intuitive picture of how much free volume the system was able to access

in order to relax with age. Volume relaxation provides a natural connection to thermodynamic

variables, an idea we examine next.

We quantify the evolution of heterogeneous cage structure by measuring void widths between

particles based on Voronoi analysis [60, 61]. The void width is defined as the shortest distance

from a Voronoi edge to the nearest particle surface. The width of a void gives an idea of its

size, simultaneously describing how much “wiggle room” each particle has and quantifying the

distribution of thermodynamic volume. Based on geometry, the void width of three equally sized

spheres when they are perfectly just in three-way contact is d/a = 0.15. However, the typical

gap between very close neighbors will be larger than 0.15a, because such perfect arrangement is

infrequent owing to Brownian motion, a fact that is revealed by a slightly broader peak in the

pair distribution function g(r). We examine g(r) to estimate a more realistic gap: A particle

at the first trough outside the nearest-neighbor ring in g(r) (which means that it is no longer

coordinated with the reference particle) comes no closer than about 0.05a to the nearest-neighbor

peak, providing guidance to select an additional average separation of 0.05a as the threshold for

defining a coordinated pair. Thus, particles surrounding a reference particle (forming at least

a triplet) are said to be coordinated with each other if their surface-to-surface distance is less

than 0.05a (not exactly at 0), thus giving a slightly larger void width between them at around

0.20a. This dividing line establishes a threshold between volume that is available and that which

is unavailable for relaxation. The calculated distribution of free volumes is described schematically

in a cartoon sketch in Figure 4 to illustrate two hypothetical liquid-like systems. The red curve

represents a heterogeneous system where some colloids form clusters while others freely diffuse,

leading to a bimodal distribution of void widths. The blue curve represents a more homogeneous

system where colloids are evenly distributed around each other, resulting in one pronounced peak

in void width distribution. We hypothesize that in colloidal glasses, right after the quench the

void width distribution should be qualitatively similar to the red curve (but with a much narrower

separation between the two peaks because large voids are unlikely at high volume fraction), i.e.

post-quench structure is spatially heterogeneous. Subsequently, following glassy relaxation, the

system should reach a void width distribution similar to the blue curve, a homogeneous system.

The evolution of void space within Region 1 does not change with age, indicating that part of

the structure and voids have reached metastable equilibrium. Compared to the homogeneous

case, Region 2 quantifies excessive tight void space and Region 3 quantities excessive loose void

space right after the quench. We envision Region 4 as an emerging intermediate-sized void space.

Overall, we envision that what happens during glassy relaxation is that (tight) void space in Region

2 and (loose) void space in Region 3 are evolving toward Region 4. Such an evolution from the red

curve to the blue curve, if accurate, can shed light on the mechanism driving coordination number

evolution, as follows. By our definition, void widths smaller than 0.2a form coordinated particle

pairs, thus coordination number only changes when void space evolves to grow beyond 0.2a. In our

cartoon of a liquid-like system, evolution of Region 2 towards Region 4 drives loss of coordinated
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Figure 4: Examples of void width distribution. (a) A void width distribution for a liquid-like system. Red curve
illustrates a heterogeneous structure with bi-modal distribution, and blue curve illustrates a homogeneous structure
with only one pronounced peak. Two vertical dashed lines demonstrate two scenarios when particles are in contact
and are considered coordinated, which are calculated using the triplet configuration shown in the lower left corner.
(b) A possible configuration that leads to a heterogeneous void width distribution (the red curve in Panel (a)). (c)
A possible configuration that shows a homogeneous distribution (the blue curve in Panel (a)). The radii of circles
with different grey scales describe the representative void widths in the system, which are labeled in Panel (a) at
the peaks of red and blue curves. (d) An illustration shows that in dense suspensions, the coordination threshold
can intersect with Region 4, which can leads to complex coordination number evolution.

pairs, because Region 4 is entirely to the right of the threshold and Region 2 is evolving towards

the right crossing the threshold. Thus, the position of 0.2a relative to the position of Region 4

determines the age-evolution of coordination number. For example, the coordination number can

only increase (decrease) if Region 4 is entirely to the left (right) of the coordination threshold.

Alternatively, one can infer that the coordination number may increase or decrease over time if

Region 4 partially overlaps the coordination threshold (0.2a) in Figure 4(d). The distribution of

void widths in the glass are likely to be very tightly grouped and can provide insight regarding

our observation of Figure 3, which we analyze next.

We carried out the void width measurements as described above and in [61]. Immediately

following a quench to φ = 0.57 [Figure 5(a)], the distribution of void widths produces a pronounced

peak near d = 0.2a, corresponding to an abundance of the smallest-possible voids, as well as a

“shoulder” at larger void-width d ≈ 0.4a, indicating an excess of large “defects” (volume available

for relaxation) in an amorphous structure. This bimodal distribution of void widths confirms

that the structure immediately after the quench is heterogeneous. As aging progresses, more

intermediate-sized relaxing voids are formed, while the abundance of near-contact voids and defects

shrinks. It is worth noting that the width of intermediate-sized relaxing voids is larger than

the width of coordination voids at φ = 0.57 (the curves fall substantially to the right of the

12
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Figure 5: The void width distribution at (a) φ = 0.57, (b) φ = 0.63, (c) φ = 0.64, and (d) φ = 0.68, at different
wait time as indicated in the legend. The dashed line marks the void width when particles are considered as in a
coordinated pair. The insets in Panel (a-c) show the detailed evolution for the emerging intermediate-sized voids.

coordination threshold line), indicating that there is much free volume for structural relaxation,

which is consistent with continuously decreasing coordination number. This transfer from tight

and loose void spaces to intermediate values signals separation of coordinated pairs, although

there is still persistent heterogeneity in the void width distribution in the long-time intransient

state. In Figure 5(b)], we perform a deeper quench to φ = 0.63, generating a tighter packing. The

peak at the near-contact void space is even more pronounced and shifts to smaller values, and the

separation between the peak and the “shoulder” also becomes wider, suggesting a higher level of

void space heterogeneity. Notably, the first peak shifts and moves to the left of the coordination

threshold; the voids represented by the region under the curve to the left of the threshold now

represent rigid, smaller cages: their width is smaller than d = 0.2a. This decreases the amount of

void volume that can relax. We recall from Figure 4 that the region subtended by the short- and

long-time distribution gives the emerging intermediate void population; at φ = 0.63, this area is

nearly equally divided into a part to the left of the threshold and a part to the right of it, indicating

that there are nearly equal numbers of rigid and loose voids in the emerging intermediate-sized

void population, which explains the increase-then-decrease behavior of its average coordination
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number. At φ = 0.64 [Figure 5(c)], the majority of the emerging intermediate-sized voids are rigid

(below the 0.2a threshold), which is again consistent with observations in Figure 3: an increase

followed by a plateau of average coordination number. At very high volume fraction, φ = 0.68

[Figure 5 panel (d)], the glassy relaxation is so entropically hindered that there is no free volume

available, and thus structural heterogeneity of the system is completely frozen into a metastable

equilibrium state. The redistribution of coordination number and void width reveals the structural

relaxation as a process that smooths structural heterogeneity. Because there is no external force

driving this behavior, we turn our attention to the connection of gradients in number density lead

to gradients in osmotic pressure.

3.2 Osmotic pressure

For a purely repulsive colloidal suspension, osmotic pressure measures the normal stress the parti-

cles exert on a fictitious wall enclosing them, as illustrated in the sketch in Figure 6. The osmotic

pressure is thus connected to the concentration gradient in the system and describes the tendency

for the particle phase to diffusively expand and sample an ever-larger space. For the example

in Figure 4(b), the cluster creates a higher concentration relative to its surroundings; Brownian

motion will act to make uniform their distribution. Equivalently stated, the particle phase will

expand to reduce the free energy by maximizing entropy. The particles will thus push outward

on the walls of a surrounding fictitious container at the location of the dashed circle, exerting a

positive osmotic pressure. In an equilibrium suspension, there is a balance between the normal

stresses of particles inside the fictitious container pushing outward and of particles outside the

container pushing inward, indicating that the local concentration is the same throughout the sus-

pension. However, for a non-equilibrium suspension such as the one shown in Figure 4(b) or Figure

6, there is a stronger normal stress for particles pushing outward than particles pushing inward,

due to non-uniform local concentrations which in turn generates a higher osmotic pressure than

the equilibrium value. This non-equilibrium osmotic pressure provides a driving force for particles

to rearrange until they find their equilibrium positions, during which osmotic pressure decreases

as local number density becomes homogeneous. This process reveals a gradient in the free energy

landscape between initial and final state; decreasing osmotic pressure thus can be viewed as driving

a minimization process of free energy, by recalling that there is a natural mechanical / thermody-

namic connection between the osmotic pressure and the free energy, as follows. The particle-phase

stress in a freely-draining suspension is given by ΣP = −nkTI + 〈rF P 〉, where the interparticle

force for hard spheres is the gradient of the interparticle potential, F P = FHS = −∇V (r). The

potential energy of the system is thus related directly to the osmotic pressure, ΠP = −I : 〈ΣP 〉/3.

Because colloidal glasses are a non-equilibrium material characterized by evolving heterogeneity of

structure, we expect osmotic pressure to exhibit different values immediately post-quench versus

at long times post-quench. We hypothesized that this difference in osmotic pressure is a driving

force that acts to minimize free energy along the energy landscape, relaxing the glass toward the

metastable state.

We measured the particle-phase osmotic pressure immediately following quenches to a range
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Figure 6: An illustration of imbalanced osmotic pressure in a non-equilibrium suspension.

of volume fractions and monitored its evolution throughout simulation. Because we have asked

whether osmotic pressure drives a spontaneous relaxation process, we compare the long-time

value of the pressure to previously-established metastable equilibrium osmotic pressure for hard-

sphere colloidal systems. The data are plotted together in Figure 8. Four sets of data from

previous studies are shown, which do not quench into the glass but rather enforce a particle

configuration consistent with the (at least locally) minimized energy state at a given volume

fraction. The Carnahan-Starling equation of state [62] predicts an osmotic pressure based on

extrapolation of the equilibrium liquid line into the supercooled region, valid for quenches up to just

below 50% volume fraction. Speedy [31] and later, Rintoul and Torquato [63] employed an event-

driven simulation technique to generate an initial configuration for a monodisperse suspension of

colloidal hard spheres, spanning the liquid to the glass region, up to φ = 0.62. Speedy used a

fixed number of collision events to seek equilibration for all volume fractions; meanwhile Rintoul

and Torquato followed their event-driven construction by allowing the configuration to evolve

via Brownian motion. Crystallization occurred almost immediately in both studies for 0.54 ≤
φ ≤ 0.62, confirming the tenuous metastability of the original configuration for monodisperse

hard spheres. Both studies extrapolated the osmotic pressure to reach φ = 0.64, enforcing rather

than predicting divergence by imposing a generic power-law fit (another factor undermining the

equilibrium assumption). Because these methods model monodisperse systems, the three sets of

data are able to establish a baseline metastable state, but the fact that the systems crystallize

immediately reinforces the idea we discussed in the Introduction that the metastable state is quite

difficult to maintain. Meanwhile, in our simulations with polydisperse hard spheres, we find that

immediately following the quench, the osmotic pressure is higher than the metastable state, and it

remains so for long times, without crystallization (cf §2), i.e., to approach the metastable state, we

must age the system over long times. Recalling the discussion in the Introduction, this supports

the view that the metastable line is very difficult to achieve directly: for monodisperse systems, one

must artificially construct in silico a configuration consistent with the locally lowest energy, but any

subsequent Brownian motion kicks the system off that line onto the crystal line. For polydisperse
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Figure 7: Pair contribution of osmotic pressure as a function of volume fraction, compared with values from
literature. Two sets of data from the present study are shown: red circles are osmotic pressure just after the jump,
and blue circles are osmotic pressure measured at 4, 000a2/D.

spheres, the system gets kicked “upwards” off the equilibrium line to a non-equilibrium state, and

must relax kinetically to reach the metastable state, where it remains for very long times. Overall,

the osmotic pressure in our polydisperse system evolved spontaneously — but slowly — toward a

metastable state. We believe the spontaneous process, reduction of energy, occurs via structural

relaxation as discussed above, and is driven by non-equilibrium osmotic pressure. The difference

between the initial and final osmotic pressure represents a gradient in the free energy between

the initially more heterogeneous structure and the long-time more homogeneous one, setting an

energy barrier that particles must overcome to reach metastable equilibrium via diffusion, which

should provide a driving force for glassy relaxation.

We connect the age-relaxation of osmotic pressure in Figure 7 with the relaxation of coordi-

nation number and void widths by examining the osmotic pressure plot at the selected values of

the quench in Figures 5(a-d). Recall that the average coordination number eventually decreases

for any quench to φ < 0.64, as the system accesses and homogenizes free volume — indicating

the action of a robust driving force toward relaxation. But for φ ≥ 0.64, the average coordina-

tion number increases post-quench and cannot subsequently relax (Figure 3). The origin of this

frustration is very limited accessible free volume, and when the system accesses it, the relaxation

brings particles further into contact (Figure 5). The increase in coordination number occurs at

short times post-quench, corresponding to the t = 0+ (red) pressure curve in Figure 7; there is a

correspondence between whether the coordination number eventually decreases and how far the

long-time “excess” osmotic pressure (blue curve) is from the metastable pressure. This suggests a
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closer look at the excess osmotic pressure.

In Figure 8, we examine the the excess osmotic pressure: the non-equilibrium contribution

to the osmotic pressure, which is the difference between its initial post-quench (non-equilibrium)

value ΠP (t = 0+) and its long-time metastable value, ΠP
∞. Figure 7 suggested that this difference,

∆ΠP ≡ ΠP (t = 0+)− ΠP
∞, sets the driving force for glassy relaxation of heterogeneous structure.

To interrogate this idea, we examine the magnitude of the excess osmotic pressure ∆ΠP (green

curve). Throughout the liquid region at low volume fractions, ∆ΠP is O(1), indicating that

the system has plenty of room to relax. The excess pressure grows dramatically at φ ≥ 0.55,

suggesting a strong driving force for relaxation with increasing volume fraction. At quenches in the

putative glassy region, ∆ΠP continues to grow, driving structural relaxation toward the metastable

intransient state. However, there is an inflection point at φ = 0.63. To take a closer look, we

normalize the excess osmotic pressure by the metastable pressure, ∆ΠP/ΠP
∞. Mechanistically,

the metastable osmotic pressure ΠP
∞ becomes very high as particle diffusion becomes very slow,

setting a characteristic pressure scale for relaxation, where comparatively larger excess pressure

can drive relaxation and comparatively weaker excess pressure cannot. This normalized excess

pressure ∆ΠP/ΠP
∞ increases from very small values in the liquid state to a peak just following the

inflection point, at around φ = 0.64.

We infer that, during the rapid growth regime 0.55 ≤ φ < 0.64, the non-equilibrium osmotic

pressure accumulated during the quench is a strong driving force, strong enough to overcome steric

hindrance and drive relaxation. It reaches a peak that roughly coincides with the phase boundary

between the loose and the tight glass we identified in Figure 3 from average coordination number
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measurements. When the peak at φ ≈ 0.64 is passed, the normalized excess pressure ∆ΠP/ΠP
∞

drops precipitously — it is strong enough to drive particles into a more jammed condition consistent

with a very high metastable pressure, where relaxation dynamics are extremely hindered and slow,

essentially freezing the structure.

Overall, the excess osmotic pressure drives spontaneously structural homogenization that either

relaxes the system to an intransient metastable state where particle dynamics persist, or it vitrifies

the system energetically close to but kinetically far from the metastable state. We pause to make

a connection to the free energy of the system. As noted in §2, the osmotic pressure in a hard-

sphere system derives directly from the potential energy. This potential energy evolves (decreases)

alongside the system entropy, which increases during structural homogenization. Evidently the

osmotic pressure acts to minimize the free energy as a glassy system ages, acting as a driving force

in a spontaneous transition from liquid to glass.

4 Conclusions

Efforts to explain the colloidal glass transition via equilibrium thermodynamic theories are un-

dermined by the fact that vitrification by definition drives the system off the equilibrium phase

boundary. Metastable equilibrium approaches offer an alternative, but the liquid-state models

for particle dynamics central to such theories lead directly to well-known shortcomings of the

predicted glass transition. At the heart of this challenge is the implicit assumption typically in-

voked in the literature that colloidal glasses form within the metastable state, which effectively

bypasses the search for a driving force for vitrification and glassy aging, and indeed its connection

with a long-time metastable state. We suspect that the metastable state is itself an underlying

or fictitious state: either a system will immediately fall off the metastable line to the crystalline

state or get pushed off the metastable line to the non-equilibrium glassy ‘state’. The fact that

colloidal glasses age is central to making progress with a model for vitrification; to wit, it is widely

accepted in the experimental literature that molecular glass-formers get driven off the metastable

liquid line and must “age to equilibrium”. Thus, a central aspect to computational modeling of

colloidal vitrification is quenching into the glass in the presence of Brownian motion and particle

interactions — rather than artificially constructing an amorphous dense solid consistent with a

glass.

To model the interplay between quench rate and particle dynamics, we constructed a com-

putational model of a large system of polydisperse hard-sphere colloids and executed a series of

independent volume-fraction jumps to various depths in the glassy region. By investigating struc-

ture via a new approach — monitoring coordination number — we discovered that post-quench

structural relaxation changes average coordination number. Following a quench to φ ≥ 0.56, re-

laxation results in one of three final states: a supercooled liquid for 0.56 ≤ φ ≤ 0.58 where the

average coordination number decreases continuously over time; a “loose” glass for 0.58 ≤ φ < 0.64,

where average coordination number first increases then decreases below the initial quenched value

over time; or a “tight” glass for φ ≥ 0.64, where coordination number increases and then plateaus
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with age. Thus, a loose glass has the potential for relaxing spontaneously toward a lower-energy

metastable state (possibly even crystallizing) but a tight glass is permanently frozen in a non-

equilibrium state. This suggests the existence of a driving force for structural relaxation that can

either drive the system to a more relaxed, less frustrated state or toward a more condensed, rigid

(vitrified) state.

The evolution of coordination number gave us an intuitive picture that there was heterogeneous

distribution of the free volume that the system was able to access in order to relax with age. We

thus leveraged a new method [61] to monitor the distribution of void spaces in a glass, giving

a sensitive measure of structural heterogeneity. Moreover, volume relaxation is connected to

thermodynamic variables, making its study our natural next step.

The initial distribution of void spaces throughout the glass revealed that the quench induces

not just denser structure but also heterogeneous structure. We discovered that void density is

transferred away from near-contact and from large-void values, forming intermediate-sized voids,

a process that smooths the distribution of volume. We interpret the size of intermediate-sized

relaxing voids relative to those of the coordination threshold as a measure of accessible free vol-

ume, which dictates the evolution of coordination number. We identified three scenarios for

the post-quench evolution of void widths that match the three regimes identified by the average

coordination-number evolution. For quenches at and below φ = 0.57, there is substantial post-

quench accessible volume that allows the system to continuously reduce its mean coordination

number. Deep into the glass, φ = 0.63, a substantial portion of the free volume is inaccessible, but

after a slight barrier, the glass pushes through to access it. Very deep into the glass, φ = 0.64, there

is hardly any accessible free volume except that which brings any minimally mobile particles into

contact and freezes them. The combined evaluation of coordination number and accessible free

volume revealed a dividing line between quenches that can reach a metastable state and quenches

so deep that they remain permanently out of equilibrium.

Finally, we leveraged the natural connection between diffusion and osmotic pressure to identify

a connection between vitrification, structural relaxation, and a driving force for a spontaneous

process. We found that the osmotic pressure in colloidal glasses evolves from an initially high value

immediately post-quench to an intransient value at long times that defines a metastable equilibrium

state. We find two competing actions of the osmotic pressure that set the behavior of structural

relaxation. The excess osmotic pressure induced by the quench provides a driving force for glassy

relaxation, but the metastable equilibrium osmotic pressure tends to hinder particle dynamics

for relaxation. At φ < 0.64, the excess osmotic pressure is much larger than the metastable

equilibrium pressure, setting a robust driving force for relaxation where particles can eventually

overcome the barrier to relax to a state that is less compact — thus particles can explore states

with lower free energy. However, this driving force weakens at φ ≥ 0.64, whereupon it cannot

drive particles pass the energy barrier formed by tight cages, leaving the system frozen into a tight

configuration indefinitely.

Overall, we found that number-density gradients and osmotic pressure accumulate during a

colloidal liquid-to-solid quench, and the excess pressure subsequently drives diffusive relaxation of

the heterogeneous structure. This process is necessary for a glass to reach the metastable state
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— the system cannot traverse the liquid line from the equilibrium region to follow directly along

the supercooled metastable line; rather, vitrification requires departure from and return to the

metastable line, due to energy storage via persistent non-equilibrium structure, and energy release

via age relaxation, respectively. We identify glassy arrest as taking place after the quench, as the

structure attempts to relax local density gradients. We have shown that non-equilibrium osmotic

pressure drives this relaxation and, paradoxically, this relaxation causes arrest by driving particles

into higher-coordination number configurations. The volume fraction where there is a strictly non-

decreasing average coordination number following the quench, associated with an abrupt transition

in the osmotic pressure, determines a well-defined φg for hard-sphere colloids; for our system with

7% polydispersity, 0.63 < φg ≤ 0.64. We argued that, because the osmotic pressure in a hard-

sphere system derives directly from the potential energy, which decreases alongside the increasing

system entropy during structural homogenization, evidently the osmotic pressure acts to minimize

the free energy as a glassy system ages, acting as a driving force in a spontaneous transition from

liquid to glass.
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