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VENEZIANO MODELS FOR VIRTUAL COMPTON SCATTERING*

*¥%
Richard C. Brower, Arnulf Rabl, and J. H. Weis

Lawrence Radiation Laboratory
University of California
Berkeley, California

August 12, 1969

SUMMARY

- Recently proposed Veneziano-type models for Compton

scattering of neutral and charged currents are studied.

. Current commutators, sum ruleé, large q? behavior and

factorizability are investigated. A new model is proposed
which has good behavior in all these respects. Electro-
production phendmenology and electromagnetic mass differences

are discussed.
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~1. < INTRODUCTION

A model for vector current amplitudes consistent with the N-point
beta-function model (generalized Veneziano model) of the hadron bootstrap
has recently béenbproposed (1). The amplitudes for one.or two vector
currents and N hadronébsatisfy exactly the constraints of current
conservatioﬁ (CVC) and current algebré (CA). However, it is only a
leading-brder ﬁodel,-sincé the form factors have only single vector-meson
poles and factorization holdé only for leading trajectofies. In this‘
paper we study the two-~current émplitudes of II in greatef'detail for the
simple case of two hadrons (virtual Compton scattering).

" The results of IT are.specialized to virtual Compton scattering'
off pions in section 2.1. The current com@utators implied hy. these

amplitudes are studied through the Bjorken limit (2) in section 2.2. The

large q? behavior of the‘amplitudes_is studied in section 2.3. Since.

the amplitudes have onlyvsingie veétor-mesonbpoles in q?, it should not
: o | , 2
be surprising that they are badly behaved for large gq . Better large

2 R R . ' . :
q behavior obtains in models with many vector-meson poles recently

proposed by several éuthoré (3-6); howevef, they fail to.satisfy all the
Cve, CA,vand leadiﬁg tfajectory factorization constraints. We discuss
these models in section 3.1. In seétion 3.2 we give "hybrid amplitudes"
which-combine the good features of the moéels of IT and Réfs. (3-6).
However, all presént models'havé featurés which we do_hot expect to find
in a completé'solutioh, e.g., slowly falling-form factérs (e.g.,"—%—)

4
and fixed poles in the current-pion channel (s-channel). Finally

we .discuss Pomeranchuk exchange in virtual Compton scattering in section 4.1,

f
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and suggest a modification of the amplitudes of II which yields the
scaling property for both electroproductiop structure funcfions. Mass
differences for pions and kaons are discussed (sectidn'4.2) in the model
of IT, but we find that at present there is too much ambiguipy_to allow

a reliable calculation.

.S
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2. LEADING ORDER CURRENT ALGEBRA MODEL

2.1. The Amplitudes

We first state the amplitudes obtained in IT for the scattering
of a vector current of invariant mass q12 from a pion to produce a

‘ . 2 . . s . ,
current of mass q2 . Energy momentum conservation is given by
L1 . : i ) + .:

here q; are the current momenta and 1 the pion momenta. Spin and
isospin conventions and channels are defined in Fig. 1.
The amplitudes may be expanded in terms of amplitudes

of definite t-channel isospin (7), yielding, for two isoscalar currents,

(2.2) | v (0,00
' ed

Mol

s v ‘(O)

)

and for two isovector currents,

WV (L) 1 & quv(0)

abed 3 ab ed ’
(2.3) , ‘ ' + i(s 5 . -5 5. ) MY (1)
SRR C ’ 2'Yae bd ad " be :
s, 8. +8 8 -25 5 ) (2)
" 2'ac bd . Tad be 3 Tab’ed’
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The isoscalar~isovector transition vanishes due to G-parity conservation.

From the internal symmetry factors of Ii,(eq. II. 3.20) we easily obtain

(2.14) WV (B) L vy MHV(tﬁ) P V(s) = Y (B)
(2.5) _ Muv,(O) _ ;QMuv(us) . %vMu? () )

(2.6) Y (D) ¥ gey - V()

(2.7) o (2) M”V(us) ,

where MHY(xy) has resonances in only the x and .y channels. As an
illustration, we mote that (2.5) to (2.7) are obtained from a reduction .

of the expression

Y (1’1)=.

1 S RS N 1 1 uv

- — — — —— '\, 2.

: Tr[rc(g T )& 7 )T, o (E ) Ta)rc]rn (st)

abed _ . < v

e e S e ‘],-uv* ,
+,2‘Tr Tc(2 ?b)(E_Ta)Td + Td(e Ta)(2 Tb)TC “-,(t?) _
L aele (21 e (L EANRNIE S R
+‘2-Tr[Tc(2 LAAC Tb),f Tc(z )73 Ta)] M (us) .

The absence 0f exotic resonances is exhibited clearly by (2:7).'
Tt is also convenient to expand the Vi in terws of ‘invariant

aplitudes, as follows:



(2.9) ”Mo(st)
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WY . MV L pHpY SN
MY = Mg +M1PP +M2q2P + M

TS
0 Fra,

3

. LV

(2.8) + Mquuqlv +M5ql“1>v + M6q1“qlv-+ 1P,
PO N RV
ey MY e,

her - o -
vhere P ___2(pl pg). .

From the orbital factors of II (eqs.'II. 3.3 and II. 3.19) we find, after

converting to the notation of (2.8),

2r(a PIr(e a3y 10,) + (apea, )]

- 2mV2 B(2-a, ) - F(t)

M, (st) :-nF(qJ_Q)F(q;) B, 2-0,) + 1+F<t)[B(-aS,'é-at> -3(-a, 1)],
hy(st) = - dy(st) = b(a)?Ir(a,2) (B, 1) - £ B(=ry, 2-a)]

- QF('b)[B(-OCSI,. 2-04_t) - B(-O!;, l)] 5]
iy (st) = 1m(a,2)R(,2) B0y, o) + F B, 2-0)]

i F(t)[B< Ay 2-ay) - B, l)]’
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(2.9 cont.)
(et) = 2r(a,")[F(0,) -1]Ba0y, 1) : .‘
M6(st) = 2F( qlz)[F(qe?) -i][B(l-ds, - oz;c) - % B(l,-as, 1—at)] , » |
M (st) = -28(q, ) F(q,") -1] B(1a, 1)

u(st) = 2F(a,”)[Flq,) -1][‘13(1-'055,‘ <) - % B(1-a, 1-qt)] -

yy(st) = 7(a,2)F(q,) By, @)

. "J‘g“ F(qlg)F(qge)[as_ 'B(‘-as, 1-at) + (1-o:t) B(1-ct_, —ozt)]
: -[F(qlg) +-F(vq22)'] B(2-as, 'O‘t) 5

(2.10) Mo(us) = 2F(q12)F(bq22) B(l—ozu, l-ozs) R | , B _
My (us) = Wr(qy")F(a)") Bl-ay, -a)
mg(us) = - MB(us) = 2F(q12)?“(q22‘)[3(—au, i-as) - B(l-o:u, -as)] o

m,(ue) = 4P(q,*)F(e,?) [B(l-ozu,, 1) - § B(-a, ,as>] )

(us) = Hglus) = M(us) = Mg(us) = Mg(us) = 0 ;
where _ | . - - o ' | .

(2.11) o P(x) = —E
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m, 1s the common I = 0O (w) and I = 1 (p) vector-meson mass, and B is
the usual beta function. The units have been chosen so that the trajectory

slope b in
(2.12) Q. =a, +bs,
: i i i

is equal to unity."The Mi(tu) are obtained from (2.9) by the replacement

s <> and an overall sign change in MZ’ MB’ M5, and M_; this corresponds

75

£ the substitution p,;*~ P, in (2.8) and (2.9).

We mention briefly the fdilqwing features of the amplitudes
M, (xy): o | |
| (i) They have the correct kinematic behavior, e.g., no ancestor
trajectories, correct helicity-fiip factors, etc. This is assured by the
method of constructién of IT and the cbfresponding properties of the
N-point beta functions. |

(ii) There are simple poles‘corresponding to physical particles
in the variables s,t, and u. The -corresponding leading Regge tragectories
are; for the t-channel,

even signature « £, [IG(JP) = O+(2+)] R

0dd signature - p [1*( 1]
lee, a =1+ (t-mva); and for the s-channel and u—éhannel,
| even signature - 1 [l-(O—)-v s
 odd signature - 2 [Of(1+)7 ,
l.e., o, = sfmg, Q, = u-m2, where mnm ;s fhe pion mass.
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(iii) At qi2 = mv2 they reduce to the corresponding amplitudes
for vector mesons in the simple N-point beta-function model discussed in
IT.

(iv) The current algebra divergence conditions,

(2.13) qlu_M“” (1) w(t) B,
qluM‘.lv (1) =0, 1 =‘6) 0, 2,
~are satisfied exactly.

(v) . The sum rule of Adler (8),Dashen and Gell-Mann (9), and

Fubini-(iO),
(2.1u).". Im Ml(l) (s;t; ql?,vq22>vqs’= -8z P(t) ,

is satisfied exactly. In addition %o the fixed pole at J =1  ip the
t-channel anguiar momentuﬁ plane impliéd'by-(Q;lh) (11), wé have ‘a
Kronecker-del£a>singularit& at J=1 (12). The symmétric amplitudés
have corresponding singularities at  J = O; but these may well éhange
when nohleading trajectories are properiy treated. Finally, there are
fixed poles in the s-channel angular momentum plane at J =.-1, -2, :--,
as noted by Brower and Halpern (13). All of these are due to the term

F(t) B(~a , 1) in M (st) [or, similarly, in ,Mi(tu)],.
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(vi) There are the foliowing pathologies, as can be seen from
(ii) and (iii). A spin-zero ghdst bf imaginary mass in the t-channel,
the absence of the Al, ®; and A2 trajgctories aﬁd the presence of a
spurioﬁs O-(l+) trajectory in the s and wu channels, various ghoéts
with imaginary coupling éonstants on nonlead;ng trajectories, and the lack

of factorization on nonleading trajectories.

2.2. Current Commutators

We now study the current commutation relations implied by the

ampliﬁudes given above. The time~time and time-space commutators‘can be

"defined phenomenoldgically by the divergencés ql“Muv, as was done in- I
“and IT (see, e.g.; I.2.12, I.2.13). Here we define the commutators through
~ the Bjorken limit (2). 'This'allows as to study the space-space commutators

: as'well.

If local current operators Vau(x) exist, the covariant current

correlation tensor is given by

(2s) By fat e-iQ°X<o|'T*f{va“<-;- x), v V(-2 x>}|<pi;c><p2,d>>,

and similarly for isoscalar currents (14). In (2.15) we have taken

(2.16) = &ay-a), @= (ayr a) = = (p+ By) -

Taking the limit |q | >« with q,q", and P* rixed, we £ind (2)
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(2.17) M“bcd(l’l')_'—*‘l d5x el

lgpl »= %o

©Iv (0, 53, v'(0, - 3 )1I(py,e)(rya))

- - ai§' di(x) eia;z(OI[%a“(O

+ «es + polynomial in 9

%), V0, = 3 D)1y, e)(py, )

\a
ol

We now compare {2.17) with (2.3) to (2.10). From the relations

P ;>—>
Qs = S~m —qo + 2qOP E t - qg = ngq .,

: 2 2 1 =2 = >
’ozu—u-ngO-quPo—Ht-q +2Pg_,

it is clear that the terms (qo)-k in (2.17) can arise only from the
fixed péle contributions in (2.9).. For the momentvwe‘therefore neglect'the
Regge terms in (2. G) and Mpv(us), the behavior of these terms in the
Bjorken 11m1t is discussed.in the follow1ng subsectlon.

For M“v(l)= M“V(st) - M“v(tu), the only amplitude antisymmetric

in a and b, we obtain

)

(2.18)  M*V(st) - M“V(tu)——-> = 4F(t) [P+ Pp'nv - nPynY]

oo = %
wheré ' |
(2.29) " = (1,0,0,0) :

From (2.3), (2.17), and the relation

(O17,Y(0) (2, 0)(py)) = = 21e, B(1) B
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one easily sees that (2.18) is a matrix element of the commutation relations
: 0 v » RPN
(2200 807,000, v (0] = 1e, V(OB (x)

(2.21) a(xo)[Var(x), Vbs(o)] =0, r,$=1,2,5 ,

to within Schwinger térmé.that'do nof contribute to the antisymmetric
amplitude. The time~time and time-space commﬁtators (2.20) have already -
been obtained in II. From (2.21) we see that the amplitudes_(2.9) yield
the commutators of field algebra, aﬁd we therefore call them.the
Field Algebra (FA) amplitudes.

Any»term'proportibnal to (qéuqlv -ql-qeg”v) caﬁ be added to

MY without changing its divergence or (2.20). With the particular choice
v . v o _ _ 49
(2" - ap ™) F(o)[ By, 20,) - B, 1)],
Mo(st) and Mu(st) are changed to
My(st) = 2 (o, )F(a,2)ar, By, 1) + (1) B(1-0t, - @ )]‘
oY’ 4 1 %4 s s’ Tt t s’ t

-£2.9')‘ | o s _ _ -
- 2n® B2, 0) - F(6) - q - F(6)[ Bl 200, - B, 1],

My (st) = F(qf)F(qf)[B(l-ds, -ag) + f B(-ay, 2-a)] -
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This gives

(2.18")
MV(st) - wv(tﬁ)‘—'ef—» L up(t)[ﬁ“ls?»+ PV - b q“"]

lggl = e

Since the pion matrix elements of axial currents A u(x) vanlsh eq.

(2. 18 ) is con51stent w1th the quark algebra commutatlon relatlons

(2.21") | | |
{70 O 700
' 'l/g - <

(" e

We fherefore call (2.9') phe Quark Algebra (QA) amplitudes.

| Thevcommutétors of timevderivatives‘of ourrente with currenps can | :
be obtained from amplitudes symmetric in - a and b. However, since these
correspond to lower s1ngular1t1es in the angular momeﬁtum plane (e. g.
Jd=20 ‘fixed poles compared to J =1 fixed poles in the antisymmeprio
amplitudes), the results may well changevwhen factorizatlon on.
‘nonleading trajectoriee is imposed.: We remark'that both‘the ‘FA_and QA

amplitudes imply the existence of nonvanishing commutators,

o )[1,70, W20, re=123 . -
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The FA commutators are mbre’singuiar than the QA commutators; the
FA has g-number Schwinger ferms in tﬁe'time-space commutatérs_(2.20)
and constant behavior has ]qo{§ o, whereas the QA has c-number
Schwinger terms (at least‘fo:'piée matrix elements).

2.3; large q? Behavior

Since the above amplitudes haVe'only single vector-meson poles in
form factors, we expect them to be a good representation only for small q?,
However, it is interesting'to investigate their behaVior for large q2 in
order to better understand their poésible deficiencies.
. . 2 2 2 R N1
For simplicity we consider +=0 and 9 =05 =q (i.e., Q = 0).
This is the point of inferest for electroproduction and electromagnetic mass

differences (see section 4). We define

(2.24) o sem=q2(1-p) ,

aoun=g*(14)

where |
(2.25) o= - TG .
o q 2q

 As examples of typical terms in (2.9) and (2.10), we have

(2.26) B(-a_, -a) 5 I‘(-a )[ (1-p)e}at
: : q ST

and

12,2
g ~wlq(p-1)

- B(-a, -a)

¢ XD {qQ[ElogE - (1+p) log(1+p) - (l-'p)log (l—p)]} .
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-

The power behavior in q2 of the (st) and (tu) terms
(2.26) and the exponential behavior in q? of the (us) term (2.27) are
guite undesirable, For example, (2.27) leads to‘exponentially divergent
mass differences and exponential increasevof,eleétroproduction'amplitudes
in the physical region (q? S - w,.p > 1). Both (2.26)»and_(2.27) give
electroproduction structure functions which aré_either zero‘or.infinite
“in the limit q2 -+ - with p fixed, in violation of the commonly
accepted scaling law of Bjorken (15). | |

We also note that for t = O the Bjorken limit of the precedlng
subsection corresponds to. p~ 0 in (2.26) and (2 27). Thus the Regge
terms in Vi (st) and Vid (tu) behave like (q ) and may dominate the
fixed-pole terms for sufficiently large t. : These correspond to
determinable subtractions in (2.17) and cause no basic difficulty.
However, the M“v(us) terms are seen to grow exponentially for
Re(q?) > + w. Since ﬁe shall see iﬁ.ihe following section that it is
possible to obtain amplitudes without the;undersirable behaviors (2.26)
and (2.27), wé shall not regard these difficulties as necessarily

fundamental to Veneziano parameterizations of virtual Compton scattering.
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S OTﬁER MODELS

Several other models for the virtual Compton scattering
amplitude.have beén proposed.recently. Bander (3) has given an
expression for Ml(St) which satisfies exactlj the current algébra sum
rule (2.1&) and the requirements of current conservation (Sée section II. B
of I). His amplitude does not factorize on leading traiectories in the
s channel, however, Sugawara (L), Ohba (5), ;nd Ademollo and Del Giudice
(6) h;ve obtaihéd very similar models based on the six-point beta
function. Factorization dﬁ.'leading trajectories is assured by the
féctorizability,ofvthe siﬁ;point peta function (16). On the other hand,
thé reqpifements of current algebra aﬁd current conservation and the sum
rule are not satisfied.

An important common feature of the models of Refs (3-5) is their
good behavior as q2 »» (e.g., nontfivig% electroproduction limit) (17).

In the following subsection we discuss the large q?- behavior of these

;other models. We considerfonly amplitudes of the form given in

Refs. (4-6), since Bander's amplitude does not factorize. Such
amplitudes afe particularly-interesting, siﬁce we shall show in

seqtion 3.2 how to use'them to obtain virtual Compton scattering
amplitudes.which-satisfy cufrent algebra and have gooa» q2 - « Dbehavior.
The "hybrid model" giﬁen there thus combinés the good feétures of the
models of II and Refs. (3-6).

A}
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Discussion

We consider for definiteness a typical example of an amplitude

occurring in Refs. (4-6),

(3.1)

1 - -1 lqdi A Sy -y
-0) .= (Len)
Akﬁ(GS’O% 2) = | du u (Lew) du,du, vy u,

O : _ 20

Q. =3=£ g =F-b - + 2+24-k

: 2
(l-uul) '(i-uug) ? (l-uuqu) " | I

where

‘ o 2y . . . _
a; =1+ ?qi -y ), 1= L2

Akl(as’at-z) is appropriate for parameterizing theidoﬁbie-flip |

amplitude Ml(st). T+t corresponds to the choice of trajectories in the

six~-point beta function shown in Fig. 2.

Using the "Veneziano Transform" technique (18), one may easily

show that (3.1) has leading fixed power behavior in s of,-sk and s
o a, -2 - o o
and leading Regge behavior s e In M“v' this would correspond to

fixed poles at k + 2, k + 1, +++ and £ + 2, £ +1, ++» . Thus, for

example,  k = -1 and B'% -2 would give'a’fixed pole at the same point

as required by current conservation (see section ITI. B of I). 1T
residue is not F(t)

2
%4

he
as required, however, although it is independent of

and q22.
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The behavior in the limit q? -w (t=0, o fixed) 1is easily
obtained. We observe that, if kc and kd are taken to be the incoming
momenta in & multiperipheral diagram like Fig. 2, this;limit has the same
form as'a_Regge limit in the leftmost 1link of the chain (19). If the
variables in (5.1) are changed to those corresponding to this
multiperiphefal diagram, the asymptotic iimit may he easily calculated.

We find

(3.2)  faaa)— (¥ 5,000

q_ . =-> 00
and
‘ , , . ,
(3.%a) Re sz(p)_‘;_:_)w pmax( , B) s
v a£-2
(3.3b)  Im fkﬁ(p)—p—jw p cp

qu k= -1, we see that,.if Ml ac Akz’

then

vInd, —> £(p),
2

qQ *

as obtained by Bjorken (15). Since we have consistency between Regge
behavior and the electroproduction limit, it is not surprising that

“(3.3b) is Just what Abarbarnel et al. (20) showed must be true when both hold.
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The reduced t-channel Regge residues for the leading trajectory behave

like

t
(3.4) ") ——> (—1—2—> ‘,

g *w

as one expects (20) from (3.2) and (3.3b). It is now obvious why the

single vector-meson pole model of II has the undesirable behavior (2.26)--
with single poles one cannot possibly obtain the rapid falloff (3.4) for

high-mass t-channel resonances. Thus one can easily understand the large.

q2 behavior on the basis of the leading t-channel trajecfory alone in
(st) [and (tu) ] terms.
For (us) terms (see, for an example, Ref. 5) the electro-

production limit again corresponqs to a Regge limit in the six¥point

beta function, and power behavior as in (3.2) obtains. However, since

the leading s (or u) channel trajectories in both the simple beta
function and the models of Refs. (4-5) give (21)

5
, . 0q°
.A(ah, as) - e q' ,

q.—)oo

o B

the nonleading trajectories must account for this improvement.

We now make a few qualitative femarks on how~sum‘rpies are
satisfied in varioué models. We note above.that (3.1) has fixed power
behavior s_l for k = -1; it thus satisfies a sum rule of the.form

(2.24) -- with some function Gz(t) [ not equal to F(t)] on the




» behaves like '(qlbqa
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right-hand side. Since the imaginary part in the integrand is a sum

of delta functions; the sum rule becomes

6]

“(3.5) z Res,, ;vn{A-lz(S’t; .912’ qge)}:. Gz(t) .

n=0

We fiﬁd~that the spin J.  part of the residue at as’: n in general
2 2)-Jfl ~for large ql2 and q22. It is therefore
clear that the sum in (3.5) dces_gg}_conﬁergevuniformly_in' q12 and q22
decreaSe in any one resonance aS'.q =+ o being compenéated by higher mass
resonances.'.On the other'hand,‘the model of II sétisfies the sum rule in
a rather‘triVial way. The contributioﬁ of the leading trajectory is
proportioﬁai tdi F(qlg) F(q22)> and vanishes as qig‘*'w, vhereas the .
lower trajectofiesihave a part iﬁdependent of qi2 [coming from
F(t) B(-a,2-a,) in (2.9)] and this allvc')ws:the sum like (3.5) to
éonverge uniformly in qi2.

. If a completely factdrized'set of amplitudes,cdnsistent with
current algebra can be found, we expect all fqrm factors to fall and‘
thus the sum ruler(3.5) must converge nonunimformly. ‘We also expect

that the form factors will fall faster than any power and the Tixed poles

in the s=channel of the Compton amplitude occurring in all present models

will go away. Further, in a completely bootstrapped solution with

infinitely composite particles, we expect no fixed poles in single-current

amplitudes (22). The models of Refs. (4-5) have such fixed poles,
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whereas the model of II does not. Thus we seé that all the models
proposed so far have some features we do not,expect'to find in the final

solution.

3.2, Hybrid Model

We now propose expressions for M“V(st) and MV (tu) which Saulsfyiﬂlthe
propertles (1) - (v1) of section 2.1 [(111) holds only if ql qo =y ]
and have the good behavior (5.2) as q? - o. These are ootalnea by
replacing the beta functions in (2.9) by amplitudes of the form (3.1). o
One can verify that the.followingrsubstituﬁions vield the abowve

properties:

(3.6) | N o
' B(-a, 2-ay) > E(-o:'s, 2-a,) = (a- 1)(a.- 1) A

(1 a (a,a-c_)_,

..5 D
a_+ at-l

B(-a,, 2-0,)
%1 S

B(—ozs, l'fat) - B‘(-ocs, 1-04,0) =

n

B(l-as, ;-at) - B(l-ozs, l-at)- 51 -a, 2—_at) ;

By, ) » B, <) = (@1 “Dh_y ool o)

j .

B(2-as, —o:t). > B(-e-qs., -a, B(l-as, -o:t) - B(l—as, }1-art)-

B( Qs -oz_t) - B_(-as, -qt) = B(l—as',.—ozt) + vB(l-aS,- l','at) +V‘B(—as, 2-at). .
Nole that
i 1
T(-a_, 1) - Bl-o, 1) = - 2
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guarahtees the absence of a pole at at = 1 in Ml.
| Since we have k = =% and £ = -2 in (3.6), the entire fixed

pole at J =1 1is exhibited explicitly by"F(t) B(~as,_l) in (2.9).

Although the ﬁodel of Bander, for example, appears to contain the

fixed pole in a much more subtle way within the inﬁegrals, the difference

between it and the hybrid model is dnly-superficial. One may in fact

‘rewrite Bander's expression III.1 as

| MlBandér’;_-u s(g12) F(q,az)"'c'\;,2 + hF(t)al + 4F(t) és
1r(q, 2)F(a,”) o
+ > B 2 (qu'q2+'mv2) [Gy -G
my

) ~
where G

= (al ~1) (ag ~1) Gy and. Gk, which is defined by II.1 of

Ref. (3), hés fixed pover behavior sk"”. The similarity to (2.9) plus
(%.6) is now manifest. We note thagmwith the hybrid amplitudes the sum
rule is satisfied by nonuniform convergence, since all form factors fall
as described above. |

The Bjorken limit of thé pasic amplitudes (2.9) with the
substitution (3.5) differ from (2.18),by a term of the form

1 i -
- (g‘v- n“nv)f To obtain the FA and QA, terms proportional to.

%

BV LMY ) e
(q2 q - 4y°3,8 ) must be added.
We have not been able to construct hybrid amplitudes for the (us)

terms (2.10). We do not know if the hybrid amplitudes can be generalized
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to N hadrons so as to give a solution with leading trajectory
factorigation and consistency with single-current'amplitudes.
Nevertheless,‘they are interesting examples of functions satisfying

many of the required properties.
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L, APPLICATIONS

“The obvioué deficiengies of our ampiitudes [see comment (vi) of
section 2.1] and the lack of data for Compton scattering off meson targets
rule out any defailed phendmenological analysis (23). However, we consider
~ here two applications, which arezéspeciallyvrélevant_td the issues
raised in section 3,

First (section.H.l) we consider the Pomeranchuk exchange in
Compton scattering. The parameterizatioh of IT gives a nice example of a
Pomeranchoﬁ'that'contfibutes to forward elastic Compton scattering for
Ob(o) = 1, as suggested in Abarbanel et al. (24). Moreover, consistent
Qith recent electroproduction data, this Pomeranchon does not fall off
rapidly at larée 'q2. YWe also show how the scaling property.(lB) for
both.structUre functions can be natufally obﬁained in vector-meson dominance
models.

Then (section 4.2) we discuss electromagnetic mass differencés.
',After enumerating the various divergent contributions of the amplitudes_of
11, we calculate the finite contributions for pions and kaons. Our |
numericai results are in worse disagreement with experiméht than those

calculated from the Born terms alone.

4,1, Pomeranchon in Compton Scattering

We consider here several of the important features of ﬁhe
Pomeranchuk solution of IIbin the special case N=2 as they relatevto
earlier models and, through the optical theorem to fotal electroproduction
cross sections. The qontfibution of the Pomeranchon (to s&mmeﬁric

amplitudes) takes the simple form
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r~

M“V'=—-qlq2P“P +mv(P“‘l qQ”P) 22“v:lt2 - o

Pom

(.1) A o Y h Y o S . .
B - P R : A SRt

The two independent 'amplitﬁdes may be given in _terms.‘of' Ml and MO 5

Pom

=
1"

4G "%t - o o o
a

.. 5q.e L.
(4.2) | - az]_'_i? B(2-%,‘ é-as) +

dPlB(l -a)+(s<——»u)}

o+ B("qs’ -auv)

M Pom

22
q2t +mvt2

1, ‘ . L . p R o
(k4.3) 5{3("%3 l-as) +D B('QP: z-as) -.m"" (s ‘—’U)} o !

+ 5 B(1-a, 1) s L | o . i

mere - (%) -lw(s)*a(u) W refeaa L

For qla = q22 = Q (O) - 1= 0, the parameterization of Ml is the ,

same as that of Ref. (13).
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Becauée:these amplitudes > ~.are nonsingular, at a_ = 0 or
au = 0, this Pomeranchuk contripution‘may be added to symmetric amplitudes
With arbitrary strength ﬁithout'disturbing-the normalization of the
external line insertion poles (Born terms). Another important feature
is the existence of a right-signature fixed pole located at j = 0, as

the reader may quickly verify from the t-channel helicity amplitudes,

H t= -M. - _2__ M H ——g— M

- 0 272 1’ Ld. 272 1

Tt is curious to note that on ~ mass shéu(q12=q22=o), the fixed
pole is absent only if aP(O) =1 (i.e., D = 0), and that this model
for Compton scattering closely resembles that of Abarbanel et g;.(Eh).

‘ + +
Our parameterization of Hl_lt(It = 0) for ™ =y 1is

- C. .
(4ok) Hl_l - he® Q O‘P (2-aP, -a) + gP B(2-ap,  -0)

# (14 Cé)‘_%'B(-as, -au)} .

The’first twp terms,give asymptotically a Pomeranchon with'é

singular residue,

1-1 -t

S -
(4.5)  mbt  ~ue? £ N r(1-0,(t)) (1477 P) saP )
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The third term has no asymptotic contribution, but corresponds to a

- wrong-signature (J = 1) fixed pole with a singular residue. The
partial~wvave projection (25) of the third term is

- 2 o

. 1+‘Co
b (J,t) oc 3

R
J - t
This is precisely the J plane structure suggested in Ref. (24,) on the
basis of an N/D model for t-channel unitarity.
If we make the assumption of Ref. (24) that there is no fixed

pole (CO = —l); we arrive at the same asymptotic.cross section [Ref. (2L),

eq. (+.18)]
2.,
Opot(s) ~ 16x° - a(0) 3

In our casé, the slope of thé Pomerancho# must be.cahonical
(a;(o) =‘b ~1 GeV’g),.'and the resultaﬁt éroéé~section is ﬁdo large by
a factdr,of'threé (26). We see no reason‘in:favor'of this special value
of CO, particularly‘sinéefixed poles ét wrong-signaturé gnd nonsense
points are a typicai féatufe of thé Veneziano model qu'both strdng and
non strongvprqcesses.
The contribution of our Pomerapcﬁon [neglecting kus>v terms]

to the electroproduction‘structu£e functions, | |
W= -Linu d‘w-_—i“—eIMt-“—-“'-“-f 1y
1 o 1m M,y an o < oM oat q"=-q," = q7, iseasily
calculated. In the limit of large q2 and fixed p = -2mv/q?, the.

structure functions are
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2 1 L
Wila,7v) ~ 2 a (e=1)X, W

2
m 2 -
oM T a (p-1) 1X 3

where aP(O)-l

. The Bjorken scaling law (15) is

X = T(2-05,(0)) [a°(1-p)]
not obeyed, but the linear increase Of vWé' for aé(o) =1 (i.e., X=1)
may be cdnsistent with experiment for moderate q2. On the other hand,
if we suppose that the J=0 fixed pble can be removed by adding terms of
lower order in Vv, one might mulfiply our Pomeranchuk amplitude by

F(qle) F(qeg). In this approximation one is led to scaling for W, but
not for vW2. However, if we recall that for pr - pr' one should have

t
1.1 » We see that vW2 shquld not

have a double pole at q2 ='mV2. In this case, we must multiply

a nonsense factor [ap(t) -1} oc t in B

2

2 2 2 2
t by CQ[F(ql )'f F(q2 )] and t, by ClF(ql ) F(q2 ) (so that
N#v is still,conserved), and both W, and vW_, obey the scaling law

Pom 1 2
. Co 2 2 1 b
] ~ = 1) -
(4.6) Wy~ = m" p(p=2)"" + Cymy (p-1)
2 2 -1
W, ~ Comm"p(p-1)"" .

These arguments are, of course, independent of the Veneziano model and

they show that scaling of the Pomeranchuk contribution to both Wl and

vw2 is not necessarily in contradiction with simple rho-dominance models(27).

Recently Sakurai (28) has proposed a rho-dominance model for the

Pomeranchon which gives a similar result for W although'he does not

2)

get scaling for _Wl. Using the relationship
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o
_ v(-g 4 S s
W, = 2 - Im [-Hy,™ + Hyy 'l

and parameterizing the s~channel hellclty amplltudes,
s 2 o (O) _ 2 aP(O) )
mu *~ S F (%) s, Im H % ~ g()F(q) , sakural

00
my
arrives at scaling for VWQ. ‘[Aétually.Sakuréi parameterizes tfansverse“

and longitudinal cross sections (bT, °s>’7 but the result is the same

up to functions of p.] The important point is the kinematical factor of
qz‘in -HOOS’ which causes HOOs to dominate as q? - o, If one imposes
| 2

the condition that Hl lt have & nonsense factor at- q?>= mV

(1 e., for pn - pr), one has, by Hara's theorem (29), — ]

00 /Hll s =

or E&(w) = 1. The result is to introduce a zero at q2 = mV? which
converts the double pole in W, [from 'Fe(qg)] into a single pole.
Consequently, using Hara's theorem, we see that Sakurai gets the scallng
law for WW, in the same manner as we do.

Sakurai's approach avoids the question of fixed poles since they
do not contribute to Wl,and We. HowéVer, if they cannot be removeq froﬁ
the residuetxf.the rho poles (at qi2 = mve), they invalidate the use
of a rho-domlnance model. A careful analysis of the electroproductlon
. data at hlgh energy and low q2 should be made to determlne 1f the

s1ngular part of the Pomeranchuk residue for v1rtual Compton scatterlng

has rho poles.
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4.2. Mass Differences

To order e2, electromagnetic self masses are given by (1k)

B .A2 o )4- . .
- 2 ie d
(h..',’) M o= L T : zq' g VMU'V s
: 2(2r) Q-+ ie M '
where,‘from‘(2.8) (with 9= =4, = a) ,
' S 2 2
‘ : A 2 (q -v :

It is instructive to calculate separately the COnfributions of MO and Ml’

(4.9) ' P =t f e,

where, after Wick rotation (50),,

. _1__'

o (-4%)2
: . 2 - 2
(4.10) pn ® =28 o84

1

.
2 2.3 2
aw(-v"-q")*M(a", iv)

and
.
- : : : 212
0 (=df)7 J :
(h.11) " Mm 2 _ e2m2 , ‘ng av( 2 2 % q,2+'v2 : 2 .
.- S PRE % o av(vE-)P S ()
q .
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2 .
For pion mass differences (m_+2 -m g ). which are I = 2 we
1t e

have, from (2.7),

(4.12) Mi = - M (us) ) (pions) ,

2

and for kaons (m + - mroz) which are I=1 we have from the internal
K K » : A

synmetry factors of IT '

(4.13) | M, = % [Mi(st)'+ Mi(tu).-.QMi(us)] (kaons) .

The Wick rotated expressidns (4.10) ard (4.11) follow from ("4.';’)
only if the semicircle at |q0| = o gives no éontribution. The (us)
terms are clearly not Wick rotatable_[see eq. (2.27)]. Howéver,'ifvthey
are inserted into (h.lo) and (4.11), they mayvgive a reasonable
approximétion,_since'they-should be good fornsmal}v q?, and the small q?
range of integratiog is emphasized due to theirfrapiﬂ‘decrgase for

[s

qa > - o, We shall ﬁherefore use the Wick rotated expressions.
The Wick rotatability of amplitudes with.Regge Qr'fixed-pole‘
behavior has been investigated by Rabl (31). Our amplitudes illustrate

some of the conclusions drawn there. For example, the fixed-pole part'

of Ml (2.9)

() (A 3
S u
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gives a logarithmically divergent contribution

2
)

: ' - 2 : e. 2
(h.lh) . Am = ('2-7-(- ) 5 m- log Vmax .

1, divergeht

This is due to the ﬁonvanishing of the commutator 6(xo)[ﬁ“(x), VV(O)] (2).
Sincé the fuﬁdamentai natﬁre of the logarithmié divergehce remains mysterious,
 we note that we may still éom@ute a'meaningfui numerical result if we

follow the.recipe-of the current élgebraists (32): set the hadron mass

(mgj to zero and the divergence disappears.

The term - F(t) in My for the FA corresponds to a

Schwihger‘term and gives a quadratic divergence in Amo. In the QA the

guadratic divergence is reduced to a logarithmic one of the form (Lo1k)
and thus we shall consider the QA from now on.

The Regge part of le(st), H[I-Fg(q?)] B(—as,-E-at), gives a
a

t

contribution to the integrand of /Jm 2 that behaVes like v

1
. 2 .. 28472 2 . .
v>w at fixed g%, like (g°) ~ for @ ~ e« at fixed v, and like
o at-h o - ,
(qo ) for g, =V == at fixed gq [see eq. (2.26)]. Since

for

a, < 1, this contribution is finite and Wick rotatable. This is also-

true for the term 2F2(q?) B(l—as, -aﬁ) in M.. On the other hand, the

0
term -q,- g, F(t) B(-as, 2-a£) in the QA amplitudes behaves like
a -1 4 ‘ _
4(q2) t for a or v fixed, and gives a divergent and nonrotatable

contribution for a >,O? The . term '-2mV2 B(2-as, -a behaves even

t t)

a
worse, namely as (q?) t. These last two divergences could be canceled

by adding terms like '(-ql- qé)n (2mV2) B(2-as, n-at), but without
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further restrictions such a method is too arbitrary to give any

confidence in a numerical result.,

In spite of the above divergence difficulties, itvis'interesting

to examine the numerical values of the'conVergent contributions to the

Wick rotated expressions (4.10) and (h.ll). These are roughly the

contrlbutlons one obtalns in a simple vector-dom1nance model. Our results

are presented in Table I, where the contribution of a simple Feynman‘Born

term is also given for comparison. We remark that the results are

rather insensitive to the Lntercepts a£ used, and for the (st) and

(tu) terms about half the contribution comes from lq | <1 GV, We

see that our results are worse than those of 51mple Born terms (33).

The lack of 1mprovement in the kaon mass dlfferences from the A2 :
tra]ectory is consistent w1th the recent results of other authors (34).
As one can see, the above dlscuse;on was more. a eatalog of
possible divergence difficulties than a calculation'of actual nass
differences. The hybrid amplitudes of section IIT may be used to give‘

more convergent results [if (us)- terms can be obtained] However,

before reliable calculatlons can be made one will need less arbltrary

Venez1ano parameterizations, and this‘depends upon 2. better understanding

~of the role of the factorization of nonleading trajectories and many

vector-meson poles.
®¥k
We have benefited from discussions with C. DeTér, -

M. B. Halpern, D. Sivers, G. Veneziano, and especially, S. Mandeletan.
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Table 1. Numerical results for finite contributions

to Am2 with b =
‘mpa 0.59 GeV2

|&

Born term (seagull)

O 9 GeV 2

= 1.6k4 GeV2

2

Pion Mass (MeV)

+ 3.7
(st) and (tu) Terms .
() (8100 m0,) + B(1-0y,me)]
~ (us) Term
2F (q ) B(l-as, 1-au) - 1.5
Total [see egs. (4.12) and (4.13)] o+ 1.5
i}
qurn tefm . ,
2, 2,1 . 1. '
4F(q )<57 + a—) + 0.5
s u
(st) and tu) Terms
h[l—F (q )1I( B(du 2~a, ) + B(—a 2-a )] -
(us) Term _
| bF® (q )_B(-qs, ) | =05
Total [see egs. (4.12) and (4.13)] + 0.5
- mo 2

Feynﬁan Born term + L2
Veneziano Model of II + 2.0
Experimental - + 4.6

Kaon Mass (MeV)

Y
+ 3.6
- 3.9

e ———
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FIGURE CAPTIONS . o
Fig. 1. Kinematics for Pion Compton Scattering. f
. : . |
. -~ |
Fig. 2. Choice of Trajectories for eq. (3.1). ' a 5
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