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Context guides perception by influencing stimulus saliency. Accordingly, in visual cortex, 

responses to a stimulus are modulated by context, the visual scene surrounding the stimulus. 

Responses are suppressed when stimulus and surround are similar but not when they differ. The 

underlying mechanisms remain unclear. Here we use optical recordings, manipulations, and 

computational modelling to show that disinhibitory circuits consisting of vasoactive intestinal 

peptide expressing (VIP) and somatostatin expressing (SOM) inhibitory neurons modulate 

responses in mouse visual cortex depending on similarity between stimulus and surround, 

primarily by modulating recurrent excitation. When stimulus and surround are similar, VIP 

neurons are inactive and activity of SOM neurons leads to suppression of excitatory neurons. 

However, when stimulus and surround differ, VIP neurons are active, inhibiting SOM neurons, 

which leads to relief of excitatory neurons from suppression. We have identified a canonical 

cortical disinhibitory circuit which contributes to contextual modulation and may regulate 

perceptual saliency.

eTOC Blurb

Context provides meaning by influencing perception. In the visual world, context is the visual 

environment surrounding a visual scene. Here, Keller et al. report that a canonical disinhibitory 

circuit controls the response of mouse visual cortex to a visual stimulus depending on the context 

within which that stimulus is presented.

INTRODUCTION

The perception of a sensory stimulus is markedly influenced by the context in which the 

stimulus is embedded. In the visual system, the context is the visual scene surrounding the 

stimulus. Through the influence of its surround, the same visual stimulus may be perceived 

as more or less salient, allowing it to pop out or merge with the rest of the visual scene 

(Figure 1A; Bergen and Julesz, 1983; Lamme, 1995; Treisman and Gelade, 1980). This 

aspect of sensory processing represents a fundamental computation to extract meaning from 

visual scenes.

Consistent with perceptual phenomena, neuronal responses to a visual stimulus are 

modulated by the visual scene surrounding the stimulus. This surround modulation occurs at 

several stages of the visual system including the retina (Alitto and Usrey, 2008; Chiao and 

Masland, 2003; Huang et al., 2019; McIlwain, 1964; Ölveczky et al., 2003; Solomon, 2006), 

the thalamus (Alitto and Usrey, 2008; Jones et al., 2012, 2015; Levick et al., 1972), and the 

visual cortex (Alexander and Van Leeuwen, 2010; Angelucci et al., 2017; Fitzpatrick, 2000; 

Kapadia et al., 2000; Knierim and van Essen, 1992; Rossi et al., 2001; Schnabel et al., 2018; 

Sillito et al., 1995), progressively increasing the complexity of the spatial features that are 

contextualized.

The classical feedforward receptive field (ffRF) of a neuron in primary visual cortex (V1) is 

the region in space in which a visual stimulus evokes a response (Hubel and Wiesel, 1962). 

The magnitude of this response can be modulated by stimulating the regions surrounding the 

ffRF. When a stimulus is large enough to cover both the ffRF and its surround, for example, 

the neuron’s responses are generally suppressed. This phenomenon, called surround 
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suppression, is a well-established example of surround modulation (Blakemore and Tobin, 

1972; Hubel and Wiesel, 1965; Kapadia et al., 1999; Knierim and van Essen, 1992; Nelson 

and Frost, 1978). It has been shown that anatomical substrates for surround suppression 

include feedback connections (Angelucci et al., 2017; Keller et al., 2020; Nurminen et al., 

2018; Vangeneugden et al., 2019; Zhang et al., 2014), interlaminar connections (Bolz and 

Gilbert, 1986) and specific subtypes of inhibitory neurons (Adesnik et al., 2012; Haider et 

al., 2010), such as SOM inhibitory neurons. Indeed, the tuning properties of SOM inhibitory 

neurons (Adesnik et al., 2012; Dipoppa et al., 2018; Keller et al., 2020; Ma et al., 2010) and 

the fact that they connect to nearly all nearby excitatory neurons (Fino et al., 2013) make 

them ideal to contribute to surround suppression. Accordingly, functional elimination of 

SOM neurons partially relieves excitatory neurons from surround suppression (Adesnik et 

al., 2012).

However, not all combinations of stimuli in the ffRF and surround generate suppression. 

Surround suppression occurs when the stimulus in the ffRF and in the surround share similar 

features. For example, the response of a neuron to a grating stimulus of a given orientation 

in its ffRF is suppressed when stimulating the surround with a grating of similar orientation. 

When the orientation of the grating in the surround differs from that in the ffRF, the response 

of the neuron is much less or no longer suppressed (Coen-Cagli et al., 2015; Self et al., 

2014; Sillito et al., 1995; Walker et al., 1999). Thus, the magnitude of surround suppression 

depends on the visual scene surrounding the stimulus in the ffRF. The mechanism that 

regulates surround suppression depending on the similarity between the stimulus in the ffRF 

and that in the surround remains elusive. We refer to this phenomenon as “contextual 

modulation”.

To investigate the mechanisms of contextual modulation, we presented visual stimuli with 

different surrounds to awake mice while imaging calcium responses in excitatory and 

inhibitory neurons of V1. We focused on the three major classes of inhibitory neurons, 

parvalbumin-expressing (PV), SOM and VIP neurons (Lee et al., 2010; Pfeffer et al., 2013; 

Tremblay et al., 2016). PV and SOM neurons are the two principal sources of inhibition of 

cortical excitatory neurons in mouse V1. In contrast, VIP neurons primarily provide 

inhibition to SOM neurons, thus representing a key component of cortical disinhibitory 

circuits (Jiang et al., 2015; Karnani et al., 2016; Millman et al., 2020; Pfeffer et al., 2013; Pi 

et al., 2013). We show that, as for excitatory neurons, the responses of VIP and PV neurons 

were suppressed by surrounds that shared similar features to the stimulus presented in the 

ffRF but not when they differed. Strikingly, the responses of SOM neurons were modulated 

in a manner opposite to all other neuron types, being specifically suppressed by surrounding 

stimuli that differ from those in the ffRF. This suggests that the suppression of SOM neurons 

to these stimuli may be mediated by VIP neurons. To determine whether the interaction 

between VIP and SOM neurons could account for the contextual modulation observed in 

excitatory neurons, we developed a circuit model respecting biological constraints, which we 

trained to reproduce our measurements. The modelling results suggest that the VIP-SOM 

disinhibitory circuit plays a key role in contextual modulation through its role in complex 

recurrent-circuit dynamics. Specifically, our model predicts that silencing VIP neurons 

reduces contextual modulation in excitatory neurons. Indeed, when VIP neurons in V1 were 

silenced optogenetically, surround suppression in excitatory neurons became less sensitive to 
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the stimulus features in the surround, which reduced contextual modulation. Thus, we show 

that a canonical cortical disinhibitory circuit contributes to the contextual modulation of 

excitatory neurons in V1.

RESULTS

Contextual modulation in excitatory neurons

To assess contextual modulation in V1, we used two-photon calcium imaging to record 

activity from layer 2/3 (L2/3) excitatory neurons in awake head-fixed mice. Contextual 

modulation was assessed by comparing the baseline-subtracted responses of individual 

neurons to small patches of drifting sinusoidal oriented gratings presented alone (“center 

stimulus”), or together with two different surrounds: An iso-oriented surround (“iso 

stimulus”; i.e. a grating in the surround whose orientation and phase matches that of the 

grating in the center), or a cross-oriented surround (“cross stimulus”; i.e. a grating in the 

surround whose orientation is orthogonal relative to that of the grating in the center; Figure 

1B, top). The location of the center stimulus was centered on the ffRFs of the neurons (see 

STAR Methods). The magnitude of the response of L2/3 excitatory neurons to center stimuli 

alone was larger than that to iso stimuli, consistent with iso stimuli generating surround 

suppression (Figure 1B, left). In contrast, the response to cross stimuli was similar to the 

response to center stimuli alone, consistent with the fact that cross stimuli generate less 

surround suppression than iso stimuli, or no surround suppression, as previously described 

(Self et al., 2014; Sillito et al., 1995; Walker et al., 1999). We computed the magnitude of 

surround suppression as the difference in response to center stimuli and response to iso or 

cross stimuli, normalized by the response to center stimuli. Accordingly, surround 

suppression in L2/3 excitatory neurons was larger for iso stimuli than for cross stimuli 

(Figure 1C, D). To compare the modulation by the iso surround to that of the cross surround, 

we defined a contextual modulation index (CMI) for each neuron as the difference divided 

by the sum of the responses to cross and iso stimuli (Figure 1E; see STAR Methods). The 

distribution of CMIs of excitatory neurons was skewed to positive values, indicating that 

their responses were stronger to the cross than to the iso stimulus. Since the distribution of 

CMIs was similar irrespective of whether or not the orientation of the center stimulus 

matched the neuron’s orientation preference (Figure S1A), our analysis includes neurons 

independently of their orientation preference. Moreover, behavioral states of the mice only 

had a minor effect on the contextual modulation of excitatory neurons (Figure S1C–F). 

Thus, data were pooled irrespective of behavioral state. Overall, excitatory neurons in L2/3 

were strongly modulated by context, i.e. the strength of their responses depended on the 

stimulus features in the surround relative to those in the center.

To what extent is the contextual modulation of excitatory L2/3 neurons inherited from earlier 

stages of cortical processing? To answer this question, we measured the responses of 

excitatory neurons in layer 4 (L4), the main thalamic input layer, to center, iso and cross 

stimuli (Figure 1B, right). While L2/3 neurons, on average, were only suppressed by the iso 

stimulus, L4 neurons showed suppression in response to both iso and cross stimuli (Figure 

1C). Thus, contextual modulation of L2/3 neurons is unlikely to be entirely inherited from 

L4 and may rely on local circuitry.
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Complementary contextual modulation in SOM and VIP neurons

What relieves L2/3 excitatory neurons from surround suppression when the stimulus in the 

surround differs from the stimulus in the center? Since surround suppression of L2/3 

excitatory neurons relies, at least in part, on the activation of SOM inhibitory neurons 

(Adesnik et al., 2012), we compared the response of SOM neurons to iso and cross stimuli. 

We thus repeated the visual stimulation protocol used above while recording in SOM 

neurons (Figures 2A–C, S1B–F). Strikingly, the responses of SOM neurons to iso and cross 

stimuli were opposite to what we observed in excitatory neurons. While iso stimuli elicited 

strong responses in SOM neurons, as previously observed (Adesnik et al., 2012; Dipoppa et 

al., 2018; Keller et al., 2020), cross stimuli elicited smaller responses (Figure 2B). 

Accordingly, the distribution of their CMIs was shifted towards negative values (Figure 2C). 

The smaller response of SOM neurons to cross than to iso stimuli was not a general 

characteristic of inhibitory neurons. PV neurons, the other large class of inhibitory neurons 

that targets excitatory neurons in mouse V1 (Pfeffer et al., 2013), showed larger responses to 

cross than to iso stimuli (Figures 2D, E, S1B, C). Therefore, the distribution of their CMIs 

was shifted towards positive values (Figures 2F, S1D–F), similar to excitatory neurons and 

opposite to SOM neurons. Thus, SOM neurons are unique in the way they respond to cross 

and iso stimuli.

What prevents SOM neurons from responding to cross as much as to iso stimuli? SOM 

neurons receive excitatory input from L2/3 neurons. Given that L2/3 neurons strongly 

respond to cross stimuli, it is unlikely that the excitatory input to SOM neurons is reduced in 

response to cross stimuli. We thus reasoned that cross stimuli may generate inhibition onto 

SOM neurons. VIP inhibitory neurons are a class of cortical neurons that preferentially 

inhibits other inhibitory neurons, including SOM neurons (Pfeffer et al., 2013). If VIP 

neurons prevent SOM neurons from responding to cross but not to iso stimuli, they should 

be more excited by cross than by iso stimuli. To test this hypothesis, we repeated the visual 

stimulation protocol used above while recording in VIP neurons. Consistent with our 

prediction, VIP neurons responded more strongly to cross than to iso stimuli, as shown by 

their positively shifted CMI (Figures 2G–I, S1B–F).

Taken together, these results are consistent with a mechanism in which the response 

modulation by the visual stimulus surrounding the ffRF of excitatory neurons is controlled 

by a disinhibitory circuit formed by the reciprocal inhibition of VIP and SOM neurons 

(Figure 2J).

A circuit model reproduces contextual modulation across neuron types

To test our intuition that the VIP-SOM disinhibitory circuit contributes to contextual 

modulation in L2/3 excitatory neurons, we developed a circuit model in which the model 

‘units’ had supralinear input-output functions, consistent with experimental results (Adesnik, 

2017; Priebe and Ferster, 2008; Priebe et al., 2004). Each unit of the circuit represented the 

average activity of a given neuron type (i.e. L2/3 excitatory, VIP, SOM, and PV neurons and 

L4 excitatory neurons), integrated in a ‘subnetwork’ with the other unit types (Figure 3A). 

Four such subnetworks were each assigned to one of two spatial locations (each considered 

the ‘surround’ of the other) and one of two preferred orientations (that were orthogonal to 
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each other; Figure 3B). For the units sharing the same spatial location (both within and 

across subnetworks), we allowed all connections except those known to be weak (Adesnik et 

al., 2012; Karnani et al., 2016; Pfeffer et al., 2013; Tremblay et al., 2016), similar to a 

previous model (Lee et al., 2017). Subnetworks across spatial locations were connected only 

through L2/3 excitatory projections. We will mostly focus on the subnetwork whose location 

and preferred orientation match the center stimulus, which we will refer to as the “centered 

and preferred-orientation subnetwork”.

We trained the model to reproduce our measurements. To this end, we let the network evolve 

over time (see STAR Methods). Thereby, we obtained the fixed-point responses, that are the 

final, time-invariant responses to which the network converges for a given stimulus. These 

fixed-point responses were then matched to the experimental responses by optimizing 

synaptic strengths. To determine the optimal synaptic strengths, we used a two-step 

procedure. We first generated many candidate solutions by performing non-negative 

regression (non-negative least squares), similarly to a previous study (Dipoppa et al., 2018), 

but on many sets of pseudo data obtained by randomly perturbing the experimental data. We 

then used the best solutions as initial conditions for a gradient-based optimization in a 

recurrent neural network (RNN; backpropagation through time with convolutional 

connections; Spoerer et al., 2017; see STAR Methods). The top 115 solutions with the 

closest fits to the experimental data were used for further analysis (Figures 3C, S2A; see 

STAR Methods).

One feature of these solutions was their strong recurrent excitatory connections within a 

subnetwork (Figures 3D, S2B), consistent with previous experimental observations (Cossell 

et al., 2015; Hofer et al., 2011; Ko et al., 2011; Peron et al., 2020). Due to these strong 

excitatory connections, the fixed points of most solutions would be unstable if the inhibitory 

activities were frozen at their fixed-point levels, but the network is stabilized by feedback 

inhibition. That means that most of the networks that best fit the data are inhibition-

stabilized networks (ISN; of the 115 top solutions, 72%, 98%, 88%, and 99% were ISNs at 

the fixed point for spontaneous, center, iso, and cross input, respectively), as has been found 

to underlie surround suppression (Adesnik, 2017; Ozeki et al., 2009) and spontaneous 

activity (Sanzeni et al., 2020). In addition, the combination of the supralinear input-output 

function and the inhibition stabilization implies that the circuit is a supralinear stabilized 

network, which can account for many nonlinear response properties of visual cortex through 

network recurrence (Ahmadian et al., 2013; Hennequin, 2018; Rubin et al., 2015).

The disinhibitory circuit is both necessary and sufficient for contextual modulation

To determine the circuit elements critical to contextual modulation, we perturbed specific 

inputs, starting from the fixed-point responses to an iso stimulus, and observed the resulting 

changes in network responses (Figure 4).

To examine the transition of the network from iso to cross fixed-points, we simply switched 

the L4 inputs to their cross-response levels (Figure 4A). As expected, the whole network 

evolved from the iso to the cross fixed-point, in which excitatory, PV and VIP units’ firing 

increased and, for most of the solutions, SOM units’ firing decreased (Figure 4B). To 

understand the evolution of the excitatory units’ firing during this transition, we looked at 
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the change in the inputs they received between the iso and cross fixed-points. The largest 

change in inputs to excitatory units was an increase in their recurrent excitatory inputs 

(Figure 4C). Surprisingly, the inhibition that the excitatory units received from the SOM 

units changed only modestly between the iso and cross fixed-points (Figure 4C). However, 

during the transition from the iso to the cross fixed points, the activity of SOM units was 

typically biphasic, first displaying a large change from their iso-response level but then 

returning closer to their initial response-level (Figure 4D). This suggests that SOM units 

could play an important role in contextual modulation, even though their contribution is 

largely hidden in the network dynamics. Thus, the disinhibitory pathway could play a key 

role in the facilitation of excitatory response from their iso- to cross-response levels, 

primarily by modulating recurrent excitation rather than direct suppression.

Is the disinhibitory pathway necessary to drive the transition from iso- to cross-response 

levels? To answer this question, we switched the L4 inputs from their iso- to their cross-

response levels as above but kept the input from VIP to SOM units frozen to their iso-

response level (Figure 4E). Interestingly, this simple manipulation prevented the change in 

the activity and in inputs of all the units (Figure 4F, G), despite some minor transient 

fluctuations (Figure 4H). The disinhibitory pathway is therefore necessary to drive the 

transition from iso- to cross-response levels. But is the disinhibitory pathway also sufficient? 

To address this question, we kept the L4 inputs at their iso-response level but switched and 

froze the input from VIP to SOM units to their cross-response level (Figure 4I). The 

manipulation of this single input between these two inhibitory units influenced all the units 

in the network (Figure 4J, K). Interestingly, it reproduced the changes in activity observed 

when changing the L4 inputs to the cross-responses level as well as the change in inputs to 

excitatory units, but with a larger initial transient decrease in SOM-unit activity (Figure 4L). 

The robustness of this effect was further tested using a small drive onto the VIP unit instead 

of the large perturbation of changing its input to the SOM unit from its iso- to its cross-

response level. Adding a tiny excitatory input to the VIP unit (Figure S3 vs Figure 4I–L) led 

to qualitatively similar results. Thus, activation of the disinhibitory pathway is both 

necessary and sufficient to produce the transition from iso- to cross-response levels.

During the transition from iso- to cross-response levels, the most prominent difference in 

inputs to excitatory units is the recurrent excitation. We therefore asked if this connection is 

critical to contextual modulation. Freezing the L2/3 excitatory to excitatory input to the iso-

response level, while switching L4 input to the cross level, led the excitatory activities to 

return to response levels similar to their iso-response level, thus demonstrating the necessity 

of this connection (Figure S4A). However, keeping the L4 inputs at the iso-response level 

while switching and freezing L2/3 excitatory to excitatory inputs to the cross-response level 

was typically only sufficient for excitatory units to settle near their cross-response levels, but 

not for the rest of the network (Figure S4B). We next asked if any other inputs were 

sufficient to promote the transition from iso- to cross-response levels (Figure S4C–K). While 

one other input could move excitatory units in the right direction (Figure S4G), excitatory- 

to VIP-unit input was the only input besides the VIP- to SOM-unit input that, if frozen to its 

cross level, was sufficient to produce excitatory cross responses and move all firing rates in 

the same direction as the transition from iso- to cross-response levels (Figure S4E). This 
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again emphasizes the role of the disinhibitory circuit and in particular of the VIP unit in 

contextual modulation.

The model predicts that silencing VIP neurons reduces contextual modulation

If disinhibition from VIP units plays a critical role in contextual modulation, then silencing 

VIP units should greatly reduce contextual modulation. To test this, we set the activity of 

VIP units to zero (Figure 5A). Silencing VIP units caused a larger absolute decrease in 

responses of excitatory units to cross than to iso stimuli for almost all solutions (Figures 

5B). While PV units were affected similarly to excitatory units, SOM units showed the 

opposite changes (Figure 5B). In principle, a stronger absolute reduction in responses of 

excitatory units to cross than to iso stimuli is consistent with two possibilities. VIP units 

could simply regulate the overall gain in the network, that is, having the same relative impact 

on the responses of excitatory units to cross and iso stimuli. Alternatively, they could 

differentially regulate the responses of excitatory units depending on the stimulus. To 

distinguish between these two possibilities, we compared the CMIs of the different units 

under control conditions with their CMIs during the silencing of VIP units. Consistent with 

VIP units differentially regulating the responses to iso and cross stimuli, their silencing 

consistently decreased the CMI of excitatory units in the 115 solutions that most accurately 

fit the experimental data, indicating that cross responses decreased proportionately more 

than iso responses (Figure 5C). While PV units showed a decrease similar to excitatory 

units, the CMI of SOM units increased upon silencing of VIP units (Figure 5C).

The decrease in CMI upon silencing of VIP units was a robust feature of those solutions that 

most accurately replicated our experimental data (Figure S5). Thus, an important test of the 

solutions that best fit the data is whether silencing of VIP neurons in mouse V1 decreases 

the CMI of excitatory neurons.

Silencing of VIP neurons reduces contextual modulation

Does the functional elimination of VIP neurons preferentially decrease the response of 

excitatory neurons to cross stimuli compared to iso stimuli as predicted by the model? Since 

excitatory neurons are already almost maximally suppressed by iso stimuli, we reduced the 

contrast of all stimuli to 50%. This reduced the suppression of excitatory neurons by iso 

stimuli (suppression with iso stimuli; 100% contrast: 0.85 ± 0.02; 50% contrast: 0.58 ± 0.08; 

mean ± SEM; paired two-sided sign-rank; p < 10−10; 641 neurons in 6 mice), consistent with 

previous observations (Kapadia et al., 1999), and allowed us to better compare the impact of 

silencing VIP neurons on the response to iso and cross stimuli. We optogenetically 

suppressed VIP neurons while recording their activity and the activity of putative excitatory 

neurons (Figure 6A). To determine the efficiency of optogenetic silencing of VIP neurons, 

we recorded their responses to center, iso and cross stimuli with and without photo-

activation of an inhibitory opsin (see STAR Methods). Photo-activation reduced both 

baseline activity as well as stimulus evoked responses of VIP neurons (Figure S6A–D). 

Furthermore, in agreement with a previous study (Attinger et al., 2017), silencing VIP 

neurons had a suppressive effect on the baseline activity of putative excitatory neurons, 

confirming the disinhibitory impact of VIP neurons (Figure S6E, H). Consistent with the 

predictions of our model, silencing VIP neurons reduced the responses of putative excitatory 
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neurons to cross stimuli significantly more than those to iso stimuli (Figure 6B, C). 

Importantly, as in our model, silencing VIP neurons also reduced the CMI of excitatory 

neurons, indicating that VIP neurons regulate V1 activity in a context dependent manner 

(Figures 6D, E; similar results obtained with different opsins, S7A-D; also true for 100% 

contrast, Figure S6E–G; similar results obtained under different behavioral states, Figure 

S8A–F). During this manipulation, excitatory neurons with both a positive and negative CMI 

shifted their CMI towards zero (Figure 6E), implying that their responses were less 

dependent on the specific features of the surround.

To determine whether the perturbation of the activity of VIP neurons affects the activity of 

SOM neurons, we repeated our silencing protocol, however, this time, while recording from 

SOM neurons (Figure 6F). Upon VIP-neurons silencing, SOM neurons were significantly 

less suppressed by cross stimuli than by iso stimuli (Figure 6G, H). Moreover, SOM neurons 

with a negative CMI, which dominated the overall sample of SOM neurons (Figure 2C), 

shifted their CMI towards zero, while the ones with positive CMIs did not change on 

average (Figures 6I, J; similar results obtained with different opsins, S7E-H; similar results 

obtained under different behavioral states, Figure S8G–I). Thus, the preferential suppression 

of SOM neurons by cross stimuli relies, at least in part, on the preferential activation of VIP 

neurons by these stimuli.

Taken together, based on optogenetic perturbations and computational modelling, these 

results demonstrate that the VIP-SOM disinhibitory circuit plays a key role in the contextual 

modulation of excitatory neurons.

DISCUSSION

This study provides a mechanism for contextual modulation in V1 and reveals a 

disinhibitory circuit as a key mediator. Using imaging, optogenetic manipulations, and 

computational modeling, we find that the relationship between VIP and SOM inhibitory 

neurons contributes to the response profiles of L2/3 excitatory neurons in V1. When a 

uniform full-field stimulus is presented, VIP neurons are silent, while SOM neurons 

dominate the network and inhibit excitatory neurons. With a discontinuity in orientation 

between center and surround, VIP neurons are excited, inhibiting SOM neurons and 

effectively relieving excitatory neurons from the inhibition of SOM neurons. In addition, 

modelling suggests that the disinhibitory circuit is both necessary and sufficient for 

contextual modulation but exerts its function through its role in complex circuit dynamics 

rather than through simple feedforward disinhibition.

Local circuits

The connectivity motifs between inhibitory neurons has been previously described (Jiang et 

al., 2015; Karnani et al., 2016; Pfeffer et al., 2013; Pi et al., 2013): SOM neurons inhibit all 

other classes of neurons in L2/3 while VIP neurons preferentially inhibit SOM neurons. In 

addition, SOM neurons receive excitatory input from L2/3 neurons distributed over a 

relatively large retinotopic space (Adesnik et al., 2012). We therefore cannot exclude a 

contribution of these excitatory inputs to the contextual modulation of SOM neurons. 

Regardless, our results indicate that when SOM neurons prevail over VIP neurons, 
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excitatory neurons are suppressed, i.e. surround suppressed. Conversely, when VIP neurons 

prevail over SOM neurons, excitatory neurons are relieved from suppression.

In the present study the activity of SOM neurons is, on average, similar for center and iso 

stimuli. This may seem to contradict the assertion that SOM neurons mediate surround 

suppression of excitatory neurons by preferentially responding to iso stimuli. However, the 

similar response magnitude of SOM neurons to center and iso stimuli likely reflects the fact 

that the center stimuli presented here were already large enough to trigger, on average, the 

maximal response in SOM neurons. Moreover, while center stimuli trigger responses in all 

inhibitory neurons, i.e. VIP, PV and SOM neurons, iso stimuli trigger response in SOM 

neurons only. Thus, in response to iso stimuli, the principal source of inhibition onto 

excitatory neurons are SOM neurons, explaining their preferential role in surround 

suppression. Finally, surround suppression, though triggered by a transient increase in 

inhibition received by suppressed neurons, involves a steady-state decrease in the inhibition 

they receive. However, this decrease in inhibition is outweighed by a decrease in the 

excitation the neurons receive (Adesnik, 2017; Ozeki et al., 2009). This reflects the 

“paradoxical” response of inhibitory neurons in an inhibition-stabilized network (Ozeki et 

al., 2009; Tsodyks et al., 1997). As a result, SOM neurons can also show reduced firing at 

the fixed point of the network, when excitatory neurons are suppressed. Thus, the similar 

response magnitude of SOM neurons to center and iso stimuli is not inconsistent with the 

role of SOM neurons in surround suppression.

The fact that our networks are ISNs likely underlies some of their intriguing behaviors. 

When an input is given only to VIP units, all the excitatory units increase their fixed-point 

firing rates. In this case, because the network is an ISN, a weighted sum of the inhibition 

received by each of the excitatory units will show biphasic behavior, initially decreasing due 

to inhibition of SOM units, but ultimately being increased in the new fixed point due to 

recurrent excitation of SOM and PV units (Litwin-Kumar et al., 2016; Rubin et al., 2015; 

see Supplemental Discussion). The biphasic behavior seen in the SOM unit of the centered 

and preferred-orientation subnetwork after VIP-unit activation (Figures 4I–L, S3) likely 

reflects its role in this larger ISN dynamics. In the transition from iso- to cross-response 

levels, this unit shows similar biphasic behavior in many solutions. While this case is more 

complex (see supplemental discussion), this could reflect similar dynamics.

The biphasic response of SOM units upon VIP-unit stimulation is a robust prediction of our 

model, true of 114 out of the 115 most accurate solutions (Figures 4I–L, S3). The model also 

suggests that SOM units may show a similar biphasic behavior in the transition from iso- to 

cross-response levels. Judging from previous observations of inhibitory ISN transients 

(Ozeki et al., 2009; Sanzeni et al., 2020), testing these predictions could require time 

resolution of 5–10 ms, and so is outside the range of the calcium imaging used here.

In summary, this four-unit-type circuit is dynamically complex, involving many interacting 

and competing positive and negative feedback loops. In particular, the disinhibitory circuit 

can serve as a positive feedback pathway by which excitatory firing can be amplified, e.g. 

via the loop excitatory-VIP-SOM-excitatory, as well as a negative feedback pathway, e.g. via 
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the loop excitatory-SOM-excitatory. All these loops must simultaneously reach equilibrium, 

making for complex dynamics.

Feedback drive

In addition to feedforward and local recurrent inputs, feedback inputs may also contribute to 

contextual modulation. Excitatory L2/3 neurons are most active during the presentation of 

cross compared to other stimuli. However, their main feedforward inputs, L4 neurons, are 

not as active in response to cross stimuli as they are in response to center-alone stimuli 

(Figure 1B, C). Is the strong response of L2/3 excitatory neurons to cross stimuli only the 

result of a decreased inhibition by SOM neurons, or also supported by an additional source 

of excitation? We have recently shown that excitatory neurons in L2/3, but not L4, are 

strongly driven by feedback projections from higher visual areas when visual stimuli are 

placed in the surround of their classical feedforward receptive field (Keller et al., 2020). This 

drive generates the feedback receptive field of L2/3 neurons and might contribute to the 

excitation of L2/3 neurons to stimuli that also cover the surround. Moreover, this feedback 

drive might account for the fact that some L2/3 neurons respond more strongly to cross than 

to center stimuli.

VIP but not SOM neurons also have a feedback receptive field (Keller et al., 2020). Since 

most VIP neurons are strongly suppressed by iso stimuli, in fact more strongly than 

excitatory neurons (Figure 2G, H), their feedback receptive field may selectively contribute 

to the responses of VIP neurons to cross stimuli. This feedback drive may help VIP neurons 

to dominate the VIP-SOM circuit for cross stimuli, a possibility that will be addressed in the 

future.

Behavioral states and population heterogeneity

VIP neurons have been shown to receive modulatory inputs mediating locomotion signals 

(Arroyo et al., 2014; Fu et al., 2014). Furthermore, other inhibitory subtypes are also 

modulated by locomotion (Dipoppa et al., 2018; Pakan et al., 2016). By acting on all 

elements of the local circuit in V1, locomotion provides a general gain control on neuronal 

responses (Heintz et al., 2020). Consistently, in our experiments, locomotion had only a 

minor impact on the distribution of contextual modulation indexes (Figure S1C, D). 

Moreover, arousal modulates the VIP-SOM disinhibitory circuit independently of 

locomotion (Vinck et al., 2015) and can be estimated based on the pupil size, in resting 

mice. Interestingly, contextual modulation of excitatory but not of inhibitory neurons 

changed with pupil size (Figure S1E) suggesting that the saliency of the cross stimulus can 

be further increased by the arousal of the mouse.

While both locomotion and arousal had minor effects on the contextual modulation, they did 

not explain the heterogeneity of the contextual modulation observed within all individual 

neuronal subtypes, the distribution remained wide even when controlling for behavioral 

state. This heterogeneity of contextual modulation has been reported in other animal models, 

such as the macaque visual system (Henry et al., 2020) and may reflect the functional 

diversity of neurons in V1 and their roles in computing contextual modulation.
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Contextual modulation and predictive processing

Contextual modulation represents a fundamental computation to extract meaning from visual 

scenes. It could support many perceptual phenomena, such as pop-out effects, figure-ground 

segregation, detection of borders, and object detection (Angelucci et al., 2017; Bergen and 

Julesz, 1983; Henry et al., 2020; Jones et al., 2001; Kapadia et al., 2000; Knierim and van 

Essen, 1992; Lamme, 1995; Rossi et al., 2001; Schnabel et al., 2018; Seriès et al., 2003; 

Treisman and Gelade, 1980). Furthermore, the dichotomy between surround suppression and 

cross-orientation facilitation is consistent with a predictive processing framework (Bastos et 

al., 2012; Keller and Mrsic-Flogel, 2018), that is, a framework in which the features of a 

stimulus at a given location can be used to estimate the features of a stimulus at an adjacent 

location (Rao and Ballard, 1999). Based on natural statistics of the visual environment, the 

spatial features in a small patch of visual world are likely to be similar to the spatial features 

in the adjacent patches. If the stimuli in the surround provide a correct estimate of the 

stimulus in the center, the response of the neuron can be suppressed, i.e. surround 

suppression, as there is less need to transmit a signal that is accurately predicted. On the 

other hand, when the center and the surround differ, the stimuli in the surround provide an 

incorrect estimate of the stimulus in the center and the signal of the neuron will not be 

suppressed but passed along and even enhanced, i.e. cross-orientation facilitation. Predictive 

processing provides one compelling framework for contextual modulation of visual 

responses in cortical circuits, and the VIP-SOM disinhibitory circuit may provide a key 

route by which predictive signals alter local processing.

In conclusion, the VIP-SOM disinhibitory circuit is a canonical circuit that plays a key role 

in contextual modulation in primary visual cortex, and may perform similar functions across 

multiple cortical areas.

STAR METHODS

Resource Availability

Lead Contact—Requests for further information and resources should be directed to the 

lead contact, Massimo Scanziani (massimo@ucsf.edu).

Materials Availability—No new unique reagents or mouse lines were generated in this 

study.

Data and Code Availability—All data and analysis code related to the experimental 

dataset are available from the corresponding authors A.J.K. (andreasjakob.keller@ucsf.edu), 

M.M.R. (morgane.roth@ucsf.edu) and M.S. (massimo@ucsf.edu) on request.

All data and analysis code related to the modelling part are available from the corresponding 

authors M.D. (md3681@columbia.edu) and K.D.M. (kdm2103@columbia.edu) on request.

Experimental Model and Subject Details

All experimental procedures were conducted in accordance with the regulation of the 

Institutional Animal Care and Use Committee of the University of California, San Francisco.
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The mice were housed on a reverse light cycle (light/dark cycle: 12/12 hrs). At the start of 

the experiments, all mice were older than 2 months. Mice were of either sex and of the 

following genotype:

Gad2-IRES-cre (GAD2tm2(cre)Zjh; RRID: IMSR_JAX:010802) × Ai14 

(Gt(ROSA)26Sortm14(CAG-tdTomato)Hze; RRID: IMSR_JAX:007914) for imaging of layer 2/3 

(L2/3) excitatory neurons (9 mice; Figures 1, 3, S1, S2); Scnn1a-Tg3-cre (Tg(Scnn1a-

cre)3Aibs/J; RRID: IMSR_JAX:009613) and Scnn1a-Tg3-cre (Tg(Scnn1a-cre)3Aibs/J; 

RRID: IMSR_JAX:009613) × Ai148 (Igs7tm148.1(tetO-GCaMP6f,CAG-tTA2)Hze; RRID: 

IMSR_JAX:030328) for imaging layer 4 (L4) excitatory neurons (4 mice and 1 mouse, 

respectively; Figures 1, 3, S2); Sst-IRES-cre (Ssttm2.1(cre)Zjh; RRID: IMSR_JAX:028864) × 

Ai14 (Gt(ROSA)26Sortm14(CAG-tdTomato)Hze; RRID: IMSR_JAX:007914) for imaging of 

L2/3 somatostatin-expressing neurons (SOM; 13 mice; Figures 2, 3, S1, S2); PV-cre 

(Pvalbtm1(cre)Arbr; RRID: IMSR_JAX:017320) × Ai14 (Gt(ROSA)26Sortm14(CAG-

tdTomato)Hze; RRID: IMSR_JAX:007914) for imaging of L2/3 parvalbumin-expressing 

inhibitory neurons (PV; 10 mice; Figures 2, 3, S1, S2); VIP-IRES-cre (Viptm1(cre)Zjh; RRID: 

IMSR_JAX:010908) × Ai14 (Gt(ROSA)26Sortm14(CAG-tdTomato)Hze; RRID: 

IMSR_JAX:007914) for imaging of L2/3 vasoactive-intestinal-peptide-expressing inhibitory 

neurons (VIP; 7 mice; Figures 2, 3, S1, S2); VIP-IRES-cre (Viptm1(cre)Zjh; RRID: 

IMSR_JAX:010908) for optogenetic manipulation of VIP neurons and imaging putative 

excitatory and VIP neurons (8 mice; Figures 6, S6–S8); and VIP-IRES-cre (Viptm1(cre)Zjh; 

RRID: IMSR_JAX:010908) × Sst-IRES-Flp (Ssttm3.1(flpo)Zjh; RRID: IMSR_JAX:028579) 

for optogenetic manipulation of VIP neurons and imaging SOM neurons (8 mice; Figures 6, 

S7, S8).

Method Details

Surgery.—Mice were anesthetized with 2% isoflurane or with a mixture of Fentanyl (West-

Ward Pharmaceuticals, 0.05 mg/kg), Midazolam (Hospira, 5.0 mg/kg) and 

Dexmedetomidine (Zoetis, 0.5 mg/kg), injected subcutaneously. Atropine (Abcam, 0.1 

mg/kg) and dexamethasone (Sigma-Aldrich, 2.0 mg/kg) were injected subcutaneously to 

reduce inflammation and secretion. Mice’s body temperature was monitored and kept 

constant. To prevent the eyes from drying, a layer of lubricant ointment (Rugby) was 

applied. The skin above the skull was disinfected with povidone iodine (Purdue). A 

craniotomy was made over the right visual cortex (3 to 4.5 mm in diameter) and viruses 

were injected with a micropump (UMP-3, World Precision Instruments) at a rate of 2 nl/s. 

The craniotomy was then sealed with a glass coverslip using cyanoacrylate glue and a 

headplate was attached with dental cement (Lang Dental or Parkell). To reverse the 

anesthesia induced by the Fentanyl-Midazolam-Dexmedetomidine mixture, a mixture of 

Naloxone (Hospira, 1.2 mg/kg), Flumazenil (West-Ward Pharmaceuticals, 0.5 mg/kg), and 

Atipamezol (Zoetis, 2.5 mg/kg) was injected subcutaneously after the surgical procedures.

Viruses.—Viruses were typically diluted to use titers of approximately 5 × 1012 genome 

copies/ml and 50 nl were injected at each injection site (3 to 5 sites per mouse) and each 

depth (2 from 350 to 200 μm below the pial surface). We injected the following viruses:

Keller et al. Page 13

Neuron. Author manuscript; available in PMC 2021 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AAV2/1.ef1a.GCaMP6f.WPRE (FMI Vector Core Facility), 

AAV2/1.ef1a.DIO.GCaMP6f.WPRE (FMI Vector Core Facility), AAV2/1.CAG.CGaMP6f 

(Janelia Vector Core), AAV2/9.syn.GCaMP7f (Addgene), AAV2/1.ef1a.fDIO.GCaMP6s 

(Janelia Vector Core), AAV2/5.CBA.Flex.ArchT-tdTomato.WPRE.SV40 (University of 

Pennsylvania Vector Core), AAV2/1.CAG.Flex.rc[Jaws-KGC-GFP-ER2] (Janelia Vector 

Core), AAV2/9.CAG.Dio.eNpHre3.0.mRuby3.WPRE.SV40 (H. Adesnik), and 

AAV2/9.ef1a.F-Flex.tdTomato (Xue et al., 2014).

Visual stimulation.—Visual stimuli were generated using the open-source Psychophysics 

Toolbox based on Matlab (MathWorks). Stimuli were presented at 15 cm to the left eye on a 

gamma-corrected LED-backlit LCD monitor (DELL) with a mean luminance of 20 cd/m2. 

For experiments using a resonant scanner, the power source of the monitor’s LED backlight 

was synchronized to the resonant scanner turnaround points (when data were not acquired) 

to minimize light leak from the monitor (Leinweber et al., 2014). We presented drifting 

sinusoidal gratings (2 Hz, 0.04 cycles/°, 100% contrast) unless stated otherwise. The trial 

structure of all stimulus sessions (receptive field mapping, orientation tuning, et cetera) was 

block randomized (the block size was given by the total number of parameter combinations).

Receptive field mapping:  Stimuli consisted of a circular patch of drifting sinusoidal 

gratings on a gray background (typically set to 20° in diameter) presented with 15° spacing 

on a 5 by 5 grid covering 80 by 80° of visual space. Stimuli were presented for 1 s at a single 

direction or for 2 s at the 4 cardinal directions (0.5 s each). Stimulation periods were 

interleaved by 2 s of gray screen. We recorded 5 to 10 trials per stimulus condition.

Orientation tuning:  We presented drifting sinusoidal gratings of at least 10° diameter 

drifting in 8 directions (5 to 10 trials). Stimulus time was 2 s interleaved with 4 s of gray 

screen.

Size tuning:  Patches of drifting sinusoidal gratings were displayed at up to 9 different sizes, 

linearly spaced from 5° up to 85° in diameter (10 trials per size) centered on the classical 

feedforward receptive field (ffRF). Stimulation time was 2 s interleaved by 4 s of gray 

screen. Stimuli were either presented at a single direction or at the 4 cardinal directions (0.5 

s each).

Contextual modulation:  We presented patches of drifting sinusoidal gratings on a gray 

background (center stimulus), full-field drifting sinusoidal gratings (iso stimulus), and 

patches of drifting sinusoidal gratings on cross-oriented full-field drifting sinusoidal gratings 

(cross stimulus). Stimulation time was 2 s interleaved by 4 s of gray screen. The diameter of 

the central patches (for center and cross stimuli) was set to 20° (the average preferred 

diameter of excitatory neurons) for all non-optogenetic experiments in order to ease the 

comparison across neuron types. For optogenetic experiments, we optimized the diameter of 

the patches (ranging from 10 to 30°) for the population of excitatory neurons that we were 

recording from to facilitate the interpretation of the manipulation. Stimuli were presented at 

a single direction except for the cross stimulus where the surround stimulus was presented at 

two orthogonal directions. Responses to both directions were then averaged during the 

analysis. Trials with optogenetic stimulation had an additional 1 s pre-stimulus and post-

Keller et al. Page 14

Neuron. Author manuscript; available in PMC 2021 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stimulus gray screen during which the optogenetic light source was turned on and the total 

number of trials was doubled (Optogenetics below).

Behavioral monitoring.—All mice were habituated (3 to 5 days) to the experimental 

setup before starting experiments. Mice were head-attached and free to run or rest on an air-

supported polystyrene ball. The motion of the ball was limited to the forward-backward axis 

by pinning the ball. The running speed of the animals was tracked with an optical mouse 

(G500, Logitech). During all experiments, we recorded the positions of the left eye using a 

CMOS camera (DMK23UM021, Imaging Source) with a 50-mm lens (M5018-MP, 

Moritex), and monitored its general behavior using a webcam (LifeCam Cinema 720p HD, 

Microsoft).

Two-photon calcium imaging.—Imaging was performed using either a galvanometric-

scanner based MOM (Sutter) or a resonant-scanner based (8 kHz) Bergamo II two-photon 

microscope (Thorlabs), both controlled by ScanImage (Vidrio). Using the MOM system, we 

acquired images of 128 × 128 pixels at a single depth at 5.92 Hz frame rate. With the 

Bergamo II, we acquired images of 380 × 512 pixels at 1 or 4 depths at 40 Hz or 8 Hz frame 

rate, respectively. We obtained similar results with both systems, so all data were pooled. 

The illumination light source was a Ti:sapphire laser (Chameleon Ultra II, Coherent) used at 

an excitation wavelength of 910 nm. The laser power under the objective (16×, Nikon) was 

typically set to 30 mW and never exceeded 50 mW (laser pulse width 140 fs at a repetition 

rate of 80 MHz).

Optogenetics.—To silence VIP neurons, we used a 594-nm laser (OBIS 594 LS 100 mW, 

Coherent). We modified the Bergamo II microscope (Thorlabs) to combine optogenetic 

manipulation with two-photon calcium imaging. A lens (LA1805-B, Thorlabs) was placed in 

the optogenetic stimulation light path to defocus the light at the imaging plane. We used a 

dichroic mirror (DMBP740B, Thorlabs) to combine two-photon laser and optogenetic 

stimulation light, and a second dichroic mirror (FF555-Di03–25×36, Semrock) to split the 

green fluorescent protein (GFP) emission from both the two-photon and optogenetic light 

sources. The laser for optogenetic stimulation was synchronized to the resonant scanner 

turnaround points (when data were not acquired) to minimize light leak from the monitor 

(Attinger et al., 2017) and therefore flickered at twice the frequency of the resonant scanner. 

Trials with optogenetic stimulation, the laser was turned on 1 s before the visual stimulus 

and turned off 1 s after the offset of the visual stimulus. For all opsins, the average 594-nm 

laser power under the objective was typically set to a constant value of 15 mW (not 

exceeding 18 mW) throughout the trial.

Computational model.—We developed a model reproducing the responses of the 5 

different neuronal types that we recorded from (L2/3 excitatory, VIP, SOM, and PV 

inhibitory neurons and L4 excitatory neurons). Each unit of the circuit represented the 

average activity of a given neuron type, integrated in a ‘subnetwork’ with the other unit 

types. Four such subnetworks were each assigned to one of two spatial locations (each 

considered the ‘surround’ of the other) and one of two preferred orientations (orthogonal to 

each other). We consequently obtained a total of 20 units, 5 unit-types in 4 subnetworks. We 

Keller et al. Page 15

Neuron. Author manuscript; available in PMC 2021 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



optimized the synaptic strengths between these model units to match their responses to those 

observed experimentally. We obtained many solutions by using many sets of pseudo data, 

obtained by perturbing the experimental data by random noise with standard deviation 

proportional to the measurement standard error.

Experimental data:  To model the average activity of our 20 units split across the 4 

subnetworks, we divided our experimental data set into 4 subgroups: ‘Centered and 

preferred-orientation’, ‘centered and orthogonal-orientation’, ‘surround and preferred-

orientation’, and ‘surround and orthogonal-orientation’ (for details, see Data analysis). The 

population-averaged responses of the 5 neuron types within each subgroup were the targets 

for the fitting of the corresponding 5 units within the 4 subnetworks of our model. 

‘Centered’ neurons were those with ffRFs aligned with the location of the center stimulus, 

i.e. ffRFs centers no more than 10° from the stimulus center. ‘Surround’ neurons were those 

with ffRF offset from the location of the center stimulus, i.e. ffRF centers were at least 15° 

from the stimulus center. ‘Preferred orientation’ neurons were those with preferred 

orientation within 45° of the center stimulus orientation. ‘Orthogonal orientation’ neurons 

were those with preferred orientation more than 45° from the center stimulus orientation. 

Normalized population-averaged responses of the neurons of each of the 5 types within each 

of the 4 subgroups were obtained for each of 4 stimulus conditions (spontaneous activity or 

presentation of the center, iso, or cross stimuli). Hence, the goal of the model was to fit 

model responses to the matrix of these experimentally observed mean responses, X whose 

elements were xis, where i corresponded to one of the 20 units and corresponded to one of 

the 4 stimulus conditions (Figure S2A).

Model parameters:  Connections between L4 excitatory units and the other model units 

were unidirectional, as L4 was considered as an input to the subnetworks. The L4 unit of a 

given subnetwork was restricted to target only excitatory and PV units of the same spatial 

location, but of either preferred orientation (Adesnik et al., 2012; Karnani et al., 2016). 

Within a subnetwork, there were 16 possible recurrent connections between L2/3 excitatory 

and inhibitory units. We found connection strengths that best fit the data but constrained 

them by the most robust features in the literature (Billeh et al., 2020; Karnani et al., 2016; 

Pfeffer et al., 2013; Seeman et al., 2018). In particular, we disallowed 5 connections that 

were negligible: VIP → excitatory, VIP → PV, VIP → VIP, SOM → SOM, and PV → 
SOM. We also constrained the PV->VIP connection to be weak relative to the other non-zero 

connections, as described below. Thus, each subnetwork received 11 recurrent connections 

and two L4 connections from within its own subnetwork, a total of 13 connections per 

subnetwork (W(1) in Figure 3D, S2B). The same set of connections was also allowed from 

the opposite orientation at the same location (W(2) in Figure 3D, S2B), making 26 

connections to a given subnetwork from its own spatial location. Projections across spatial 

locations were only allowed from L2/3 excitatory units to all four L2/3 unit types, adding 8 

additional connections received by each subnetwork (W(3) and W(4) in Figure 3D, S2B; the 

connections from inhibitory and L4 neurons were all set to zero and therefore not displayed 

in Figure 3D, S2B). In total, we thus allowed 34 non-zero connections per subnetwork.
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The overall 16 × 20 weight matrix was composed of the 4 × 5 submatrices W(i) in the 

following convolutional structure

W =

W (1) W (2) W (3) W (4)

W (2) W (1) W (4) W (3)

W (3) W (4) W (1) W (2)

W (4) W (3) W (2) W (1)

This structure meant that each spatial position can be considered as the surround of the other 

and each orientation as the orthogonal of the other. This symmetry across domains allowed 

us to keep the total number of parameters at 34.

The above matrix W was defined in a basis in which the 20 rates were arranged as (L2/3 

excitatory, PV, SOM, VIP, L4 excitatory) of subnetwork 1, then subnetwork 2, then 3, then 

4. We rearranged these weights and rates, letting A be the 16 × 16 matrix of recurrent 

weights between the sixteen L2/3 units, found from W by keeping only the first 4 columns 

of each of the W(i); and B be the 16 × 4 matrix of projections from L4 units to the sixteen 

L2/3 units, found from W by keeping only the last column of each of the W(i). Then, in this 

rearranged basis, W became the concatenation W = (A, B), and acted on a rate vector 
r
h

whose first 16 elements r were the rates of the L2/3 units and whose last 4 elements h were 

the rates of the L4 units (we use bold font to indicate vectors, and capital letters to indicate 

matrices).

Rate equations:  The rate equations for the units in the network for a particular stimulus s 
were

τdrs
dt = − rs + Ars + Bhs

.n
(1)

where the element-wise operation xi
⋅ n ≡ xi +

n corresponded to the input-output 

function, a rectified power law with exponent n = 2 (Ahmadian et al., 2013). The 16-vector 

rs specified the activities of the L2/3 units to stimulus s, while the 4-vector hs specified the 

activities of the L4 units to that stimulus. The time constant was set to τ = 10 ms. We 

denoted the combination of L2/3 and L4 units by xs =
rs
hs

. We used X, R, and H to refer to 

the matrices whose columns are the vectors xs, rs, or hs, respectively, across all stimuli s.

Cost function:  For each stimulus s, we denoted the experimentally measured mean 

responses as hs for L4 and rS for L2/3. Our model found inputs (L4 responses) hs. and 

synaptic weights that produced a fixed-point response denoted by limt ∞rs(t) ≡ rs. The 

cost function of the model demanded that the inputs and responses should have minimal 

summed-weighted-squared error relative to the experimental measurements, subject to 

certain regularization terms:
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E0(X, W ) = ∑
i, s

Mis2 xis − xis
2 + L(X, W )

Here, mis was a weight matrix that represented our uncertainty over the responses. More 

specifically mis = σ0βi/σis, where σis was the standard error of the responses xis measured 

experimentally, β was a multiplicative factor to weight errors in certain unit types more than 

others, and σ0 = σis/βi is was a normalization factor, where zis is indicated an average of zis 

over i and s. We chose βi = 1 for L2/3 excitatory, PV and VIP neurons, βi = 1.5 for SOM and 

βi = 2 or 2.5 (the two parameters gave similar results) for L4 excitatory neurons. We used 

larger βi for units that we found harder to fit, L4 and SOM units. Intuitively, this fitting 

difficulty might arise from the fact that L4 and SOM neurons had the most distinct response 

patterns compared to other neuron types. L represented the sum of all regularization terms, 

defined as:

L(X, W ) = α1∑
i, S

εx − xis + + α2 ∑
i, j ∈ N

mij
(1) −log wij + α3 ∑

i, j ∈ N
mij

(2)wij2

The first regularization factor, using α1 = 0.02, nudged the responses xis above a minimal 

threshold εx = 0.01, since X corresponded to estimated firing rates and were thus non-

negative. The second and third factors were applied only to the 34 weights that were allowed 

to be non-zero, as specified above; this set of weights was designated by N. The second 

factor, using α2 = 0.05, nudged weights with a corresponding positive value of mij
(1) to 

prevent them from being too close to zero. The elements mij
(1) ∈ {0, 1} were non-zero for 

almost all allowed connections between units sharing orientation preference, i.e. W(1) and 

W(3): all of those from the same spatial location of the ffRF (W(1)) with the exception of the 

connection from PV to VIP units (its mij
(1) was zero because this connection is weak 

according to Pfeffer et al., 2013), and those from the surround to excitatory units and to 

SOM units (two of the 4 non-zero elements of W(3); these two were chosen because there is 

well-established evidence of substantial integration across spatial locations for excitatory 

and SOM neurons (Adesnik et al., 2012). The third factor, with α3 = 0.01, nudged weights 

with a corresponding positive value of mij
(2) towards zero. The elements mij

(2) ∈ {0, 1} were 

non-zero for all allowed connections between units having different preferred orientations 

(W(2) and W(4)) and for the PV- to VIP-unit connection regardless of the orientation 

preference. In other words, we wanted to discourage strong connections across subnetworks 

with different orientation preferences and encourage strong connections among those 

allowed in W(1) and W(3).

Inferring connection weights from the data:  We noted that equation (1) corresponded to a 

recurrent neural network (RNN). This allowed us to train the RNN to find the best solutions, 

i.e. the weights wij and the inputs his, using backpropagation through time (BPTT; Pascanu 

et al., 2013; Rumelhart et al., 1986). The training of a neural network is highly sensitive to 

its initial weights (He et al., 2015) and in general we observed that starting from random 
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initial conditions would often lead to unstable solutions. This might stem from the fact that 

RNN training is prone to gradient vanishing and gradient explosion (Bengio et al., 1994), 

especially for a large number of time steps. As a first step, we therefore found stable 

solutions which would approximately match the data using non-negative least square 

(NNLS) regression, which we used as initial conditions of the BPTT. In a previous study 

(Dipoppa et al., 2018), we used a NNLS to infer the optimal synaptic strengths of a model 

evolving a dynamical equation similar to equation (1) such that the model would match the 

experimental data. Here we similarly inferred optimal strengths for matching the model to 

pseudo data x′ij = γijxij, randomly generated using the random matrix 

γij Gamma φ−1σij−2, φσij2  with φ = 5, such that x′ij = xij and Var x′ij = φσij2 . We solved the 

convex problem of minimizing the following cost function, E1, which made X′ as close as 

possible to a fixed point of equation 1 subject to regularization, as an approximation of 

minimizing E0(X′, W):

E1 X′, W = ∑
i, s

Mis2 R′is
1/n − ∑

i, k
W ikX′kj

2
+ L W X′, W

Here R′ was the R component of X′ = R′
H′ . We generated NNNLS = 10,000,000 different 

sets of pseudo data {X′} (5,000,000 with βi = 2 and 5,000,000 with βi = 2.5). We then used 

the trust region reflective algorithm to solve the problem minW E1(X′, W) starting from 

initial conditions Wij~Gamma(1,1) and with boundaries 0 < |Wij| < 10 with Wij having 

positive or negative signs depending on whether they represented excitatory or inhibitory 

connections. After obtaining a set of optimal parameters {WNNLS} for each set of pseudo 

data, we let the network evolve following equation (1) and obtained the fixed points (if they 

existed), discarding all solutions that had at least one of the 20 rates > 10 or < εx. This 

produced the set of fixed points {XNNLS}. Note that the HNNLS portion of XNNLS was 

unchanged from its original perturbed value H′(H ≡ H′). We then recomputed the error 

E0 XNNLS, W NNLS ≡ E0
NNLS .

We selected the 20,000 best solutions XNNLS, W NNLS  sorted by E0
NNLS  as starting 

parameters for the BPTT (5,000 with βi = 2 and 15,000 with βi = 2.5). We defined the 

following cost function for the BPTT:

E2(X(t), W ) = ∑
i, s

mis2 xis(t) − xis t
2 + ∑

i, s
xis(t + 1) − xis(t) t

2 + L X(t) t, W

where xis(t) corresponded to the dynamics of the network at each time step t and where the 

average over t, 〈·〉t, was computed over the last T = 200 time-steps of the dynamics. The 

second term punished large values of the derivative of X to ensure that the network reached a 

fixed point. Independently of the stimulus condition, for each run of the dynamics (termed 

an ‘epoch’), the starting point was xis(0) = xi0 + δxis, where s = 0 corresponded to the 

spontaneous activity and δxis N(0, 0.01) was a random perturbation following a Gaussian 
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distribution. We used time steps of Δt = 2 ms. An epoch consisted of evolving equation (1) 

using the Euler scheme:

rs(t + 1) = rs(t) + −rs(t) + Ars(t) + Bhs
. n Δt

τ (2)

for 500 time-steps. To compute the gradient of the loss equation E2(X(t), W) over W and the 

H portion of X of the discretized network given by equation (2) over the last T = 200 time 

steps of the dynamics, we used automatic differentiation methods provided by the pytorch 

library in Python. Optimization was carried out by the ADAM optimizer (Kingma and Ba, 

2017). To improve convergence to a solution, we employed a triangular learning rate policy 

(Smith, 2017) at a base learning rate of 3 × 10−4, a maximum learning rate of 3 × 10−3, 100 

training epochs for the increasing part of the cycle, 200 training epochs for the decreasing 

part of the cycle. We also used a patience parameter of 1000 epochs. If the error did not 

improve over this length of time, the training procedure of the BPTT would stop. If not 

interrupted, the model was trained for 10,000 epochs. After running the BPTT for the best 

20,000 starting conditions of the NNLS XNNLS, W NNLS , we obtained a new set of 

inferred weights and rates XRNN, W RNN . Note that in contrast to the NNLS, the HRNN

portion of XRNN was learned. Of these the BPTT procedure was able to reduce the error for 

13,471 simulations (3,293 with βi = 2 and 10,178 with βi = 2.5).

To select the top solutions, we defined a new cost function only based on the error between 

the model and the data points without any extra penalty βi on specific unit types or 

regularization factors

E3 XRNN = ∑
i, s

σis−2 xis
RNN − xis

2

where, as a reminder, σis was the standard error of the responses xis measured 

experimentally. For further analysis, we selected the 115 solutions (45 with βi = 2 and 70 

with βi = 2.5) whose error was within 1.33 of the smallest error estimated by E3. The 

threshold we set to select solutions roughly divides a sparse set of lowest-error solutions 

from a dense set of higher-error solutions (Figure S5).

Comparison with the data:  The model was trained to reproduce the estimated firing rate 

of the units X, shown in Figure S2A. For better comparison to the experimental data, in 

Figure 3C we showed the baseline subtracted model responses Δxis = xis− xi0, i.e. with the 

spontaneous activity s = 0 subtracted. Similarly, we used Δxis to compute CMIs and the 

difference between control and optogenetic conditions (Figure 5, Figure S5). Using Δxis 

instead of the unit activity xis did not appreciably change the results.

Equivalence classes of solutions.—The model was fitted to produce responses XRNN

that closely reproduced normalized data X. We estimated a set of correction factors ci, one 

for each of the 5 unit types, which were equal to the average firing rates in Hz of each 
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neuron type (for details, see Data analysis, Contextual modulation): cExc = 1.87, cPV = 6.63, 

cSOM = 6.86, cVIP = 2.61, CL4 = 1.49. We wanted a model in which all the normalized 

activities XRNN were multiplied by these ci’s, so that the model activities would have values 

comparable to observed firing rates in Hz. For equation 1, there exists an equivalence classes 

of solutions: given a solution with weights WRNN and rates XRNN, a solution WEQ and XEQ 

that that is completely equivalent in all behaviors except for scaling of the rates, 

xis
EQ = cixis

RNN, is obtained by scaling the weights so that wij
EQ = ci

1
n /cj wijRNN. Although 

the model was trained to generate solutions WRNN and XRNN, we present the solutions 

WEQ and XEQ.

Perturbation analysis.—We generated the perturbation analysis, in which we froze a set 

of inputs (Figures 4 and S4), as follows: the network started from the fixed point of the iso-

response level at time t = 0; ri(0) = r i, iso (differently from Figures 3, 5 and S2 where we 

started from the spontaneous state ri(0) = r i, spont ). We then switched the L4 excitatory 

inputs to their cross-response level hiso → hcross (Figure 4A–H, S4A) or kept them at their 

iso-response level (Figure 4I–L, S4B–K). At the same time, we froze another input or set of 

inputs to the fixed point of one of the response levels (iso or cross). Each input we froze was 

from one unit-type b to another unit-type a, and this meant that we froze all such inputs 

within and between all four subnetworks to their value in the given fixed point. For a 

particular connection, say from unit j of type b to unit i of type a, freezing the input meant 

replacing the normal dynamical input, wijx(t)j, with the fixed input that would occur in the 

fixed point for stimulus s (iso or cross), wijxjs. We then retained the solutions which 

converged to a fixed point within 2s and in which no unit exploded to high values (> 

10,000).

In the perturbation analysis of Figure S3, we show the change in the fixed point introduced 

by a very small perturbation (excitation) Δq ≪ 1 of all VIP units in the network, starting 

from the iso fixed-point. For a very small perturbation, the change in the fixed point can be 

approximated by the dynamics linearized around the initial iso fixed-point. This yields the 

following equation:

Δr(s, k) = I − D(s)A −1D(s)p(k)Δq

Here, p(k) is the perturbation, a 16-element vector (one element for each unit in the model) in 

which each of four elements corresponding to unit type k is 1, while all other elements are 

set to 0. The strength of the perturbation is Δq = 0.01. The change in fixed-point response 

induced by the perturbation is Δr(s,k), a 16-element vector giving the change in response of 

each unit to a perturbation of unit type k starting from the state s. D(s) is a 16 × 16 diagonal 

matrix whose elements are dii
(s) = nr is1 − 1

n . We focused on the effect of a perturbing all VIP 

units, k = VIP (Figure S3).
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When computing trajectories of excitatory and SOM units of subnetwork 1 during a small 

perturbation of VIP units (Figure S3), we added optogenetic excitation by using the 

following linearized dynamics with Δq = 0.01 and initial condition Δr(s,k)(t = 0) = 0:

τdΔr(s, k)
dt = − Δr(s, k) + D(s) AΔr(s, k) + p(k)Δq

Quantification and Statistical Analysis

Data analysis.—All data were analyzed using custom-written code in Matlab 

(MathWorks).

Two-photon calcium imaging:  We analyzed two-photon calcium imaging data as 

described previously (Keller et al., 2020). Briefly, data were full-frame registered using 

custom-written software (https://sourceforge.net/projects/iris-scanning/). We selected the 

neurons semi manually, based on mean and maximum projection images. We calculated the 

raw fluorescence traces as the average fluorescence of all pixels within a selected region of 

interest for each frame. Fluorescence changes (ΔF/F) were calculated as described elsewhere 

(Dombeck et al., 2007). All stimulus evoked responses were baseline subtracted (1 s pre-

stimulus interval). To estimate firing rates for the model, we inferred spikes using a 

previously published algorithm (Deneux et al., 2016).

Response amplitude:  The response amplitude to a stimulus was computed as the average 

response over the duration of the stimulus presentation (excluding the first 0.5 s of each trial 

due to the delay and slow rise of calcium indicators). Responses were defined as significant 

if they exceeded a z-score of 3.29 (corresponding to p < 10−3) or 5.33 (corresponding to p < 

10−7; for experiments in L4).

Receptive field mapping:  To estimate the center of the receptive field, we fitted the 

responses to patches of gratings with a two-dimensional Gaussian. We excluded neurons if 

they failed to have at least one significant trial-averaged response within 10° of their 

estimated ffRF centers. Additionally, except for the ‘surround group’ (see Computational 

model), we excluded neurons if their estimated ffRF centers were not within 10° of the 

stimulus centers of the stimuli used for estimating size tuning, orientation tuning, et cetera. 

Neurons of the ‘surround group’ had estimated receptive field centers that were at least 15° 

away from the centers of the stimuli.

Size tuning:  We fitted the integral over a difference of Gaussians. This fit was used to 

estimate the neurons’ preferred sizes. We approximated the ffRF size by the size of the patch 

of gratings evoking the largest response (size tuning fits were bound to the interval 0.1 to 

90.1°).

Orientation tuning:  We fitted a circular sum of Gaussians with a peak offset of 180° and 

equal tuning width (full width at half maximum of the Gaussian fit). When the preferred 

orientations of neurons were relevant, we excluded neurons with an R2 goodness-of-fit of 

0.3 or below (Figure S1A; 145 of 727 excitatory neurons were excluded; Figure S2A; 327 of 

Keller et al. Page 22

Neuron. Author manuscript; available in PMC 2021 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://sourceforge.net/projects/iris-scanning/


1261 excitatory, 23 of 107 PV, 27 of 333 SOM, 40 of 116 VIP, and 71 of 169 L4 neurons 

were excluded). Otherwise, neurons were studied without regard for their orientation tuning 

properties. Note that we found no systematic relationship between the CMI and the 

orientation tuning width in any neuronal subtype (data not shown).

Contextual modulation:  To estimate the contextual modulation of excitatory, VIP, SOM, 

and PV neurons, we used a center patch diameter of 20°. We calculated a contextual 

modulation index defined as the difference between the activity to cross and iso stimuli 

divided by the sum of the two. To estimate the effect of silencing VIP neurons on the 

contextual modulation of putative excitatory neurons, neurons were only considered if their 

preferred size was within 10° of the center-patch diameter. Note that for these experiments, 

the center-patch diameter was set to a size between 10° and 30°. When comparing to the 

model, population-averaged responses to center, iso and cross stimuli were estimated as 

spike rates (Figures 3C, S2A). To this end, trial-averaged responses of every neuron were 

first normalized by the maximum responses across center, iso, cross, and receptive field 

mapping stimuli. Then these responses were scaled by a constant factor, one for every 

neuron type (L2/3 excitatory: 1.87; PV: 6.63; SOM: 6.86; VIP: 2.61; and L4 excitatory: 

1.49). To determine these constant factors, we used estimated firing rates in response to the 

stimulus evoking the largest response (on average) based on a previously published 

algorithm (Deneux et al., 2016). Due to the normalization, this approach reduced the impact 

of outliers. Note that directly using estimated firing rates, rather than the approach described 

above, produced similar results.

Surround suppression:  Surround suppression was computed as one minus the responses to 

iso (or cross) divided by the responses to center stimuli. Neurons with a negative response to 

center were excluded from this analysis (Figure 1C; 62 of 727 L2/3 and 3 of 43 L4 neurons 

were excluded; Figure S1B; 62 of 727 excitatory, 1 of 87 PV, 3 of 279 SOM, and 9 of 49 

VIP neurons were excluded).

Baseline:  We estimated the baseline activity as the difference between the average 

fluorescence change during baseline periods (averaged over all 1 s pre-stimulus intervals) 

and the lower quartile of the overall trace of fluorescence changes. To compute the 

population-averaged baseline activity, we excluded neurons with an estimated baseline 

activity of more than 3 standard deviations above the median (Figure S2A; 23 of 934 L2/3 

excitatory, 4 of 84 PV, 3 of 306 SOM, 2 of 76 VIP, and 2 of 98 L4 neurons were excluded).

Running and resting trials:  Trials were classified as running if the median running speed 

during the stimulus presentation exceeded 1 cm/s and classified as resting otherwise.

Large and small pupil trials:  To determine how arousal affects neuronal responses 

independent of locomotion, we only considered resting trials. Of these, trials were classified 

as large pupil-diameter trials if the median pupil-diameter during the stimulus presentation 

was above the median pupil-diameter over the corresponding recording session and 

classified as small otherwise.
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Eye movement and eye-movement-free trials:  Trials were classified as eye-movement 

trials if mice made at least one eye movement during the stimulus presentation and classified 

as eye-movement-free otherwise. To determine eye movements, we used a similar approach 

as in previous studies (Keller et al., 2020; Roth et al., 2016). Briefly, we first computed pupil 

position offline by smoothing and thresholding the images and fitting a circle to the pupil. 

Pupil position was filtered using a median filter. Eye movements were detected 

automatically by applying an adapted threshold. This method was cross validated in several 

experiments using manual detection of eye movements.

Statistics.: We used two-sided Wilcoxon rank-sum tests for independent group comparisons, 

and two-sided Wilcoxon signed-rank tests for paired tests and single group analysis. No 

statistical methods were used to pre-determine experimental sample sizes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Visual context modulates the response of SOM oppositely to all other V1 

neurons

• The VIP-SOM disinhibitory circuit controls the impact of context on V1 

responses

• The VIP-SOM disinhibitory circuit controls V1 by modulating recurrent 

excitation

• As we predict by modelling, silencing of VIP neurons reduces contextual 

modulation
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Figure 1. Contextual modulation in excitatory neurons
(A) The small grating patches in the centers have the same contrast but due to the distinct 

surround, they are perceived as more or less salient, allowing them to pop out (right) or 

merge with the rest of the visual scene (left).

(B) Visual stimuli were presented to awake mice while imaging calcium responses in L2/3 

excitatory neurons of primary visual cortex (V1) expressing GCaMP6f or GCaMP7f. Top: 

Schematic of a small grating patch (20° in diameter) presented alone (center), with an iso-

oriented surround (iso), or with a cross-oriented surround (cross). Bottom left: Trial-

averaged responses of an example L2/3 excitatory neuron to center, iso, and cross stimuli. 

Bottom right: Same but for an example L4 excitatory neuron. In all figures, shaded areas are 

periods of stimulus presentation.

(C) Surround suppression was computed for both L2/3 and L4 neurons as the difference in 

responses to center stimuli and the responses to iso (or cross) stimuli, normalized by the 

responses to center stimuli. Single-distribution two-sided sign-rank test; iso L2/3, ***: p < 

10−10; cross L2/3, ***: p < 10−10; 665 neurons in 9 mice; iso L4, ***: p < 10−7; cross L4, 

***: p = 1.9 × 10−4; 40 neurons in 5 mice. In all panels, yellow symbols represent the 

example neurons shown in (B). In all figures, horizontal black lines indicate the median of 

the distribution.

(D) Scatter plot of L2/3 responses to iso and cross. Paired two-sided sign-rank test; p < 

10−10 (727 neurons in 9 mice).

(E) CMI was computed as the difference divided by the sum of the responses to cross and 

iso stimuli. Here and in all figures triangles above histograms indicate median. Single-

distribution two-sided sign-rank test; p < 10−10; same neurons as in (D). In all figures, traces 

and shading represent mean ± SEM. See also Figure S1.
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Figure 2. Contextual modulation in inhibitory neurons
(A) Top: Schematic of visual stimuli. Bottom: Trial-averaged calcium responses to center, 

iso, and cross stimuli of an example SOM inhibitory neuron expressing GCaMP6f.

(B) Scatter plot of the responses to iso and cross stimuli. Paired two-sided sign-rank test; p < 

10−6; 279 neurons in 13 mice. Yellow symbol represents the example neuron shown in (A).

(C) CMI distribution of SOM neurons. Single-distribution two-sided sign-rank test; *: p = 

0.0081; same neurons as in (B). Gray shading: CMI distribution of L2/3 excitatory neurons 

(Figure 1E)

(D-F) As above, but for PV inhibitory neurons. </p/> (E) Paired two-sided sign-rank test; p 

< 10−10; 87 neurons in 9 mice.

(F) Single-distribution two-sided sign-rank test; ***: p < 10−10; same neurons as in (E).

(G-I) As above, but for VIP inhibitory neurons. </p/> (H) Paired two-sided sign-rank test; p 

< 10−6; 49 neurons in 6 mice.
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(I) Single-distribution two-sided sign-rank test; **: p = 0.0012; same neurons as in (H).

(J) Proposed mechanism of contextual modulation of excitatory neurons through the 

interaction between VIP and SOM neurons. Left: In response to an iso stimulus, SOM 

neurons are active and inhibit both VIP and excitatory neurons. Right: In response to the 

cross stimulus, VIP neurons are active, inhibiting SOM neurons, which leads to relief of 

excitatory neurons from suppression. See also Figure S1.
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Figure 3. A computational model trained to fit experimental data.
(A) ‘Subnetwork’ of the model. Five unit-types, L2/3 excitatory, VIP, SOM, and PV 

inhibitory and L4 excitatory units form a subnetwork. Unit types were connected according 

to biological constraints.

(B) Four subnetworks were assigned to one of two spatial locations of the feedforward 

receptive field (center and surround) and one of two preferred orientations (preferred or 

orthogonal orientation), connected with the weight matrices W(1), W(2), W(3), and W(4).

(C) Responses of the different unit types in the centered and preferred-orientation 

subnetwork from the top 115 solutions (see Figure S2A for the unit responses in all 4 

subnetworks). Each dot represents the response of a unit from a single solution. Yellow 

circles represent the example solution shown in (D). Black symbols represent mean ± SD of 

the solutions (SD rather than SEM was used to show the range of possible solutions). Red 

symbols represent experimental data (mean ± SEM; same neurons as in Figure S2A).

(D) Example connection strengths of one of the best 115 solutions. Excitatory connections 

are represented in red, inhibitory connections in blue, white (without numbers) indicates 

connections constrained to be zero. The 4 matrices correspond to W(1), W(2), W(3), and W(4) 

in (B). In W(3) and W(4), only excitatory projections were allowed. For medians of all 

connections over the 115 solutions, see Figure S2B.
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Figure 4. The VIP-SOM circuit is both necessary and sufficient for contextual modulation.
(A) Transition from iso- to cross-response level: The activity in the network is initially at its 

fixed-point level in response to an iso stimulus. The network is then perturbed by switching 

L4 input to its cross-response level. Here and in the rest of the figure, changes are induced 

simultaneously in all 4 subnetworks.

(B) Change in activities of the four unit-types belonging to the centered and preferred-

orientation subnetwork, after the transition from iso- to cross-response level. Zero 

corresponds to the iso-response levels. Here and in the rest of the figure each dot represents 

a solution. Here and in (C), horizontal black lines are medians across the solutions that 

reached a fixed point (here, 99.1%). 114 solutions reached a fixed point for all unit types.

(C) Change of inputs to excitatory units after the transition from iso- to cross-response level. 

Inputs were calculated as the product of pre-synaptic firing rates and corresponding 

connection strengths. Changes shown are total input change (black circles, left) and 

contribution to this change from each unit type (summed across all subnetworks). Note that, 

for inhibitory units, a positive change in input corresponds to a negative change in activity 

and vice versa. Same solutions as in (B).

(D) Trajectories of firing rates of excitatory and SOM units starting from the iso-response 

level (the origin) during the transition from iso- to cross-response level. Single dots are the 

fixed point of the trajectories for a given solution. For clarity, we only showed the 50% of 

the trajectories with the shortest duration to reach their fixed point. The red square is the 

median activity across solutions after reaching their fixed point. Same solutions as in (B).

(E-H) As in (A-D) but, in addition to switching L4 inputs to their cross-response level, the 

VIP to SOM unit input has been frozen to its iso-response level. Blue square is the median 
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across the solutions that reached a fixed point (here, 97.4%). Red square is median from (D). 

Black lines in (F) and (G) are medians; dotted lines or black lines are medians from (B) and 

(C). 112 solutions reached a fixed point for all unit types.

(I-L) As in (E-H), but L4 inputs remain at their iso-response levels, and instead the VIP- to 

SOM-unit input has been switched to, and frozen at, its cross-response level. 88.7% of the 

solutions reached a fixed point. 102 solutions reached a fixed point for all unit types. See 

also Figures S3 and S4.
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Figure 5. The model predicts the impact of silencing VIP units on contextual modulation.
(A) VIP units across all 4 subnetworks were silenced by fixing their activities to zero.

(B) Changes in response to iso and cross stimuli, upon silencing VIP units, of L2/3 

excitatory, PV and SOM unit types in the centered and preferred-orientation subnetwork for 

the best 115 solutions. For all unit types: paired two-sided sign-rank test; p < 10−10; 115 

solutions.

(C) CMI under control conditions compared to CMI during silencing of VIP units for the 

same unit types. For L2/3 excitatory and SOM units: paired two-sided sign-rank test; p < 

10−10; 115 solutions. For PV units: paired two-sided sign-rank test; p < 10−3; 115 solutions. 

See also Figure S5.
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Figure 6. VIP and SOM neurons cooperatively contribute to contextual modulation in excitatory 
neurons.
(A) Experimental setup (see STAR Methods).

(B) Trial-averaged calcium responses of a putative L2/3 excitatory neuron with and without 

silencing VIP neurons. Here, stimuli were presented at 50% contrast (similar responses to 

100% stimuli, Figure S6E–G).

(C) Iso- and cross-response differences between silencing VIP neurons and control 

conditions for putative excitatory neurons. Paired two-sided sign-rank test; ***: p < 10−10; 

672 neurons in 6 mice. Yellow symbol represents the example neuron shown in (B).

(D) Cumulative sum of CMI in putative excitatory neurons. Paired two-sided sign-rank test; 

p < 10−4. Same neurons as in (C).

(E) Upon silencing VIP neurons, putative L2/3 excitatory neurons with a negative CMI 

increased their CMI and those with positive CMI decreased their CMI. Paired two-sided 

sign-rank; CMI<0 and CMI≥0, ***: p < 10−10; 104 and 568 neurons, respectively, in 6 mice. 

Yellow symbols represent the example neuron shown in (B).

(F) Experimental setup (see STAR Methods).

(G-J) Same as (B-D), but for SOM neurons. </p/> (H) Paired two-sided sign-rank test; *: p = 

0.027; 82 neurons in 8 mice. Yellow symbol represents the example neuron shown in (G).

(I) Paired two-sided sign-rank test; p = 0.12. Same neurons as in (H).

(J) Paired two-sided sign-rank test; CMI<0, **: p = 0.0016; 36 neurons in 6 mice; CMI≥0, 

ns: p = 0.27; 46 neurons in 8 mice. See also Figures S7 and S8.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAV2/1.ef1a.GCaMP6f.WPRE FMI Vector Core N/A

AAV2/1.ef1a.DIO.GCaMP6f.WPRE FMI Vector Core N/A

AAV2/1.CAG.CGaMP6f Janelia Vector Core N/A

AAV2/9.syn.GCaMP7f Dana et al., 2019 Addgene Cat#: 104488-AAV9

AAV2/1.ef1a.fDIO.GCaMP6s Janelia Vector Core N/A

AAV2/5.CBA.Flex.ArchT-tdTomato.WPRE.SV40 Han et al., 2011 Addgene Cat#: 28305-AAV5

AAV2/1.CAG.Flex.rc[Jaws-KGC-GFP-ER2] Janelia Vector Core N/A

AAV2/9.CAG.Dio.eNpHre3.0.mRuby3.WPRE.SV40 H. Adesnik lab N/A

AAV2/9.ef1a.F-Flex.tdTomato Xue et al., 2014 N/A

Chemicals, Peptides, and Recombinant Proteins

Fentanyl West-Ward Pharmaceuticals NDC 0641–6029–01

Midazolam Hospira NDC 0409–2308–01

Dexmedetomidine Zoetis Cat#: 122692–5

Povidone iodine Purdue NDC 67618–150–17

Naloxone Hospira NDC 0409–1219–01

Flumazenil West-Ward Pharmaceuticals NDC 0143–9783–01

Atipamezol Zoetis Cat#: 107204–6

Atropine Abcam Cat#: ab145582–1

Dexamethasone Sigma-Aldrich Cat#: 1176007–125MG

Orthojet Dental Cement Lang Dental Cat#: 1334

Super Bond CB Self Curing Dental Cement Parkell Cat#: S380

Experimental Models: Organisms/Strains

Mouse: GAD2tm2(cre)Zjh The Jackson Laboratory RRID: IMSR_JAX:010802

Mouse: Gt(ROSA)26Sortm14(CAG-tdTomato)Hze The Jackson Laboratory RRID: IMSR_JAX:007914

Mouse: Tg(Scnn1a-cre)3Aibs/J The Jackson Laboratory RRID: IMSR_JAX:009613

Mouse: Igs7tm148.1(tetO-GCaMP6f,CAG-tTA2)Hze The Jackson Laboratory RRID: IMSR_JAX:030328

Mouse: Ssttm2.1(cre)Zjh The Jackson Laboratory RRID: IMSR_JAX:028864

Mouse: Pvalbtm1(cre)Arbr The Jackson Laboratory RRID: IMSR_JAX:017320

Mouse: Viptm1(cre)Zjh The Jackson Laboratory RRID: IMSR_JAX:010908

Mouse: Ssttm3.1(flpo)Zjh The Jackson Laboratory RRID: IMSR_JAX:028579

Software and Algorithms

LabVIEW National Instruments RRID: SCR_014325

MATLAB The MathWorks RRID: SCR_001622

Calliope: Image processing software N/A https://svn.code.sf.net/p/iris-scanning/calliope/

Spike estimation algorithm Deneux et al., 2016 https://github.com/MLspike
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