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ABSTRACT OF THE DISSERTATION 

Revealing and understanding human protein interactome 
through high-throughput sequencing and meta-analysis 

by 

Zhijie Qi 

Doctor of Philosophy in Bioengineering 

University of California San Diego, 2022 

Professor Sheng Zhong, Chair 
Professor Jin Zhang, Co-Chair 

Proteins play a central role in human cell activities through their interactions with 

proteins themselves and RNAs. Yet we lack technologies that can profile protein-protein 

interactions (PPIs) and RNA-protein interactions (RPIs) both effectively and efficiently. For 

the existing technologies, the search space of proteins is limited, and the up-scaling of the 
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products is resource-intensive. Meanwhile, the variability of PPIs detected from different 

technologies also leads to the lack of consensus on the architecture of the profiled PPI 

networks. This dissertation work presents PROPER-seq (protein-protein interaction 

sequencing) and PRIM-seq (protein-RNA interaction mapping by sequencing), two time-

effective technologies to map cell-wide protein-protein interactions (PPIs) and RNA-protein 

interactions (RPIs) respectively in vitro. This dissertation work also utilizes PPIs derived from 

PROPER-seq to induct human PPI network features. The technologies and analysis together 

provide rich resources to the community for studying protein-related interactions and 

understanding human proteome. 

In Chapter 1, I describe PROPER-seq to map PPIs. I showed the PROPER-seq 

identified PPIs are of robust reproducibility, precision, and recall performance. I present 

PROPER v1.0, a human PPI network that consists of 8,635 proteins and 210,518 interactions. 

I delivered PROPERseqTools and PROPER v1.0 database, an open-source software, and an 

online database for people to process PROPER-seq libraries and to better access PROPER 

v1.0. 

In Chapter 2, I describe my analysis of utilizing multiple human PPI datasets to 

systematically examine the architectural characteristics of human PPI networks. I found 

consistent evidence to support that a comprehensive human PPI network should be a scale-

free network filled with many completed or close-to-completed cliques. The hub proteins with 

similar molecular functions are often highly inter-connected in cliques and serve as building 

blocks in small network motifs.  

In Chapter 3, I describe PRIM-seq to systematically map RNA-protein interactions 

(RPIs) in vitro. I present PRIM v.1.0, a human RPI network that consists of 117,516 RPIs 
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from 8,440 RNAs and 7,691 proteins. I showed the enrichment of previously characterized 

RNA-binding proteins (RBPs) in PRIM v.1.0 and found evidence to support PHGDH as an 

RBP. 
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CHAPTER 1 High throughput mapping of protein-protein interactions 

1.1 Abstract 

Protein-protein interactions (PPIs) are one of the most fundamental units involved in 

numerous cellular processes. However, a technique for efficiently mapping large-scale 

protein-protein interactions is still missing. Here, we describe PROPER-seq (protein-protein 

interaction sequencing) to map protein-protein interactions (PPIs) at the transcriptome scale in 

vitro. PROPER-seq first converts transcriptomes of input cells into RNA-barcoded protein 

libraries, in which all interacting protein pairs are captured through nucleotide barcode 

ligation, recorded as chimeric DNA sequences, and decoded at once by sequencing and 

mapping. We applied PROPER-seq to human embryonic kidney cells, T lymphocytes, and 

endothelial cells. We showed the PROPER-seq identified PPIs are of robust reproducibility, 

precision, and recall performance. We present PROPER v1.0, a human PPI network that 

consists of 8,635 proteins and 210,518 interactions. Within PROPER v1.0, 8,100 PPIs are 

supported by previous data, 17,638 PPIs are predicted by the prePPI algorithm without 

previous experimental validation, and 100 PPIs overlap with human synthetic lethal 

gene pairs. In addition, four previously uncharacterized interaction partners with poly(ADP-

ribose) polymerase 1 (PARP1) (a critical protein in DNA repair), including XPO1, 

MATR3, IPO5, and LEO1 are validated in vivo. We delivered PROPERseqTools and 

PROPER v1.0 database, an open-source software, and an online database for people to 

process PROPER-seq libraries and to better access PROPER v1.0. PROPER-seq presents a 

time-effective technology to map PPIs at the transcriptome scale, and PROPER v.1.0 provides 

a rich resource for studying PPIs. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/transcriptome
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/nucleotide
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-sequence
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lethal-gene
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lethal-gene
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/xpo1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/importin
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1.2 Introduction 

Our ability to interpret the human genome function is greatly improved by our 

understanding of the interaction networks formed by the genome products. Recent 

technological breakthroughs enabled genome-wide mapping of DNA-DNA (Dekker et al. 

2017), protein-DNA (Consortium 2004, 2012), RNA-DNA (Sridhar et al. 2017; Yan et al. 

2019; Li et al. 2017), and RNA-RNA (Lu, Gong, and Zhang 2018; Sharma et al. 2016; Aw et 

al. 2017; Nguyen et al. 2016) interactions. However, genome-wide mapping of human 

protein-protein interactions (PPI) remains a resource-intensive task. 

Large-scale PPI mapping methods can be grouped into 3 classes, that are “parallelized 

one-to-one”, “one-to-many”, and “many-to-many” approaches. The “parallelized one-to-one” 

methods leverage automation and parallelization to enhance the throughput of yeast two-

hybrid (Y2H) assays(Rual et al. 2005; Luck et al. 2020; Rolland et al. 2014). These include 

High-Throughput Y2H (Walhout and Vidal 2001), MAPPIT (Lievens et al. 2009), and QIS-

seq (Lewis et al. 2012), which massively parallelized the binary interactions, and RLL-Y2H 

(Yang et al. 2018), Stitch-Seq (Kawalia et al. 2015), CrY2H-seq (Trigg et al. 2017), BFG-

Y2H (Yachie et al. 2016), in which gene sequences of interacting PPI pairs were fused and 

sequenced. The “one-to-many” methods start with purifying or tagging a target (or “bait”) 

protein to identify the co-purified proteins in spatial proximity using affinity 

purification(Vermeulen, Hubner, and Mann 2008), proximity biotinylation (BioID) 

(Touchette et al. 2017), GFP fusion (Zhang et al. 2017), or protein microarray (Kukar et al. 

2002). The “many-to-many” approach, aiming to read out all the pairwise PPIs from a single 

experiment, has been applied to resolve ligand-target pairs (McGregor, Jain, and Liu 2014) 

and antibody-antigen pairs (Gu et al. 2014).  
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The aforementioned methods can also be grouped into protein interaction assays and 

spatial proximity assays, depending upon the property of the protein pair unraveled. The 

protein interaction assays can be further divided into binary and non-binary assays (Yu et al. 

2008). Whereas binary assays such as Y2H yield direct pairwise protein interactions, non-

binary assays such as AP-MS and co-IP yield physical associations, where each protein 

identified in a pair may not directly interact with each other, as in a multi-protein complex. 

Finally, spatial proximity assays including BioID (Touchette et al. 2017) reveal proteins that 

may not form physical interactions or associations, other than being spatially proximal.  

In this work, we introduce protein-protein interaction sequencing (PROPER-seq), a 

resource-efficient many-to-many non-binary assay for PPI mapping. The central idea of 

PROPER-seq is to convert each PPI into a unique sequence of DNA and then to leverage 

extremely high throughput DNA sequencing to decode these PPIs. To implement this idea, we 

developed a technique called SMART-display to attach a unique RNA barcode to every 

protein (Figure 1.1A) and a method called incubation, ligation, and sequencing (INLISE) to 

sequence the pair of DNA barcodes that are attached to two interacting proteins (Figure 1.1B). 

We named the overall technology combining SMART-display and INLISE as PROPER-seq 

(Figure 1.1A). The input to PROPER-seq is a group of cells, and PROPER-seq’s output is a 

list of identified PPIs and their associated read counts and test statistics. We demonstrated that 

PROPER-seq is capable of scanning on the order of 10,000 × 10,000 protein pairs in one 

experiment and of identifying both binary and multiway protein interactions. Applying 

PROPER-seq on human embryonic kidney cells, T lymphocytes, and endothelial cells, we 

constructed a map of human PPIs (PROPER v.1.0) that includes 210,518 PPIs involving 

8,635 proteins. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-sequence
https://www.sciencedirect.com/science/article/pii/S1097276521005748#fig1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-barcoding
https://www.sciencedirect.com/science/article/pii/S1097276521005748#fig1
https://www.sciencedirect.com/science/article/pii/S1097276521005748#fig1


4 

Figure 1.1: Overview of PROPER-seq experimental pipeline 
(A) PROPER-seq starts with SMART-display that transforms the input cells into a library of
RNA-barcoded proteins (the first arrow), followed by INLISE that transforms the barcoded
proteins into a sequencing library, such that the barcodes of interacting protein pairs form a
chimeric sequence (the second arrow).
(B) Alignment of the barcodes to reveal the identities of the two genes (top track) between
which the chimeric sequences (rows) were formed.

1.3 Design 

1.3.1 SMART-display 

We developed a modified mRNA-display method, called SMART-display, to 

efficiently generate a protein library in which the proteins are conjugated with their mRNA 

(Figures 1.1A and 1.2). Thus, the mRNA serves as the unique nucleic acid barcode for each 

protein. Similar to mRNA display (Roberts and Szostak 1997; Barendt et al. 2013), SMART-

display is designed to create mRNA-protein fusions, specifically by adding an amino acid 

analog puromycin (“P” in the purple circle, Figure S1.1A) near the 3′ end of the mRNA. The 

https://www.sciencedirect.com/science/article/pii/S1097276521005748#fig1
https://www.sciencedirect.com/science/article/pii/S1097276521005748#fig2
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/nucleic-acids
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/puromycin
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
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translated protein from this mRNA is then covalently linked with its mRNA when puromycin 

enters the A site of the ribosome and is joined to the amino acid chain. This generates an 

mRNA-protein fusion, which is then released from the ribosome (Figure S1.1). 

In SMART-display, we replaced the gene-by-gene cloning (or gene-by-gene PCR) 

step in mRNA display with reactions that can be carried out with a mixture of genes (or 

mRNAs) without the need for independent purification of each gene. This was achieved by 

replacing the gene-specific primers in mRNA display with template switching oligos (TSOs) 

(Petalidis et al. 2003; Zhu et al. 2001) that are universal for all genes. The input to SMART-

display is a user-selected cell population. An important intermediate product of SMART-

display is a gene library suitable for mRNA display, in which the sequences for transcription 

initiation, translation initiation, and puromycin attachment have been incorporated in the 

appropriate places for every gene (Figure 1.2A). The output of SMART-display is a library of 

display complexes in the form of mRNA-linker-protein (Figure 1.2H; Figure S1.1D). 

https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/copurification
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/transcription-initiation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/transcription-initiation
https://www.sciencedirect.com/science/article/pii/S1097276521005748#fig2
https://www.sciencedirect.com/science/article/pii/S1097276521005748#fig2
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
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Figure 1.2: SMART-display 
(A) Structure of gene templates produced by SMART-display (the product of F).
(B) Poly(A)-selected and rRNA-depleted mRNA is collected from the input cells.
I Reverse transcription primer containing a random sixteen base pair region followed by the
sequences for a FLAG tag and a GC-rich puromycin linker hybridization site is annealed to
the mRNA.
(D) Reverse transcription and incorporation of the template switching oligo (TSO).
(E) PCR is performed with a primer that partially overlaps the TSO sequences to introduce the
T7 promoter and complete the ribosome binding site.
(F) Double-stranded DNA is purified.
(G and H) Transcribed RNA is ligated to a puromycin-containing linker sequence (G) and
subsequently translated to form mRNA-protein fusion products (H).

1.3.2 INLISE 

As the second key step of PROPER-seq, INLISE converts PPIs into chimeric 

sequences with the structure cDNA1-linker-cDNA2 (Figure 1.3). The inputs of INLISE are 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/reverse-transcription
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/flag-tag
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/puromycin
https://www.sciencedirect.com/science/article/pii/S1097276521005748#fig3
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two display libraries generated by SMART-display. Each display library contains 

approximately 15,000 mRNA-protein fusions. One library, called the bait library, is 

immobilized on streptavidin beads through the biotin on the puromycin linker sequence (“B” 

in the blue circle, Figure S1.1A). The other library, called the prey library, is not immobilized, 

as the biotin is cleaved from the puromycin linker and is mixed with the bait library to allow 

interactions. After the removal of spurious interactions, the mRNA barcodes of interacting 

proteins are ligated to create a chimeric sequence in the form of cDNA1-linker-cDNA2, 

where cDNA1 and cDNA2 represent the two interacting proteins. These chimeric sequences 

are subsequently selected for and subjected to paired-end sequencing. 

1.3.3 Identification of PPIs by statistical tests 

Our overarching goal is to examine as many protein pairs as possible and assign a 

binary indicator (interacting or not) to every protein pair. Toward this goal, we subjected the 

mapped read pairs on each gene pair to an association test. The null hypothesis is that the 

mapping of a read pair to one gene is independent of the mapping of this read pair to the other 

gene (Figure 1.4A). We used Bonferroni-Hochberg (BH) correction to account for multiple 

hypothesis tests (Benjamini and Hochberg 1995). A pair of proteins was identified as 

interacting (i.e., a PPI) by two criteria. First, the BH-corrected p-value derived from the 

association (Chi-square) test is smaller than 0.05 (Figure 1.4A). Second, the number of the 

chimeric read pairs mapped to this gene pair is no less than 4 times the average number of 

chimeric reads mapped to any gene pair (4 × the number of all mapped chimeric read pairs / 

the number of all mapped gene pairs). Hereafter, we call these the default threshold, denoted 

as BH-corrected p < 0.05 and number of read pairs > 4X, where X is the expected number of 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/streptavidin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/biotin
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
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read pairs mapped on a randomly chosen gene pair. Unless otherwise specified, all PPIs 

presented in the rest of this chapter were identified based on this default threshold. To 

facilitate reproducible analysis, we have implemented all data processing and statistical test 

steps into an open-source software package called PROPERseqTools (Figure 1.4B) 

(https://doi.org/10.5281/zenodo.5009171). 

https://doi.org/10.5281/zenodo.5009171
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Figure 1.3: INLISE 
Steps are indicated in bold font to the left of each process arrow, and primary enzymes or 
reagents used to accomplish each step are indicated to the right of the process arrow. The 
process begins with the stabilization of the display complexes on streptavidin magnetic beads. 
Subsequently, the RNA component of each display complex is converted to double-stranded 
DNA and digested with a non-palindromic restriction enzyme. The library of display proteins 
is then split into two populations. One half of the display protein complex is ligated to the 
biotinylated interaction linker and then digested to remove the complexes from the 
streptavidin beads. The free half of the display protein library is combined with the half still 
on the beads to perform the interaction step, and the interacting proteins are crosslinked. The 
beads are washed to remove non-specific interactions, and then proximity ligation between 
the display nucleic acids is performed. The DNA is then fragmented, and adaptor ligation for 
sequencing is performed before final streptavidin selection for the biotin-containing 
interaction linker and library amplification. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/streptavidin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/restriction-enzymes
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-complexes
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/nucleic-acids
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Figure 1.4.: PROPERseqTools 
(A) A contingency table for the read pairs mapped to gene A (rows) and gene B (columns).
Every mapped read pair is assigned to one and only one cell in this contingency table. The
null hypothesis is that the mapping of a read pair to one gene (gene A) is independent of the
mapping of this read pair to the other gene (gene B), where a read pair is considered mapped
to a gene when either end of this read pair is mapped to that gene.
(B) Flowchart of PROPERseqTools for processing PROPER-seq data. Linker sequence and
adaptor sequences were trimmed (Adaptor trimming). Low-quality reads and reads that were
too short were removed (Quality filtering). The resulting read pairs were mapped to RefSeq
genes (Mapping), and those with the two ends mapped to two different genes were obtained
(Identification of chimeric read pairs). Non-redundant chimeric read pairs were used as the
input to test of association (Statistical test).

1.4 Results 

1.4.1 Assessments of SMART-display and INLISE 

We assessed SMART-display in two aspects. First, we asked whether the display 

products exhibit specificity in antibody-protein interactions. To test whether a 

specific PPI can be detected by using the mRNA barcode on the display protein, we used 

the GFP antibody and GFP protein as the tested PPI. We constructed a small SMART-display 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-protein-interaction
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/green-fluorescent-protein
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library as follows. We started from four full-length mRNAs: GFP, creatine kinase, 

mitochondrial 2 (CKMT2), MAPK activated protein kinase 2 (MAPKAPK2), 

and dihydrofolate reductase (DHFR). After the display process (Figure S1.2A and S1.2B), we 

mixed the resulting mRNA-protein fusions equimolarly to create a small SMART-display 

library. We used qPCR to quantify each mRNA in this mixture (pre-selection value), used a 

GFP antibody for pull-down on magnetic beads, and applied stringent washes to remove non-

specific RNA-bead attachments. qPCR was then used to quantify each mRNA in the mixture 

(post-selection value). A greater ratio of post- to pre-selection values suggests a higher anti-

GFP antibody interaction with the protein. As expected, the ratios of the other three mRNAs 

(CKMT2, MAPKAPK2, and DHFR) were lower than that of the GFP mRNA (Figure S1.2C). 

This test suggests that the display protein can be specifically recognized by its antibody and 

that the mRNA barcodes could provide a quantitative readout of the PPIs. 

Second, we evaluated the proportion of mRNAs from the original sample that were 

converted to display complexes by SMART-display. To this end, we split a population of 

HEK293T cells equally into two, one for RNA sequencing (RNA-seq) and the other for 

SMART-display, and we purified the display complexes by their protein moiety and 

sequenced the co-purified RNA moiety. Although the RNA-seq reads were mapped to 15,191 

protein-coding genes (Transcripts per million [TPM] > 0.1), the sequencing reads from 

SMART-display were mapped to 14,805 protein-coding genes (TPM > 0.1) (displayed genes), 

14,658 of which overlapped those revealed by RNA-seq (Figure S1.2D). This level of overlap 

in the detected mRNAs is comparable to that between two RNA-seq experiments carried out 

with the same cell type (Li et al. 2014; Su et al. 2014). Thus, the SMART-display-generated 

product library largely recapitulated the diversity of mRNAs from input cells. We subjected 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/creatine-kinase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mitogen-activated-protein-kinase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dihydrofolate-reductase
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/rna-sequence
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
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two HEK293T samples to the SMART-display. The samples yielded 14,805 and 14,104 

displayed genes (Figure S1.2E), with 13,835 genes overlapping (odds ratio = 274.8, p < 

10−32, Chi-square test), suggesting limited variation between two SMART-display repeats. 

Several experimental steps in INLISE were designed to promote the formation of 

chimeric sequences. To test whether this design goal was achieved, we carried out the INLISE 

procedure with two variations, one with the interaction linker excluded (no-linker 

column, Figure S1.4A) and the other with the bait library pre-incubated 

with proteinase (proteinase column, Figure S1.3A). Compared with the standard INLISE 

procedure, both variations yielded less DNA in the second-to-last step (streptavidin T1 

selection) (Figure S1.3A and S1.3B) and final sequencing libraries with lower concentrations 

(Figure S1.3C and S1.3D). These results suggest that INLISE’s experimental steps improved 

the efficiency of forming chimeric sequences, in line with our design goal. 

1.4.2 Evaluations of PROPER-seq identified PPIs 

We evaluated PROPER-seq identified PPIs based on their reproducibility, precision, 

and recall. To test these properties, we generated six PROPER-seq libraries from HEK293T 

cells, Jurkat cells, and human umbilical vein cells (HUVECs). Two biological replicates from 

each cell type were used to generate two libraries of that cell type. These libraries are named 

HEK1, HEK2, JKT1, JKT2, HUVEC1, and HUVEC2 (Table S1.1). Sequencing of these 

libraries yielded approximately 350 million read pairs per library. Among these, 

approximately 8 million are non-duplicate chimeric read pairs, each mapped to two different 

coding genes (Table S1.1). By using PROPERseqTools with default threshold, we identified 

https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/proteases
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
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62,637 PPIs from HEK1, 51,611 PPIs from HEK2, 41,516 PPIs from JKT1, 40,879 PPIs from 

JKT2, 21,494 PPIs from HUVEC1 and 33,716 PPIs from HUVEC2. 

Reproducibility between biological replicates 

We tested the reproducibility of PROPER-seq identified PPIs between the two 

biological replicates of each cell line. A total of 34,244 PPIs were shared between HEK1 and 

HEK2 (odds ratio = 14,242, p < 2.2 × 10−16, Chi-square test) (Figure S1.4A), suggesting 

significant overlap between experimental repeats. We also tested how sensitive the 

reproducibility is to the threshold applied for PPI calling. We started from the default 

threshold and then varied the threshold (BH-corrected p < 0.05, number of read pairs > nX) 

by changing n from 4 (default) to 40 (Figure S1.4B and S1.4C). As the criterion (n) increased, 

the number of identified PPIs decreased as expected. However, the relative size of the overlap 

exhibited a monotonic increase (Figure S1.4C). These data suggest that the reproducibility of 

PROPER-seq increases as the threshold increases. We repeated these analyses with the two 

Jurkat libraries and the two HUVEC libraries and detected a similar increase in 

reproducibility, evident by the monotonic increase of the proportions of the overlaps as the 

threshold increases (Figure S1.4D–S1.4I). These results indicate that among the statistically 

significant PPIs, the more read pairs supporting a PPI, the more likely this PPI is to be 

reproducible by another repeat experiment. 

Precision and recall of PROPER-seq identified PPIs 

Next, we evaluated the precision and recall (Saito and Rehmsmeier 2015) of the 

PROPER-seq-identified PPIs with reference to known PPIs. We obtained reference datasets 

from the Agile Protein Interactomes DataServer (APID) (Alonso-Lopez et al. 2019; Alonso-

Lopez et al. 2016), which has integrated experimentally reported PPIs from more than 6,689 
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curated articles and BIND (Bader, Betel, and Hogue 2003), BioGRID (Stark et al. 2006), DIP 

(Xenarios et al. 2000), HPRD (Peri et al. 2003), IntAct (Hermjakob et al. 2004), and MINT 

(Licata et al. 2012) databases. Based on this most up-to-date archive of PPIs (Alonso-Lopez et 

al. 2019), three types of non-binary assays yielded more than 10,000 PPIs per experimental 

type. These are AP-MS, coIP, and liquid chromatography-mass spectrometry (LC-MS), which 

have reported 131,224, 50,290, and 33,195 human PPIs, respectively (Table S1.2). These 

were compared with 109,539 PPIs identified in two merged PROPER-seq libraries from HEK. 

We plotted the precision and recall using the collection of all human coding genes as the 

search space (Venkatesan et al. 2009) and generated a dataset by permutating the assignment 

of chimeric read pairs to gene pairs. The precision-recall curve of this permutated dataset 

(gray dots, Figure S1.5A-S1.5C) is far beneath that of the actual data (black dots, Figure 

S1.5A-S1.5C), confirming that PROPER-seq’s read pairs were distinguished from the 

background of randomly sampled gene pairs. We repeated these analyses with PROPER-seq 

data from Jurkat and HUVEC, using the merged data of two replicates (Figure S5) or each 

replicate separately (Figure S1.6). In all analyses, increases in thresholds resulted in larger 

precisions and smaller recalls (Figures S1.5 and S1.6). Furthermore, PROPER-seq-identified 

PPIs exhibited better precisions and recalls than the permutation data (Figures S1.5 and S1.6). 

Altogether, PROPER-seq-identified PPIs are supported by the PPIs identified by previous 

literature. 

Identification of PPIs from PROPER-seq with control libraries and subsampling 

For each of the HEK1 and HEK2 libraries, we carried out two control experiments to 

evaluate the noise of chimeric read pairs falsely generated by ligation errors and mapping 

errors. The first control, named as no-linker, has the linker sequence excluded to prevent the 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunoprecipitation
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
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formation and selection of chimeric read pairs. The second control, named as proteinase, has 

the protein library immobilized on streptavidin beads digested. We identified 4,699,752 

chimeric read pairs from the merged library of HEK1-noLinker and HEK1-proteinase, and 

3,918,507 chimeric read pairs from the merged library of HEK2-noLinker and HEK2- 

proteinase (Table S1.1). Then we incorporated these chimeric read pairs from the control 

libraries into the process of identifying PPIs from the positive libraries by using an alternative 

association test. In detail, we subjected the number of read pairs on each gene pair that 

appeared in the positive library together with the number of read pairs on the corresponding 

gene pair in the merged control library to the alternative association test. The null hypothesis 

is that the mapping of a read pair in the positive library is independent of the mapping of this 

read pair in the control library (Figure S1.7A). While keeping the other steps and thresholds 

the same as in PROPERseqTools, we identified 38,977 PPIs for HEK1 with control libraries 

(named HEK1-wControl) and 37,948 PPIs for HEK2 with control libraries (named HEK2-

wControl) under default thresholds (BH-corrected p < 0.05, number of read pairs > 4X).  

18,752 PPIs are shared between HEK1-wControl and HEK2-wControl (odds 

ratio=9896.8, P-value<1e-20, fisher’s exact test, Figure S1.7B). After varying the thresholds 

of identifying PPIs (BH-corrected p < 0.05, number of read pairs > nX) by changing n from 4 

to 40, we found the relative size of the overlapped PPIs between HEK1- wControl and HEK2- 

wControl exhibited monotonic increase. Such an increase in reproducibility, quantified by 

odds ratio, is comparable to that between HEK1 and HEK2 without control libraries (Figure 

S1.7C). These data suggest a similar reproducibility of PROPER-seq identified PPIs 

regardless of control libraries.  

https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
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The HEK1 and HEK2 positive and control libraries were then merged to infer the 

protein interactome in HEK cells. We identified 86,338 PPIs from the merged positive and 

control libraries under default thresholds, referred as HEK-wControl (BH-corrected p < 0.05, 

number of read pairs > nX). We found HEK- wControl and HEK shared an increased level of 

overlap of PPIs as we increased the positive read count threshold (Figure S1.7D). We 

computed precisions and recalls for HEK-wControl using AP-MS, coIP, and LC-MS as the 

reference dataset. We found HEK-wControl exhibits similar precisions and recalls as those of 

HEK without control libraries (Figure S1.7E-S1.7G). This suggests that HEK-wControl 

captures a consistent level of known PPIs as HEK without control libraries. In general, 

PROPER-seq identified PPIs exhibit robust reproducibility, precision, and sensitivity 

regardless of control libraries. 

We also subsampled 75%, 50% and 25% of the input reads from HEK1 and HEK2 

libraries to ask whether varying the sequencing depth of PROPER-seq libraries will affect the 

scale, reproducibility, precision, and recall of the identified PPIs. We found the number of 

identified PPIs decreases as the subsampling rate decreases (Figure S1.8A). Meanwhile, the 

reproducibility between HEK libraries at different subsampling rates all exhibits a monotonic 

increase with an increased threshold of the number of read pairs from 4X to 40X, a trend 

similar to that of the original HEK libraries (Figure S1.8B). We then computed precision and 

recall values of the merged HEK libraries at different subsampling rates using AP-MS, coIP, 

and LC-MS as the reference dataset. We found that the resulting precision-recall curves 

overlap with each other (Figure S1.8C-S1.8E). We repeated the same subsampling analyses 

with the two Jurkat libraries and the two HUVEC libraries. For all these libraries at different 

subsampling rates, they exhibit similar reproducibility and have overlapped precision-recall 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunoprecipitation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunoprecipitation
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curves (Figure S1.8F-S1.8O). These results suggest that the sequencing depth of PROPER-

seq libraries only affects the scale of identified PPIs but does not affect their reproducibility, 

precision, and recall. In other words, increasing the sequencing depth of PROPER-seq 

libraries will reveal more protein-protein interactions of equal validity.  

1.4.3 PROPER v.1.0: An extensive human PPI network 

To generate a comprehensive human PPI network, we combined all six PROPER-seq 

libraries (HEK1, HEK2, JKT1, JKT2, HUVEC1, and HUVEC2) into one dataset, composed 

of approximately 1.4 billion read pairs. This combined dataset revealed 210,518 pairwise PPIs 

involving 8,635 proteins, which are collectively termed the PROPER v.1.0 network (Figure 

1.5A). We have developed a web interface to download, search, and visualize PROPER v.1.0 

(https://genemo.ucsd.edu/proper). 

To evaluate the topology of the network, we examined the degree distribution of 

PROPER v.1.0 (Barabasi 2009; Barabasi and Bonabeau 2003; Navlakha et al. 2014). The 

proportion of proteins (nodes) is inversely correlated with the number of interactions (edges) 

(Figure 1.5B), suggesting that PROPER v.1.0 is a scale-free network (Barabasi 2009; 

Barabasi and Bonabeau 2003). A major characteristic of scale-free networks is that they 

contain a small proportion of highly connected nodes, called hubs (Barabasi 2009; Barabasi 

and Bonabeau 2003). For example, poly(ADP-ribose) polymerase 1 (PARP1), a key regulator 

of various biological processes, emerged as a hub of PROPER v.1.0 by participating in 605 

PPIs (edges) (Figure 1.5B and 1.7A). PROPER v.1.0’s clustering coefficient (C(k)) exhibits a 

reverse correlation to the degree (k) (Figure S1.9I), which is in line with hierarchical networks’ 

C(k) distributions (Barabasi and Oltvai 2004). PROPER’s C(k) approaches 1 when k becomes 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-protein-interaction-networks
https://genemo.ucsd.edu/proper
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/biological-phenomena-and-functions-concerning-the-entire-organism
https://www.sciencedirect.com/science/article/pii/S1097276521005748#fig5
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
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small, suggesting that the nodes with small degrees are embedded in highly connected 

neighborhoods.  

We asked whether functional groups are enriched in PROPER v.1.0. We plotted the 

enrichment level of every biological process Gene Ontology (GO) term in PROPER v.1.0 

against the total number of human genes of that GO term (Figure 1.5C). To avoid generic GO 

terms that involve too many genes, we focused our analysis on GO terms that contained no 

more than 300 genes (green dots, Figure 1.5 C). The most enriched GO terms were translation 

(Bonferroni-corrected p < 9.4 × 10−51) and RNA splicing (Bonferroni-corrected p < 8.9 × 

10−41) (Figure 1.5C). By intersecting PROPER v.1.0 with each GO term, we obtained a 

subnetwork associated with each GO term, including a translation subnetwork and an RNA 

splicing subnetwork. Considering the successes of previous research in elucidating the central 

dogma, we expected large fractions of the PPIs in the translation and the RNA splicing 

subnetworks to be known PPIs. Indeed, the translation subnetwork included 2,520 PPIs, 

where 1,185 PPIs (47%) overlapped APID-documented PPIs (Figure 1.5D). The RNA 

splicing subnetwork included 2,081 PPIs, where 468 PPIs (23%) overlapped APID-

documented PPIs (Figure 1.5E). 

Following Yu et al. (2008) and Venkatesan et al. (2009) (see also Cusick et al., 2009) 

(Yu et al. 2008; Venkatesan et al. 2009; Cusick et al. 2009), we calculated the screening 

completeness, sampling sensitivity, assay sensitivity, overall sensitivity, and precision of 

PROPER v.1.0 (Venkatesan et al. 2009) (Table S1.3). PROPER v.1.0’s sequencing reads 

covered 16,305 human protein coding genes, of which 8,635 protein coding genes were 

involved in PROPER v.1.0’s PPIs (Table S1.2). We further tested whether PROPER v.1.0 is 

enriched with either binary or non-binary PPIs by comparing with three pairs of binary and 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gene-ontology
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/rna-splicing
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https://www.sciencedirect.com/science/article/pii/S1097276521005748#bib66
https://www.sciencedirect.com/science/article/pii/S1097276521005748#bib16
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1


19 

non-binary PPIs, namely, APID binary versus APID non-binary, Lit-BM-13 versus Lit-NB-13 

(Kovacs et al. 2019), and L3-BM versus L3-NB (Kovacs et al. 2019) (Table S1.2). 

Association tests suggested enrichments of non-binary PPIs in PROPER v.1.0 (p < 2.2 × 

10−16, p = 0.081, and p = 9.8 × 10−9, Chi-square tests with the three pairs of binary and non-

binary datasets). These results are consistent with our expectation that PROPER v.1.0 

includes both binary and non-binary PPIs, because both binary and multiway interactions are 

allowed when the two display libraries are incubated at the INLISE step. Altogether, 

PROPER v.1.0 expands the profile of human protein interactome with more than 200,000 

previously uncharacterized PPIs. 

Support of 17,638 computationally predicted PPIs by PROPER v.1.0 

A genome-wide structure-based prediction of human PPIs was accomplished based on 

the prePPI (predicting protein-protein interactions) algorithm (Zhang et al. 2012; Zhang et al. 

2013). Among the 1,273,679 computationally predicted and previously uncharacterized 

human PPIs (previously uncharacterized prePPIs) that currently do not have experimental 

support (not recorded in the APID database), 17,638 previously uncharacterized prePPIs 

appeared in PROPER v.1.0 (1.38% of the previously uncharacterized prePPIs, 8.38% of 

PROPER v.1.0, odds ratio = 14.83, p < 2.2 × 10−16, Chi-square test). We also examined 

whether the PROPER-seq-supported prePPIs were enriched with predicted domain-domain or 

domain-peptide interactions (Zhang et al. 2012; Chen et al. 2015; Garzon et al. 2016). As 

expected, PROPER-seq-supported PrePPIs exhibited smaller structure scores that reflect a 

direct interaction between two protein domains (Zhang et al. 2012; Chen et al. 2015; Garzon 

et al. 2016) compared with the entire prePPI (Figure S1.10D). This is because the prePPI 

algorithm used the structure score as an important component to predict what protein pairs 

https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
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can interact (Zhang et al. 2012). However, the PROPER-seq-supported prePPIs exhibited a 

distribution of domain-peptide scores (Zhang et al. 2012; Chen et al. 2015; Garzon et al. 2016) 

similar to that of the entire prePPI (Figure S1.10H), suggesting little difference in domain-

peptide interactions between computationally derived and PROPER-seq-supported PPIs. 

Correlation between human synthetic lethal (SL) gene pairs and human PPIs 

We asked whether human genetic interactions exhibit a correlation with physical 

interactions. To this end, we compared human SL gene pairs identified by DAISY (data 

mining synthetic lethality identification pipeline) (Jerby-Arnon et al. 2014; Lee et al. 2018) 

with three sets of human PPIs, namely, PROPER v.1.0, APID, and HuRI (Luck et al. 2020). 

DAISY included 2,816 SL pairs (Jerby-Arnon et al. 2014), whereas PROPER v.1.0, APID, 

and HuRI contained 210,518, 322,260, and 52,544 human PPIs, respectively. DAISY and 

PROPER v.1.0 shared 100 gene pairs (odds ratio = 27.6, p < 2.2 × 10−16, hypergeometric test) 

(Figure S1.11A), DAISY and APID shared 74 gene pairs (odds ratio = 13.2, p < 2.2 × 10−16, 

hypergeometric test), and DAISY and HuRI shared 4 gene pairs (odds ratio = 4.2, p = 0.015, 

hypergeometric test). Although the association between DAISY and HuRI was weaker than 

DAISY’s associations with PROPER v.1.0 and APID, all three comparisons revealed positive 

associations. These data suggest a positive correlation between human SL gene pairs and 

human PPIs. 

Next, we tested whether the hubs (proteins with many interactions) and the other 

nodes of PROPER v.1.0 are equally likely to participate in synthetic lethality. To this end, we 

identified the 121 nodes in PROPER v.1.0 that are involved in the human SL pairs (SL nodes) 

(Figure S1.11A). The SL nodes exhibited an average degree of 538 in PROPER v.1.0, far 

above the average degree of the entire PROPER v.1.0 (p < 2.2 × 10−16, Kolmogorov-

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/synthetic-lethality
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Smirnov test) (Figure S1.11B). These data suggest that the human genes involved in SL tend 

to be the hubs of the human PPI network, in line with the notion that the hubs of a scale-free 

network are more important than the other nodes for maintaining the integrity of the network 

(Buldyrev et al. 2010). 

Cell-type-associated subnetworks 

When we designed PROPER-seq, we did not anticipate it to be sensitive enough to 

reveal cell-type differences. After evaluating PROPER v.1.0 (the integrated result from three 

input cell lines), we tested whether the cell-type-specific gene expression could lead to the 

differential contribution of PROPER-seq data from each cell type to the identified PPIs in 

PROPER v.1.0. We tested this possibility at two levels, namely, for every PPI and for every 

subnetwork (as defined by GO terms). At the level of individual PPIs, approximately 33% of 

PROPER v.1.0’s PPIs were identified primarily due to the read pairs from a specific cell type, 

including approximately 14,000 (6.8%), 25,000 (12%), and 29,000 (14.1%) PPIs attributable 

to HEK, Jurkat, and HUVEC data, respectively (Figure 1.6A). 

At the subnetwork level, we obtained 431 subnetworks by extracting the nodes in 

PROPER v.1.0 associated with each GO term and the edges connecting the extracted nodes. 

We quantified the association of each subnetwork to each cell type by the proportions of PPIs 

(edges) attributable to that cell type. Most subnetworks (402 of 431) did not preferentially 

associate with any one of the three cell types (clustered at the center, Figure 1.6B), consistent 

with the idea that most biological processes as defined by GO terms are shared across these 

cell types. Specifically, no subnetwork exhibited preferential association with HEK (top 

corner, Figure 1.6B). The T cell activation and positive regulation of T cell proliferation 

subnetworks emerged as the top 2 subnetworks with the strongest associations with Jurkat 

https://www.sciencedirect.com/science/article/pii/S1097276521005748#mmc1
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cells, consistent with the T lymphocyte origin of Jurkat cells (lower-left corner, Figures 1.6B 

and 1.6C). Several subnetworks were associated with vascular endothelial cells, including 

regulation of the extracellular matrix, cell mobility, cell-matrix, and cell-substrate adhesion, 

and the integrin-mediated signaling pathway (lower-right corner, Figures 1.6B and 1.6D), 

reflecting the crucial functional properties of endothelial cells (Deanfield, Halcox, and 

Rabelink 2007). These data suggested a strong potential of applying PROPER-seq to reveal 

cell-type-specific PPIs. 
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Figure 1.5: PROPER v.1.0 
(A) Entire PROPER v.1.0 network with proteins as nodes and PPIs as edges. The degree of
nodes is color coded from high (red) to low (blue).
(B) PROPER’s degree distribution, with the degree (number of connections of a node) (x axis)
plotted against the proportion of nodes in that degree (y axis). Arrow, PARP1 node. The fitted
probability density function of the degree distribution is proportional to k−1.076, where k is
the degree.
(C) Number of genes (x axis) of each GO term (dot) versus the enrichment level of this GO
term in PROPER v.1.0 (y axis). The colors of the dots show GO terms with less (green) and
more (yellow) than 300 genes.
(D) Translation subnetwork.
(E) RNA splicing subnetwork, including the core components of human spliceosomes (U
small nuclear ribonucleoprotein particle [snRNP]), components of the pre-spliceosome
complex, the pre-catalytic spliceosome, and catalytic step 1 spliceosome (complex A/B/C),
the exon junction complex (EJC), and the transcription and export complex (TREX), as well
as SR proteins, Sm proteins, heterogeneous nuclear ribonucleoproteins (hnRNP), and pre-
mRNA processing factors (Prp). Pink edges, known PPIs (as documented in
the APID database); gray edges, previously uncharacterized PPIs.
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https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/rna-splicing
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/spliceosome
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ribonucleoprotein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/exon-junction-complex
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sr-protein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/interactome
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Figure 1.6: Cell-type-associated subnetworks 
(A) Numbers of PPIs associated with HEK, Jurkat, and HUVEC and those that did not
associate with any cell type (shared).
(B) Associations of subnetworks and cell types. The proportion of PPIs that are associated
with each cell type (each axis on the edge of the triangle) in every GO-term-defined
subnetwork (dot). The relative associations to the three cell types are also represented in a
color gradient from red (Jurkat), to green (HUVEC), to blue (HEK). Dot size, number of
genes in a GO term.
(C and D) Expanded view of the combined subnetwork of the subnetworks associated with
Jurkat (C) and those associated with HUVEC (D). Edge colors denote shared PPIs (gray), as
well as the PPIs associated with Jurkat (red) or HUVEC (green).

1.4.4 Experimental validation of previously uncharacterized PPIs 

We subjected select previously uncharacterized PPIs to experimental validation. We 

first investigated whether previously uncharacterized PPIs in PROPER v.1.0 exhibit spatial 

proximity in situ by PLA (Gullberg et al. 2004; Soderberg et al. 2006), which enables direct 

observation of protein interactions by generating fluorescence signals specifically from 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-protein-interaction
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gene-ontology
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interacting protein pairs in unmodified cells (Gullberg et al. 2004; Soderberg et al. 2006). We 

decided to choose a hub in PROPER v.1.0 and selectively test a few previously 

uncharacterized PPIs involving this hub. We elected several previously uncharacterized 

PARP1-participating PPIs, i.e., PARP1-exportin 1 (XPO1), PARP1-matrin 3 (MATR3), and 

PARP1-importin 5 (IPO5), to PLA tests. XPO1 and IPO5 (importin 5) regulate export and 

import through nuclear pores (Fornerod et al. 1997; Jäkel and Görlich 1998). MATR3 is a 

nuclear matrix protein. 

As a positive control, we assayed for PARP1-small ubiquitin-like modifier 1 

(SUMO1), a known PPI (Messner et al. 2009). The HEK293 cells co-incubated with PARP1 

and SUMO1 antibodies exhibited 3 to 12 PLA foci per cell, compared with 0 to 2 foci per cell 

in the control cells (p = 1.1 × 10−4 for PARP1+none control, p = 1.2 × 10−6 for 

none+SUMO1 control, Wilcoxon test) (Figures 1.7B, 1.7C, 1.7H, and 1.7I). In parallel, cells 

co-incubated with PARP1 and XPO1 antibodies exhibited 13 to 34 PLA foci per cell, 

compared with 0 to 6 foci per cell in the cells incubated with PARP1 or XPO1 antibody alone 

(p = 7.4 × 10−5, for PARP1+none control, p = 7.7 × 10−5 for none+XPO1 control, Wilcoxon 

test) (Figures 1.7B, 1.7D, 1.7H, and 1.7J). Similarly, tests for PARP1-IPO5 and PARP1-

MATR3 yielded more PLA foci per cell than their respective controls (the largest p = 1 × 

10−4, Wilcoxon test) (Figures 1.7B, 1.7E, 1.7F, 1.7H, 1.7K, and 1.7L). Furthermore, all 

additional controls, including co-incubation of PARP1 and GFP antibodies, GFP antibody 

alone, and a no-antibody control, yielded fewer foci compared with the experimental groups 

(the largest p = 4.5 × 10−4, Wilcoxon test) (Figures 1.7B, 7G, 7M, and 7N). 

We selected another previously uncharacterized PPI, PARP1-LEO1, for a coIP test. 

LEO1 is a component of the PAF1 complex that associates with the RNA polymerase 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/xpo1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/nuclear-pore
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/matrix-protein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/rna-polymerase-ii
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II (RNA Pol II) (Yu et al. 2015). In HEK293, immunoprecipitation (IP) with LEO1 antibody 

(Figure S1.12) resulted in coIP of PARP1 (IP/LEO1 lane and input lane, Figure 1.7O), 

whereas the lysates immunoprecipitated with immunoglobulin G (IgG) antibody did not 

exhibit any signal when immunoblotted with PARP1 antibody (IP/IgG lane, Figure 1.7O). 

Altogether, 4 of the 4 previously uncharacterized PPIs have been confirmed by PLA or coIP. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/rna-polymerase-ii
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunoglobulin-g
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Figure 1.7: Experimental validations of previously uncharacterized PPIs 
(A) 605 PPIs involving PARP1. Pink edges, known PPIs; gray edges, previously
uncharacterized PPIs. The 5 PPIs tested are labeled.
(B) Boxplots of the number of PLA foci. Columns, experimental conditions, including 4 test
conditions (PARP1+SUMO1, PARP1+XPO1, PARP1+IPO5, and PARP1+MATR3) and 8
control conditions (the other columns). ∗p < 0.05, Wilcoxon test.
(C–N) Representative microscopic images in each experimental condition corresponding to
columns C–N in (B), with DAPI staining (blue) and PLA signals (red). Scale bar: 10 μm.
(O) CoIP analysis of PARP1 and LEO1. PARP1 immunoblots in LEO1 antibody (IP/LEO1)
and IgG antibody-immunoprecipitated materials (IP/IgG). M, marker lane from a pre-stained
protein ladder; input, 5% of precleared cell lysates.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-protein-interaction
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/poly-adp-ribose-polymerase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dapi
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/western-blot
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunoglobulin-g
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1. 5 Discussion

PROPER-seq provides a time-effective approach to map PPIs at 

the transcriptome scale in a single experiment. It does not require specialized resources or 

reagents such as antibodies and can be applied to various input cells. Thus, PROPER-seq may 

be a useful profiling tool to assist users in a broad scientific community to discover PPIs 

relevant to many cells or tissues of interest. 

The PROPER v.1.0 database expands the human protein interactome by contributing 

approximately 200,000 previously uncharacterized PPIs. For example, PROPER v.1.0 adds 

several hundred interaction partners to PARP1. Markedly, PROPER v.1.0 lends experimental 

support to more than 17,000 computationally predicted PPIs that have not been 

experimentally validated, suggesting the strong predictive ability of structure-based 

computational models. Furthermore, the hub proteins of PROPER v.1.0 are more likely to 

overlap the genes in SL gene pairs than the non-hub proteins, suggesting a connection 

between the human protein interactome’s connectivity and the human genes’ synthetic 

lethality. 

This study has several limitations. First, PROPER-seq is an in vitro assay, and it may 

miss PPIs that rely on posttranslational modifications or in vivo protein localizations. Second, 

we have only validated a small number of previously uncharacterized PPIs, and future studies 

are warranted to interrogate many other previously uncharacterized PPIs. Third, we have not 

tested whether the DNA tags of proteins can interfere with protein-protein interactions. Fourth, 

we cannot rule out all possible false-positive interactions, e.g., those resulting from high-

abundance proteins (Mellacheruvu et al. 2013) and protein-DNA interactions. To control for 

high-abundance proteins, we accounted for unligated reads belonging to each protein in the 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/transcriptome
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/interactome
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/poly-adp-ribose-polymerase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lethal-gene
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/synthetic-lethality
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/synthetic-lethality
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/posttranslational-modification
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Chi-square test; we also marked 13 PPIs in PROPER v.1.0 as potential background 

contaminations, because they include proteins that appear at high frequencies in negative 

control AP-MS experiments (Mellacheruvu et al. 2013). To minimize protein-DNA binding, 

PROPER-seq uses a protein-specific crosslinker, BS3, which only crosslinks amines to other 

amines. After crosslinking by BS3, we included multiple rounds of washes in PROPER-seq to 

minimize spurious binding. 

This study is not designed to identify cell-type-specific interactions with statistical 

rigor. To identify cell-type-specific PPIs, we anticipate that future work is required to 

characterize the within-cell-type variation and dissect the with-cell-type variation into 

biological variation (among different cell sources, batches, culture conditions, and cell-cycle 

phases) and technical variation (among sufficient replicate experiments on the cells for which 

biological variation has been controlled). With within-cell-type variation fully characterized 

and accounted for, we anticipate that a comparison among different cell types can identify 

cell-type-specific PPIs. 
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1. 6 Supplementary information

Supplementary figures 

Figure S1.1: Overview of the mRNA-display process 
(A) The structure of the universal puromycin-containing linker oligo, which contains 
puromycin (“P” in the purple circle), biotin (“B” in the blue circle), and two inosine bases (“I” 
in pink). The underscored sequence in this linker can hybridize with a “linker hybridization 
sequence” at the 3’ end of a SMART-display generated mRNA that lacks a stop codon. (B) 
This hybridization facilitates the ligation of the 3’ end of the SMART-display generated 
mRNA with the 5’ end (5’Phos-) of this universal puromycin-containing linker sequence. (C) 
At the end of the translation process, puromycin enters the A-site of the ribosome and forms a 
covalent link with the translated peptide. (D) The fusion product is released from the 
ribosome.
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Figure S1.2: Testing antibody specificity to displayed fusion products 
(A) Size difference between unligated mRNA and puromycin-containing linker ligated 
mRNA. Bioanalyzer RNA Pico traces for the mRNA transcribed from a FLAG tag containing 
the GFP gene before (grey) and after ligation to the puromycin linker sequence (blue). 
Migration time (x axis) reflects fragment size. The increase in fragment size between the 
unligated and the ligated sequences, based on the difference in migration time, is about 100 
bases. (B) Western blot of the display products. The translation outputs of the puromycin-
containing linker ligated mRNA were purified with either MyOne Streptavidin T1 beads (T1 
column) or with NanoLink streptavidin beads (NL column) that reacted with the biotin on the 
puromycin-containing linker. The released materials from the beads were blotted with an anti-
FLAG antibody (T1, NL columns). The supernatants of the bead selections were blotted as 
controls (T1 supernatant, NL supernatant). The Streptavidin T1 beads were used in the 
PROPER-seq protocol. The expected size of GFP protein with a FLAG tag is approximately 
27 kDa. The expected size of the display complex (GFP protein, puromycin-containing linker, 
and mRNA) is approximately 350 kDa. (C) Specificity of antigen-antibody interaction. The 
selectivity of the anti-GFP antibody was measured by the ratio of qPCR quantifications of 
each mRNA (column) in mixed bead purified mRNA-protein fusion products after vs. before 
pulling down with the anti-GFP antibody (y axis). The ratio for MAPKAPK2 was 0 because 
MAPKAPK2 was not detected post-selection. Error bar: standard error. (D) Venn diagram of 
the RNAs generated by the SMART-display process (Display 1) (Step G, Figure 2) and the 
original RNAs (Origin) (Step B, Figure 2). (E) Overlap of displayed genes between two 
repeated experiments (Display 1, Display 2).   (F) Bioanalyzer traces of cDNA libraries 
generated from SMART-display generated fusion products (Intact protocol, green curve) and 
two control display libraries (blue and grey curves). One control library was generated by the 
same SMART-display process without ligating the puromycin-containing linker to the RNA 
(No-puromycin). The other control library was generated by digesting the SMART-display 
output library with proteinase K and removing all released contents (Protein digestion).
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Figure S1.3: Comparison of the standard INLISE procedure with two variations 
(A) Flowchart of the standard protocol (PROPER-seq column) and the two variations (No-
linker column and Proteinase column). (B) The ratio (y axis) of the quantities of DNA after 
vs. before the second last step (Streptavidin T1 selection) in the standard INLISE procedure 
(first column) as well as in the two variations (2nd and 3rd columns). All the ratios of a 
biological replicate (HEK1 or HEK2) were normalized to the ratio of the standard INLISE 
procedure of the same biological replicate. (C-D) Bioanalyzer traces of the sequencing library 
generated by the standard INLISE procedure (blue curve) and the two variations (green 
curves) in HEK1 (C) and HEK2 (D). The fluorescence signals are made comparable by 
normalizing to the concentration of the input sample (relative fluorescence, y axis).
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Figure S1.4: Reproducibility between biological replicates 
(A) A Venn diagram of the identified PPIs from each of the two HEK293T replicates (HEK1, 
HEK2). (B) The number of identified PPIs (y axis) from each biological replicate (HEK1, 
HEK2) with respect to the criteria of calling PPIs. The criteria were BH-corrected p-value < 
0.05 and # read pairs > nX, where n was changed from 4 (default, dotted vertical line) to 40 (x 
axis). (C) The odds ratio of the two sets of PPIs identified from the two replicates (y axis) 
with respect to nX. For reference, the odds ratio between HuRI and HI-II-14 is marked as a 
horizontal line. (D-F) The same plots as (A-C) for the two Jurkat replicates (JKT1, JKT2). (G-
I) The same plots as (A-C) for the two HUVEC replicates (HUVEC1, HUVEC2).
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Figure S1.5: Precisions and recalls 
PROPER-seq derived PPIs from HEK (A-C), Jurkat (D-F), and HUVEC (G-I) were compared 
to three types of known PPIs that were retrieved from APID, including all the PPIs that were 
identified by affinity purification mass spectrometry (AP-MS), co-immunoprecipitation (co-
IP), and liquid chromatography-mass spectrometry (LC-MS) derived PPIs (columns). The 
precisions of recalls of the PPIs identified from PROPER-seq’s permutation dataset are 
marked in grey dots. The permutations were based on only the genes involved in PROPER-
seq detected PPIs. 
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Figure S1.6: Precisions and recalls of each replicate 
Precision-recall curves of PROPER-seq derived PPIs from two biological replicates of 
HEK293T (blue and purple dots, A-C), Jurkat (blue and purple dots, D-F), and HUVEC (blue 
and purple dots, G-I) compared to three types of PPIs that are derived from other 
experimental methods, including all the APID PPIs that are detected by affinity purification-
mass spectrometry (AP-MS), co-immunoprecipitation (co-IP), and liquid chromatography-
mass spectrometry (LC-MS) derived PPIs (columns). The precisions and recalls calculated 
from permutation data (grey dots) are included for reference. The permutations were based on 
only the genes involved in PROPER-seq detected PPIs. 
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Figure S1.7: PROPER-seq identified PPIs with control libraries 
(A) A continency table for the read pairs mapped to gene pair X-Y. The null hypothesis is that 
the mapping of a read pair to gene pair X-Y in the positive library is independent of the 
mapping of this read pair to the gene pair in the merged control library. (B) A Venn diagram 
of the identified PPIs from each of the two HEK293T replicates with control libraries (HEK1-
wControl, HEK2-wControl). (C) The odds ratio of the two sets of PPIs identified from the 
two replicates (y axis) with respect to nX with (blue, HEK-wControl) and without (red, HEK) 
control libraries. (D) Percentage of overlapped PPIs (y axis, purple) with respect to nX 
between PPIs identified from merged HEK293T library with (blue, HEK-wControl) and 
without (red, HEK) control libraries. (E-G) Precision-recall curves of PPIs identified from 
HEK293T with (blue, HEK-wControl) and without (red, HEK) control libraries, compared to 
three types of PPIs that are derived from other experimental methods, including all the APID 
PPIs that are detected by affinity purification-mass spectrometry (AP-MS), co-
immunoprecipitation (co-IP), and liquid chromatography-mass spectrometry (LC-MS) 
derived PPIs.
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Figure S1.8: PROPER-seq identified PPIs with subsampling 
Number of PPIs identified from PROPER-seq libraries of HEK (A), JKT (F), and HUVEC 
(K) at a subsampling rate of 100% (red), 75% (blue), 50% (orange), and 25% (green).
The odds ratio of the two sets of PPIs identified from the two replicates of HEK (B), JKT (G), 
and HUVEC (L) with respect to nX at a subsampling rate of 100% (red), 75% (blue), 50%
(orange) and 25% (green). Precision-recall curves of PPIs identified from HEK (C-E), JKT 
(H-J), and HUVEC (M-O) at a subsampling rate of 100% (red), 75% (blue), 50% (orange), 
and 25% (green), compared to three types of PPIs that are derived from other experimental 
methods, including all the APID PPIs that are detected by affinity purification-mass 
spectrometry (AP-MS), co-immunoprecipitation (co-IP), and liquid chromatography-mass 
spectrometry (LC-MS) derived PPIs.
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Figure S1.9: Log-log plots of clustering coefficient vs. degree 
Scatterplots (log-log plots) of clustering coefficient C(k) vs. degree (k), based on (A) Binary 
PPIs curated by Kovacs et al. (DOI: 10.1038/s41467-019-09177-y) (Lit-BM-13), (B) Non-
binary PPIs curated by Kovacs et al. (Lit-NB-13), (C) The subset of predicted binary PPIs 
using Lit-BM-13 as the input data by the L3 algorithm with L3 scores > 50% quantile (L3-
BM), (D) The subset of predicted non-binary PPIs using Lit-NB-13 as the input data by the 
L3 algorithm with L3 scores > 50% quantile (L3-NB), (E) The subset of PPIs predicted using 
HI-II-14 as the input data by the L3 algorithm with L3 scores > 25% quantile (L3-HI-II-14-
lg), (F) The subset of PPIs predicted using HI-II-14 as the input data by the L3 algorithm with 
L3 scores > 75% quantile (L3-HI-II-14-sm), (G) the entire prePPI, (H) the subset of prePPI 
with structure score > 1, and (I) PROPER v1.0. 
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Figure S1.10: Q-Q plots 
Q-Q plots of AP-MS, Co-IP, LC-MS, and PROPER v1.0 confirmed prePPIs (y axis) vs. the 
entire prePPI (x axis), based on structure score that reflects domain-domain interactions (A-D) 
and protein-peptide score that reflects domain-peptide interactions (E-H). See Table S1.1 for 
the descriptions of AP-MS, Co-IP, LC-MS datasets.
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Figure S1.11: The overlap between DAISY SL gene pairs and PROPER v1.0 
(A) The overlap between DAISY SL gene pairs and PROPER PPIs. Grey edge: DAISY SL 
gene pair that is also a PROPER PPI. Pink edge: DAISY SL gene pair that is a PROPER PPI 
and an APID documented PPI. (B) The degree distribution (half violin plot in blue) of all the 
PROPER v1.0 nodes (blue dots) vs. the degree distribution (half violin plot in purple) of all 
the SL nodes (purple dots). All degrees are based on the PROPER v1.0 network. The nodes 
with the same degrees are indicated by horizontal lines.
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Figure S1.12: Immunoprecipitation of LEO1 
HEK293T lysates were immunoprecipitated with rabbit anti-human LEO1 antibody (anti-
LEO1) or anti-rabbit IgG as an isotype control (anti-IgG). Both the precipitate and the 
supernatant were blotted with LEO1 antibody. Ladder: pre-stained protein ladder. Input: 5% 
of precleared cell lysates. The precipitates were used as input in PARP1 blots (Figure 1.7O).  
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Supplementary tables 

Table S1.1: Summary of PROPER-seq and perturbation libraries 
The libraries generated at the same time were given the same experiment ID (Exp ID). The 
total number of read pairs, the number of non-duplicate read pairs mapped to protein coding 
genes and the number of non-duplicate chimeric read pairs that were mapped to two different 
protein coding genes were listed in the last three columns.  

Library ID Expt 
ID Cell line Number of 

read pairs 

# of non-duplicate read 
pairs mapped to coding 

genes 

Non-duplicate 
uniquely mapped 

chimeric read pairs 
HEK1 1 HEK293

T 
343,861,373 205,881,483 12,581,208 

HEK2 2 HEK293
T 

248,657,713 173,300,648 7,747,982 

JKT1 3 Jurkat 444,413,111 262,211,890 9,988,056 
JKT2 4 Jurkat 390,643,931 236,283,970 9,385,745 

HUVEC1 5 HUVEC 359,807,741 194,690,153 6,404,274 
HUVEC2 6 HUVEC 483,597,124 283,434,465 9,705,398 

HEK1-noLinker 7 HEK293
T 

97,353,678 64,671,472 2,462,180 

HEK1-
proteinase 

8 HEK293
T 

64,497,521 46,428,119 2,237,572 

HEK2-noLinker 9 HEK293
T 

69,732,554 42,197,977 2,152,084 

HEK2-
proteinase 

10 HEK293
T 

87,444,917 41,828,629 1,766,423 
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Table S1.2: The datasets used 
The datasets used in this work, including APID and APID’s subsets, collections of literature 
reported binary and non-binary PPIs, computationally predicted PPIs, PROPER-seq derived 
PPIs, and synthetic lethal gene pairs.  

Name Description # PPIs # proteins 

APID 
All the experimentally-derived human PPIs in APID, 
downloaded from 
http://cicblade.dep.usal.es:8080/APID/init.action 

322,260 16,965 

AP-MS Affinity purification-mass spec detected PPIs that are included 
in APID  131,224 13,650 

Co-IP Co-IP detected PPIs that are included in APID 50,290 9,088 

LC-MS Liquid chromatography–mass spec detected PPIs that are 
included in APID  33,195 4,548 

APID-binary The experimentally derived binary PPIs curated into the APID 
database (level 2) 63,954 12,572 

APID-non-
binary 

The PPIs derived from non-binary methods in the APID 
database 258,306 15,847 

Lit-BM-13 Binary PPIs curated by Kovacs et al. Nat Commun 10, 1240 
(2019). 4,386 3,249 

Lit-NB-13 Non-binary PPIs curated by Kovacs et al. Nat Commun 10, 
1240 (2019). 10,152 5,382 

prePPI 
Zhang, Q. C. et al. Structure-based prediction of protein-
protein interactions on a genome-wide scale. Nature 490, 556-
560, doi:10.1038/nature11503 (2012) 

1,279,381 16,903 

prePPI-sub Subset of prePPI with structure scores > 10. 619,619 13,222 

L3-BM 
The subset of predicted binary PPIs using Lit-BM-13 as the 
input data by the L3 algorithm (Kovacs et al. Nat Commun 10, 
1240) with L3 scores > 50% quantile. 

56,890 2,726 

L3-NB The subset of predicted non-binary PPIs using Lit-NB-13 as the 
input data by the L3 algorithm with L3 scores > 50% quantile.  387,971 4,694 

PROPER 
v1.0 

The PPIs derived from the merged PROPER-seq libraries of 
HEK1, HEK2, JKT1, JKT2, HUVEC1 and HUVEC2 210,518 8,635 

HEK The PPIs derived from merged PROPER-seq libraries of HEK1 
and HEK2 109,539 7,292 

Jurkat The PPIs derived from merged PROPER-seq libraries of JKT1 
and JKT2 72,409 5,136 

HUVEC The PPIs derived from merged PROPER-seq libraries of 
HUVEC1 and HUVEC2 51,125 4,266 

# gene pairs # genes 

DAISY 
Jerby-Arnon, L. et al. Predicting cancer-specific vulnerability 
via data-driven detection of synthetic lethality. Cell 158, 1199-
1209 (2014). 

2,802 2,077 
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Table S1.3: PROPER v.1.0 framework 
The estimated screening completeness, sampling sensitivity, assay sensitivity, overall 
sensitivity, precision, and protein interactome size for PROPER v1.0.  

PROPER v1.0 
Screening completeness 64.7% 
Sampling sensitivity 35.4% 
Assay sensitivity 43.38% 
Overall sensitivity 15.36% 
Precision 5.77% 
Protein interactome size 8.5x105 

Table S1.4: Contingency table to compute odds ratio to quantify reproducibility 

Within set II Outside set II 

Within set I A B 

Outside set I C D 

Table S1.5: Contingency table to test cell type association of a PROPER-seq derived PPI 

The read pair is generated from this cell type 

Yes No 

Mapped to this 

gene pair 

Yes A B 

No C D 

1. 7 Materials and methods

SMART-display 

mRNA Purification 

Total RNA was isolated from HEK with TRIzol™ Reagent (Invitrogen, 15596026) 

according to the manufacturer’s recommendations. Subsequently, poly-A RNAs were 
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enriched with the Dynabeads™ mRNA Purification Kit (Invitrogen, 61006). The reduction of 

rRNA was evaluated against the total RNA using Agilent’s Bioanalyzer RNA 6000 Pico Kit 

(Agilent Technologies, 5067-1513). The remaining rRNA was depleted with the Ribo-Zero 

H/M/R Kit (Illumina, MRZH116) or the RiboMinus Transcriptome Isolation Kit (Invitrogen, 

K155002) adjusting the input amount based on the estimated rRNA removed by the oligo-dT 

selection (For example, if rRNA was 50% depleted, input was twice as much RNA as 

recommended). The final quality of the RNA was assessed with Agilent’s Bioanalyzer RNA 

6000 Pico Kit. 

Generation of DNA Library 

To hybridize the Right/Random primer (5' TTT CCC CGC CGC CCC CCG TCC 

TGC TGC CGC CCT TGT CGT CAT CGT CTT TGT AGT C(Nx15) 3'), 0.5 pmols of 

mRNA, 2.33 uM primer, and 2.33 mM dNTPs were mixed in a total volume of 10.75 uLs. 

This reaction was brought to 72 °C for 3 minutes and then cooled to 25 °C for 10 minutes. 

The template switching reaction was performed by adding 250 U SuperScript II Reverse 

Transcriptase (Thermo Scientific, 18064014), SuperScript II First Strand Buffer (to 1x), 5 

mM DTT, 20 U SUPERase•In™ RNase Inhibitor (Thermo Scientific, AM2694), 1 M Betaine 

(Sigma-Aldrich, 61962), 6 mM MgCl2 (Invitrogen, AM9530G), and 1 uM Library TSO (5' 

/5Biosg/GGC TCA CGA GTA AGG AGG ATC CAA CAT rGrGrG 3') to a total volume of 

25 uLs. The reaction was incubated at 25 °C for 2 minutes, 42 °C for 50 minutes, 10 cycles of 

50 °C for 2 minutes and 42 °C for 2 minutes, and 70 °C for 15 minutes. Purification was 

performed with 1.8x Agencourt RNAClean XP Beads (Beckman Coulter, A63987) and the 

product was quantified with the Qubit™ dsDNA BR Assay Kit (Invitrogen, Q32853). 

Amplification of 1 ng of cDNA/RNA product was performed per 25 uL NEBNext 
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High-Fidelity 2X PCR Master Mix (NEB, M0541L) reaction, containing 0.5 uM Left PCR 

primer (5' GCG AAT TAA TAC GAC TCA CTA TAG GGC TCA CGA GTA AGG AGG 3') 

and 0.3 uM Right PCR primer (5' TTT CCC CGC CGC CCC CCG TC 3'). Reactions were 

cycled twice with a 65 °C annealing step and a 3-minute 72 °C extension step, and 13 cycles 

with a single 3-minute 72 °C combined annealing and extension step. Approximately 24 

reactions were performed simultaneously to generate enough material for in vitro 

transcription; the products were co-purified with 1.8x Agencourt AMPure XP Beads 

(Beckman Coulter, A63881) and quantified with the Qubit™ dsDNA BR Assay Kit. 

Synthesis of Puromycin containing linker 

All oligo components of the puromycin containing linker were reconstituted to 1 mM 

with 1x PBS pH 7.2 (Thermo Scientific, 20012027). To generate the dI containing puromycin 

containing linker, the Biotin Arm (w/dI) (5’ /5Phos/CC/ideoxyI/ C/iBiodT/C /ideoxyI/AC 

CCC CCG CCC CCC CCG /iAzideN/CCT 3’) was mixed in a 1:1 ratio with the Puromycin 

Arm (5’ /5DBCON/TCT /iSp18/iSp18/iSp18/iSp18/CC/3Puro/ 3’). To generate puromycin 

containing linker without dI bases, the Biotin Arm (w/o dI) (5’ /5Phos/CCG C/iBiodT/C GAC 

CCC CCG CCC CCC CCG /iAzideN/CCT 3’) was mixed in a 1:1 ratio with the Puromycin 

Arm (5’ /5DBCON/TCT /iSp18/iSp18/iSp18/iSp18/CC/3Puro/ 3’). The mixtures were 

incubated at 40 °C overnight with agitation.  

The mixtures were run on a 15% TBE-UREA Gel (Invitrogen, EC6885BOX) prepared 

in a 1:1 ratio with Formamide Running Buffer (1 part 10x TBE Buffer Running Buffer 

(Invitrogen, LC6675), 9 parts Deionized Formamide (EMD Millipore, 4610-100ML)) at 200V 

for 1 hour. The gel was removed from the cassette and was exposed to UV while on a TLC 

Silica gel 60 F₂₅₄ Plate (EMD Millipore, 1.05715.0001) to visualize the DNA bands. Two 
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bright bands appeared, the largest was removed with a clean scalpel and transferred to a clean 

2 mL tube. The gel fragment was crushed with the plunger from a 1 mL syringe and 

suspended in 500 uLs Elution Buffer (0.5M Ammonium Acetate (Invitrogen, AM9070G), 10 

mM Magnesium Acetate (Sigma-Aldrich, 63052-100ML)). The gel fragment was incubated at 

room temperature with rotation overnight. The gel and buffer mixture were transferred to a 

0.45 uM Nanosep® MF spin filter (Pall Corporation, ODM45C33), and the liquid collected 

by spinning at 5,000 xg for 10 minutes. The flow through was precipitated with 0.5x volume 

LiCl Precipitation Solution (Invitrogen, AM9480), 6 uLs Co-Precipitant Pink (Bioline, BIO-

37075), and 3x volume of 100% Ethyl Alcohol (Sigma-Aldrich, 493546) and incubated 

overnight at -80 °C. The linker was then pelleted by centrifugation at 22,000 xg for 20 

minutes, washed with 70% Ethyl Alcohol, and air dried. The pelleted linker was suspended in 

nuclease-free water (Thermo Scientific, 10977023).  

Generation of Puromycin Ligated RNA Library 

RNA libraries were generated with 500 ngs of DNA Library using the HiScribe™ T7 

High Yield RNA Synthesis Kit (NEB, E2040S). After synthesis, DNA was removed with 

TURBO™ DNase (Invitrogen, AM2238). The RNA was precipitated with 2.5 M LiCl 

Precipitation Solution, quantified with the Qubit™ dsDNA BR Assay Kit (Invitrogen, 

Q32853), and the distribution checked with the Agilent RNA 6000 Pico Kit. RNA libraries 

were annealed to the appropriate puromycin containing linker in a 1:1.25 molar ratio in 

Annealing Buffer (10x: 100 mM Tris-HCI Buffer, pH 7.5 (Invitrogen, 15567027), 500 mM 

NaCl (Thermo Fisher Scientific, AM9759), 10 mM EDTA (Research Products International, 

E14100-50.0)), incubating at 75 °C for 5 minutes and cooling slowly to 25 °C. Ligation was 

performed with 0.4 U/uL of T4 RNA Ligase 1 (NEB, M0204S), 1 mM ATP, and 1.6 U/uL of 
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SUPERase• In™ RNase Inhibitor for 30 minutes at 25 °C. NEBuffer 4 was added to 1x, and 

unligated linker was digested with 0.2 U/uL of T5 Exonuclease (NEB, M0363S) at 37 °C for 

30 minutes. The ligated RNA was purified with an RNeasy Mini Column (Qiagen, 74104).  

Translation and Display  

Protein products were generated using 25 pmols of ligated RNA product per 25 uL 

reaction of the PURExpress® In Vitro Protein Synthesis Kit (NEB, E6800S). Translation 

reactions were performed in an air incubator for 90 minutes at 37 °C. After translation, KCl 

(Invitrogen, AM9640G) and MgCl2 (Invitrogen, AM9530G) were added to a final 

concentration of 800 mM and 80 mM respectively. The reaction was incubated at room 

temperature for 30 minutes and then stored at -20 °C for a minimum of 12 hours. 

VALIDATION by anti-GFP Selection 

Preparation of SMART-display Library  

Templates for the target genes were ordered from IDT with all display sequences 

already incorporated on the 5’ and 3’ ends of the template. From these templates, RNA was 

generated and SMART-display proceeded as described above.  

Pull-Down with anti-GFP antibody 

The products of the SMART-display process for each of the target genes were mixed 

in a 1:1 ratio. The mixture was precleared with 50 µL of Streptavidin T1 magnetic beads. The 

mixture was incubated at 4°C with gentle rotation for 1 hour. The Streptavidin T1 beads were 

separated with a magnetic rack for 1 minute and the supernatant was transferred into a new 

microcentrifuge tube placed on ice. To the precleared solution, Normal Goat Serum (NGS) 

(Thermo Fisher Scientific, 31873) in PBS was added to 5% for blocking. Primary anti-GFP 

antibody (Thermo Fisher Scientific, A10259) diluted in PBS was added to a final 
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concentration of 0.2 µg/mL. The sample was incubated at 4°C overnight with gentle rotation. 

50 uLs Streptavidin T1 magnetic beads were added to the samples and incubated at room 

temperature for 1 hour with gentle rotation. The tubes were placed on a magnetic rack for 1 

minute and the supernatant discarded. The beads were suspended in wash buffer (5% NGS in 

PBS, 1% Triton® X-100, 3% BSA (NEB, B9000S) by pipetting gently up and down. The 

tubes were rotated gently for 10 minutes. The wash process was repeated two more times. 

cDNA Synthesis 

A reverse transcription reaction solution was prepared for the selected sample 

(immobilized on the Streptavidin T1 beads) and for the pre-selection samples. The 100 uL 

reactions contained 800 U SuperScript II, 1x First Strand buffer, 10 mM DTT, and 0.5 mM 

dNTPs. The same volume of pre-selection sample was used for each of the genes; the entire 

bead volume was used in the post-selection reactions. The reactions were incubated at 42°C 

for 90 min with agitation. 

Protein Removal 

1.6 units of Proteinase K was added to each sample and incubated for 15 minutes at 

65°C. Samples were purified with 1.2x Ampure beads and eluted in 30 uL of water. 

Gene Identification using qPCR 

Three 25 uL qPCR reactions containing 1x Power SYBR® Green PCR Master Mix 

(Thermo Fisher Scientific, 4367659) and 10 mM of each of the gene specific primers was 

prepared for each sample and for the no template controls. Three 25 uL reactions were also 

prepared for each sample without primers as a no primer control. 1 uL of sample was used in 

each reaction. The qPCR assay was run on a QuantStudio 3 Real-Time PCR System with an 

initial denaturation of 95 °C for 2 minutes, 30 cycles of 95 °C for 30 seconds, 55 °C for 15 
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seconds, and 72 °C for 30 seconds, and a final extension of 72 °C for 5 minutes. A melt curve 

was run to assess the purity of the qPCR products.  

Comparison of SMART-display product library and control libraries 

SMART-display libraries were prepared as described above up to the puromycin 

containing linker ligation.  

Generation of Puromycin Ligated RNA Library 

RNA libraries were annealed to a puromycin containing linker with no biotin (5’ 

/5Phos/CC/ideoxyI/CTC/ideoxyI/ACCCCCCGCCGCCCCCCGTCCT/iSp18/iSp18/iSp18/iSp

18/CC/3Puro/ 3’) in a 1:1.25 molar ratio in Annealing Buffer (10x: 100 mM Tris-HCI Buffer, 

pH 7.5, 500 mM NaCl, 10 mM EDTA). The “no puromycin” control was subject to the same 

reaction with the omission of the puromycin containing linker. The reactions were incubated 

at 75 °C for 5 minutes and cooled slowly to 25 °C. Ligation was performed with 0.4 U/uL of 

T4 RNA Ligase 1, 1 mM ATP, and 1.6 U/uL of SUPERase•In™ RNase Inhibitor for 30 

minutes at 25 °C. NEBuffer 4 was added to 1x, and unligated linker was digested with 0.2 

U/uL of T5 Exonuclease at 37 °C for 30 minutes. The ligated RNA was purified with an 

RNeasy Mini Column. 

Translation and Display  

Protein products were generated using 25 pmols of RNA product and 2 uLs 

Transcend™ tRNA (Promega, L5061) per 25 uL reaction of the NEB PURExpress IVT kit. 2 

uLs of Proteinase K was added to the “protein digested control”. Translation reactions were 

performed in an air incubator for 90 minutes at 37 °C. After translation, KCl and MgCl2 were 

added to a final concentration of 800 mM and 80 mM respectively. The reaction was 

incubated at room temperature for 30 minutes and then stored at -20 °C for a minimum of 12 
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hours.  

Protein Selection and Pull-Down 

75 uLs of Dynabeads MyOne Streptavidin T1 Beads were prepared per IVT reaction 

according to the manufacturer’s directions. The IVT reaction was added to the suspended 

beads and incubated for 1 hour with rotation at room temperature. The beads were washed 3 

times with 8M Urea wash buffer (8M Urea, 50 mM Tris, 5 mM EDTA, 0.1% NP40, 500 mM 

LiCl, 2% SDS), and 3 times with 1x B&W buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 

1M NaCl).  

Library Preparation and Sequencing 

The beads were subject to a SuperScript III One-Step RT-PCR (Invitrogen, 12574018) 

reaction at 5x the original volume of streptavidin beads, with 0.5 uM of each a universal 

forward primer (5’

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA

TCTCGAGTAAGGAGGATCCAACATG 3’) and an indexed reverse primer (5’ 

CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGTTCAGACGTGTG

CTCTTCCGATCTCTTGTCGTCATCGTCTTTGTAGTC 3’, where X represents the index 

bases). The cycle number was optimized for each sample, using the minimum number of 

cycles to generate a library. Samples were mixed 3:2 with PhiX and sequenced 150 base pairs 

from each end on an Illumina MiniSeq. 

INLISE 

Purification and Immobilization of Display Products 

75 uLs of Dynabeads™ MyOne™ Streptavidin T1 (Thermo Fisher Scientific, 65601) 

were prepared by washing twice in an equivalent volume of 1x PBS pH 7.4 (Thermo Fisher 
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Scientific, 70011044). The IVT reaction was added to the suspended beads in 1.8 mLs of 1x 

PBS pH 7.4 (Thermo Fisher Scientific, 70011044) with 0.1% Triton™ X-100 (Sigma-

Aldrich, T8787-50ML) and incubated for 1 hour with rotation at room temperature. D-Biotin 

(Ivitrogen, B20656) was added to 2.25 uM and incubated at room temperature for 10 minutes 

with rotation. The beads were washed 2 times for 5 minutes with 500 uLs 1x PBS pH 7.4 with 

0.1% Triton™ X-100 (Sigma-Aldrich, T8787-50ML). 

DNA Synthesis 

50 uLs of first strand reaction was mixed per sample containing 500 U of SuperScript 

II Reverse Transcriptase (Thermo Scientific, 18064014), 1x SuperScript II FS Buffer, 5 mM 

DTT, 1 uM dNTP mix (NEB, N0447S), 1 M Betaine (Sigma-Aldrich, 61962), 6 mM MgCl2, 

500 pmol of End Capture TSO (5’ /5dSp/AGT AAA GGA GAC CTC AGC TTC ACT GGA 

rGrGrG 3’), and 40 U of SUPERase• In™ RNase Inhibitor. The mix was added to the beads 

and incubated at 42°C for 50 minutes with agitation, and then cycled 10 times at 50°C for 2 

minutes followed by 42°C for 2 minutes. The beads were washed 2 times for 5 minutes with 

500 uLs 1x PBS pH 7.4 with 0.1% Triton™ X-100. 100 uLs of first strand reaction was 

mixed per sample containing 20 U DNA Polymerase I (NEB, M0209S), 1x NEBuffer 2, 2.4 

mM DTT, and 0.25 mM dNTP mix. The mix was added to the beads and incubated at 37°C 

for 30 minutes with agitation. The beads were washed 2 times for 5 minutes with 500 uLs 1x 

PBS pH 7.4 with 0.1% Triton™ X-100. 

Restriction Digestion and Control Digestion 

All samples were digested with 10 U of BbvCI (NEB, R0601S) in 1x CutSmart Buffer 

at 500 uLs. The digestion was incubated at 37°C for 1 hour with agitation. After the 

restriction enzyme digestion, but without washing the beads, the bait population used in the 
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Proteinase control was generated by the addition of 5 uLs of Proteinase K (NEB, P8107S) to 

the sample. The sample was incubated for an additional 30 minutes at 37°C with agitation. All 

samples were then washed 2 times for 5 minutes with 500 uLs 1x PBS pH 7.4 with 0.1% 

Triton™ X-100. 

Synthesis of Interaction Linker 

The top and bottom strands of the interaction linker were reconstituted to 200 uM with 

Annealing Buffer. The two strands were mixed in a 1:1 molar ratio, incubated at 75 °C for 5 

minutes, and cooled slowly to 25 °C. 

Interaction Linker Ligation and Release of Prey 

Samples with a dI containing puromycin containing linker were ligated to the 

Interaction Linker and subsequently released from the Dynabeads™ MyOne™ Streptavidin 

T1 beads to generate the prey population. Ligation was performed at 37°C with agitation for 

30 minutes, with 200 pmol Interaction Linker, 4000 U T4 DNA Ligase (NEB, M0202M), and 

1x T4 DNA Ligase Buffer in 500 uLs. The interaction linker was omitted in the prey reaction 

used in the No-linker control. The beads were washed 2 times for 5 minutes with 500 uLs 1x 

PBS pH 7.4 with 0.1% Triton™ X-100. The release of the complexes from the beads was 

performed at 37°C with agitation for 30 minutes, with 40 U of Endonuclease V (NEB, 

M0305S) in 50 uLs of 1x NEBuffer™ 3 (NEB, B7003S). 

Interaction  

The samples without deoxyinosine (dI) bases in the puromycin containing linker were 

retained on the Dynabeads™ MyOne™ Streptavidin T1 beads to become the bait libraries. 

These samples were suspended in 150 uLs Binding Buffer (10 mM HEPES (Fisher Scientific, 

BP299100), 50 mM KCl, 4 mM MgCl2, 2mM DTT, 0.2 mM EDTA, 0.1% Tween® 20 
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(Sigma-Aldrich, P9416-100ML)). The 50 uL of supernatant from the Endonuclease V 

digestion (the prey library), was added to the bait samples with the following conventions. 

PROPER-seq reaction: bait and prey libraries with the full PROPER-seq protocol; No-linker 

control: bait library with the full PROPER-seq protocol, prey library created without the 

interaction linker ligated; and Proteinase control: bait library treated with Proteinase K and the 

prey library created with the full PROPER-seq protocol. The mixtures were incubated at room 

temperature with rotation for 1 hour. 800 uLs of Binding Buffer was added to each reaction to 

bring the volume to 1 mL, and they were rotated an additional 10 minutes at room 

temperature.  

Crosslinking and Proximity Ligation 

Crosslinking was performed at room temperature for 30 minutes with 0.5 mM BS3 

(Thermo Fisher Scientific, A39266). The reaction was quenched with 50 mM Tris-HCI 

Buffer, pH 7.5 with rotation for 15 minutes. The beads were washed 3 times for 5 minutes 

with 500 uLs 1x PBS pH 7.4 with 0.1% Triton™ X-100. 

Proximity ligation was performed with 20,000 U of T4 DNA Ligase in 1 mL of 1x T4 DNA 

Ligase Buffer. The reaction was incubated with constant rotation for 30 minutes at room 

temperature. The enzyme was inactivated before the beads were gathered by heating to 65°C 

for 10 minutes. The beads were washed 2 times for 5 minutes with 500 uLs 1x PBS pH 7.4 

with 0.1% Triton™ X-100. 

Sequencing Library Generation and Sequencing 

The DNA was released from the beads with the NEBNext® Ultra™ II FS DNA 

Module (NEB, E7810S) using twice the reaction volume and a fragmentation time of 5 

minutes. The end repair step was not performed. Libraries were then generated with the 
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NxSeq® UltraLow DNA Library Kit (Lucigen, 15012-1) up to the final AMPure XP Bead 

purification before amplification. Each sample was eluted in 50 uLs Nuclease-free water and 

added to 10 uLs of Dynabeads™ MyOne™ Streptavidin T1beads suspended in 50 uLs 1x 

PBS pH 7.4 with 0.1% Triton X-100. The selection was performed at room temperature for 1 

hour. Beads were washed 2 times with 500 uLs Low Salt buffer [0.1% SDS (Invitrogen, 

AM9820), 0.1% Triton™ X-100, 2 mM EDTA, 20 mM Tris-HCI buffer, pH 8 (Invitrogen, 

15568025), 150 mM NaCl], 2 times with 500 uLs 1x B&W buffer (5 mM Tris-HCl pH 7.5, 

0.5 mM EDTA, 1M NaCl), and 2 times with 500 uLs 1x PBS pH 7.4 with 0.1% Triton™ X-

100. Library amplification was then performed with the NxSeq® UltraLow DNA Library Kit

as directed.  

Each library was paired end sequenced for 100 cycles on each end on an Illumina HiSeq 4000 

or NovaSeq 6000. 

Validation by proximity ligation assay (PLA) 

Cell Culture 

HEK 293T cells were cultured in Dulbecco's modified Eagle medium (DMEM; 

GIBCO, 11960044) supplemented with 10% FBS (Gemini, 100-500), 2 mM Glutamax 

(GIBCO, 35050061), and 5,000 U/ml penicillin/streptomycin (GIBCO, 15070063), at 37°C 

with 5 % CO2. 

Fixation and Permeabilization 

Approximately 0.5 million HEK cells per well were fixed with 4% formaldehyde 

(Thermo Fisher Scientific, 28906) in PBS pH 7.2 (Life Technologies, 20012027) at room 

temperature for 30 minutes on a Lab-Tek 8-well Chamber Slide (Thermo Fisher Scientific, 

154534). Cells were washed once with PBS pH 7.2, then permeabilized with 200 uLs of 0.1% 
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Triton X-100 (Sigma-Aldrich, T8787-50ML) in PBS for 15 minutes at room temperature with 

rocking.  

Blocking 

Cells were blocked by adding 40 uLs Duolink Blocking Solution (Sigma-Aldrich, 

DUO92101-1KT) and incubating in a humidity chamber for 1 hour at 37°C. 

Staining with Primary Antibody 

Primary antibodies were added to the cells at the dilutions listed below in a total of 40 

uLs. The slides were incubating in a humidity chamber for 1 hour at 37°C. 

Staining with PLA Probes, Ligation, and Amplification 

Slides were washed 2x with 70 mL of wash buffer A and stained with PLA probes 

according to the Duolink Assay instructions. Slides were wash 2x with 70 mL of wash buffer 

A, and ligation performed according to the Duolink Assay instructions. Slides were wash 2x 

with 70 mL of wash buffer A, and amplification performed according to the Duolink Assay 

instructions. Slides were then washed 2x with wash buffer B and 1x with 1:100 wash buffer 

B.  

Imaging  

Coverslips were mounted with 12 uLs Duolink PLA mounting medium with DAPI per 

well and sealed with clear nail polish. Images were acquired on Olympus Inverted 

Microscope using a 60X/1.518 oil objective (GE Healthcare Life Sciences) (pixel size = 

0.1075 μm). A series of z-stack images across the cells were acquired with 0.3 μm sample 

thickness (3 sections). 

Validation by co-IP 

Five million HEK293T cells were lysed in RIPA buffer [150 mM NaCl, 5 mM EDTA, 
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50 mM Tris pH 7.5, 1% NP-40, 0.5% sodium deoxycholate (Sigma-Aldrich, 30970-25G), 

0.1% SDS, and a protease inhibitor cocktail (Sigma Aldrich, P8340)] for 30 minutes on ice 

and subsequently centrifuged at 10,000 xg for 10 minutes. The supernatants were precleared 

by incubation with Protein-G Dynabeads (Thermo Fisher Scientific, 10003D) for 30 minutes 

at 4˚C. Antibody-coated beads were prepared by incubating rabbit anti-human Leo1 antibody 

(5 μg per sample, Bethyl Laboratories, A300-175A) or control rabbit IgG (5 μg per sample; 

Abcam, AB37415) with pre-washed Protein-G Dynabeads for 2-3 hours at room temperature. 

5% of the precleared lysate (input) was saved for later analysis, and the remaining lysate was 

split equally among the Leo1- or IgG-coated beads for immunoprecipitation (IP). IP was 

carried out overnight at 4˚C. 10% of the flow through (FT) was retained for analysis. The 

Dynabeads were washed 3 times for 5 mins each with RIPA buffer. The washed beads were 

eluted in reducing sample buffer (Thermo Fisher Scientific, 39000) before resolving on an 8% 

SDS-PAGE and immunoblotting (IB) with indicated antibodies. 

Quantification and Statistical Analysis 

Processing proper-seq read pairs  

The following data processing steps are implemented in the PROPERseqTools 

pipeline: https://github.com/Zhong-Lab-UCSD/PROPERseqTools. The sequencing reads 

were subjected to Cutadapt 2.5(Martin 2011) to remove the 3' linker sequence and the 5' 

adapter sequence. The remaining read pairs were subsequently subjected to Fastp 

0.20.0(Huang et al. 2018) to remove low-quality reads (average quality per base < Q20) and 

short reads (<20 bp). The remaining read pairs were subsequently mapped to RefSeq 

transcripts (O'Leary et al. 2016) (based on GRCh38.p13, NCBI Homo sapiens Annotation 

Release 109.20190607) using BWA-MEM 0.7.12-r1039 (Li 2013) with the default 

https://github.com/Zhong-Lab-UCSD/PROPERseqTools
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parameters. A read was regarded as mapped to a gene if this read was mapped to any of the 

Refseq transcripts of this gene. The read pairs where the two ends were mapped to two 

different protein coding genes were identified. Any duplicated chimeric read pairs were 

subsequently removed to obtain non-duplicate chimeric read pairs.  

Test of association between a gene pair and the chimeric read pairs 

A Chi-square test was carried out on every gene pair. The null hypothesis is that the 

mapping of one end of a chimeric read pair to a gene is independent of the mapping of the 

other end of this chimeric read pair to the other gene. The contingency table of this 

association test is given in Figure S4A. FDR computed from the Benjamini-Hochberg 

procedure was used to control for family-wise errors. 

Downloading APID data and its subsets 

PPIs were downloaded as a MITAB file from the Agile Protein Interactomes 

DataServer (APID) at http://cicblade.dep.usal.es:8080/APID/init.action. The AP-MS and co-

IP derived PPIs were identified by the corresponding labels in the ‘Interaction detection 

method’ column of the downloaded MITAB file. The LC-MS derived PPIs were identified by 

the label of “biochemistry” in the ‘Interaction detection method’ column and specifying 

“Publication first author” as “Wan, C. et al. (2015)” (Wan et al. 2015), “Havugimana, PC. et 

al. (2012)” (Havugimana et al. 2012) and “Kristensen, AR. et al. (2012)” (Kristensen, 

Gsponer, and Foster 2012). 

Quantifying reproducibility by odds ratio 

The odds ratio was used to quantify the degree of overlap between two sets of PPIs. 

The odds ratio (OR) of Table S1.4 is calculated as OR=(A×D)/(C×B), where A, B, C, and D 

are numbers of PPIs in the corresponding cell in the contingency table.   

http://cicblade.dep.usal.es:8080/APID/init.action
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Comparison to structurally predicted PPIs 

The human prePPIs were downloaded from the PrePPI database 

(https://honiglab.c2b2.columbia.edu/PrePPI/ref/preppi_final600.txt.tar.gz). The Uniprot 

protein IDs used in PrePPI were converted to gene symbols using the org.Hs.eg.db 

Bioconductor package in R.  

GO term defined subnetworks  

The subnetwork associated with a GO term (Ashburner et al. 2000) was retrieved by 

the PROPER v1.0 nodes that were annotated by this GO term and all the edges connecting 

these nodes. GO term enrichment analysis was based on hypergeometric tests between the 

genes annotated by every GO term and the PROPER v1.0 nodes. FDR computed from the 

Benjamini-Hochberg procedure was used to control for family-wise errors. The entire 

PROPER v1.0 was plotted with Gephi (0.9.2, https://gephi.org/) (Bastian, Heymann, and 

Jacomy 2009). All other network figures were plotted with Cytoscape (Shannon et al. 2003).   

Test of cell type association 

A Chi-square test was applied to every PPI to test the association of this PPI with a 

cell type. The null hypothesis is that whether a chimeric read pair is mapped to this gene pair 

is independent of whether this chimeric read pair was generated from this cell type. A PPI was 

regarded as attributable to a cell type if Chi-square test FDR < 0.05 and odds ratio > 2, where 

the odds ratio for Table S1.5 is calculated as OR=(A×D)/(C×B).   

A GO term defined subnetwork was included in the analysis of cell type association 

when this GO term contained at least 50 genes (regardless of whether these genes were 

included in PROPER v1.0) and this GO term defined subnetwork contained at least 10 edges. 

The association of a subnetwork to a cell type was quantified by the proportions of PPIs 

https://slack-redir.net/link?url=https%3A%2F%2Fhoniglab.c2b2.columbia.edu%2FPrePPI%2Fref%2Fpreppi_final600.txt.tar.gz
https://slack-redir.net/link?url=http%3A%2F%2Forg.Hs.eg
https://gephi.org/
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(edges) associated with that cell type among all the PPIs of this subnetwork.  

Calculating screening completeness, sampling sensitivity, assay sensitivity, precision, 

and protein interactome size for PROPER v1.0 

Screening completeness, sampling sensitivity, assay sensitivity, precision, and protein 

interactome size were defined by Yu et al. (Yu et al. 2008) and Venkatesan et al. (Venkatesan 

et al. 2009). We calculated these metrics for PROPER v1.0 based on the methods described 

by Venkatesan et al. (Venkatesan et al. 2009) and the following positive reference set (PRS), 

random reference set (RRS) and orthogonal validation sets.  

Positive reference set (PRS) 

The CORUM database (Giurgiu et al. 2019) contains 2417 human protein complexes, 

corresponding to 3433 proteins and 39,103 protein pairs. These 39,103 protein pairs are used 

as our PRS.  

Random reference set (RRS) 

Following Venkatesan et al. (Venkatesan et al. 2009), RRS was randomly sampled 

from PROPER-seq’s search space outside the PRS to contain the same number of gene pairs 

as PRS.  

Orthogonal validation assay 

Targeted co-IP is used as the orthogonal validation assay. The targeted co-IP data 

were retrieved from APID based on two MI Ontology terms: Anti bait coimmunoprecipitation 

(MI:0006) and Anti tag coimmunoprecipitation (MI:0007)).  
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CHAPTER 2 Meta-analysis on human PPI networks 

2.1 Abstract 

People developed divergent technologies to detect protein-protein interactions on large 

scale, thus leading the structures of the mapped protein-protein interaction networks to vary 

from each other. In this study, we utilized multiple human PPI datasets derived from different 

techniques (PROPER-seq, AP-MS, co-IP, LC-MS, Y2H, etc.) and of different confidence 

levels to systematically examine architectural characteristics of human PPI networks, 

including the clustering coefficient distribution, the node degree distribution, the hub protein 

properties, and the maximal-clique properties. By utilizing the L3 link prediction algorithm, 

we proposed that a comprehensive human PPI network should be a scale-free network filled 

with many completed or close-to-completed cliques. We found that in human PPI networks, 

the hub proteins are often involved in large protein complexes. They are highly inter-

connected with each other and serve as basic building blocks of small biological meaningful 

network motifs. We also found that the proteins in the same maximal cliques of a PPI network 

are more likely to share similar molecular functions and thus more biologically related. 

2.2 Introduction 

Protein-protein interactions (PPIs) are essential to almost every biological process and 

cellular function in humans (Peng et al. 2017). As a modeled representation of the numerous 

interacted proteins in the human cells, PPI networks serve informative roles in helping us 

understand multiple aspects of human proteome including putative roles of uncharacterized 
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proteins, the relationships between proteins within the same multi-molecular complexes, as 

well as probing unknown disease mechanisms, etc. (Jordan, Nguyen, and Liu 2012) Our 

current understanding of the human protein interactome is incomplete and noisy. Various 

human PPI datasets exist but with little overlap with each other (Johnson et al. 2021). The 

divergence across the human PPI datasets may partly emerge from the different PPI screening 

techniques. For example, HuRI was derived from yeast two-hybrid (Y2H) assay that detects 

binary interactions (Luck et al. 2020), Bioplex3.0 was derived from AP-MS that detects co-

complex interactions (Huttlin et al. 2021), and PROPER v.1.0 was derived from PROPER-seq 

that detects both binary and co-complex interactions (Johnson et al. 2021). The divergence 

also emerges from the difference in scale and confidence level when constructing the human 

PPI network. For example, Lit-NB-13 and Lit-BM both contain around 10,000 multiple-

evidence PPIs curated from different literatures (Rolland et al. 2014) while PROPER v.1.0 

and HuRI contain over 50,000 PPIs but derived from one single technique.  In other words, a 

high confidence PPI network is always constructed at the cost of being less comprehensive to 

cover the entire human PPI interactome.  

As a result, many of the human PPI network’s general characteristics still need further 

investigation and validation. For example, we observed diverse distribution patterns of 

clustering coefficients of the protein nodes across different PPI networks (Johnson et al. 

2021), which suggests different architectures exist for different PPI networks regarding how 

proteins are embedded locally. This intrigued us to explore what pattern may better describe 

the human PPI network in nature. Besides, although the human protein interactome is 

proposed to be a ‘scale free’ network (Nacher, Hayashida, and Akutsu 2009), we noticed that 

for some networks, the relationship between log scaled node frequency and log scaled node 
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degree is not completely linear (Johnson et al. 2021). This raised the question of whether 

power law is always the best fit for human PPI networks. 

Hub proteins are the highly connected central nodes in a PPI network (Fox et al. 

2011). They connect different functional modules across the network and make the entire 

network functionally more robust (He and Zhang 2006). Previously literature had divergent 

observations and discussions about how hub proteins exist in a PPI network. Some studies 

found that the inter-connectivity between hub proteins is lower as compared to the non-hub 

proteins (Vandereyken et al. 2018) while some other studies proposed that hub proteins are 

together in a larger complex so that they are highly inter-connected (Batada, Hurst, and Tyers 

2006). Some studies proposed a bimodality distribution regarding the hub proteins’ co-

expression level with their interaction partners which further classifies hub proteins into party 

hubs and date hubs (Fraser 2005) while some other studies observed a continuous distribution 

of the co-expression levels (Agarwal et al. 2010). Besides, lots of these related studies and 

analyses were conducted based on non-human PPI networks (Vandereyken et al. 2018; Fraser 

2005; Chang et al. 2013). So, whether any of these aforementioned observations or 

conclusions still remain robust when applied to human PPI networks is questionable. 

Another important component of PPI networks is clique. The cliques, which are the 

complete subgraphs in a PPI network, are often considered to be tightly associated with 

protein complexes and functional modules (Wang et al. 2010), leading these cliques to serve 

as important references for understanding disease related mechanisms (Yang, Zhao, and Tang 

2014). Many PPI prediction algorithms involve completing the cliques of a network that was 

derived from biological experiments (Yu et al. 2006). Some of them also adopt GO ontology 

to help filter the false positive predictions (Yang and Tang 2014). These metrics are all based 
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on the empirical observation that PPIs from cliques are usually biologically related so that 

they have common terms in GO annotations of biological process (BP), cellular component 

(CC), or molecular function (MF) (Ashburner et al. 2000). However, the number and the scale 

of the PPI networks on which such observation was based are limited. Whether the cliques 

within the more updated and comprehensive human PPI networks nowadays still inherit the 

same properties remains in doubt. 

In this study, we collected 11 human PPI datasets of different techniques and different 

confidence levels (Table S2.1). In detail, we selected PPI datasets named as AP-MS, co-IP, 

and LC-MS from Agile Protein Interactome Dataserver (APID) (Alonso-Lopez et al. 2019) 

where the PPIs were derived from co-complex PPI detection technologies like affinity 

purification mass spectrometry (AP-MS) (Morris et al. 2014), co-immunoprecipitation (co-IP) 

(Free, Hazelwood, and Sibley 2009), and liquid chromatography-mass spectrometry (LC-MS) 

(Pitt 2009). We acquired binary PPI datasets including HuRI (Luck et al. 2020), HI-II-14 

(Rolland et al. 2014), H-I-05 (Rual et al. 2005), and APID-binary (Alonso-Lopez et al. 2019). 

We acquired PROPER v.1.0 from PROPER-seq which detects both binary and co-complex 

PPIs (Johnson et al. 2021). We also included literature-curated multiple-evidence PPI datasets 

like Lit-BM (Luck et al. 2020), Lit-NB-13 (Rolland et al. 2014), and CORUM (Giurgiu et al. 

2019) into our study. We performed systematic analysis on the PPI networks from these 

datasets to infer the bona fide architecture and characteristics of human PPI networks. 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunoprecipitation
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2.3 Results 

2.3.1 Clustering coefficient distribution 

The clustering coefficient distribution of the nodes is a major descriptive statistic of 

networks as it quantifies the degree to which the nodes in a network tend to cluster together 

(Watts and Strogatz 1998). While in general, the clustering coefficient exhibits a reverse 

correlation to the degree, the exact distribution patterns vary across different human PPI 

networks (Figure S2.1). One pattern occurs for PROPER v.1.0 and CORUM PPI networks 

where there is a long plateau region at the higher clustering coefficient regions and then 

extended with a negative correlation tail at the higher node degree regions (Figure S2.1A, I). 

Such a pattern suggests that the corresponding PPI network is a dense network filled with 

many completed or close-to-completed cliques. Another pattern occurs for co-complex (AP-

MS) and binary (HuRI) PPI networks where there is no obvious plateau at the high clustering 

coefficient region but instead, there is a negative correlation slope between clustering 

coefficients and node degrees (Figure S2.1B, E). Such a pattern suggests that the 

corresponding PPI network is with much fewer completed cliques. There are some groups of 

nodes that are densely connected but there are fewer connections between the groups. The two 

patterns are not separated by PPI detection methods, as they are exhibited in both binary and 

co-complex PPI networks. 

We developed a two-dimensional metric to quantitatively describe the clustering 

coefficient distribution patterns. In one dimension, we computed the Pearson correlation 

coefficient (PCC) (Schober, Boer, and Schwarte 2018) between a PPI network’s log-

transformed clustering coefficients and log-transformed node degrees by Equation 1.  This 

dimension evaluates the extent of the negative correlation between clustering coefficients and 
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node degrees of the network. A larger PCC value means the corresponding PPI network 

adopts a less hierarchical architecture. 

𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,𝐷𝐷) =
𝑐𝑐𝑐𝑐𝑐𝑐�𝑙𝑙𝑙𝑙𝑙𝑙10(𝐶𝐶), 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷)�
𝜎𝜎�𝑙𝑙𝑙𝑙𝑙𝑙10(𝐶𝐶)� ∗ 𝜎𝜎�𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷)�

   (𝐸𝐸𝐸𝐸1)

Where: 

• C: clustering coefficients of the nodes

• D: degrees of the nodes

• cov: covariance

• 𝜎𝜎: standard deviation

In the other dimension, we computed the clustering coefficient vs. degree distribution

(CCDG) score by Equation 2. For each node, we first computed the product of its clustering 

coefficient and its square of log-transformed degree (𝐶𝐶 ∗ �𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷)�
2
). We log-transformed

the node degree to restrict the score from being too large. We did not log transform the 

clustering coefficient so as to keep the score positive. We squared the log-transformed degree 

to reward more credit to those highly connected but still closely clustered nodes. We then 

summed up the products of all the nodes and normalized it by the square root of the number 

of proteins (nodes) and by the square root of the number of PPIs (edges) of the network. We 

applied normalization to the number of nodes in the network because we summed the 

computed products for each node. The number of edges in the network should also be 

normalized against because the node degrees will be inflated by the number of edges. Since 

we only summed up the nodes once, we took the square root of both the number of edges and 

the number of nodes to keep the normalization balanced. This dimension evaluates the 
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expansion of the distribution’s plateau from low node degrees to high node degrees. A larger 

CCDG score indicates the network has more nodes clustered together to form completed or 

close-to-completed cliques.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
∑ (𝐶𝐶 ∗ �𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷)�

2
)𝑛𝑛

√𝑁𝑁 ∗ √𝑃𝑃
   (𝐸𝐸𝐸𝐸2) 

Where:  

• n: index of the nodes 

• C: clustering coefficient of node n 

• D: degree of node n 

• N: total number of PPIs (edges) 

• P: total number of proteins (nodes) 

We applied this two-dimensional metric to the human PPI networks and to a random 

network. We found that the PPI networks with different clustering coefficient distribution 

patterns are well separated from each other, suggesting the validity of this metric modeling 

the clustering coefficient distribution patterns (Figure 2.1A). 

We hypothesized that the clustering coefficient distribution of the bona fide human 

PPI network should have a large PCC value and a high CCDG score. Some PPI networks 

having either small PCC values or low CCDG scores are due to the limitation of the PPI 

mapping technology used. The authors of the L3 algorithm used this hypothesis as an 

assumption (Kovacs et al. 2019). Based on this assumption, the L3 algorithm predicts the 

chance of two proteins to form a PPI by the connectivity of the respective immediate 
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neighbors of each protein. Hereafter, we will leverage the L3 algorithm to test our hypothesis. 

We applied the L3 link prediction algorithm to various human PPI networks. We selected 

high-confidence predicted PPIs by the requirements of either these predicted PPIs having an 

L3-prediction score of 99th percentile or higher, or the number of predicted PPIs with the 

highest L3-prediction score being greater than 1/3 of its original size. The second requirement 

ensures the minimum size increase of those small PPI networks like H-I-05 after L3 

predictions. We then combined these high-confidence predicted PPIs with the original PPI 

network to get the L3-predicted PPI network. The L3-predicted networks exhibited 1.38 to 

4.96-fold more edges than their original networks (Table S2.2). For all these L3-predicted PPI 

networks, their clustering coefficient distribution against node degrees exhibits larger PCC 

values and higher CCDG scores than their origins (Figure 2.1B, Figure S2.2). This is 

consistent with the assumption used by the L3 algorithm. 

We then plotted the precision-recall (PR) curves (Saito and Rehmsmeier 2015) of all 

the L3-predicted PPI networks by varying the L3 prediction score percentile of selecting 

predicted PPIs. We used CORUM as the reference set for PROPER v.1.0 and for co-complex 

PPI networks and used HuRI as the reference set for binary PPI networks. To extend the PR 

curves into the range of the greater recall values, we simulated the higher recall part of the 

curves by fitting a reciprocal function (𝑦𝑦 = 𝑎𝑎
𝑥𝑥+𝑘𝑘

) to the empirical curves (Figure S2.3). This is 

because the range of the L3-predicted PPI dataset’s recall values is always limited by the fact 

that the L3-predicted PPI networks will always have a larger size than their origins. We also 

applied the L3 prediction to randomly permutated networks to generate background PR 

curves. We found that the PR curve of the L3-predicted network overrides the PR value of the 
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original network and outperforms the background for all the human PPI datasets tested 

(Figure S2.3). This strongly supports our hypothesis that the clustering coefficient distribution 

of human PPI networks should exhibit large PCC values and higher CCDG scores by nature. 

The human PPI network, regardless of binary or co-complex, is a dense network filled with 

completed and close-to-complete cliques. 

2.3.2 Degree distribution 

Many biological networks exhibit a scale-free property with most of the nodes having 

a low degree of interactions while a few nodes having a high connectivity with the others 

(Przytycka and Yu 2004). However, by examining the degree distributions of various human 

PPI networks, we found most of the human PPI networks are not perfectly scale-free (Figure 

S2.4). Some of the curves (AP-MS, Figure S2.4B) bend down when the node degree is high, 

making the log-scaled relationship between node frequency and node degree not linear. Since 

an exponential function may also yield similar distribution patterns (Ciavolella et al. 1991), 

we asked whether the power-law function is the better fit to human PPI networks’ degree 

distribution than the exponential function. We performed linear regression on both log-scale 

transformed degree distributions (power-law function) and semi-log transformed degree 

distributions (exponential function) of different human PPI networks. We computed their 

resulting mean square errors (MSE) to evaluate which function is the better fit. We found that 

for all the human PPI networks tested, the MSEs of the exponential fit are larger than the 

MSEs of the power-law fit (Figure 2.1C, Figure S2.5). This suggests that human PPI networks 

are closer to scale-free than to other architectural properties. 
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We then asked whether the L3-predicted PPI networks also inherit the scale-free 

property. We applied linear regression to the log-transformed node degree distributions of all 

the L3-predicted PPI networks and computed the resulting MSEs. We found that compared 

with the original networks, the MSEs of the L3-predicted networks are lower for all the PPI 

networks (Figure 2.1D). This further implies that when human PPI networks are getting more 

comprehensive, regardless of binary or co-complex, they are also getting closer to the ideal 

scale-free architecture. 
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Figure 2.1: Clustering coefficient and degree distribution of PPI networks 
(A) The two-dimensional metric to describe the pattern of clustering coefficient against nodes
degree of PPI networks.
(B) Comparison of PPI networks before (origin, blue) and after L3 predictions (green)
regarding the two-dimensional metric.
(C) The log fold change of mean square errors (MSE) derived from exponential fit to PPI
networks over MSE derived from power-law fit to PPI networks.
(D) The log fold change of mean square errors (MSE) derived from power-law fit to L3-
predicted PPI networks over MSE derived from power-law fit to original PPI networks.

2.3.3 Hub proteins 

Interconnectivity of hub proteins 

Hub proteins are the highly-connected nodes in a PPI network that are essential to the 

biological functions and pathways in the network (He and Zhang 2006). In this study, hub 

proteins of a PPI network are identified as the top 10% of proteins with the highest number of 
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node degrees in that network. We identified the hub proteins for various human PPI networks 

as well as for their L3-predicted networks. We found that most of the hub proteins remain the 

same between original and L3-predicted networks (Figure 2.2A), supporting the functional 

necessity of these hub proteins in PPI networks. 

As previous literatures have controversial observations regarding the interconnectivity 

of hub proteins (Vandereyken et al. 2018; Batada, Hurst, and Tyers 2006), we here explored 

the distribution of shortest path length of between-hub proteins and of between-non-hub 

proteins in different human PPI networks to evaluate the interconnectivity of hub proteins. 

We found for all the networks tested, the shortest path length of between-hub proteins is 

significantly shorter than that of between-non-hub proteins (p-value<0.05, student’s t-test, 

Figure S2.6). Hub proteins of PROPER v.1.0 are the most connected, with all the shortest 

path lengths shorter than a length of 3. Hub proteins of co-complex and binary PPI networks 

are also highly connected with each other, with those of co-complex PPI networks being less 

connected than those of binary PPI networks (p-value<0.05, student’s t-test). We repeated the 

analysis with the L3-predicted networks and the observations above stay the same for all the 

L3-predicted PPI networks (Figure S2.7). 

Applying L3 to PPI networks decreased the average shortest path length of both 

between-hub and between-non-hub proteins. We proceeded to ask whether L3 attenuates or 

enhances the shortest path length difference between between-hub and between-non-hub 

proteins. We used t-statistics values of between-non-hub vs. between-hub proteins from the 

student’s t-test to measure the shortest path length difference. We found that L3-predicted 

networks always have the larger t-statistics than their original networks (p-value=7.26e-4, 

paired t-test, Figure 2.2B), meaning that the hub proteins become relatively more deeply 
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connected with each other than the non-hub proteins after applying the L3 algorithm. In other 

words, despite L3 shortening the shortest path length of the entire network, this shortening 

effect is more pronounced between two hubs than between two non-hubs. Having established 

that L3-predicted networks have higher precision and recall than the original networks, these 

observations serve as a piece of evidence to support that hub proteins are often highly 

connected with each other in large subgraphs in both binary and co-complex human PPI 

networks. 

Distribution modality of hub proteins 

Previous studies proposed that the co-expression level of hub proteins and their 

interaction partners in PPI networks present a bimodality distribution (Fraser 2005). Based on 

the bimodality distribution, hub proteins that have weak co-expressions are considered as date 

hubs that interact transiently with other proteins. Hub proteins with strong co-expressions are 

considered as party hubs that are involved in large functional protein complexes and interact 

with other proteins simultaneously and continuously (Fraser 2005). We asked whether such 

co-expression bimodality distribution exists in human PPI networks. We used mutual rank 

scores derived from the integrated human gene co-expression data from COXPRESdb 

(Obayashi et al. 2019) to quantify gene co-expression levels in this analysis. We found that 

for all the human PPI networks tested except LC-MS, the average mutual rank score of hub 

proteins with their interaction partners expresses a unimodal distribution (p-value>0.05, 

Hartigan’s dip test for unimodality, Figure S2.8) while the distribution of LC-MS exhibits a 

bi-modal distribution according to the SkinnyDip algorithm (Maurus and Plant 2016). The 

average mutual rank score of hub protein interactions is significantly lower than that of all the 

interactions in the network for all the human PPI networks (p-value<0.05, student’s t-test), 



87 

indicating a stronger co-expression between hub proteins and their interacted partners than the 

background. We repeated the analysis with the L3-predicted networks and found that the 

observations above stayed the same for all the L3-predicted PPI networks (Figure S2.9). 

We then compared the distribution of the mutual rank score of hub proteins before and 

after applying L3 predictions. We found for all the networks except for LC-MS and CORUM, 

the average mutual rank score of hub proteins of the L3-predicted network is significantly 

smaller than that of the original network (p-value<0.05, student’s t-test, Figure 2.2C). This 

general decrease in the mutual rank score, in other words, an increase in the co-expression 

level, of hub proteins after applying L3 predictions further suggests that in a more 

comprehensive human PPI network regardless of detection methods, hub proteins are often 

contained in large protein complexes that interact with many other proteins simultaneously.  

Hub proteins in network motifs 

To further understand the role of hub proteins, we asked if hub proteins are enriched in 

the network motifs of PPI networks. We identified small network motifs of size-3, size-4, and 

size-5 for all the PPI networks (Figure S2.10). We found the average percentages of hub 

proteins in these network motifs are all higher than 40% (Figure 2.3A). Given that hub 

proteins only consist of 10% of the proteins in each PPI network, hub proteins are thus 

enriched in the small PPI network motifs. Besides, the average percentage of hub proteins in 

the network motif increases as the size of the network motif increases. Applying L3 

predictions to the PPI network also significantly increases the average percentage of hub 

proteins in the size-3 and size-4 motifs (p-value<0.05, student’s t-test, Figure 2.3A), further 

emphasizing hub proteins’ significant enrichment in human PPI network motifs. 



88 

For all the PPI networks, we found over 50% of the size-4 motif occurrences contain 

size-3 motif occurrences and over 50% of the size-5 motif occurrences contain either size-3 or 

size-4 motif occurrences. This percentage further increases after applying L3 predictions to 

the PPI networks (Figure S2.11A). Out of the motifs that contain smaller motifs, over 95% 

involve at least 1 hub protein for all the PPI networks. These observations suggest that the 

small network motifs with hub proteins may serve as the basic building blocks in PPI 

networks that can further combine with each other to form larger complexes that perform 

biological functions. For example, we noticed HDAC1, HDAC2, and SKP1, three hub 

proteins in PROPER v.1.0, form two size-3 network motifs with VRK1, a non-hub protein. 

They then recruit CDY1 and further merge to form a size-5 network motif that is related to 

histone modification function (Figure 2.3B). In another example in Lit-BM, U2AF1, U2AF2, 

and SRPK2 form a hub-protein size-3 motif and then grow into a size-5 motif by 

incorporating two other hub proteins to perform RNA splicing function (Figure 2.3C). 
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Figure 2.2: Hub proteins in PPI networks 
(A) Number of hub proteins shared (green) and differed (pink) in PPI networks before and
after applying L3 predictions.
(B) Comparison of t-statistics derived from the student’s t-test comparing the shortest path
length of between-non-hub proteins against that of between-hub proteins of PPI networks
before (origin, blue) and after L3-predictions (L3-predictions, red). A larger t-statistic
suggests a larger shortest path length difference for between-non-hub proteins and between-
hub proteins.
(C) Comparison of co-expression values of hub proteins in PPI networks before (Origin, blue)
and after L3-predictions (green).
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Figure 2.3: Hub proteins in the network motifs of PPI networks 
(A) Percentage of hub proteins in size-3 (blue), size-4 (red), and size-5 (purple) network
motifs in PPI networks before and after L3 predictions.
(B) Size-3, size-4, and size-5 network motifs in PROPER v.1.0 that are related to histone
modification function.
(C) Size-3, size-4, and size-5 network motifs in Lit-BM that are related to RNA splicing
function.
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2.3.4 Maximal cliques 

Hub proteins in M-cliques 

The maximal clique for a node is the largest complete subgraph of the node within a 

network (Darehmiraki 2009). We identified the maximal cliques (M-cliques) for each node in 

various human PPI networks as well as in their L3-predicted networks. L3-predicted networks 

shared a similar number of M-cliques with their original networks (p-value=0.98, student’s t-

test, Table S2.2), while the average size of the M-cliques in all the L3-predicted networks is 

significantly larger than that in the original networks (p-value<0.05, student’s t-test, Figure 

S2.12, S2.13). We observed that the number of proteins (nodes) in the human PPI networks is 

just slightly larger than the number of  M-cliques in the same network, meaning that only a 

minor portion of proteins in the network share the same M-cliques (Table S2.2). We asked if 

these M-clique-sharing proteins are more likely to be hub proteins or not. We found that for 

all the human PPI networks and their L3-predicted networks tested, the average percentage of 

hub proteins in M-clique-sharing proteins is significantly larger than 10% (p-value<0.05, 

student’s t-test, Figure 2.4A). As 10% is the percentage of hub proteins within all the proteins 

in the PPI networks in this study, hub proteins are thus more likely to be within the same M-

cliques than non-hub proteins in human PPI networks. PROPER v.1.0 has the highest 

percentage of M-clique-sharing proteins being hub proteins both before and after L3 

predictions. The M-clique-sharing proteins in co-complex PPI networks and binary PPI 

networks share a similar chance of being hub proteins both before and after L3 predictions (p-

value=0.36 for original networks, p-value=0.78 for L3-predicted networks, student’s t-test). 

It is expected that in general, the size of M-cliques with hub proteins will be larger 

than that of M-cliques without hub proteins, and applying L3-prediction will increase the size 
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of almost all M-cliques. We asked whether such size increase from applying L3-prediction is 

more effective on M-cliques with hub or without hub protein. We measured the size increase 

of the M-clique of a certain protein before and after L3 predictions by computing the fold 

change of the between pair-wise nodes number of proteins in the corresponding M-clique. We 

found that the size of M-cliques with hub proteins increases significantly more than that of M-

cliques without hub proteins after L3 predictions for all the human PPI networks tested (p-

value<0.05, student’s t-test, Figure 2.4B). This suggests that M-cliques with hub proteins are 

more connected to each other, and the interconnectivity of hub proteins is relatively high in 

human PPI networks. 

Biological association between proteins in M-cliques 

We asked in human PPI networks, whether the proteins in the same M-clique are more 

biologically related. We measured the biological similarity between a pair of proteins based 

on the semantic similarity of their GO terms. For each pair of proteins, we applied GOGO 

(Zhao and Wang 2018) to achieve three similarity scores with each corresponding to 

Biological Process (BP), Cellular Component (CC) and Molecular Function (MF) GO terms. 

We evaluated the biological closeness of the proteins within an M-clique by computing the 

average BP, CC, and MF similarity scores of all the protein pairs within that clique. We also 

computed the background average BP, CC, and MF similarity scores by generating random 

cliques of the same number and size as the M-cliques in the original network using the PPIs 

from that network. We found that for all the PPI networks and their L3-predicted networks, 

their average BP, CC, and MF similarity score of M-cliques is significantly higher than that of 

the background (p-value<0.05, student’s t-test, Figure S2.14, S2.15), with MF having the 
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highest similarity scores on average. This suggests that proteins within the same M-cliques 

are more likely to serve similar biological functions. 

For most of the human PPI networks and their L3-predicted networks, we observed a 

weak positive correlation between the similarity score of M-cliques and the size of M-cliques 

(Figure S2.16, S2.17). We conjured that large M-cliques may have a higher similarity score 

than small M-cliques on average as large M-cliques are less likely formed by false positives in 

the PPI network. An M-clique is identified as a large M-clique if its size is either among the 

top 10% of the largest M-cliques in the network or larger than 5 proteins. The rest of the non-

large M-cliques are classified as small M-cliques. We found that large M-cliques have a 

higher average BP, CC, and MF similarity score than small M-cliques for all the PPI networks 

tested, with MF score being the most separated between large and small M-cliques. The 

observations above also hold the same for all the L3-predicted PPI networks (Figure 2.4C).  

Applying the L3-prediction algorithm will add edges to the original PPI networks, 

which may cause some of the M-cliques to merge into a large M-clique. We asked if M-

cliques with higher biological similarities between each other are more likely to merge after 

L3 predictions. In this analysis, we only focused on M-cliques with a minimum size of 3 

proteins. We first identified all the merged M-cliques in the L3-predicted networks and their 

source M-cliques (cliques that are to be merged after L3-predictions) in the original networks 

(Table S2.3). Then we measured the biological similarity across the source M-cliques by 

computing the average GO similarity scores of their merged version with regard to BP, CC, 

and MF. We also computed the background distribution of similarity scores by randomly 

merging the same number and the same size of source M-cliques. We found that for all the 

human PPI networks, the merged cliques have a higher average BP, CC, and MF similarity 
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score than the background (p-value<0.05, student’s t-test, Figure S2.18). The MF similarity 

scores are mostly separated from the background (Figure 2.4D). These results suggest that 

proteins in the M-cliques of human PPI networks are mostly associated in the aspect of 

molecular functions. In other words, proteins with similar molecular functions are more likely 

to form interaction pairs and to cluster together to serve as a functional module in PPI 

networks. 
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Figure 2.4: Maximal cliques in PPI networks 
(A) Percentage of hub proteins that share the same maximal cliques (M-cliques) in PPI
networks before (origin, blue) and after L3 predictions (green). The grey dotted line indicates
the percentage of proteins that are defined as hub proteins in PPI networks in this study.
(B) Comparison of the fold change of M-clique size (number of proteins) between hub
proteins (blue) and non-hub proteins (grey) in PPI networks. The fold change was the M-
clique size of each node in the L3-predicted PPI networks over that in the original PPI
networks.
(C) Comparison of t-statistics derived from the student’s t-test comparing the BP (pink), CC
(green), and MF (purple) similarity scores of large M-cliques over that of small M-cliques in
origin and L3-predicted PPI.
(D) Comparison of t-statistics derived from the student’s t-test comparing the BP (pink), CC
(green), and MF (purple) similarity scores of the merged M-cliques after L3 predictions over
that of the background in PPI networks.
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2.4 Discussion 

By analyzing the characteristics of various human PPI networks, we made 

observations in consensus to suggest that a comprehensive human PPI network, regardless of 

detection methods, should be a scale-free network filled with many completed or close-to-

completed cliques. The hub proteins of the human PPI network are highly inter-connected 

with each other and meanwhile, are centered with other non-hub proteins of similar molecular 

functions. By repeating the analysis with the L3-predicted networks, which exhibited higher 

precision and recall values than the original networks, we found more evidence to further 

support the conclusions above. The human PPI network features inducted from this study may 

serve as a useful reference for researchers to develop PPI mapping techniques and to 

understand human proteome in the future. 

Within the analysis scope of this study, co-complex PPIs and binary PPI networks 

share similar network characteristics. On average, co-complex PPI networks possess more 

cliques while the hub proteins of binary PPI networks are more inter-connected and co-

expressed. But none of the network features analyzed can perfectly separate the individual co-

complex PPI datasets from the binary PPI datasets. This study does not take into account the 

difference in search space or in cell lines that may exist in detecting PPIs through different 

experiments. We anticipate that future work is required to consider these variations with 

statistical rigor to investigate the difference between co-complex and binary PPI networks. 

We anticipate the analysis to be extended into specific functional modules of the networks so 

that certain disease mechanisms may be well explained by either co-complex or binary PPIs.  
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2.5 Supplementary information 

Supplementary figures 

Figure S2.1: Clustering coefficient distribution of human PPI networks 
(A)-(K) Scattering plots of log-scaled clustering coefficient as a function of log-scaled node 
degrees for each node in the PPI networks. 
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Figure S2.2: Clustering coefficient distribution of L3-predicted PPI networks 
(A)-(K) Scattering plots of log-scaled clustering coefficient as a function of log-scaled node 
degrees for each node in the PPI networks after applying L3 predictions. 
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Figure S2.3: Precision-recall curves of L3-predicted PPI networks 
(A)-(I) Precision-recall curves of L3-predicted PPI networks (blue and green) compared with 
the precision-recall value of the corresponding original PPI networks (red). The blue dots are 
real precision-recall values computed from L3-predicted PPI networks by varying the 
percentile of selecting L3-predicted PPIs. The green dots are simulated precision-recall values 
of L3-predicted PPI networks by fitting a reciprocal function to the blue dots. The grey dots 
are background curves by applying L3 predictions to the random network formed by 
permutating gene pairs from the PPIs of the original network. 
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Figure S2.4: Node degree distribution of human PPI networks 
(A)-(K) Scattering plots of log-scaled frequency as a function of log-scaled degree for each 
node in the PPI networks. 
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Figure S2.5: Linear regression on node degree distributions of PPI networks 
(A)-(V) Linear regressions on log-scaled degree distributions (red, power-law fit) and on 
semi-log-scaled node degree distributions (green, exponential fit) of PPI networks. 
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Figure S2.6: Shortest path length distribution of PPI networks 
(A)-(K) Distributions of the shortest path length of between-hub proteins of PPI networks. 
The red line marks the average shortest path length of between-non-hub proteins of the 
network.  



103 

Figure S2.7: Shortest path length distribution of L3-predicted PPI networks 
(A)-(K) Distributions of the shortest path length of between-hub proteins of PPI networks 
after applying L3 predictions. The red line marks the average shortest path length of between-
non-hub proteins of the network after applying L3 predictions.  
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Figure S2.8: Co-expression level distribution of PPI networks 
(A)-(K) Distributions of hub proteins’ mutual rank score with their interaction partners in PPI 
networks. The red line marks the average mutual rank score of all the PPIs in the original 
network. 
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Figure S2.9: Co-expression level distribution of L3-predicted PPI networks 
(A)-(K) Distributions of hub proteins’ mutual rank score with their interaction partners in PPI 
networks after applying L3 predictions. The red line marks the average mutual rank score of 
all the PPIs in the L3-predicted network. 
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Figure S2.10: Network motifs of PPI networks 
Size-3, size-4, and size-5 network motifs discovered in PPI networks. 
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Figure S2.11: Sub-motifs of PPI network 
(A) Percentage of size-4 network motifs that contain size-3 network motifs in origin and L3-
predicted PPI networks. (B) Percentage of size-5 network motifs that contain size-3 or size-4 
network motifs in origin and L3-predicted PPI networks.
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Figure S2.12: M-clique size distribution of PPI networks 
(A)-(K) Distributions of M-clique size (number of proteins in the M-clique) in PPI networks. 
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Figure S2.13: M-clique size distribution of L3-predicted PPI networks 
(A)-(K) Distributions of M-clique size (number of proteins in the M-clique) in PPI networks 
after applying L3 predictions. 
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Figure S2.14: GO similarity score of M-cliques in PPI networks 
Distributions of average BP (A), CC (B, green), and MF (C, purple) GO similarity score of 
M-cliques and distributions of their corresponding average background score in PPI networks.
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Figure S2.15: GO similarity score of M-cliques in L3-predicted PPI networks Distributions of 
average BP (A), CC (B, green), and MF (C, purple) GO similarity score of M-cliques and 
distributions of their corresponding average background score in PPI networks after applying 
L3 predictions.
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Figure S2.16: Correlation between M-clique features in PPI networks 
(A)-(K) Correlation between M-clique size and each of the M-clique BP (pink), CC (green), 
and MF (purple) similarity scores in PPI networks. 
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Figure S2.17: Correlation between M-clique features in L3-predicted PPI networks 
(A)-(K) Correlation between M-clique size and each of the M-clique BP (pink), CC (green), 
and MF (purple) similarity scores in PPI networks after applying L3 predictions. 
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Figure S2.18: Go similarly score of merged M-cliques in L3-predicted PPI networks 
Distributions of average BP (A), CC (B, green), and MF (C, purple) GO similarity score of 
merged M-cliques and distributions of their corresponding average background score in PPI 
networks after applying L3 predictions. 
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Supplementary tables 

Table S2.1: The human PPI datasets used  
The human PPI datasets used in this work, including APID’s subsets, collections of literature 
reported binary and co-complex PPIs, and PROPER-seq derived PPIs  

Name Description # PPIs PPI type 
PROPER 
v.1.0 PROPER-seq detected PPIs by Johnson et al., 2021 210,518 binary, co-

complex 

AP-MS Affinity purification-mass spec detected PPIs that are 
included in APID  131,224 co-complex 

Co-IP Co-IP detected PPIs that are included in APID 50,290 co-complex 

LC-MS Liquid chromatography–mass spec detected PPIs that are 
included in APID  33,195 co-complex 

HuRI Y2H detected PPIs by Luck et al., 2020 52,516 binary 
HI-II-14 Y2H detected PPIs by Rolland et al., 2014 14,308 binary 
H-I-05 Y2H detected PPIs by Rual et al., 2005 2,781 binary 
APID-
binary 

Binary PPIs curated into the APID database 51,466 binary 

CORUM PPIs in protein complex curated by Giurgiu et al., 2019 39,103 co-complex 
Lit-NB-13 Non-binary PPIs curated by Rolland et al., 2014 10,152 co-complex 
Lit-BM Binary PPIs curated by Luck et al., 2020 13,441 binary 
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Table S2.2: Summary of PPI networks 
Number of PPIs, number of proteins, and number of M-cliques in PPI networks before 
(origin) and after L3 predictions. 

Name # PPIs # Proteins # M-cliques 

PROPER v1.0 Origin 210,518 8,635 7,178 
L3 predictions 546,782 7,048 

AP-MS Origin 131,224 13,650 11,900 
L3 predictions 650,691 12,081 

Co-IP Origin 50,290 9,088 7,948 
L3 predictions 138,301 8,194 

LC-MS Origin 33,195 4,548 3,557 
L3 predictions 70,437 3,645 

HuRI Origin 52,516 8,267 7,682 
L3 predictions 167,105 7,463 

HI-II-14 Origin 14,308 4,386 3,961 
L3 predictions 25,862 3,894 

H-I-05 Origin 2,781 1,556 1,314 
L3 predictions 3,849 1,349 

APID-binary Origin 51,466 12,572 10,406 
L3 predictions 167,105 10,462 

CORUM Origin 39,103 3,435 2,264 
L3 predictions 52,287 2,278 

Lit-NB-13 Origin 10,152 5,382 4,390 
L3 predictions 17,557 4,505 

Lit-BM Origin 13,441 6,047 5,114 
L3 predictions 24,716 5,120 

Table S2.3: Number of source and merged M-cliques in PPI networks 

Name # Source M-cliques # Merged M-cliques 
PROPER v.1.0 797 552 
AP-MS 1,082 698 
Co-IP 427 278 
LC-MS 514 409 
HuRI 658 460 
HI-II-14 78 51 
H-I-05 26 10 
APID-Y2H 455 305 
CORUM 22 14 
Lit-NB-13 190 113 
Lit-BM 236 151 
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2.6 Methods and materials 

Downloading PPI datasets 

PROPER v.1.0 was downloaded from https://genemo.ucsd.edu/proper/. PPIs were 

downloaded as a MITAB file from the Agile Protein Interactomes DataServer (APID) at 

http://cicblade.dep.usal.es:8080/APID/init.action. AP-MS and Co-IP consist of PPIs identified 

by the corresponding labels in the ‘Interaction detection method’ column of the downloaded 

MITAB file. LC-MS consists of PPIs identified by the label of “biochemistry” in the 

‘Interaction detection method’ column and specifying “Publication first author” as “Wan, C. 

et al. (2015)” (Wan et al. 2015), “Havugimana, PC. et al. (2012)” (Havugimana et al. 2012) 

and “Kristensen, AR. et al. (2012)” (Kristensen, Gsponer, and Foster 2012). APID-binary 

consists of PPIs identified by the label of “two-hybrid” in the “Interaction detection method” 

column of the MITAB file. HuRI, HI-II-14, H-I-05, and Lit-BM were downloaded from 

http://www.interactome-atlas.org/download. Human protein complexes were downloaded as a 

TXT file from http://mips.helmholtz-muenchen.de/corum/#download. CORUM consists of 

PPIs that are pair-wise formed by the proteins within the same protein complex according to 

the TXT file. Lit-NB-13 was downloaded from 

http://interactome.dfci.harvard.edu/H_sapiens/. 

Calculating clustering coefficient, node degree, shortest path length, maximal cliques of 

PPI networks 

The clustering coefficient of node, the degree of node, the shortest path length 

between pairwise nodes, and the maximal cliques of PPI networks were calculated and 

detected by NetworkX (Hagberg 2008), implemented in Python. 

https://genemo.ucsd.edu/proper/
http://cicblade.dep.usal.es:8080/APID/init.action
http://www.interactome-atlas.org/download
http://mips.helmholtz-muenchen.de/corum/#download
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Implementation of the L3 algorithm 

L3 link prediction algorithm, as described by Kovacs et al. (Kovacs et al. 2019), was 

implemented in Python to predict PPIs from the experimentally derived PPI networks. 

Calculating protein co-expression levels 

We used the human gene co-expression data to calculate protein co-expression levels 

in this work. The data was downloaded from COXPRESdb at https://coxpresdb.jp/download/ 

(Obayashi et al. 2019). 

Identification of network motifs 

MFinder 1.21(Ciriello and Guerra 2008) was used to find all occurrences of size-3, 

size-4, and size-5 networks in the PPI networks. Sub-networks with a z-score over 20 were 

identified as the network motifs in this study. 

Implementation of SkinnyDip algorithm 

SkinnyDip algorithm, as described by Maurus and Plant (Maurus and Plant 2016), was 

implemented in Python to determine the modularity type of protein co-expression 

distributions of PPI networks. 

Calculating Gene Ontology similarity score 

We used GOGO software downloaded from http://dna.cs.miami.edu/GOGO/ (Zhao 

and Wang 2018) to calculate Biological Process, Cellular Component, and Molecular 

Function similarity score of PPIs. 

https://coxpresdb.jp/download/
http://dna.cs.miami.edu/GOGO/
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CHAPTER 3 HIGH THROUGHPUT MAPPING OF RNA-PROTEIN INTERACTIONS 

3.1 Abstract 

We describe PRIM-seq (protein-RNA interaction mapping by sequencing) to 

systematically map RNA-protein interactions (RPIs) in vitro. PRIM-seq utilizes an RNA-

barcoded protein library to interact with RNAs and converts the interaction pairs into chimeric 

DNA sequences, which are further decoded by sequencing and mapping. We applied PRIM-

seq to human embryonic kidney cells and identified 1,175,516 human RPIs (collected as the 

PRIM v.1.0 database). PRIM v.1.0 supports 4,418 RPIs curated in RNAInter and 1,569 RNA-

binding proteins captured by pCLAP and RBDmap. PRIM-seq revealed PHGDH as an RNA 

binding protein. 5 previously uncharacterized interactions of PHGDH with PTMA, 

HNRNPA2B1, ATF4, BCLAF1, and BECN1 as the RNAs are validated by RIP-qPCR. 

PRIM-seq presents a time-effective technology to massively map RPIs and provides an 

extensive RPI network for studying RNA binding proteins, RNA binding domains, and RNA 

motifs with their secondary structures that bind the protein domains. 

3.2 Introduction 

Many cellular regulatory processes like RNA processing, mRNA localization, and 

protein synthesis require RNA-proteins interactions (RPIs) (Balcerak et al. 2019). However, 

mapping the human RPI network remains technically challenging. Two classes of RPI 

mapping methods have been pursued. The first class of methods, like CLIP-seq (Stork and 

Zheng 2016), RIP-seq (Zhao et al. 2010), and PAR-CLIP (Danan, Manickavel, and Hafner 
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2016), pulls down a protein of interest and examines its bound RNAs by sequencing. The 

second class of methods pulls down an RNA of interest and reveals the protein partners using 

mass spectrometry (RAP-MS (McHugh and Guttman 2018), PAIR (Zeng et al. 2006), MS2-

BioTRAP (Tsai et al. 2011), ChiRP (Chu et al. 2011), CHART(Simon et al. 2011)), 

enzymatic labeling (TRIBE (McMahon et al. 2016), RaPID (Ramanathan et al. 2018)), or 

protein microarrays (ProtoArray (Syu, Dunn, and Zhu 2020)). As not all RNA binding 

proteins (RBPs) have been reported as RBPs and not all reported RBPs have high-affinity 

antibodies (Wheeler, Van Nostrand, and Yeo 2018), these methods are hard to be scaled up to 

generate a reference network for human RPIs. In other words, it would require significant 

time and resources to identify de novo RBPs and to resolve what RNAs that every RBP can 

bind with. 

Here, we describe PRIM-seq (Protein-RNA Interaction Mapping by sequencing) for 

systematic identification of RBPs and the RNAs bound by every RBP in one single 

experiment. PRIM-seq utilizes the RNA barcodes of the proteins in the SMART-display 

library (Johnson et al. 2021) and ligates them with the proteins’ interacted RNAs. The ligated 

pairs are then subjected to high-throughput sequencing for the identification of RPIs. We 

applied PRIM-seq to human embryonic kidney (HEK) cells to yield a human RPI network 

(PRIM v.1.0) involving 7,691 RBPs and 1,175,516 RPIs.   

3.3 Design 

3.3.1 Sequencing library preparation 

PRIM-seq converts RPIs into chimeric sequences with the structure as cDNA1-linker-

cDNA2 with one of the cDNAs derived from the RNA barcode of the interacted protein and 
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the other cDNA derived from the interacted RNA (Figure 3.1). PRIM-seq starts with using 

SMART-display (Johnson et al. 2021) to generate a protein library from a certain cell type in 

which the proteins are attached with mRNA barcodes. The SMART-display library is then 

immobilized on streptavidin beads through the biotin on the puromycin linker sequence and 

incubated with the total RNAs extracted from the same cell type to allow for RNA-protein 

interactions. After removal of spurious interactions, the RNA is then ligated to the mRNA 

barcode of its bound protein to create a chimeric sequence in the form of cDNA1-linker-

cDNA2 to represent the original RPI. These chimeric sequences are subsequently selected for 

and subjected to paired-end sequencing. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/streptavidin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/biotin
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Figure 3.1: Sequencing library preparation. 
Steps are indicated in bold font to the left of each process arrow, and primary enzymes or 
reagents used to accomplish each step are indicated to the right of the process arrow. The 
process begins with the stabilization of the display complexes on streptavidin magnetic beads. 
The RNA library ligated with the biotin ligation linker is combined with the immobilized 
display complexes to perform the RNA protein interaction step. The beads are washed to 
remove non-specific interactions. The DNA from the protein is digested with a non-
palindromic restriction enzyme, and proximity ligation between the nucleic acids from the 
interacted pair is performed. The interacting pair is then reverser crosslinked by proteinase K 
digestion, and the ligated RNA is converted to double-stranded DNA. The DNA is then 
fragmented, and adaptor ligation for sequencing is performed before final streptavidin 
selection for the biotin-containing interaction linker and library amplification. 

3.3.2 Identification of RPIs 

The next step is to identify RNA-protein pairs from the mapped read pairs of the 

sequencing library. We utilized the mapping strandness to first distinguish the RNA-end from 

the protein-end for each chimeric read pair. According to the experiment design and 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/streptavidin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/restriction-enzymes
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sequencing mechanism, the read-end of a chimeric read pair that was sensely mapped to a 

gene was derived from RNA and the read-end of the pair that was antisensely mapped to a 

gene was derived from protein (Figure 3.2A). We dropped the chimeric read pairs that were 

mapped both sensely or both antisensely to two genes. Then we subjected the valid chimeric 

read pairs on each RNA-protein pair to an association test. The null hypothesis is that the 

mapping of a read pair to one RNA is independent to the mapping of this read pair to its 

paired protein (Figure 3.2B). We used Bonferroni-Hochberg (BH) correction to account for 

multiple hypothesis tests (Benjamini and Hochberg 1995). An RNA-protein pair was 

identified (i.e., an RPI) by two criteria. First, the BH-corrected p-value derived from the 

association (Chi-square) test is smaller than 0.05. Second, the number of the chimeric read 

pairs mapped to this gene pair is no less than 2 times the average number of valid chimeric 

reads mapped to any RNA-protein pair (2 × number of all valid chimeric read pairs / number 

of all mapped RNA-protein pairs). Hereafter, we call these the default threshold, denoted as 

BH-corrected p < 0.05 and number of read pairs > 2X, where X is the expected number of 

read pairs mapped on a randomly chosen RNA-protein pair. Unless otherwise specified, all 

RPIs presented in the rest of this chapter were identified based on this default threshold. We 

implemented all data processing and statistical test steps into an open-source software 

package called PRIMseqTools (Figure 3.2C). 
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Figure 3.2: Identification of RPIs 
(A) Identification of RNA-end and Protein-end from a chimeric read pair yielded from RPI-
sequencing. Single strand chimeric RNA is formed by linking the RNA to the RNA barcode
of the protein. After cDNA generation, two primers (P5 and P7) and a barcode (BC) are added
to the DNA. After PCR enrichment, the primers together with barcode can only exist on one
strand of the amplified DNA fragments, either the top or the bottom strand as shown in the
figure. P7 primer, which will ligate to the flow cell during the sequencing process, is always
at the 5’end of the strand. P5 primer, on the other hand, is always at the 3’end of the strand.
The two possible DNA fragments get sequenced by pair-end sequencing. Based on the
position of the primers, read1 can be sequenced either from the bottom strand or from the top
strand. The same applies to read2. Two possible sequencing orientations are illustrated in the
figure. The read that is sequenced sensely is always sequenced from the RNA end. The other
read that is sequenced antisensely is always sequenced from the protein end.
(B) A continency table for the read pairs mapped to RNA A (rows) and protein B (columns).
Every mapped read pair is assigned to one and only one cell in this contingency table. The
null hypothesis is that the mapping of a read pair to one RNA is independent to the mapping
of this read pair to the protein.
(B) Flowchart of PRIMseqTools for processing PRIM-seq data. Linker sequence and adaptor
sequences were trimmed (Adaptor trimming). Low quality reads and reads that were too short
were removed (Quality filtering). The resulting read pairs were mapped to Refseq genes
(Mapping), and those with the two ends mapped to two different genes were obtained
(Identification of chimeric read pairs). Non-redundant chimeric read pairs with one end
sensely mapped to a gene and the other end antisensely mapped to a protein-coding gene
(RNA/protein end assignment) were used as the input for the test of association (Statistical
test).
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3.4 Results 

3.4.1 Evaluations of PRIM-seq identified RPIs 

We evaluated PRIM-seq identified RPIs based on their precision, recall, and their 

robustness against the subsampling process. We generated one PRIM-seq library from 

HEK293T cells which consist of 409,132,179 read pairs (Table S3.1).  The library was named 

HEK1. HEK1 yielded approximately 6 million non-duplicate chimeric read pairs with one end 

sensely mapped to a gene (RNA-end) and the other end antisensely mapped to a protein-

coding gene (protein-end). By using PRIMseqTools with the default threshold, we identified 

1,175,516 RPIs from HEK1. 

Precision and recall of PRIM-seq identified RPIs 

We evaluated the precision and recall of the HEK1 derived RPIs with reference to 

previously characterized human RPIs (Saito and Rehmsmeier 2015). We obtained RPIs from 

RNA Interactome Database (RNAInter) (Kang et al. 2022), a most up-to-date repository of 

experimentally validated RPIs integrated from databases including starBase v2.0 (Li et al. 

2014), ChiPBase v2.0 (Zhou et al. 2017), POSTAR2 (Zhu et al. 2019), TransmiR v2.0 (Tong 

et al. 2019) and miRTarBase (Huang et al. 2022). According to RNAInter, three types of 

experiments self-alone yielded more than 100,000 human RPIs. These are enhanced UV 

crosslinking and immunoprecipitation (eCLIP) (Van Nostrand et al. 2016), individual-

nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) (Huppertz et al. 

2014), and crosslinking immunoprecipitation associated to high-throughput sequencing 

(CLIP-seq) (Stork and Zheng 2016), which have reported 301,020, 126,345 and 109,706 

human RPIs respectively (Table S3.2). We then obtained 529 previously characterized RBPs 

from RBDmap (Castello et al. 2016) and 2,043 RBPs from pCLAP (Mullari et al. 2017) 
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(Table S3.2). 316 RBPs were characterized by both RBDmap and pCLAP. We further 

stratified the three reference sets of RPIs derived from eCLIP, iCLIP, and CLIP-seq into three 

RBP levels by limiting the search space of the interacted proteins. RBP-0 is the first level 

where the protein search space is the collection of all human protein coding genes. RBP-1 is 

the second level where the protein search space is the collection of RBPs captured by either 

RBDmap or pCLAP. RBP-2 is the strictest level where the protein search space is the 

collection of RBPs captured by both RBDmap and pCLAP. We plotted the precision and 

recall curves by comparing the HEK1 identified RPIs with the three reference sets under the 

three RBP levels. We also generated random datasets for each reference set by permutating 

the assignment of the chimeric read pairs within the corresponding protein search space. In all 

analyses, PRIM-seq-identified RPIs presented larger precisions and smaller recalls when the 

thresholds increased and exhibited better precisions and recalls than the permutation data 

(Figure S3.1). These suggest that RPIs derived from PRIM-seq are supported by previous 

literature and are well distinguished from the background of randomly sampled RNA-protein 

pairs.  

Identification of RPIs from PRIM-seq with subsampling 

We also subsampled 75%, 50% and 25% of the input reads from HEK1 PRIM-seq 

library to ask whether varying the sequencing depth of PRIM-seq library will affect the scale, 

precision, and recall of the identified RPIs. We found the number of identified RPIs decreases 

as the subsampling rate decreases (Figure S3.2A, E, I). We then computed precision and 

recall values of the HEK1 libraries at different subsampling rates using eCLIP, iCLIP, and 

CLIP-seq as the reference datasets under the protein search spaces defined by RBP-0, RBP-1, 

and RBP-2. We found that the resulting precision-recall curves overlap with each other for 
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each individual comparison (Figure S3.2). These results suggest that the sequencing depth of 

PRIM-seq libraries only affects the scale of identified RPIs but does not affect their precision 

and recall. In other words, increasing the sequencing depth of PRIM-seq libraries will reveal 

more RNA-protein interactions of equal validity.  

3.4.2 PRIM v.1.0: An extensive human RPI network 

HEK1 library from PRIM-seq revealed 117,516 pairwise PRIs involving 8,440 RNAs 

and 7,691 proteins, which are collectively termed the RPIM v.1.0 network (Figure 3.3A). We 

developed a web interface to download, search, and visualize PRIM v.1.0 

(https://genemo.ucsd.edu/prim). PRIM v.1.0 consists of RPIs of different RNA species 

including mRNA, lncRNA, rRNA, ncRNA, tRNA, snRNA, snoRNA, miRNA, etc., with RPIs 

of lncRNAs and rRNAs being the most abundant after mRNA (Figure 3.3B). Altogether, 

PRIM v.1.0 supports 4,481 previously experimentally characterized RPIs according to 

RNAInter. Adapted from  Yu et al. (2008) and Venkatesan et al. (2009) (Venkatesan et al. 

2009; Yu et al. 2008), we calculated RPI framework parameters to evaluate PRIM v.1.0. 

PRIM v.1.0 presents a screening completeness of 42.18%, a sampling sensitivity of 56.69%, 

an assay sensitivity of 2.91%, and a precision of 9.37% (Table S3.3). 

We asked whether any functional groups of proteins are enriched in PRIM v.1.0. We 

applied GO enrichment analysis to RPIs of different RNA species and focused on GO terms 

that contained no more than 300 genes. We found ‘cytoplasmic translation, GO:0002181’is 

the most enriched GO term for proteins that interacted with rRNAs and tRNAs (Figure 3.3C, 

D), and ‘mRNA splicing, GO:0000398’is the most enriched GO term for proteins that 

interacted with snRNAs and miRNAs (Figure 3.3E, F). These subnetworks suggested the 

https://genemo.ucsd.edu/prim
https://www.sciencedirect.com/science/article/pii/S1097276521005748#bib75
https://www.sciencedirect.com/science/article/pii/S1097276521005748#bib66
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possibility of using RRIM v.1.0 to reveal cellular processes and signaling pathways that 

involve RNA-protein interactions. 

Enrichment of known RBPs in RPIM v.1.0 

We asked whether previously characterized RBPs and RPIs with the characterized 

RBPs are enriched in PRIM v.1.0. We used the proteins captured by RBDmap and pCLAP as 

the reference RBPs. In PRIM v.1.0, 1,410 proteins were detected by pCLAP (odds ratio=5.1, 

p-value<10-32, Fisher’s exact test) (Figure 3.4A), 438 proteins were detected by RBDmap

(odds ratio=8.9, p-value<10-32, Fisher’s exact test) (Figure 3.4B), and 279 proteins were 

detected by both pCLAP and RBDmap (odds ratio=12.9, p-value<10-32, Fisher’s exact test) 

(Figure 3.4C). As the threshold of calling RPIs from PRIM-seq increases, we observed 

increases in the odds ratios (Figure 3.4D). These results suggest previously characterized 

RBPs are enriched in PRIM v.1.0 and PRIM-seq derived RPIs with a higher confidence level 

are more likely to contain these RBPs. 

In PRIM v.1.0, 58,204 RPIs contain proteins captured by pCLAP (p-value<10-32, 

binomial test), 38,329 RPIs contain proteins captured by RBDmap (p-value<10-32, binomial 

test), and 32,876 RPIs contain proteins captured by both pCLAP and RBDmap (p-value<10-

32, binomial test) (Figure 3.4E). We also found that the highly interacted proteins in PRIM 

v.1.0 are more likely to be the RBPs detected by pCLAP and RBDmap (Figure 3.4F). By

assuming that RPIs with or without the previously characterized RBPs share the same 

probability of being detected, this suggests that PRIM-seq is more likely to detect RPIs that 

involve the previously characterized RBPs, further supporting that PRIM v.1.0 is enriched 

with the known RBPs as well as RPIs that involve these RBPs. 
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We proceeded to ask whether the proteins in PRIM v.1.0 are enriched with reads that 

are mapped to the RNA binding domains (RBDs) of the corresponding proteins. We obtained 

5,624 RBDs from pCLAP and RBDmap (Table S3.2). Out of the 1,278,091 read pairs from 

which the RPIs contain RNA binding proteins characterized by pCLAP or RBDmap, 319,951 

(25.03%) read pairs have their protein-end aligned to the RBDs on the proteins (p-value<10-

32, one-sided binomial test). Meanwhile, on individual protein level, we found 787 RBPs in 

PRIM v.1.0 being significantly enriched with reads mapped to RBDs (BH corrected p-

value<0.05, one-sided binomial test, Figure 3.4G). Assuming the exon regions of proteins 

share equal probabilities of being translated and interacting with RNA, these results suggest 

PRIM-seq is more likely to capture RPIs with RNAs interacting with the RNA binding 

domains of the proteins. 
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Figure 3.3: PRIM v.1.0 
(A) Entire PRIM v.1.0 network with proteins and RNA as nodes and RPIs as edges. RNAs are
colored in red, and proteins are colored in blue.
(B) Distribution of RNA-protein interactions of different RNA species in PRIM v.1.0
(C) Number of genes (x axis) of each GO term (dot) versus the enrichment level (y axis) of
this GO term for RPIs that involve rRNAs and tRNAs in PRIM v.1.0.
(D) Cytoplasmic translation RPI network that involves rRNAs and tRNAs in PRIM v.1.0.
(E) Number of genes (x axis) of each GO term (dot) versus the enrichment level (y axis) of
this GO term for RPIs that involve snRNAs and miRNAs in PRIM v.1.0.
(F) mRNA splicing RPI network that involves snRNAs, miRNAs, and lncRNAs in PRIM
v.1.0.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-protein-interaction
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gene-ontology
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gene-ontology
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Figure 3.4: Enrichment of characterized RBPs in PRIM v.1.0 
(A)-(C) Venn diagrams of comparing the RBPs captured by PRIM v.1.0 and the RBPs 
captured by pCLAP (A), by RBDmap (B), and by both pCLAP and RBDmap (C). 
(D) The odds ratio (y axis) resulted from comparing the RBPs captured in PRIM v.1.0 with
previously characterized RBPs with respect to nX (x axis).
(E) Percentages of previously characterized RBPs and percentages of RPIs with previously
characterized RBPs in PRIM v.1.0.
(F) Enrichment (y axis, left) and degree in PRIM v.1.0 (y axis right, black) of previously
characterized RBPs detected by pCLAP (blue), RBDmap (green), and both pCLAP and
RBDmap (purple) with regards to all human proteins ranked by their degrees in PRIM v.1.0
(x axis). The vertical colored bar indicates the protein’s presence in pCLAP (blue), RBDmap
(green), and both pCLAP and RBDmap (purple).
(G) Semi-volcano plot of previously characterized RBPs in PRIM v.1.0. The colored dots are
RBPs that are significantly enriched with RBD-aligned protein-end reads in PRIM v.1.0. Y
axis represents the negative log BH-corrected p-values derived from one-sided binomial test.
X axis represents the log fold change of the number of RBD-aligned reads over the number of
the rest of the reads.
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Identification of RBD-bound RNA motifs from PRIM v.1.0 

In PRIM v.1.0, 319,951 RPI read pairs have their protein-end aligned to RBDs 

captured by either RBDmap or pCLAP. For these RBD-aligned read pairs, we asked if we 

could identify any RNA motifs from their RNA ends. In PRIM v.1.0, 106,636 read pairs have 

their protein-end mapped to RNA Recognition Motif (RRM), 27,689 read pairs mapped to S1 

domain, 13,899 read pairs mapped to PseudoUridine synthase and Archaeosine 

transglycosylase (PUA),10,771 read pairs mapped to K Homology (KH), 3,930 read pairs 

mapped to DEAD domain and 1,211 read pairs mapped to Cold-shock Domain (CSD) (Mistry 

et al. 2021). We grouped the RNA-end reads by their protein-end aligned RBDs and identified 

30 RNA motifs with a length of 10 nucleotides for each RBD using all the RNA-end reads 

from PRIM v.1.0 as the background (Heinz et al. 2010). We asked if the RNA motifs derived 

from PRIM-seq are consistent with any of the previously characterized RBD-bound RNA 

motifs and if these RNA motifs can form any potential RNA secondary structures. We 

obtained experimentally derived RNA motif consensus sequences from ATrRACT (Giudice 

et al. 2016) and compared them with the PRIM-seq derived RNA motifs. As a result, 15 

PRIM-seq derived RNA motifs overlapped with 55 known consensus sequences for RRM 

(Figure 3.5A, B), 12 PRIM-seq derived motifs overlapped with 19 known consensus 

sequences for KH (Figure 3.5D, E) and 5 PRIM-seq derived motifs overlapped with 4 known 

consensus sequences for CSD (Figure 3.5G, H). We applied RNAstructure to these 

consensus-sequence-overlapped RNA motifs to look for potential RNA secondary structures. 

We found 1 RRM-binding RNA motif (GACCAGTGGT) (Figure 3.5C) and 1 KH-binding 

RNA motif (GCGCAAGCGC) (Figure 3.5F) capable of forming high confidence RNA 

secondary structures (Reuter and Mathews 2010). Altogether, PRIM v.1.0 contains RBD-
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binding RNA motifs that are supported by previous literatures and can form possible RNA 

secondary structures. This implied a strong potential of applying PRIM-seq to study the 

specificity of RNA second structures on different RBDs in the future. 
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Figure 3.5: RBD-bound RNA motifs from PRIM v.1.0 
(A) 15 PRIM v.1.0 RNA motifs overlapping with 55 RNA consensus sequences that are
known to bind to RRM.
(B) Examples of PRIM v.1.0 RNA motifs aligning with motifs derived from subsets of known
RNA consensus sequences for RRM.
(C) The predicted RNA secondary structure that can be formed by one RRM-bound PRIM
v.1.0 RNA motif (GACCAGTGGT).
(D) 12 PRIM v.1.0 RNA motifs overlapping with the 19 RNA consensus sequences that are
known to bind to KH.
E) Examples of PRIM v.1.0 RNA motifs aligning with motifs derived from subsets of known
consensus sequences for KH.
F) The predicted RNA secondary structure that can be formed by one KH-bound PRIM v.1.0
RNA motif (GCGCAAGCGC).
G) 5 PRIM v.1.0 RNA motifs overlapping with the 4 RNA consensus sequences that are
known to bind to CSD.
H) Examples of PRIM v.1.0 RNA motifs aligning with motifs derived from subsets of known
consensus sequences for CSD.
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3.4.3 Validation of PHGDH as an RNA-binding protein 

Although PHGDH has been captured by both pCLAP and RBDmap, it is not widely 

characterized as an RBP by other literature curated RBP databases like RBPDB (Cook et al. 

2011), starBASE (Li et al. 2014), hRBPome (Ghosh, Murugavel, and Sowdhamini 2018), 

ATtRACT (Giudice et al. 2016) and RBP2GO (Caudron-Herger et al. 2021). Yet, PRIM-seq 

identified 728 RPIs that involve PHGDH as the interacted protein (Figure 3.6A) and PHGDH 

is one of the proteins that is mostly enriched with RBD-aligned protein-end reads. We 

obtained 4 RBDs from pCLAP and RBDmap and compared their genomic positions with 

those of the protein-end reads that were mapped to PHGDH in PRIM v.1.0. 4,146 out of 

14,672 (28.26%) reads were aligned to PHGDH’s RBDs (BH corrected p-value<0.05, one-

sided binomial test) (Figure 3.6B). Within the 728 PRIM-seq identified PHGDH-RNA 

interactions, we found 132 interactions have more protein-end reads mapped to RBDs than to 

non-RBD regions on PHGHD in PRIM v.1.0. GO enrichment analysis was applied to the 132 

involved RNAs and found ‘DNA conformation change (GO:0071103)’ and ‘ribosome 

biogenesis (GO:0007046)’ are the two most enriched GO terms containing no more than 300 

genes (Figure 3.6C).   

To further validate PHGDH as an RNA binding protein, we carried out one RIP-seq 

experiment on PHGDH with HEK293T cells (Zhao et al. 2010). RIP-seq detected 801 RNAs 

that bind PHGDH using IgG as the background (CPM>100, fold change>2). Among them, 

113 RNAs were also identified by PRIM-seq as PHGDH’s binding target (odds ratio=9.9, p-

value<10-36, Fisher’s exact test) (Figure 3.6D). This suggests the enrichment of RIP-seq 

identified PHGDH-bound RNAs in PRIM v.1.0 (Figure 3.6E). We also selected several 

previously uncharacterized RNA-PHGDH interactions from PRIM v.1.0 for further 

http://amigo.geneontology.org/amigo/term/GO:0042254
http://amigo.geneontology.org/amigo/term/GO:0042254
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experimental validation with RIP-qPCR (Marmisolle, García, and Reyes 2018). The selected 

interactions are PTMA-PHGDH, HNRNPA2B1-PHGDH, BECN1-PHGDH, BCLAF1-

PHGDH, and ATF4-PHGDH. PTMA and HNRNPA2B1 are two of the most abundant RNAs 

that interact with PHGDH in PRIM v.1.0. BECN1, BCLAF1, and ATF4 are genes that play 

important roles in the regulation of the cell apoptotic process. For all the RNAs tested, we 

detected significantly more signals for their interactions with PHGDH than with the IgG 

background (p-value<0.05, student’s t-test) (Figure 3.6F). In other words, 5 of the 5 

previously uncharacterized RNA-PHGDH interactions have been validated by RIP-qPCR. 

Altogether, PHGDH’s role as an RNA binding protein was confirmed by RIP-seq and RIP-

qPCR. 
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Figure 3.6: PHGDH as an RNA-binding protein 
(A) 728 RPIs in PRIM v.1.0 that involve PHGDH as the protein. The 5 RPIs tested by RIP-
qPCR are labeled.
(B) Protein-end reads (blue) from PHGDH’s RPIs in PRIM v.1.0 aligned to the exons (grey)
of PHGDH. RNA-binding domains on PHGDH are colored in red.
(C) Number of genes (x axis) of each GO term (dot) versus the enrichment level (y axis) of
this GO term in the 132 RNAs that interact with PHGDH and have more protein-end reads
mapped to RBDs than to non-RBD regions in PRIM v.1.0.
(D) Venn diagrams of comparing PHGDH-interacted RNAs captured by PRIM v.1.0 and by
RIP-seq.
(E) Enrichment (y axis, left) and degree in PRIM v.1.0 (y axis right, black) of RIP-seq
identified PHGDH-interacted RNAs with regards to all the PRIM-seq identified PHGDH-
interacted RNAs ranked by the number of read pairs mapped to the interactions in PRIM v.1.0
(x axis). The vertical colored bar indicates the RNAs' presence in RIP-seq identified targets.
(F) Bar plots comparing the signal level of PHGDH’s interactions with 5 RNAs (PTMA,
HNRNPA2B1, BCLAF1, BECN1, and ATF4) captured by RIP-qPCR against IgG as the
background. ∗: p < 0.05, student’s t-test.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gene-ontology
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3.5 Discussion 

PRIM-seq provides a time-effective approach to identify RNA-binding proteins and to 

map RNA-protein interactions at the transcriptome scale in a single experiment. It does not 

require specialized antibodies to capture certain proteins or RNAs. Thus, PRIM-seq may be a 

useful profiling tool to assist users to study RNA-protein interactome and its associated fields. 

PRIM-seq provides evidence to support PHGDH as an RNA-binding protein. It adds 

several hundred interacting RNAs to PHGDH with 5 of them validated in another orthogonal 

experiment. The GO enrichment analysis on PHGDH’s interacting RNAs implies PHGDH’s 

role in regulating cell death as dysfunctions in two of the most enriched terms, ribosome 

biogenesis and DNA conformation change, can both induce the apoptosis process (Stedman et 

al. 2015; De Zio, Cianfanelli, and Cecconi 2013) The RNA binding peaks on PHGDH, as 

revealed by RPIM-seq, cover both known RNA-binding domains and unknown regions. We 

anticipate further experiments to confirm PHGDH’s function as an RBP as well as to 

characterize new RBDs on PHGDH. A similar analysis may also be extended to study other 

uncharacterized RNA binding proteins in PRIM v.1.0. 

Regarding the limitation of PRIM-seq, first, we did not experimentally label either the 

protein-end or the RNA-end of the interaction pairs in the current protocol. This may yield 

valid chimeric read pairs that are false positives. Second, we did not consider the cases where 

RNA interacts with its own translated protein. Besides, PRIM-seq is not designed to 

specifically capture the RNA sequences that attach to the RBDs. This sets limitations on the 

study of RBD-bound RNA motifs. Since the fragmentation of the chimeric sequences 

occurred randomly during library preparation, in theory, the RNA sequences with RBD-bound 

motifs share the same probability of being captured by PRIM-seq as any other RNA 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/transcriptome


146 

sequences. This is different from the enrichment of RBDs from the protein-end. Because the 

protein can be partially translated from the RNA sequence that contains the RBD information 

so that they are more likely to be bound by free RNA and thus to be detected by RPIM-seq. 

We anticipate an improvement in the experiment protocol where the specific RNA sequence 

that binds to the RBDs can be tagged and sequenced to enable a better study on RNA motifs. 

3.6 Supplementary information 

Supplementary figures 

Figure S3.1: Precisions and recalls of PRIM-seq identified RPIs 
PRIM-seq derived RPIs from HEK1 under the protein search space defined by RBP-0 (A-C), 
RBP-1 (D-F) and RBP-2 (G-I) were compared to three types of known RPIs that were 
retrieved from RNAInter, including all the RPIs that were identified by eCLIP, iCLIP, and 
CLIP-seq (columns). The precisions of recalls of the RPIs identified from PRIM-seq’s 
permutation dataset are marked in grey dots. The permutations were based on only the genes 
involved in PRIM-seq detected RPIs under the respective protein search space. 
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Figure S3.2: PRIM-seq identified RPIs with subsampling 
Number of PRIM-seq derived RPIs from HEK1 under the protein search space defined by 
RBP-0 (A), RBP-1 (E) and RBP-2 (I) at a subsampling rate of 100% (red), 75% (blue), 50% 
(orange) and 25% (green). Precision-recall curves of RPIs identified from HEK1 under the 
protein search space defined by RBP-0 (B-D), RBP-1 (F-H), and RBP-2 (J-L) at a 
subsampling rate of 100% (red), 75% (blue), 50% (orange) and 25% (green), compared to 
three types of PPIs that are derived from other experimental methods, including all the 
RNAInter RPIs that are detected by eCLIP, iCLIP, and CLIP-seq under the respective protein 
search space. 

Supplementary tables 

Table S3.1: Summary of PRIM-seq library 
The total number of read pairs, the number of read pairs mapped to genes and the number of 
non-duplicate valid chimeric read pairs with one end sensely mapped to a gene and one end 
antisensely mapped to a protein-coding gene were listed in the last three columns.  

Library ID HEK1 
Cell line HEK293T 
Number of read pairs 305,357,086 
# of mapped read pairs 158,352,224 
# of non-duplicate valid chimeric read pairs 5,932,641 
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Table S3.2: The datasets used 
The datasets used in this work, including PRIM-seq derived RPIs, RPIs curated in RNAInter, 
and RNA-binding proteins (RBPs) with captured RNA-binding domains (RBDs).   

Name Description # RPIs # RNAs # proteins 
PRIM v.1.0 The RPIs derived from PRIM-seq library of HEK1 117,516 8,440 7,691 
RNAInter All the experimentally-derived human RPIs in 

RNAInter, downloaded from 
http://www.rnainter.org/download/  

1,342,821 33,674 13,538 

eCLIP Enhanced UV crosslinking and immunoprecipitation 
detected RPIs that are included in RNAInter 

301,020 14,655 133 

iCLIP Individual-nucleotide resolution UV crosslinking and 
immunoprecipitation detected RPIs that are included in 
RNAInter 

126,345 15,669 37 

CLIP-seq Crosslinking immunoprecipitation associated to high-
throughput sequencing detected RPIs that are included 
in RNAInter 

109,706 15,474 46 

#RBPs #RBDs 
pCLAP Peptide crosslinking and affinity purification detected 

RBPs and RBDs, by Mullari, Lyon, Jensen, & 
Nielsen, 2017 

2,043 4,751 

RBDmap RBDmap detected RBPs and RBDs, Castello, by 
Fischer et al. 2016 

529 1,611 

Table S3.3: PRIM v.1.0 framework 
Estimated screening completeness, sampling sensitivity, assay sensitivity, precision for PRIM 
v.1.0, and estimated RNA-protein interactome size based on PRIM v.1.0. The background 
consists of random RPIs formed by permutating the match of RNAs and proteins in PRIM 
v.1.0.

PRIM v.1.0 Background 
Screening completeness 42.18% N/A 
Sampling sensitivity 56.69% N/A 
Assay sensitivity 2.91% 0.16% 
Precision 9.37% 0.98% 
Human RNA-protein interactome size 9.5*106 N/A 

http://www.rnainter.org/download/
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3.7 Materials and methods 

SMART-display 

The SMART-display library from HEK 293T cells was prepared following the same method 

as described in section 1.7. 

Purification and Immobilization of Display Products 

75 uLs of Dynabeads™ MyOne™ Streptavidin T1 (Thermo Fisher Scientific, 65601) 

were prepared by washing twice in an equivalent volume of 1x PBS pH 7.4 (Thermo Fisher 

Scientific, 70011044). The IVT reaction was added to the suspended beads in 1.8 mLs of 1x 

PBS pH 7.4 (Thermo Fisher Scientific, 70011044) with 0.1% Triton™ X-100 (Sigma-

Aldrich, T8787-50ML) and incubated for 1 hour with rotation at room temperature. D-Biotin 

(Ivitrogen, B20656) was added to 2.25 uM and incubated at room temperature for 10 minutes 

with rotation. The beads were washed 2 times for 5 minutes with 500 uLs 1x PBS pH 7.4 with 

0.1% Triton™ X-100 (Sigma-Aldrich, T8787-50ML). 

DNA Synthesis 

50 uLs of first strand reaction was mixed per sample containing 500 U of SuperScript 

II Reverse Transcriptase (Thermo Scientific, 18064014), 1x SuperScript II FS Buffer, 5 mM 

DTT, 1 uM dNTP mix (NEB, N0447S), 1 M Betaine (Sigma-Aldrich, 61962), 6 mM MgCl2, 

500 pmol of End Capture TSO (5’ /5dSp/AGT AAA GGA GAC CTC AGC TTC ACT GGA 

rGrGrG 3’), and 40 U of SUPERase• In™ RNase Inhibitor. The mix was added to the beads 

and incubated at 42°C for 50 minutes with agitation, and then cycled 10 times at 50°C for 2 

minutes followed by 42°C for 2 minutes. The beads were washed 2 times for 5 minutes with 

500 uLs 1x PBS pH 7.4 with 0.1% Triton™ X-100.  
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RNA-protein Interaction 

The bead bound display proteins were suspended in 200 uLs RNA Binding Buffer (10 

mM HEPES (Fisher Scientific, BP299100), 50 mM KCl , 4 mM MgCl2, 4 mM DTT, 0.2 mM 

EDTA, 7.6% glycerol (Invitrogen, 15514011)). 2 ugs of total RNA, prepared as described 

above, was added the display protein samples with the following conventions: positive 

reaction: no treatment display proteins and linker ligated total RNA, no linker Control: no 

treatment display proteins and no linker total RNA, and no bait control: Proteinase K digested 

display proteins and linker ligated total RNA. The mixtures were incubated at room 

temperature with rotation for 1 hour. 800 uLs of Binding Buffer was added to each reaction to 

bring the volume to 1 mL, and they were rotated for an additional 10 minutes at room 

temperature.  

Crosslinking and Washing 

Crosslinking was performed at room temperature for 10 minutes at a final 

concentration of 1% formaldehyde (Thermo Fisher Scientific, 28906). The reaction was 

quenched with 125 mM glycine (Sigma-Aldrich, 67419-1ML-F) with rotation for 5 

minutes. The beads were washed 2 times each for 5 minutes with: 500 uLs Urea wash buffer 

[50 mM Tris-Cl pH 7.5, 1% NP-40, 0.1% SDS,  mM EDTA, 1 M NaCl, 4 M Urea (Sigma-

Aldrich, U5378-1KG)], Low Salt wash buffer [0.1% SDS (Invitrogen, AM9820), 0.1% Triton 

X-100, 2 mM EDTA, 20 mM Tris-HCL ph 8 (Invitrogen, 15568025), 150 mM NaCl], and 1x

PBS pH 7.4 with 0.1% Triton™ X-100. 
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Second Strand Synthesis (Display Complex) 

100 uLs of first strand reaction was mixed per sample containing 20 U DNA 

Polymerase I (NEB, M0209S), 1x NEBuffer 2, 2.4 mM DTT, and 0.25 mM dNTP mix. The 

mix was added to the beads and incubated at 37°C for 30 minutes with agitation. The beads 

were washed 2 times for 5 minutes with 500 uLs 1x PBS pH 7.4 with 0.1% Triton™ X-100. 

Restriction Digestion 

All samples were digested with 10 U of BbvCI (NEB, R0601S) in 1x CutSmart Buffer 

at 500 uLs. The digestion was incubated at 37°C for 1 hour with agitation. All samples were 

then washed 2 times for 5 minutes with 500 uLs 1x PBS pH 7.4 with 0.1% Triton™ X-100.  

Proximity Ligation 

Proximity ligation was performed with 20,000 U of T4 DNA Ligase in 1 mL of 1x T4 

DNA Ligase Buffer (NEB, M0202M). The reaction was incubated with constant rotation for 

30 minutes at room temperature. The enzyme was inactivated before the beads were gathered 

by heating to 65°C for 10 minutes. The beads were washed 2 times for 5 minutes with 500 

uLs 1x PBS pH 7.4 with 0.1% Triton™ X-100. 

Protein Digestion and Reverse Crosslinking 

The streptavidin beads were suspended in 200 uLs TAE buffer (Invitrogen™, 

AM9869) with 0.8 U of Proteinase K (NEB, P8107S) and incubated at 70°C for 30 minutes. 

The beads were washed 2 times for 5 minutes with 500 uLs 1x PBS pH 7.4 with 0.1% 

Triton™ X-100. 
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cDNA Synthesis (RNA End) 

50 uLs of first strand reaction was mixed per sample containing 500 U of SuperScript 

II Reverse Transcriptase, 1x SuperScript II FS Buffer, 5 mM DTT, 1 uM dNTP mix. The mix 

was added to the beads and incubated at 42°C for 50 minutes with agitation. The beads were 

washed 2 times for 5 minutes with 500 uLs 1x PBS pH 7.4 with 0.1% Triton™ X-100.  

Second Strand Synthesis (RNA End) 

100 uLs of first strand reaction was mixed per sample containing 20 U DNA 

Polymerase I, 1 U RNase H (NEB, M0297S), 1x NEBuffer 2, 2.4 mM DTT, and 0.25 mM 

dNTP mix. The mix was added to the beads and incubated at 37°C for 30 minutes with 

agitation. The beads were washed 2 times for 5 minutes with 500 uLs 1x PBS pH 7.4 with 

0.1% Triton™ X-100. 

Sequencing Library Generation and Sequencing 

The DNA was released from the beads with the NEBNext® Ultra™ II FS DNA 

Module (NEB, E7810S) using twice the reaction volume and a fragmentation time of 5 

minutes. The end repair step was not performed. Libraries were then generated with the 

NxSeq® UltraLow DNA Library Kit (Lucigen, 15012-1) up to the final AMPure XP Bead 

purification before amplification. Each sample was eluted in 50 uLs Nuclease-free water, and 

added to 10 uLs of Dynabeads™ MyOne™ Streptavidin T1beads suspended in 50 uLs 1x 

PBS pH 7.4 with 0.1% Triton X-100. The selection was performed at room temperature for 1 

hour. Beads were washed 2 times with 500 uLs Low Salt buffer (0.1% SDS, 0.1% Triton™ 

X-100, 2 mM EDTA, 20 mM Tris-HCI Buffer, pH 8, 150 mM NaCl), 2 times with 500 uLs

1x B&W Buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1M NaCl), and 2 times with 500 
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uLs 1x PBS pH 7.4 with 0.1% Triton™ X-100. Library amplification was then performed 

with the NxSeq® UltraLow DNA Library Kit as directed. Each library was paired end 

sequenced for 100 cycles on each end on an Illumina HiSeq 4000 or NovaSeq 6000. 

RNA immunoprecipitation (RIP) 

HEK293T cells were harvested from two 10 cm dishes and lysed in the lysis buffer 

(50 mM Tris-HCl, pH 7.5 (Invitrogen™, 15567027), 100 mM NaCl (Thermo Fisher 

Scientific, AM9759), 1% Triton X-100 (Sigma-Aldrich, T8787-50ML), 0.1% SDS 

(Invitrogen™, AM9820), 0.5% Sodium Deoxycholate (Sigma-Aldrich, 30970-25G), and a 

protease inhibitor cocktail (Roche, 4693159001)) together with 200 U of the RNase inhibitor, 

RNaseOUT™ (40 U/µL, Invitrogen™, 10777019) on ice for 30 minutes with occasional 

mixing. Cell lysates were centrifuged at 14k rpm for 20 minutes. Protein A Dynabeads 

(Invitrogen™, 10001D) were prepared by incubating 5 µg of Rabbit anti-PHGDH IgG 

(Proteintech, 14719-1-AP) or 5 µg of Rabbit IgG isotype control (Abcam, AB37415) with the 

pre-washed beads at 4℃ for 2-3 hours. RNA immunoprecipitation (RIP) was conducted by an 

incubation of the supernatants of the cell lysates with pre-equilibrated Protein-A Dynabeads at 

4˚C overnight. Beads were sequentially washed twice with high salt buffer (50 mM Tris-HCl, 

pH 7.5 (Invitrogen™, 15567027), 1 M NaCl (Thermo Fisher Scientific, AM9759), 1 mM 

EDTA (Research Products International, E14100-50.0), 1% Triton X-100 (Sigma-Aldrich, 

T8787-50ML), 0.1% SDS (Invitrogen™, AM9820), and 0.5% Sodium Deoxycholate (Sigma-

Aldrich, 30970-25G)) and wash buffer (20 mM Tris-HCl, pH 7.5 (Invitrogen™, 15567027), 

10 mM MgCl2 (Invitrogen™, AM9530G), and 0.2% Tween-20 (Sigma-Aldrich, P9416-

100ML)). Complexes were released from beads by incubation with 10% PK (Thermo 

Scientific™, EO0491) in PK buffer (50 mM Tris-HCl, pH 7.5 (Invitrogen™, 15567027) and 
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10 mM MgCl2 (Invitrogen™, AM9530G)) at 50℃ for 40 minutes. The supernatant was 

collected, and RNA was extracted by TRIzol Reagent (Invitrogen™, 15596026) followed by 

chloroform (Sigma-Aldrich, C0549-1QT). The mixtures were centrifuged at 14k rpm for 15 

minutes at 4℃, the upper layer was collected. RNA was precipitated by the addition of 3 µL 

of glycogen (Thermo Scientific™, R0561), 50% of 2-propanol (Sigma-Aldrich, I9516-

500ML), and 10% of 3 M sodium acetate, pH 5.5 (Invitrogen™, AM9740) with an incubation 

at -80℃ overnight. The RNA was then pelleted by centrifugation at 14k rpm for 30 minutes at 

4℃, washed with 1 mL of 75% ethanol (Sigma-Aldrich, 493546), and air-dried. The RNA 

was suspended in 20 µL of UltraPure™ DNase/RNase-Free Distilled Water (Invitrogen™, 

10977015). 

Library prepareation & Sequencing 

A library was prepared by cDNA synthesis, amplification, fragmentation, and adaptor 

ligation using NEBNext® Low Input RNA Library Prep Kit (NRB, E6420) and sequenced 

150 base pairs from each end on an Illumina MiniSeq. 

RT-qPCR 

To perform a reverse transcription reaction, 9 µL of the eluted RNA, 50 ng random 

hexamers (50 ng/µL, Invitrogen™, 2039360), and 10 nmol dNTP mix (NEB, N0447S) were 

mixed. This reaction was brought to 65°C for 5 minutes to denature RNA and then quickly 

chilled on ice. The following reaction was performed by sequentially adding 2 µL of 5X First-

Strand buffer, 0.2 µmol of DTT, 40 U of RNaseOUT™ (40 U/µL, Invitrogen™, 10777019). 

The reaction was incubated at 25 ℃ for 2 minutes for annealing. cDNA was synthesized from 

the eluted RNA by adding 200 U of SuperScript™ II Reverse Transcriptase (Thermo 

Scientific™, 18064014) into the mixture to a 20 µL final volume and incubating at 25 ℃ for 
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10 minutes, 42°C for 50 minutes, and 70 ℃ for 15 minutes to terminate the reaction. The 

reaction was chilled on ice.  

Three replicates of 20 µL qPCR reaction containing 1x Power SYBR® Green PCR 

Master Mix (Thermo Fisher Scientific, 4367659) and 0.6 µM of each of the gene specific 

primers were prepared for the PHGDH IP sample and the IgG IP control to test 6 genes (1 

housekeeping gene: GAPDH; 5 target genes: PTMA, HNRNPA2B1, BECN1, BCLAF1, and 

ATF4). The qPCR assay was run on a QuantStudio™ 3 Real-Time PCR System (Applied 

Biosystems™, A28567) with an initial denaturation of 95 °C for 5 minutes, 40 cycles of 95 

°C for 10 seconds and 60 °C for 30 seconds. A melt curve was run to assess the purity of the 

qPCR products. 

Quantification and Statistical Analysis 

Processing PRIM-seq read pairs  

The following data processing steps are implemented in the PRIMseqTools pipeline: 

https://github.com/Zhong-Lab-UCSD/PRIMseqTools. The sequencing reads were subjected 

to Cutadapt 2.5(Martin 2011) to remove the 3' linker sequence and the 5' adapter sequence. 

The remaining read pairs were subsequently subjected to Fastp 0.20.0(Huang et al. 2018) to 

remove low-quality reads (average quality per base < Q20) and short reads (<20 bp). The 

remaining read pairs were subsequently mapped to RefSeq transcripts (O'Leary et al. 2016) 

(based on GRCh38.p13, NCBI Homo sapiens Annotation Release 109.20211119) using 

BWA-MEM 0.7.12-r1039 (Li 2013) with the default parameters. A read was regarded as 

mapped to a gene if this read was mapped to any of the Refseq transcripts of this gene. The 

read pairs where one end was sensely mapped a gene and the other end was anti-sensely 

mapped a different protein-coding gene were identified. Any duplicated chimeric read pairs 

https://github.com/Zhong-Lab-UCSD/PRIMseqTools
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were subsequently removed to obtain non-duplicate valid chimeric read pairs. 

Test of association between a gene pair and the chimeric read pairs 

A Chi-square test was carried out on every RNA-protein pair. The null hypothesis is 

that the mapping of one end of a chimeric read pair to an RNA is independent of the mapping 

of the other end of this chimeric read pair to a protein. The contingency table of this 

association test is given in Figure 3.2A. FDR computed from the Benjamini-Hochberg 

procedure was used to control for family-wise errors. 

Downloading RNAInter data and its subsets 

RPIs were downloaded as a zipped TXT file from RNA Interactome Database 

(RNAInter) at http://www.rnainter.org/raidMedia/download/Download_data_RR.tar.gz. 

eCLIP, iCLIP and CLIP-seq RPIs were identified by the label of ‘Homo sapiens’ in both 

‘Species1’ and ‘Specie2’ columns and by the corresponding method labels in the ‘weak’ 

column of the downloaded TXT file. 

Downloading and processing RNA binding domains 

Protein sequences of RBDs that were captured by either RBDmap (Castello et al. 

2016) or pCLAP (Mullari et al. 2017) were obtained from the supplementary tables of  their 

corresponding journal paper. Exonerate 2.4.0 (Slater and Birney 2005)Was applied to map the 

protein sequences back to the proteins and to get the genomic coordinates of the RBDs.  

Identification of RNA motifs  

The ‘homer2 denovo’ function of HOMER (Heinz et al. 2010) was applied to identify 

differential RNA motifs using all the RNA-end reads from PRIM-seq identified RPIs in 

PRIM v.1.0 as the background. 

http://www.rnainter.org/raidMedia/download/Download_data_RR.tar.gz
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Downloading RNA consensus sequences 

RNA consensus sequences that were known to bind specific RBDs were downloaded 

as a TXT file from a database of RNA binding proteins and associated motifs (ATtRACT) 

(Giudice et al. 2016) at https://attract.cnic.es/download with ‘Organism’ specified as ‘Homo 

sapiens’. 

Prediction of RNA secondary structures 

RNAstructure 1.0 (Reuter and Mathews 2010) was applied to PRIM-seq identified 

RNA motifs to detect potential RNA secondary structures. 

GO term analysis  

GO term enrichment analysis (Ashburner et al. 2000) was based on hypergeometric 

tests between the genes annotated by every GO term and the PROPER v1.0 nodes. FDR 

computed from the Benjamini-Hochberg procedure was used to control for family-wise 

errors. The entire PRIM v1.0 was plotted with Gephi 0.9.2 (Bastian, Heymann, and Jacomy 

2009). All other network figures were plotted with Cytoscape (Shannon et al. 2003).   

Calculating screening completeness, sampling sensitivity, assay sensitivity, precision, 

and protein interactome size for PRIM v1.0 

Screening completeness, sampling sensitivity, assay sensitivity, precision, and protein 

interactome size were defined by Yu et al. (Yu et al. 2008) and Venkatesan et al. (Venkatesan 

et al. 2009). We calculated these metrics for PROPER v1.0 based on the methods described 

by Venkatesan et al. (Venkatesan et al. 2009) and the following positive reference set (PRS), 

random reference set (RRS), and orthogonal validation sets.  

Positive reference set (PRS) 

The RPIs from RNAInter that have both RNA and protein under the search space of 

https://attract.cnic.es/download
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PRIM v.1.0 and were detected by strong detection methods (‘strong’ column not equal to 

‘N/A’ in the downloaded file). These 7,207 RPIs are used as our PRS.  

Random reference set (RRS) 

Following Venkatesan et al. (Venkatesan et al. 2009), RRS was randomly sampled 

from PRIM v.1.0’s search space outside the PRS to contain the same number of pseudo-RPIs 

as PRS.  

Orthogonal validation assay 

PAR-CLIP (Danan, Manickavel, and Hafner 2016) is used as the orthogonal validation 

assay. The PAR-CLIP data were retrieved from RNAInter based on the label of ‘Homo 

sapiens’ in both ‘Species1’ and ‘Specie2’ columns and on the corresponding method label in 

the ‘weak’ column of the downloaded TXT file. 

Identifying PHGDH’s binding RNAs from RIP-seq 

fastp 0.20.0 was used to remove adaptors and raw reads with sequencing quality less 

than 15 from the sequencing library. bbmap 38.18 (Bushnell 2014) was used to remove 

human rRNA sequences. Clean reads were then mapped to human reference genome (based 

on GRCh38.p13, NCBI Homo sapiens Annotation Release 109.20211119) using STAR 2.7.9a 

(Dobin et al. 2013). Unaligned and secondary alignments were removed using samtools 1.8. 

Gene expression levels were counted using featureCounts 1.6.4 (Liao, Smyth, and Shi 2014) 

and CPM (counts per million) was calculated with customized code in R. PHGDH’s binding 

RNAs were identified if the CPM of the gene is larger than 100, and if the CPM fold change 

of the gene over the IgG background is larger than 2. 
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