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Robust SERS spectral analysis for quantitative detection of pyocyanin 
in biological fluids 
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Regina Ragana 

a Department of Chemical Engineering and Materials Science, University of California, Irvine, 
Irvine, California 92697, United States; b Department of Molecular Biology and Biochemistry, 

University of California, Irvine, Irvine, California 92697, United States 

ABSTRACT 
We demonstrate the advantage of using machine learning for surface enhanced Raman scattering (SERS) spectral 

analysis for quantitative detection of pyocyanin in Luria-Bertani media. Planar Au nanoparticle clusters were self-
assembled on PS-b-PMMA diblock copolymer template using EDC crosslinking chemistry and electrohydrodynamic 
flow to fabricate SERS substrates. Resulting substrates produce uniform SERS response over large area with signal 
relative standard deviation of 10.8 % over 50 μm x 50 μm region. Taking advantage of the uniformity, 400 SERS spectra 
were collected at each pyocyanin concentration as training dataset. Tracking the intensity of pyocyanin 1350 cm-1 
vibrational band shows linear regime beginning at 10 ppb. PLS analysis was also performed on the same training dataset. 
Without being explicitly “told” which spectrum to look for, PLS analysis recognizes the SERS spectrum of pyocyanin as 
its first loading vector even  in the presence  of other  molecules  in  LB  media. PLS regression enables quantitative  
detection at 1 ppb, 1 order of magnitude earlier than univariate regression. We hope this work will fuel a push toward 
wider adoption of more sophisticated machine learning algorithms for quantitative analysis of SERS spectra. 

Keywords: self-assembly, surface enhanced Raman scattering, metabolomics, machine learning, colloidal assembly, 
plasmonics, biosensing 

1. INTRODUCTION
Surface enhanced Raman scattering (SERS) spectroscopy is a powerful surface enhanced vibrational spectroscopic 

technique1,2 that can reach sub-nanomolar detection limit3–6. Small detection limits are achieved by increasing the 
electric field in the vicinity of analyte molecules |Eloc| – the observed SERS signal scales by a momentous |Eloc|4.7 
Ultralarge field enhancements are usually achieved by taking advantage of the localized surface plasmon resonance 
(LSPR) exhibited by metal nanostructures. To date, the largest field enhancements have been achieved by “hotspots”, 
nanogaps between metal nanostructures. Single nanometer scale hotspots  have led to  SERS enhancement factors (EF) 
(EF∝|Eloc|4) greater than 109.8 SERS has found wide adoption in the fields of biosensing,9–12 revealing hitherto unknown 
molecular signaling.13  

Vibrational spectroscopies, like SERS, interrogate the diverse array of vibrations that a single molecule exhibits, 
providing a “molecular fingerprint” that allows for similar molecules to be differentiated. However, while SERS 
provides extensive vibrational information on the analyte, traditionally quantitative SERS spectral analysis has been 
carried out with single vibrational band.14–17 This excludes the rich vibrational information contained in SERS spectra 
and leads to artifacts caused by the location-dependent enhancement that the analyte molecule experiences.  

With the rise in computing power, it is now possible to process and manipulate large datasets with a personal 
computer. This allows for sophisticated machine learning algorithms to be used in quantitative spectral analysis. Partial 
least squares (PLS) analysis is a powerful tool that can improve quantitative detection in SERS due to its ability to 
decompose spectra into loading vectors that represent the most variances in analyte concentration.18 
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An important aspect of machine learning is the training data, spectra taken at a known concentration that are used to 
construct the predictive model. Spectra need to be reliable, yet diverse enough to be robust to variations observed in 
realistic experiments. SERS experiments rely on metal nanostructures, this inherently convolves concentration of analyte 
with the field enhancement produced by the structures.19 Therefore, it is essential to minimize variations in field 
enhancement. Yet, hotspots are inherently deeply subdiffractive, making SERS substrates challenging to fabricate in a 
reproducible way.  By utilizing electrohydrodynamic flow enabled EDC crosslinking chemistry, SERS substrates are 
fabricated with an average enhancement factor (EF) greater than 109,20 with signal relative standard deviation of 
approximately 10.8% over 50 μm x 50 μm area. This uniformity enables the collection of large numbers of training 
spectra, which greatly improve predictive outcomes. 

In this paper, we demonstrate advantages of PLS analysis over univariate analysis in quantifying analytes with 
SERS in the presence of contaminants. Pyocyanin, an important quorum sensing compounds of Pseudomonas 
Aeruginosa (PA), is used as the analyte. PA commonly infects immunocompromised individuals, such as those with 
cystic fibrosis, HIV/AIDS, and open wounds/burns. The treatment of these chronic infections has led to antibiotic 
resistance in PA, a serious public health crisis. Thus, detecting and quantifying low concentrations of pyocyanin can 
improve the current antibiotic treatment procedures. When tracking single vibrational band, 10 ppb quantitative detection 
is achieved, a remarkable sensing performance. However, from the same set of training spectra, PLS analysis can start 
quantifying pyocyanin at 1 ppb, gaining an order of magnitude in quantification limit. While modest, an order of 
magnitude increase in the quantification limit can be the difference between life and death. This work, in the big picture, 
aims at motivating researchers to utilize advancements in computing in modern data analysis, and more specifically, 
intends to reveal the potential of machine learning in SERS spectral analysis. 

 

2. MATERIALS AND METHODS 
2.1 Materials 

Random copolymer poly(styrene-co-methyl methacrylate)-α-hydroxyl-ω-tempo moiety (PS-r-PMMA) (Mn = 7400, 
59.6% PS) and block copolymer poly(styrene-b-methyl methacrylate) (PS-b-PMMA) (Mn = 260 000 (PS), 63 500 
(PMMA)) were purchased from Polymer Source, Inc. (Dorval, Canada). Ethylenediamine, dimethyl sulfoxide (DMSO), 
ethanol, isopropanol, toluene, potassium carbonate, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride 
(EDC), N-hydroxy sulfosuccinimide (S-NHS), and 52-mesh Pt gauze foil were purchased from Sigma Aldrich (St. 
Louis, MO). Gold nanospheres of 40 nm in diameter with lipoic acid functionalization were purchased from 
Nanocomposix (San Diego, CA). Hydrofluoric acid (HF) were purchased from Fisher Scientific (Pittsburgh, PA). MES 
0.1 M buffer waspurchased from Thermo Scientific Pierce Protein Research Products (Rockford, IL). Silicon (001) 
wafers with resistivity of 0.004 ohm-cm were purchased from Virginia Semiconductor (Frederickburg, VA). Nanopure 
water (18.2 MΩ cm−1) was obtained from a Milli-Q Millipore System. 
2.2 SERS Surface Fabrication 

PS-b-PMMA block copolymer template was prepared as described in previous work.21,22 1 wt% PS-r-PMMA 
random copolymer solution in toluene was spun coated on a HF-cleaned, heavily doped Si wafer at 3000 rpm for 45 s 
and annealed at 198oC for 72h in vacuum conditions followed by rinsing with toluene. 1 wt% PS-b-PMMA solution in 
toluene was spun coated on the rinsed surface at 3000 rpm for 45 s followed by annealing at 198oC for 72h in vacuum 
conditions to produce the desired PS-b-PMMA diblock copolymer template. 

The PMMA regions were functionalized with amine end groups by immersing the substrate in DMSO then in 
ethylenediamine/DMSO solution (5% v/v) for 5 minutes each without rinsing between steps. The resulting substrate is 
then washed with IPA for 1 minute and dried under nitrogen. 

Lipoic functionalized 40nm Au nanoparticles solution was concentrated 2-fold by adjusting the pH to 8 with 
potassium carbonate, centrifuging for 25 minutes at 1700 RCF, and redispersing in DI water. 3 mL of concentrated Au 
solution was added to a beaker, followed by 35 μL of freshly prepared 20 mM s-NHS and 8 mM EDC both in 0.1 M 
MES buffer; The mixture was brought to 80oC. A 1 cm x 1 cm Si substrate previously prepared and a 1 cm x 1 cm Pt 
mesh were placed in the solution vertically, held by alligator clips as cathode and anode, respectively. The two were 
parallel to each other and 5 mm apart. A DC regulated power supply was used to apply 1.2 V for 10 minutes. The 
substrate, Pt mesh, and beaker were rinsed with acetone and IPA for 1 minute each and dried under nitrogen. The process 
was repeated with the same substrate, but with 25 μL of EDC and s-NH solution. 
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2.3 Raman Spectroscopy 

Surface enhanced Raman scattering (SERS) measurements were carried out using a Renishaw InVia Raman 
Microscope with a laser excitation wavelength of 785 nm. To estimate optical uniformity of fabricated substrates, SERS 
substrates were immersed in 10-3 M BZT solution in IPA for 12 h and rinsed with methanol. A 60 X water immersion 
objective with a 1.2 NA wetted with DI water was used to collect SERS response map. Each spectrum was acquired with 
76 μW and 0.1 s. 

SERS measurements were also performed on serial dilution of pyocyanin in LB media and cell-free supernatant. 
Same objective as above was used; however, all measurements were collected at 7.3 μW and 0.5 s. Measurements were 
taken from low to high over the same area on SERS surfaces. 

2.4 Multivariate Data Analysis 

Data processing and analysis were done in MATLAB R2016b (The MathWorks Inc, Natrick, MA). Each spectra is 
baseline corrected, smoothed, and normalized to the average intensity of Si second-order vibrational band. The spectra 
were log-transformed before analysis using partial least squares regression (PLSR). Benzenethiol’s SERS spectra were 
baseline corrected and min-max normalized. 

 

3. RESULTS AND DISCUSSIONS 
3.1 Self-Assembly for Large Area Optical Uniformity 

Template-assisted chemical self-assembly allows for discrete nanoparticle clusters to form on surfaces are employed 
in SERS. Here, a diblock copolymer template is used in conjunction with EDC crosslinking chemistry to fabricate SERS 
surfaces through a two-step deposition process. The copolymer is prepared on a Si substrate and self organizes into 
PMMA domains of 40 nm in width separated by PS domains; the PMMA domains are selectively functionalized with 
amine end groups. In the first step, carboxylic acid terminated Au nanospheres are electrophoretically driven to the 
copolymer surface (Figure 1a). EDC crosslinking chemistry is used to couple the carboxlic acid moieties with amine end 
groups on the PMMA domains, immobilizing nanoparticles via peptide bond formation. These particles serve as 
monomer “seeds” for cluster growth. In the second step, the applied field also leads to the generation of 
electrohydrodynamic (EHD) flow that drives formation of discrete nanoparticles clusters. The applied field polarizes 
monomer “seeds” on the copolymer surface, producing a local inhomogeneous electric field. This field drives ion flow, 
thus inducing osmosis that dictates the local fluid flow. The outcome is an attractive lateral flow field on the plane of the 
substrate electrode, termed EHD flow,23–25 that entrains nearby nanospheres in the colloid towards the “seed” monomers 
(Figure 1b). Here, the transient clusters are immobilized through a different pathway of EDC crosslinking chemistry that 
is enabled due to the proximity of carboxylic end groups: Anhydride bridges are formed between the carboxylic acid end 
groups on the nanospheres, ultimately freezing the clusters in place while maintaining uniform interparticle gap spacings 
of approximately 0.9 nm.20 
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Figure 1. a) Au nanospheres are electrophoretically driven to the PS-b-PMMA template using an applied DC field. b) 
Electrohydrodynamic flow (light grey arrows), generated from inhomogeneous field at the electrode surface through polarization of 
the “seed” monomer, pushes colloidal Au nanospheres toward “seed” monomers to be immobilized through anhydride bridging. 

The fabrication method allows for control over two different length scale: First is interparticle gap spacings over 
shorter length scale as discussed above; Second is cluster morphology over cm length scales due to the PS-b-PMMA 
copolymer template. The template insures that large aggregates do not form, resulting in surfaces with morphology 
shown in Figure 2a, where 85% of clusters have fewer than 5 particles.26 The surface exhibits a broad absorption band 
from 615 nm to 875 nm that agrees well with FDTD calculations.20 

Furthermore, controlling the two length scales allow for extremely uniform SERS response over large area. 
Benzenethiol (BZT), a well characterized analyte that binds to gold surfaces due to the thiol-Au interaction, was used as 
a standard. Map of normalized intensity at the 1071 cm-1 vibrational band (Figure 2b) shows relative standard deviation 
below 10.8% over 50 μm x 50 μm area. This uniformity enables the use of machine learning algorithms in quantitative 
molecular detection through the acquisition of large training dataset. 

 

 
Figure 2. a) SEM image of Au clusters on SERS substrates after the two-step fabrication process. b) SERS intensity map of BZT’s 
1071 cm-1 vibrational band across a 50 μm x 50 μm area with RSD of 10.8% 
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3.2 Machine Learning for Improved Quantitative Label-Free Molecular Detection 

While one of SERS advantages lies in its ability for label-free detection, this asset also means its performance can be 
hindered by other molecules. Machine learning algorithms, specifically partial least square (PLS) regression in this case, 
can provide better quantitative detection with SERS than tracking single vibrational band, as traditionally done with 
SERS. By performing PLS analysis on large training dataset, enabled by SERS substrates’ uniform response, lower 
quantitation limit is achieved.  

Here, SERS measurements were performed on serial dilutions of pyocyanin in Luria-Bertani (LB) broth, a liquid 
medium made up of nutrients used in culturing bacteria; 400 spectra were collected for each dilution. When tracking a 
single vibrational band, quantitative detection is achieved when behavior of SERS intensity can be correlated with 
changes in analyte concentration. SERS intensity of the pyocyanin’s 1350 cm-1 vibrational band exhibits a linear regime 
between 10 ppb and 100 ppm (Figure 3), within which pyocyanin concentration can be described using the formula: log 
C = 2.55 × log I + 4.57 (R2 = 0.98). While this performance is remarkable, it is possible that SERS signal at lower 
concentrations is washed out due to signal interferences from other molecules in the broth. 

 
Figure 3. SERS dose-response curve of pyocyanin’s 1350 cm-1 vibrational band. Solid line indicates linear regime where quantitation 
can be achieved. 

 

To address this, an analysis that accounts for information in the whole spectra is needed. In the simplest terms, this 
analysis should be able to create a model that predicts pyocyanin concentration (observation), from a vector of intensity 
values (predictors), i.e. a spectrum. From first glance, this goal can be accomplished using ordinary multiple linear 
regression. However, the classic problem of collinearity exists in this case as values in a spectrum are correlated to each 
other, resulting in redundancy in the regression analysis. Many solution to this problem exist. One of such is principal 
component analysis,27 where the matrix of training spectra is rotated and scaled and decomposed into its principal 
components such that the first principal component accounts for the most variance in the dataset and so on; these 
components are then used in ordinary multiple regression. In this case, although the problem of collinearity is eliminated 

Proc. of SPIE Vol. 10352  1035205-5



106

_O
Q
Q

ó 10
m

a , b
1 ppm PYO in DI Water

I

A 11

i

..
,' Number of

Components
,. 2 6 10 14

>.
t.f)

Q1
a-.,
C

1 1

First loading vector

A

VVAv ,,,_

I

w
()

1.4

100 102 104 106
Actual Concentration (ppb)

800 1000 1200 1400 1600
Raman Shift (cm -1)

by the orthogonality of the components, a different issue of choosing the optimal components arises. With PLS, both the 
matrix of training spectra and concentration are decomposed into components that account for each other, rather than just 
the training spectra as in the case of PCA.28 When the decomposition is carried out properly, the first component, or 
loading vector, should explain the most variance in the concentration vector.29 The number of loading vectors is chosen 
based on the minimal amount required for accurate prediction.28 This is done by performing cross validation on the 
model while varying the number of components uses; A minimum in RMSE cross validation (RMSECV) indicates the 
optimal number of components. Ordinary multiple regression is then performed on the loading vectors. 

PLS analysis was performed on the same set of spectra as above. From the 400 spectra collected per dilution, 380 
spectra are randomly selected as the training set, and 20 are withheld as the testing set. 10 loading vectors, where 
RMSECV is minimized (Figure 3b inset), were used to create the predictive model. Testing the model with the 20 
withheld spectra shows accurate quantification capabilities between 1 ppb and 10 ppm; Fitting a y = x line, representing 
perfect predictions, gives R2 = 0.931 (Figure 2b). It must be noted here that PLS regression improves quantitative 
detection limit by 1 order of magnitude in concentration in comparison to univariate linear regression on a single 
vibrational band. This is because PLS analysis decomposes spectra into loading vectors that can explain changes in 
concentration and discards the redundant and irrelevant spectral information through loading vectors selection process. 
Consequently, the first loading vector represents almost perfectly the SERS spectra of pyocyanin in DI water, although 
the algorithm was never explicitly “told” to look for pyocyanin vibrational bands (Figure 3c). 

 

 
Figure 4. a) Pyocyanin concentration predicted by PLS model for testing spectra plotted against their actual concentrations. Dashed 
line (y = x) represents perfect predictive capability. Inset: Root-mean-squared error of cross validation as a function of number of PLS 
components used in the model. b) Top: SERS spectrum of 1 ppm pyocyanin in DI water. Bottom: First loading vector extracted from 
PLS model. Note that pyocyanin’s major vibrational bands can be identified in the loading vector. 

 

While PLS analysis demonstrates definite improvements in SERS spectral analysis, it also comes with 
disadvantages, mainly the fact that it is a linear model. SERS spectral response to changes in analyte concentration, 
although can be approximated, or log-transformed as we have done here, to be linear in some cases, are more accurately 
represented by a non-linear model. In the future, more advanced machine learning algorithms, namely artificial neural 
networks (ANN), can be used. ANN is a bioinspired algorithm that can model non-linear system and has been 
demonstrated to work well in SERS spectral analysis.  

 

Proc. of SPIE Vol. 10352  1035205-6



4. CONCLUSION 
In this work, we have demonstrated the benefits and use of machine learning, particularly PLS regression in SERS 

spectral analysis for quantitative molecular detection. Self-assembly of Au nanoparticle clusters utilizing EDC 
crosslinking chemistry and EHD flow on PS-b-PMMA chemical template produces SERS substrates with high 
uniformity over large area – suitable to generate large training datasets. PLS regression allows for quantitative detection 
of pyocyanin starting 1 ppb, an order of magnitude earlier than univariate regression on intensity of pyocyanin’s 1350 
cm-1 vibrational band. Future work may involve using more advanced machine learning algorithms such as ANN to 
perform multiplex assays. 
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