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Drift-balanced random stimuli: a general basis for studying
non-Fourier motion perception
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New York, New York 10003
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To some degree, all current models of visual motion-perception mechanisms depend on the power of the visual
signal in various spatiotemporal-frequency bands. Here we show how to construct counterexamples: visual
stimuli that are consistently perceived as obviously moving in a fixed direction yet for which Fourier-domain power
analysis yields no systematic motion components in any given direction. We provide a general theoretical frame-
work for investigating non-Fourier motion-perception mechanisms; central are the concepts of drift-balanced and
microbalanced random stimuli. A random stimulus S is drift balanced if its expected power in the frequency
domain is symmetric with respect to temporal frequency, that is, if the expected power in S of every drifting
sinusoidal component is equal to the expected power of the sinusoid of the same spatial frequency, drifting at the
same rate in the opposite direction. Additionally, S is microbalanced if the result WS of windowing S by any space-
time-separable function W is drift balanced. We prove that (i) any space-time-separable random (or nonrandom)
stimulus is microbalanced; (ii) any linear combination of pairwise independent microbalanced (respectively, drift-
balanced) random stimuli is microbalanced and drift balanced if the expectation of each component is uniformly
zero; (iii) the convolution of independent microbalanced and drift-balanced random stimuli is microbalanced and
drift balanced; (iv) the product of independent microbalanced random stimuli is microbalanced; and (v) the
expected response of any Reichardt detector to any microbalanced random stimulus is zero at every instant in time.
Examples are provided of classes of microbalanced random stimuli that display consistent and compelling motion in
one direction. All the results and examples from the domain of motion perception are transposable to the space-
domain problem of detecting orientation in a texture pattern.

1. INTRODUCTION

Central to the study of human visual motion perception is
the relationship between perceived motion and the Fourier
transform of the spatiotemporal visual stimulus. Points in
the domain of the spatiotemporal Fourier transform corre-
spond to drifting sinusoidal gratings. For a wide range of
spatial and temporal frequencies, such drifting sinusoids are
perceived to move uniformly across the visual field, and
their apparent speed and direction are direct functions of
spatiotemporal frequency. For the most part, the motion
displayed by simple linear combinations of such gratings
reflects quite reasonably the individual contributions of the
components.1"2

Indeed, current models of human motion perception im-
plicitly or explicitly involve some degree of Fourier decom-
position (bandpass filtering) of the image stream." 6 Gener-
ally, of course, the decomposition is localized to finite tem-
poral intervals and subregions of the visual field.

It has long been realized, however, that certain sorts of
apparent motion cannot be understood directly in terms of
their power spectra.7-14 For instance, much attention has
been focused on sums of drifting gratings of slightly differ-
ent, high spatial frequencies.10-12 In general, the perceived
velocity of such stimuli is determined not directly by the
frequencies of the summed components but by the pattern
of beats at their difference frequency.

Sperling"3 demonstrated "movement without correlation"
in a different stimulus whose Fourier transform, when com-

puted globally or locally, contained no consistent moving
components and yet was perceived to move decisively in a
fixed direction. Subsequently, Petersik et al.14 studied sim-
ilar displays in an effort to clarify the relationship between
stage 1 (autocorrelational, Fourier) mechanisms and the
higher-order stage 2 mechanisms mediating the perception
of what we call'5 non-Fourier motion.

The purpose of this paper is to provide (i) a general theo-
retical basis and (ii) an array of specific tools for studying
non-Fourier motion-perception mechanisms.16

2. ANALYZING A STIMULUS: INTUITIVE
FOURIER DECOMPOSITION

We begin with a brief, informal discussion to show how
particular motion stimuli can be analyzed into drifting sinus-
oids. For illustration we use one-dimensional spatiotempo-
ral stimuli that move either to the left or to the right and
whose luminance varies in only the horizontal dimension,
although all the results that we derive apply in all cases to
stimuli of two spatial dimensions and time. A one-dimen-
sional, horizontally moving stimulus is represented conve-
niently by a two-dimensional function l(x, t), where x (the
horizontal axis) indicates the spatial pattern of luminance
and t (the vertical axis, with time increasing upward) indi-
cates the temporal luminance pattern. In this representa-
tion, usually it is immediately obvious which way the domi-
nant Fourier components of 1 tend to slope (up and to the left
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Fig. 1. Spatiotemporal Fourier analysis of a rightward-stepping bar. The abscissa represents horizontal space; the ordinate represents time.
a, One frame of a movie of a rightward-stepping vertical bar. b, Horizontal-temporal cross section of a rightward-stepping vertical bar. c,
Approximation to the rightward-stepping bar obtained by taking an equally weighted sum of {cos(27rn(x/X-t/T)) In = 1, 2}. d, Approxima-
tion to the rightward-stepping bar obtained by taking an equally weighted sum of tcos(27rn(x/X-t/T)) In = 1, 2,...,12.

or up and to the right). For example, Fig. la represents a
single frame of a white vertical bar, extended up and down
through the field of vision. Figure lb shows the space-time
representation of the bar in Fig. la, which appears at the left
at time zero and moves at a constant rate to the right during
the time course of the display.

For the moment, we shall generalize broadly, using the
word sum to describe both finite and countable summations
as well as integrations over bounded and unbounded real
intervals. In this case, we can do approximate justice to
some basic facts about visual stimuli and their Fourier trans-
forms without getting bogged in technicalities. Any spatio-
temporal stimulus 1 can be decomposed into a weighted sum
of appropriately phase-shifted, drifting sinusoidal gratings.
Moreover, this sum is unique: that is, there is only one
assignment of weights and phases to drifting gratings that
recaptures 1 in the corresponding sum.

Indeed, the Fourier transform of 1 is often defined to be
the function that makes this assignment. There are, howev-
er, various other commonly encountered equivalent defini-

tions of the Fourier transform (one of which we shall shortly
adopt) that may be more convenient for certain purposes.

Example: Fourier Components of a Rightward-Stepping
Vertical White Bar
Most of the action of the moving bar stimulus 1 defined by
Figs. la and lb takes place along the line L = {(x, t)Ix = t) in
Fig. lb; that is, the points at which 1 deviates most from its
mean value are along this line. For our purposes, the most
useful indicator of where the action is in a given stimulus f is
the squared deviation of f from its overall mean value at each
point in its domain. As is clear, 1 deviates most energetically
from its mean along the line L.

What spatiotemporal sinusoidal gratings are weighted
most heavily in the Fourier sum yielding 1? A good way to
answer this question is to ask another: What gratings can be
shifted in phase so as to match 1 most closely? Those si-
nusoids that can be shifted so as to have high values where 1
has high values and low values where 1 has low values are the
ones that will figure most heavily in the weighted sum com-
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Fig. 2. Spatiotemporal Fourier analysis of stimulus h, a rightward-stepping, contrast-reversing vertical bar. a, Horizontal-temporal cross
section of h. b, Horizontal-temporal cross section of a vertical, leftward-drifting sinusoid, which correlates well with h: cos(27r(2x/X + 2t/T)
- 7r/2). c, Horizontal-temporal cross section of a more slowly leftward-drifting sinusoid, which also correlates well with h: cos(27r(3x/Xz + t/
T)- r/2).

posing 1. In short, those gratings that can be phase shifted
so as to correlate best with 1 will have the highest amplitudes
(weights) in the sum.

The sinusoidal gratings that correlate best with l(x, t) of
Fig. lb are those that assume the value 1 along the line L,
that is, all the sinusoids in the set

Q = fcos(ax - at)Ia E IR1.

Figures lc and Id illustrate how I is approximated more and
more closely by taking sums involving more and more
(equally weighted) elements of Q.

Example 1: Rightward-Stepping, Contrast-Reversing
Vertical Bar
Contrast-reversing stimuli are critical for understanding the
implications of Fourier analysis. Note first that, as in the
case of 1 defined in Fig. 1, most of the power of h in Fig. 2 is
centered along the line L. However, the elements of Q con-
tribute no power to h. To see this, note that the value of h
flipflops around the mean luminance along L, while the
value of any element C e Q remains constant; thus the value
of the product of h with C will flipflop (with h) around the
mean luminance over the points of L and will be zero every-
where else. Consequently, the sum taken over all points (x,
t) of the product h(x, t)C(x, t) is zero. This is equivalent to
saying that the correlation of h with C is zero.

On the other hand, the function

C(x, t) = cos(ax + At + p)

correlates positively with h when a and f, are chosen so that
the crests and troughs of C slope across L and oscillate at an
appropriate frequency. p can then be chosen to lay the
crests of C across the bright regions of h and the troughs
across the dark regions. Examples of sinusoids that corre-
late well with h are given in Figs. 2b [cos(3x + t - ir/2)] and
2c [cos(2x + 2t - 7r/2)].

Direction of Drift in Sinusoidal Gratings
For each nonnegative real number a, cos(ax - at) drifts
from left to right. By contrast, cos(ax + at) drifts at the

same rate from right to left. For any w, i, p e IR, if w = 0, the
grating

C(x, t) = cos(Wx + it + p)

has constant value over space but oscillates in time with
frequency T. Otherwise (if co F 0) C drifts with speed lr/wi;
it drifts rightward if r/w < 0 and leftward if T/w > 0. Ac-
cordingly, we call C rightward drifting if T/w < 0, leftward
drifting if Tnw > 0, and stationary if T = 0.

3. THE MOTION-FROM-FOURIER-
COMPONENTS PRINCIPLE

For any real-valued function, f, the sum (taken over all
points in the domain of f) of the squared values of f is called
the power in f. Parseval's relation states that the power in f
is proportional to the sum of the squared amplitudes of the
sinusoids into which f can be (uniquely) decomposed.

Thus, in particular, we can tally up the power in a dynamic
visual stimulus either point by point in space-time or drift-
ing sinusoid by drifting sinusoid. Of course, considering the
unambiguous, uniform apparent motion displayed by drift-
ing sinusoidal gratings, it would seem to make more sense for
a motion-perception system to do its power accounting
across the sinusoids composing the stimulus.

These considerations lead naturally to a commonly en-
countered general rule for predicting the apparent motion of
an arbitrary horizontal stimulus l(x, t): For I considered as a
linear combination of sinusoidal gratings, compare the pow-
er in 1 of the rightward-drifting gratings with the power of
the leftward-drifting gratings; if most of l's power is contrib-
uted by rightward-drifting gratings, then perceived motion
should be to the right. If most of the power resides in the
leftward-drifting gratings, perceived motion should be to the
left. Otherwise l should manifest no decisive motion in
either direction.

This prediction rule for horizontally moving stimuli is a
restricted version of the motion-from-Fourier-components
(MFFC) principle: More generally, let L be any visual stim-
ulus; that is, L:X X Y X T - IR, for bounded real intervals
X, Y, and T, where for any (x, y, t) e X X Y X T, L(x, y, t) is

C. Chubb and G. Sperling
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construed as the luminance of a point (x, y) in a visual field
at time t. A more general version of the MFFC principle is
as follows: For L to exhibit motion in a certain direction in
the neighborhood of some point (x, y, t) e IR3, there must be
some spatiotemporal volume A in some sense proximal to (x,
y, t) such that the Fourier transform of L computed locally
across A has substantial power over some regions of the
frequency domain whose points correspond, in the space-
time domain, to sinusoidal gratings whose direction of drift
is consonant with the motion perceived.

That any standard version of the MFFC principle cannot
account for all phenomena associated with human motion
perception was demonstrated by Sperling,'13 who described
the following, three-flash stimulus. Frame 0 is a rectangular
block of contiguous small squares, each of which is indepen-
dently painted black or white with equal probability. In
frame 1, a subblock B, of frame 0 is scrambled (that is, in
frame 1, each component square within B1 is independently
repainted black or white with equal probability). In frame 2
a different subblock, B2, is scrambled. For many sizes of
rectangles and frame presentation rates, such a stimulus
elicits apparent motion in the direction from B, to B2; none-
theless, it is unlikely to correlate significantly with any given
spatiotemporal sinusoidal grating.

It is our purpose here to build on these observations. We
shall first give precise formulation to the notion of a random
stimulus and then define a certain class of random stimuli
(the class of drift-balanced random stimuli) that is useful in
studying visual perception (since any motion displayed by a
drift-balanced random stimulus cannot be explained in
terms of the MFFC principle). We proceed to show that the
(spatiotemporal) convolution of two drift-balanced random
stimuli is drift balanced and mention some of the psycho-
physical implications of this fact. In proposition 3 below we
prove that linear combinations of certain drift-balanced ran-
dom stimuli are themselves drift balanced (this result, which
is illustrated with a variety of stimulus examples, is particu-
larly useful in constructing drift-balanced random stimuli
that display consistent apparent motion across independent
realizations). In Section 7 we provide an alternative charac-
terization of the class of drift-balanced random stimuli in
terms of simple point-delay Reichardt detectors (or autocor-
relation coefficients) and apply this characterization to dis-
tinguish the subclass of drift-balanced random stimuli that
we call microbalanced. A random stimulus I is microbal-
anced if, for any space-time-separable function W, the re-
sult WI of windowing I by W is drift balanced. We derive a
collection of basic results about microbalanced random
stimuli and show that, in fact, all the demonstration stimuli
previously defined (demonstrations 1-5 below) are microba-
lanced. Among other things, we prove that the expected
response of any elaborated Reichardt detectors to any mi-
crobalanced random stimulus is zero at any instant in time.
Finally, we observe some salient psychophysical properties
of microbalanced random stimuli and discuss some of the
possible explanations of the non-Fourier motion elicited by
such stimuli.

4. PRELIMINARIES

In this paper we deal with properties of random stimuli.
Roughly speaking, a random stimulus is a jointly distributed
family of random variables assigned to a grid of locations

covering the visual field across time. In this section we
collect the tools appropriate for dealing with such objects.
This section is split into two subsections, one devoted to
continuous random variables, in which we introduce explic-
itly some notation for handling integration and define a
density; and one devoted to discrete dynamic visual stimuli
and their Fourier transforms, in which we identify a stimulus
[an assignment of luminance (nonnegative, real values) to a
regular grid of points throughout visual space and time] with
its contrast modulation function (the normalized deviation
of luminance from its mean) and introduce frequency-do-
main notation.

Continuous Random Variables
Our stimuli are real-valued, randomly varying functions of a
discrete domain. The luminances assigned to points (pix-
els) are, in general, jointly distributed random variables.
The basic definitions and proofs that we present here pre-
suppose that these random variables are real valued and
continuous. (In general, the discrete-case analogs are sim-
pler and should be obvious.)

Let Z (Z+) denote the set of integers (positive integers),
and let IR (IR+) denote the real (positive real) numbers.

The following conventions are useful. As usual, call any
subset a s IR an interval if and only if (iff), for any x, z e a
and any y e IR, if x < y • z, then y E a; more generally, for
any k e Z+, call any subset a: c an interval of IRk iff f is
the Cartesian product of (possibly unbounded) real intervals
0o, 01, * * *, Ak-i- In this case, for any function f:IRk - IR, it
is convenient to indicate the integral of f over A, if it exists, as

J f(P)dv.

Moreover, we call any nonnegative, real-valued function f of
IRk a density iff f is integrable over JRk and

J f(v)dv = 1.

Discrete Dynamic Visual Stimuli and Their Fourier
Transforms

Contrast Modulation
Luminance is physically constrained to be a nonnegative
quantity. Psychophysically, however, the significant quan-
tity is contrast, the normalized deviation at each time t of
luminance at each point (x, y) in the visual field from a base
level, or level of adaptation, which reflects the average lumi-
nance over points proximal to (x, y, t) in space and time. We
shall restrict our attention throughout this paper to stimuli
for which it may be assumed that the base luminance level ji
is uniform over the significant spatiotemporal locations in
the display. In practice, this condition is met if (i) subjects
are adapted sufficiently to a field of uniform luminance ,u
before the onset of non-/i luminances and (ii) the duration
over which non-/i luminances are displayed is sufficiently
brief.

For any stimulus L with base luminance y, call the func-
tion I satisfying

L = ,u(1 + I) (1)

the contrast modulator of L (and note that I 2 -1).
Psychophysically, it is well known that, over substantial

ranges of /i, the apparent motion of L does not depend on At.

C. Chubb and G. Sperling
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Thus the contrast modulator I of L emerges as a likely
function to analyze for the motion information carried by L.
Accordingly, we shall shift our focus from luminance to con-
trast and identify L with its contrast modulator, dropping
reference to adaptation level.

Specifically, we shall call any function I:Z3
- IR a stimu-

lus iff I[x, y, t] = 0 for all but finitely many points (x, y, t) e
z3.

Strictly speaking, we should also require that I never drop
below -1. This restriction, however, would lead to unneces-
sary complications in dealing with various sorts of combina-
tions of stimuli. In all cases, the points that we wish to make
tolerate resealing of stimuli by arbitrary multiplicative con-
stants to settle their minimal values to some perceptually
appropriate level between -1 and 0. Accordingly, we drop
the restriction that I 2 -1.

In general, we shall consider stimuli of two spatial dimen-
sions and time. The reader may find it convenient to think
of the first spatial dimension (which we shall always index by
x) as horizontal, with indices increasing to the right, and the
second spatial dimension (always indexed by y) as vertical,
with indices increasing upward. The temporal dimension is
always indexed by t.

Frames and Frame Blocks
For any stimulus I, we call the restriction of I to Z2 X it) the
tth frame of I. In all the stimulus examples that we shall
consider, frames clump into blocks: specifically, for each
demonstration stimulus I defined in this paper, there are
integers k and N such that all changes in luminance occur in
frames kn, where n = 0, 1, . .. , N, and otherwise luminance
remains constant across frames. The group of identical
frames between and including frames kn and kn + k - 1 we
shall call the nth frame block of I.

Any stimulus I is nonzero at only a finite number of points
in its countably infinite domain. Consequently, (i) the
mean value of I is 0, and (ii) the power in I is finite.

From property (ii) we observe that I has a well-defined
Fourier transform, which we denote by I. Specifically,

I(w, 6, T) = E I[x, y, t]exp(-j(cwx + Gy + rt))
(x,y,t)E zl

(analysis).

We shall always use square brackets around the argu-
ments of discrete functions and parentheses around the ar-
guments of continuous functions. Although 7 is defined for
all (c, 0, T) E IR3, it is periodic over 27r in each variable. This
fact is reflected in the inverse transform:

I[x, y, t] = 3
J J 1 I(w, , r)

X exp(j(wx + 6y + rt))dwd~dr (synthesis).

In the Fourier domain we shall consistently use X to index
frequencies relative to x, 6 to index frequencies relative to y,
and T to index frequencies relative to t. This convention is
exemplified by the definition of I above.

We distinguish the stimulus 0 by setting 0[x, y, t] = 0 for
all x, y, t e Z. In parallel, we let 0 assign 0 to all (w, 0, T) E
ER3 .

5. DRIFT-BALANCED RANDOM STIMULI

We begin by generalizing the notion of a stimulus to that of a
random stimulus. Whereas a nonrandom stimulus assigns
fixed values to Z3, a random stimulus I assigns jointly dis-
tributed random variables that deviate from zero at only a
finite number of points.

Various expectations associated with I are defined easily.
We shall be particularly interested in the expected power
of I at some point, (w, 0, r) in the frequency domain:
E[II(w, 6, r)121. This reflects the expected power in I of a
sinusoid C that modulates contrast at the rate of w/27r cycles
per column, 0/27r cycles per row, and r/27r cycles per frame.
The sinusoid with the same spatial frequency as C and mov-
ing at the same rate but in the opposite direction is obtained
simply by reversing the direction of C's temporal contrast
modulation: that is, by modulating contrast -T/27r cycles
per frame. When the expected power in I of any given
drifting sinusoid is matched by the expected power of the
sinusoid of the same spatial frequency drifting at the same
rate in the opposite direction, we call I drift balanced.

Although the MFFC principle suggests that drift-bal-
anced random stimuli should not display consistent appar-
ent motion across independent realizations, we shall provide
examples of drift-balanced random stimuli (in Section 6)
that do in fact display strong, consistent motion across trials.

Beyond these basic developments, two propositions are
proved in this section. In proposition 1 we demonstrate that
any random stimulus separable in space and time (see defi-
nition 3 below) is drift balanced, and in proposition 2 we
show that the (spatiotemporal) convolution of any two inde-
pendent, drift-balanced random stimuli is drift balanced.

We now proceed more precisely as follows.

Definition 1: Random Stimulus
Call any family I[x, y, t], (x, y, t) E Z3, of random variables
jointly distributed with density f, a random stimulus when

(i) I[x, y, t] = 0 for all but a finite subset a c Z3 and
(ii) E[I[x,y, t]2] exists for all (x, y, t) e Z3.

Expectations Related to I
With k the cardinality of a, we set up a one-to-one corre-
spondence between dimensions of IRk and points of a so that
each coordinate of any vector i e IRk corresponds to one of
the points of a. We can now treat i as a stimulus (whose
nonzero values are restricted to the points of a). In particu-
lar, letting i(pq,r) denote the coordinate of i corresponding to
a given (p, q, r) E a, we set

i[x, y, t] = Ji(xyt) if (x, y, t) e a
j~o otherwise

for any (x, y, t) e Z3. We can now conveniently formulate
various expectations associated with I; in particular, we de-
fine the expectation of I by

EI[x, y, t] = | i[x, y, t]f(i)di

for all (x, y, t) e Z3. (Note thatEi is a nonrandom stimulus.)
Consider the Fourier transform of EI:

C. Chubb and G. Sperling
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E1 (6, ,r) = E J i[x, y, t]f(i)di
(x,y,t)ezl

X exp(-j(wx + 0y + Tf))

= J|R E i[x, y, t]exp(-j(wx + 6y + 'rt))f(i)di
(x,y,t)eZs

= J i(w, 6, r)f(i)di = E[I(, 6, -)].

This leads to the following observation.

Observation 1
The Fourier transform of the expectation of a random stim-
ulus I is equal to the expectation of the Fourier transform of
I.

Note especially, here, the implication that EI = 0 iff EIJ =

We call any random stimulus I invariant iff there exists a
stimulus S such that I = S with probability 1.

Example 2: Randomly Contrast-Reversing, Rightward-
Stepping Vertical Bar
Let the random stimulus I contain four frame blocks in-
dexed 0, 1, 2, and 3, and let each frame block be composed of
a horizontal sequence of four rectangles indexed 0, 1, 2, and 3
from left to right. Let oo, 01, 02, and 03 be pairwise indepen-
dent random variables, each taking the value C or -C with
equal probability. Give rectangle i in frame block i the
value assumed by oi, and give all other pixels the value 0.

The restriction of I to any one of its rows is characterized
by Fig. 3, as a function of x along the horizontal axis and t

along the vertical axis. As is clear, for any (x, y, t) e Z3,

E[I[x, y, t]] = 0;

that is, EJ = 0, from which we infer that El = O.

An interesting fact that may not be so obvious, however,
(this follows from corollary 1 below) is that the expected
power contributed to I by any given drifting sinusoidal grat-
ing is equal to the expected power contributed by the grating
of the same spatial frequency drifting at the same rate in the
opposite direction. This may seem surprising in light of the
MFFC principle, since any realization of I is marked by a
systematic, left-to-right perturbation across time, which (as
one might expect) tends, under appropriate viewing condi-
tions, to be perceived as motion from left to right. Indeed,
as we shall see in Section 6, it is quite easy to construct
random stimuli with this property that nonetheless display
striking, reliable apparent motion in a fixed direction.

This fact motivates a notion central to this paper: that of
a drift-balanced random stimulus (see definition 2 below).
As the name suggests, a drift-balanced random stimulus is
one for which the expected contribution of any given drifting
sinusoidal grating is balanced by (equal to) the expected
contribution of the corresponding grating drifting at the
same rate in the opposite direction. Of course, just as a
given random variable may have little or no probability of
assuming a value equal to its expectation, a particular real-

frame block 3

frame block 2

frame block 1

frame block 0

rectangle

0 (f3
00

o 0 f)2 0 I

O f) 1 0 0

4)0 0 0 0

0 1 2 3

Fig. 3. Rightward-stepping, randomly contrast-reversing vertical
bar: a horizontal-temporal diagram of the random stimulus I, a
vertical bar that appears with contrast C or -C randomly assigned
and steps its width rightward three times over a zero-contrast visual
field, assuming contrast C or -C with equal probability with each
step. The expected power in I of any given drifting sinusoid is equal
to the expected power of the sinusoid of the same spatial frequency
drifting at the same rate but in the opposite direction.

ization of a drift-balanced random stimulus, I, does not, in
general, have perfectly balanced components. However,
when gauged over a number of independent realizations, the
mean contribution of a particular Fourier component of I
tends to balance against the contribution of the correspond-
ing, oppositely moving component.

Definition 2: Drift-Balanced Random Stimulus
Call any random stimulus I drift balanced iff, for any w, 6, r
EIR

E[Il(c , r) 12] = E[II(w, 6, O r)12]. (2)

[For a proof that the expectations in Eq. (2) exist, see Appen-
dix A.] Notice that, because I is real valued, Eq. (2) is
equivalent to

E[II(w, 6, r) I] = E[II(-w, -6, T)121;

that is, I is drift balanced iff the expected power in I of any
given drifting sinusoidal grating is equal to the expected
power of the grating with the same spatial frequency drifting
at the same rate but in the opposite direction.

As we shall see in Section 6, the following class of random
stimuli is useful in constructing drift-balanced random stim-
uli that display consistent motion.

Definition 3: Space-Time-Separable Random Stimulus
Call any random stimulus I space-time separable iff, for any
(xy, t) E Z

I[x, y, t] = g[x, y]h[t],

for jointly distributed real random functions g and h.

Immediately we note a simple proposition.

Proposition 1

Any space-time-separable random stimulus is drift bal-
anced.

Proof
Let I be a space-time-separable random stimulus, with

I[x, y, t] = g[x, ylh[t]

C. Chubb and G. Sperling
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for all (x, y, t) E Z 3; then

IWo, 6, r)12 = Ig(w, 6)12 1h(,)12.

Thus, since h is real valued,

II(W, 0, T)l2 = lI(W, 0)12 1hf(-r)12
= lI(w, 6, -1)j2

Taking expectations of both sides yields Eq. (2). I

It would be surprising for any space-time-separable ran-
dom stimulus I to exhibit strong, consistent motion in a fixed
direction, since the only sort of temporal contrast change
induced by I is a spatially global modulation.

However, as we have hinted in example 1, there do exist
drift-balanced random stimuli that exhibit decisive motion
in a fixed direction not only on the average across a number
of trials but on virtually each display. In Section 6 we shall
provide some general results that are useful for constructing
a broad range of drift-balanced random stimuli that show
strong motion. However, we shall show first that the spatio-
temporal convolution of independent drift-balanced ran-
dom stimuli is drift balanced and briefly mention some of
the ramifications of this fact.

Proposition 2
The (spatiotemporal) convolution of independent, drift-bal-
anced random stimuli is drift balanced.

Proof
Let I and J be independent drift-balanced random stimuli.
For any random stimuli we have

6. CONSISTENT APPARENT MOTION FROM
DRIFT-BALANCED STIMULI

We begin this section by noting some general results con-
cerning linear combinations of random stimuli, leading up to
proposition 3 below, in which we show that any linear combi-
nation of pairwise independent, drift-balanced random
stimuli, all of which have expectation 0, is drift balanced.
(Actually, this is an implication of proposition 3, which is
slightly more general.) From this finding follow corollaries
1 and C1 (Cl in Appendix C), each of which gives rise to
specific examples of drift-balanced random stimuli that elic-
it consistent apparent motion. Several of these examples
are detailed in this section. Experimental findings with
regard to these example random stimuli are reported.

One may wonder whether linear combinations of indepen-
dent drift-balanced random stimuli are drift balanced.
That this is not the case is evident from the fact that any
invariant stimulus whatsoever can be expressed as a linear
combination of shifted impulses, which are, of course, jointly
independent and individually drift balanced.

Although linear combinations of arbitrary, pairwise inde-
pendent, drift-balanced random stimuli are not generally
drift balanced, if we impose an additional constraint on the
random stimuli to be summed we can ensure that the resul-
tant linear combination is indeed drift balanced.

The following lemma bears on this issue.

Lemma 1
Let S be a random stimulus equal to the sum of a set Q of
pairwise independent random stimuli; then

II * lJ2 = 111,2 1J2 .

The independence of I and J implies that

E[VI 2 IJ'2] = E[1112]E[1J12 ].

Thus, since I and J are drift balanced, we find that, for any w,
6, T & IR,

E[II * J(w, 0, r)j2]= E[II(w, 0, r)12 1E[1J(w, 0, r)l2]

= E[1I(w, 6, -,T)1 2]E[IJ(w, 6, -.. )l2]

= E[lI * J(w, 0, -r)l2I. I
Most computational models of the sensory transforma-

tions mediating human perception routinely apply a spatio-
temporal, linear, shift-invariant filter to the input stimulus.
The impulse response (i.e., convolution kernel) of any such
filter can, of course, be regarded as an invariant stimulus.
Typically the filters applied are drift balanced.14'17 Obvi-
ously, filters that depend on only spatial characteristics of
the stimulus being processed are drift balanced (for in-
stance, all manner of oriented, band-tuned, spatial edge
detectors). Similarly, filters (such as flicker detectors) that
depend on only temporal stimulus characteristics are drift
balanced. More generally, all space-time-separable filters
are drift balanced (proposition 1). Thus, given a drift-bal-
anced random input stimulus, the output of many of the
filters that are commonly thought to function in the early
stages of human visual processing is also drift balanced.

E[1S12] = I2 + E[IN12],

where Ni = I-EI for each I e Q.

Proof
See Appendix B.

Immediately we note a useful result concerning linear com-
binations of drift-balanced random stimuli:

Proposition 3

Let Q = 0 u {I} be a set of pairwise independent, drift-
balanced random stimuli, such that I is invariant and each
member of 0 has an expectation of 0. Then any linear combi-
nation, S, of the elements of Q is drift balanced.

Proof
A drift-balanced random stimulus rescaled by a constant is
drift balanced. Thus we assume with no loss of generality
that S is just a sum of pairwise independent drift-balanced
random stimuli.

Note that (i) I = E1 (hence N1 = I - E1 = 0) and (ii) for all J
0 0, Nj = J - Ej = J. Thus from lemma 1 we observe for

any w, 6, T e IR
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E[IS(w, 6, r)12]= IES(w, 6, r)12 + E E[INj(c, 6, r)12]

Je 0
- II(co, 6, Tr)I2 + E E[IJ(C&, 6, T)I2]

II(10 0 - T) I' + E E[ 1,(,o, 0, -T 12]
Je 0

- E[IS(co, 6, -T)I']. 

Note, in particular, that this result holds for I - 0.
As is reasonably clear from proposition 3 (since space-

time-separable random stimuli are drift balanced), any sum
of pairwise independent, space-time-separable random
stimuli, all with an expectation of 0, is drift balanced. In
corollary 1 this principle is applied to generate a class of
drift-balanced random stimuli, certain instances of which
exhibit strong, consistent apparent motion in a fixed direc-
tion.

Corollary 1
For M e Z+, let ,0, X.. , OM-1 be pairwise independent
random variables, each with expectation 0; and, for m = 0,
1, .. ., M-1, let fm:Z2 - R and gm:Z IRand let the
product f mg be 0 at all but finitely many points of Z3; then
the random stimulus I defined by setting

M-1

I[x, y, t] = E Xfm[x, y]g.[t], (3)
m=0

is drift balanced.

The proof is obvious from propositions 1 and 3.
A simple yet compelling counterexample to the MFFC

principle may now be constructed as follows.

Demonstration 1: A Randomly Contrast-Reversing,
Rightward-Stepping Rectangle
For some M e Z+, let the random stimulus I be composed of
M frame blocks indexed 0, 1, . .. , M - 1, and let each frame
block be composed of a horizontal sequence of M rectangles
indexed 0, 1, . .. , M - 1 from left to right (see example 2 and
Fig. 3). Let oo, Xl, . . _, Om-, be pairwise independent ran-
dom variables, each taking the value C or -C with equal
probability. Give rectangle i in frame block i the value
assumed by Hi, and give all other pixels the value 0. We can
now define I by Eq. (3) by letting fm[X, y] take the value 1 in
the mth rectangle and 0 everywhere else and letting gm[t]
take the value 1 in the mth frame block and 0 everywhere
else.

The apparent motion of this stimulus is quite easy to
imagine: throughout frame block 0, rectangle 0 is present
on the left-hand side of the stimulus field; it is assigned
contrast of C or -C with equal probability. In frame block
1, rectangle 0 turns off (goes to contrast 0), and rectangle 1,
abutting rectangle 0 on the right, turns on, again with con-
trast C or -C assigned with equal probability, independent
of the contrast of the first rectangle. In each successive
frame block, one rectangle turns off, and a new rectangle
turns on directly to the right of its predecessor, with contrast
either C or -C, independent of any other rectangle.

Figure 4a displays a realization of one version of the ran-
dom stimulus I defined in demonstration 1 with M = 8.
This random stimulus and others that we shall discuss were
tested experimentally on two subjects. Before discussing
responses to I in particular, we describe the experimental
arrangements for these observations.

General Method
We describe here the procedure for demonstrations 1 (stim-
ulus I), 2 (K), 3 (J), 4 (H), and 5 (G). All stimulus presenta-
tions were made on a Conrac 7211 RGB monitor driven by an
Adage graphics display processor. The display area was 28
cm X 32 cm, and displayed intensities were greenish white.
The spatial resolution was 512 X 512 pixels, the temporal
resolution was 60 frames/sec, and the intensity resolution
was 256 gray levels.

Two subjects were involved in each of the studies: CC
(the experimenter) and DY (a naive subject). For each
demonstration, each subject viewed 30 independent realiza-
tions of the random stimulus. On each presentation, the
non-Fourier motion of the stimulus (I, K, J, H, or G) was left
to right or right to left with equal probability. For instance,
I's randomly contrast-reversing rectangle stepped left to
right or right to left with equal probability.

Subjects adapted before each session to a uniform screen
of luminance 80' cd/M 2; other luminances were linearized
carefully relative to the mean. All stimuli were viewed fo-
veally and binocularly, from a distance of 2 m. On each trial,
a central cue spot (0.5 deg X 0.5 deg) of low positive contrast
came on 2 sec before the onset of the stimulus and disap-
peared 1 sec before the onset. Subjects were instructed to
maintain their gazes throughout the trial on the cue spot
point and were required to indicate the predominant direc-
tion of apparent motion (left or right) by entering either an L
or an R on a terminal keyboard.

Method for Demonstration 1
In the version of I viewed by our subjects, frame blocks
lasted 1/60 sec; spatial rectangles measured approximately 2
deg (horizontal) X 2 deg (vertical) and C = 0.25.- The con-
trast of 0.25 was chosen because it produced easily visible
motion and yet was small enough that psychophysical, as
well as physical, equivalence of positive and negative incre-
ments was likely to hold.

Results
Subject CC (DY) reported apparent motion in the step di-
rection on 30 (29) of 30 trials.

Discussion
The essential trick of the rightward stepping bar was to
modulate the contrast (that is, the absolute deviation from
zero) of a field of static, spatially independent, zero-mean
noise as a function of space and time. This notion of spatio-
temporal modulation of contrast needs some explanation.
Let J be a random stimulus with expectation 0, let W be a
nonnegative function of Z3 (space and time), and consider I
= WJ. In general, J's distance from 0, be it positive or
negative, is magnified (or damped) by W's value at each
point in space and time. Thus I is obtained by letting W
modulate the (absolute) contrast of J.

C. Chubb and G. Sperling
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a
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Fig. 4. a, Rightward-stepping, randomly contrast-reversing vertical bar: a horizontal-temporal cross section of a realization of the random
stimulus I (see demonstration 1). Iisthesum of pairwise independent space-time-separable random stimuli, each of which has an expectation
of 0; consequentlylis drift balanced (by corollary 1). b, Modulation of the contrast of a staticnoise field bya driftingsinusoidal grating: a hor-
izontal-temporal cross section of a realization of the random stimulus K (demonstration 2). That K is drift balanced follows from corollary 1.
c, Traveling contrast reversal of a noise field: a horizontal-temporal cross section of a realization of the random stimulus j (demonstration 3).
J is the sum of pairwise independent space-time-separable random stimuli, each of which has an expectation of 0 and is thus drift balanced (by
corollary 1). Note that, in contrast to JII (for I of Fig. 4a), IJI is devoid of motion information. d, Modulation of the flicker frequency of a flick-
ering noise field by a drifting grating: a horizontal-temporal cross section of a realization of the random stimulus H (demonstration 4). That
H is drift balanced is a consequence of corollary C1 (in Appendix C). The motion of H is derived from spatiotemporal modulation of the
frequency of sinusoidal flicker, where the phase of the flicker is random over space. e, Modulation of the contrast of a flickering noise field by a
drifting sinusoidal grating: a horizontal-temporal cross section of a realization of the random stimulus G (demonstration 5). G is drift
balanced (by corollary Cl). The motion of G is derived from spatiotemporal modulation of the amplitude of sinusoidal flicker, where the
flicker phase is random over space.

To see how this notion applies to I of demonstration 1,
note that we can look at I as the result of multiplying a field J
of random black or white rectangles persisting through M
chunks of time by a function W, which (for m = 0, 1, . . . M -
1) is 1 in the mth frame block for the points in the mth
rectangle from the left and 0 everywhere else.

Elaborations of this basic contrast-modulation scheme are
easy to construct. Consider, for instance, demonstration 2.

Demonstration 2: Contrast Modulation of a Static Noise
Field by a Drifting Sinusoid
We compose the random stimulus K of N frame blocks, each
containing a horizontal row of rectangles, indexed 0, 1, . . ..
M - 1 from left to right. For m = 0, . .. , M - 1, letfm[x, y]
take the value 1 in the mth rectangle and 0 elsewhere, and let

gm[t] vary as a sinusoidal function of m and the frame block.
Specifically, for each frame t in the nth frame block, let

g [t] = cos[27r(am/M - fin/N)] + 1

2

for some spatial and temporal frequencies a and f. Let 0o,
01, -- , Om-, be pairwise independent random variables
taking the values C and -C with equal probability, for some
contrast C, and define K by Eq. (3).

Whereas I of demonstration 1 merely picks out successive
rectangles of spatial noise (independently assigned contrast
C or -C) in successive time intervals, K is marked by high-
power crests (a per frame block) separated by zero-power
(gray) troughs sweeping at a constant rate from left to right
over the row of rectangles, each of random contrast C or -C.
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Figure 4b shows a realization of K, with M = 128, N = 32, and
e = f3 = 2.

Method
In the version of K viewed by our subjects, frame blocks

lasted 1/60 sec, rectangles measured approximately (1/8 deg

horizontal) by (2 deg vertical), and contrast C = 0.25.

Results
The cosine grating modulating the contrast of K was right-
ward or leftward drifting with equal probability. Subject
CC (DY) reported apparent motion in the direction of drift
in 30 (26) of 30 trials.

It might be that humans extract the motion from stimuli
such as I (Fig. 4a) and K (Fig. 4b) simply by performing a

Fourier power analysis on a rectified version of the stimulus.

For instance, if subjects were able either (i) to disregard (set
to 0) all negative contrast values or (ii) to map all contrasts

onto their absolute values, then it is clear that a Fourier
power analysis of the resultant rectified signal would corre-

spond quite well to perceived motion. This explanation
does not account for responses to stimuli of the type consid-
ered in demonstration 3.

Demonstration 3: Traveling Contrast Reversal of a
Random Bar Pattern
Let M e Z+. We construct the random stimulus J of M + 1
frame blocks indexed 0, 1, . .. , M, each of which contains M
rectangles indexed 0, 1, . .. , M - 1 from left to right. Let

fm[x, y] take the value 1 in the mth rectangle and zero
elsewhere; let gm[t] be 1 in frame blocks 0 through m, -1 in

frame blocks m + 1 through M, and 0 everywhere else. Let

the random variables 0o, 01, ... , OM-, be pairwise indepen-
dent, each taking a contrast value of C or -C with equal

probability, and use Eq. (3) to define J.
In frame block 0 of J, all M rectangles turn on, some with

contrast C and others with contrast-C. In successive frame
blocks m = 1, 2, ... , M, exactly one of the rectangles

changes contrast: the (m - 1)th switches to C if its previous
contrast was -C; otherwise it flips from C to -C. In frame

block 1, the leftmost (Oth) rectangle flips contrast; in frame

block 2, rectangle 1 flips, and in successive frame blocks,
successive rectangles flip contrast from left to right, until the
(M - 1)th rectangle flips in frame block M, after which all

the rectangles turn off.

Method
The version of J viewed by subjects CC and DY contained
nine frame blocks, each of which lasted 1/60 sec and con-

tained eight spatial rectangles, each measuring approxi-
mately 2 deg X 2 deg; C = 0.25.

Results
CC (DY) reported apparent motion in the direction traveled
by the contrast flip in 30 (25) of 30 trials.

The next two stimuli (G of demonstration 4 and H of
demonstration 5) are both drift balanced. The proof of this
fact depends on a corollary to proposition 3 that is otherwise
unimportant. We relegate this corollary to Appendix C and
show there how it can be applied to construct each of G and
H.

Demonstration 4: Modulating the Flicker Frequency of
Spatial Noise with a Drifting Sinusoid
We shall construct the random stimulus H of N frame blocks
indexed 0, 1, ... , N - 1, each composed of M rectangles
indexed 0, 1, .. , M - 1 from left to right. Let po, P1, ...
PM-1 be pairwise independent random variables, each uni-
formly distributed on [--r, 7r). Let C be a contrast value.
For all (x, y, t) e Z3 , set

H[x, y, t] = C cos(47r(1 + cos(2r( - n))) + Pm)

for m indexing the rectangle containing (x, y) and n indexing
the frame block containing t. The demonstration that H is
drift balanced is given in Appendix C.

A realization of H, with N = 32 and M = 128, is shown in
Fig. 4d. In frame block 0, the rectangles are assigned ran-
dom contrasts between C and -C (as a consequence of their
independent, random phases). Thereafter, for m = 0, 1,
... , M - 1, the contrast of the mth rectangle is modulated
by a cosine whose phase is itself a sinusoidal function of the
rectangle and the frame block. Since, however, a sinusoid's
frequency is the derivative of its phase (and since the deriva-
tive of a sinusoid is a sinusoid of the same frequency), we
observe that H modulates, with a drifting sinusoid, the fre-
quency of (spatially random-phased) sinusoidal flicker.

In demonstration 4 the contrast oscillation rate of each
rectangle speeds up and slows down sinusoidally throughout
the presentation. Regions of equal oscillation rate (crests of
rapid sinusoidal flicker separated by troughs of slow modu-
lation) sweep at a constant rate from left to right across the
viewing field.

Method
The conditions under which H was presented to subjects CC
and DY were the same as those governing the display of K (of

demonstration 2). Each frame block lasted 1/60 sec, each
spatial rectangle measured 2 deg (vertical) X 1/8 deg (hori-

zontal), and the contrast C = 0.25.

Results
Interestingly, despite the striking diagonal contours mark-
ing the (x, y) pattern of Fig. 4d, both subjects reported that
the motion of H was generally more ambiguous than those of
the other stimuli. CC (DY) reported apparent motion in the
drift direction of the sinusoid modulating frequency of con-
trast oscillation on 28 (23) of 30 trials.

Demonstration 5: Modulating the Contrast of Flickering
Noise with a Drifting Sinusoid
The random stimulus G is made up of N frame blocks in-
dexed 0, 1, . .. , N - 1, each containing M rectangles indexed
0, 1, . .. , M - 1 from left to right. Let po, P1, . .. , PM-1 be
pairwise independent random variables, each uniformly dis-
tributed on [-7r, 7r), Let C be some contrast value; then, for
any (x, y, t) E Z3, set

G[x, y, t] = 2 (cos(27r(a M - N + )

X Cos(2ry . + p)

where m indexes the rectangle containing (x, y) and n index-

C. Chubb and G. Sperling



1996 J. Opt. Soc. Am. A/Vol. 5, No. 11/November 1988 C. Chubb and G. Sperling

es the frame block containing t. The proof that G is drift
balanced is given in Appendix C.

A realization of G with M = 128, N = 32, ce = a = 2, and zy =
3 is shown in Fig. 4e. As does K of demonstration 2, G
generates its apparent motion by modulating contrast as a
drifting sinusoidal function of the rectangle and the frame
block. However, whereas the background whose contrast is
being modulated in K is a static row of rectangles randomly
painted C or -C, the background whose power is modulated
in G is a row of rectangles sinusoidally flickering between C
and -C; each rectangle m has a randomly assigned phase
(Pm) and is flickering at the rate of 3/32 cycles/frame block
(as a consequence of the term 2 7r 3n/32).

The contrast of G's flickering rectangle row is modulated
by the factor

Cos(2( 2m -2n + 1,
( (128 32))

which sweeps peaks (two per frame) of high-contrast flicker
separated by troughs of mean gray across the viewing field
from left to right.

Method
The conditions governing the display of G were the same as
those for K (and H): Frame blocks lasted 1/60 sec, spatial
rectangles measured 2 deg (vertical) X 1/8 deg (horizontal),
and C = 0.25.

Results
CC (DY) registered apparent motion in the drift direction of
the sinusoid modulating noise contrast in G on 30 (26) of 30
trials.

Conclusions
In this section we have demonstrated five drift-balanced
random stimuli whose apparent motion is perceived in one
consistent direction in more than 90% of trials by two ob-
servers. Indeed, many other observers have viewed these
stimuli, and no one has yet failed to perceive their consistent
motion. As is discussed in Section 8 below, these stimuli are
microbalanced in addition to being drift balanced; that is,
they remain drift balanced after windowing by arbitrary
space-time-separable functions. We conclude that there is
a large class of random stimuli whose apparent motion con-
tradicts the MFFC principle of motion perception.

There are many kinds of drift-balanced and microba-
lanced random stimuli that were not represented among the
demonstrations described here. In this paper we have re-
stricted ourselves to stimuli that assign constant values in
the vertical dimension of space. Dropping this constraint
opens the door to a broad range of other drift-balanced and
microbalanced random stimuli. In particular, a large class
of displays that yield apparent motion is generated by defin-
ing two spatiotemporal texture fields, A and B, at each point
(x, y, t) E Z3 and moving a boundary that admits light only
from field A on one side and only from B on the other. Many
instances of this kind of apparent motion, including those
proposed by Victor, 18 can easily be shown to be micro-
balanced. 19

7. REICHARDT-DETECTOR
CHARACTERIZATION OF DRIFT-BALANCED
RANDOM STIMULI

A point-delay Reichardt detector is a simple device that was
proposed originally by Reichardt 2 0 to explain the vision of
beetles. Its basic principle, the autocorrelation of inputs at
nearby visual locations, underlies most of the currently pre-
dominant models of human motion perception. We define
the Reichardt detector in terms of two subunits, designated
for convenience as the left and right half-detectors. Both
half-detectors are defined with respect to the same two (spa-
tial) locations (x, y) and (p, q) in Z2 and for some fixed
nonnegative number at of frames. These oppositely orient-
ed detectors are pitted additively against each other. A left
half-detector rieft [implicitly indexed by (x, y), (p, q), and at]
computes the covariance over time of the contrast at point
(x, y) at time t with the contrast at point (p, q) at time t - at
throughout the display of an arbitrary stimulus I. For rright,
t and t - at are reversed. The computation performed by r is
given by

r() = rleft(I) - rright(I) = > I[x, y, t]I[p, q, t -t]
tez

- E I[x, y, t - t]I[p, q,t]
tez

When r(I) < 0, it indicates motion from (x, y) to (p, q).
Figure 5 illustrates a block-diagram representation of the

Reichardt half-detectors and the Reichardt full detector.
The box containing (x, y) [respectively, (p, q)] is a contrast
gauge, inputting the contrast at point (x, y) [(p, q)] for each
successive frame t. Each of the boxes containing at is a delay
filter. At frame t, each delay box outputs the value entered
into it at frame t - at. Each of the boxes marked with an X
outputs the product of its two inputs at any frame t. Each of
the boxes marked with a F, accumulates the output from the
multipliers over all the frames. Finally, the box marked
with a - outputs the difference of its inputs at any frame t.

To see how the detector shown in Fig. 5c works, consider a
point of light moving across a dark visual field so as to cross
first (x, y) and then (p, q). If the spot is moving at the
proper rate [so that it starts crossing (p, q) after precisely at
frames], then the output from the right-hand multiplier will
be high as the dot passes over (p, q). In contrast, the output
from the left-hand multiplier will be low throughout the
presentation of the moving dot, since, at any frame, at least
one of its input channels is contributing a value near zero.
Thus the output of the detector is negative. On the other
hand, if the dot passes first over (p, q) and then over (x, y),
the detector's response is positive. In this simple case, the
sign of the detector's output does a good job of signaling the
direction of the dot's motion.

However, the point-delay Reichardt detector is highly vul-
nerable to aliasing. Imagine a train of evenly spaced dots
passing at some speed s first over (x, y) and then over (p, q).
For any s, it is easy to adjust the spacing between dots so that
the output of the Reichardt detector of Fig. 5c signals right-
ward motion, leftward motion, or no motion at all.

Despite the shortcomings of the simple Reichardt detec-
tor, there is something appealing about its fundamental au-
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a b

Fig. 5. Point-delay Reichardt detector and its component half-
detectors. a, The right half-detector computes the covariance of
the contrast fluctuations of the input stimulus at point (p, q) with
the fluctuations bt frames earlier at point (x, y): (x, y) and (p, q)
register signal contrast frame by frame. The contrast of the current
frame at pixel (p, q) is multiplied by the contrast at pixel (x, y) bt
frames in the past. (The box labeled bt outputs the input it received
bt frames ago.) The output from the multiplier is accumulated over
all the frames of the display. b, In a similar fashion, the left half-
detector computes the covariance of the contrast fluctuations of the
input stimulus at point (x, y) with the fluctuations bt frames earlier
at point (p, q). c, The full point-delay Reichardt detector outputs
the difference between the left and right half-detectors. A positive
response thus signals leftward motion; a negative response signals
rightward motion.

tocorrelation principle. Various elaborations of Reichardt
models were developed and studied in detail by van Santen

and Sperling,",2'2 who proved that the apparently different
models of Adelson and Bergen 3 and Watson and Ahumada 4

were essentially special types of elaborated Reichardt detec-
tors (ERD's). All these models retain the basic delay-and-
compare structure of the simple detector diagrammed in Fig.

5c. However, this simple detector is generalized in the fol-
lowing ways: (i) the point detectors at (x, y) and (p, q) are
replaced by spatial receptive fields (that is, each receptive

field applies an array of weights to the stimulus impinging
upon its region of the retina, and it outputs the sum of the
weighted contrast values), (ii) the temporal point delays
before the multipliers are replaced by temporal filters, and
(iii) the temporal accumulators after the multipliers are re-
placed by temporal filters. Van Santen and Sperling2

showed that further additions (e.g., more temporal filters
added here and there) do not augment the capabilities of this
ERD.

It was widely assumed that, ideally, a good motion detec-
tor should behave as a frequency-domain power analyz-
er.'-6' 21-23 (This is the assumption called into question by
the demonstration of good apparent motion in drift-bal-
anced stimuli.) The simple point-delay Reichardt detector
falls short of this ideal: it is not a good Fourier analyzer.
The various elaborations of Reichardt detectors can be
viewed as attempts to improve their performance as fre-
quency-domain power analyzers.

There is another way to use the Reichardt mechanism as
the basis of a motion-perception model. Indeed, as we shall
observe, it is possible to build a perfect Fourier power ana-
lyzer by using only the simplest point-delay half-detectors.

Our main purpose in this section, however, is to provide an
alternative characterization of the class of drift-balanced
random stimuli, in terms of the expected responses of point-
delay Reichardt detectors to members of this class. We
prove the following proposition: For any integers Ax, 6b, and
at, form the class C6,,6Y,6t of all point-delay Reichardt detec-
tors conforming to Fig. 5c [with (x, y) and (p, q) ranging
throughout Z2] such that (x, y) - (p, q) = (6x, y), and call
Cbxby at trivial if either (6x, by) = (0, 0) or at = 0; that is, Ca"'byk
is trivial if its member detectors fail to separate, either in
space or time, the points whose contrast they compare. I is
then drift balanced iff the expected pooled response of every
nontrivial class of point-delay Reichardt detectors is 0. We

now proceed more formally.

Definition 4: Autocorrelation
LetIbe a random stimulus. Then for any 6 = (6x, by, 6t EZ3

define the autocorrelation, HI, by

H1[bx, by, 6t] = E I[x, y, t]I[p, q, r]

where the sum is taken over all pairs (x, y, t), (p, q, r) e Z3 for
which (x, y, t) - (p, q, r) = (65, by, bt). Define the full-
detector pooler, RI, by setting

R1 [6x, by,, t] = H1 [6x, by,, b] - H1 [-6x, -6,y, 5,I.

We use HI to denote the autocorrelation of I because, for

any (6x, by, bt), H1[6x, by6, t] collects the sum of the responses
to I of all the half-detectors conforming to Fig. 5b, with at

delay filters, such that (x, y) - (p, q) = (6%, by). The half-
detectors corresponding to Fig. 5a are pooled by HI[-6x, -by, t].

Thus RI[6x, by,, t] pools the output of all full Reichardt

detectors corresponding to Fig. 5c, with (x, y) - (p, q) = (6,
by) (and at delay filters).

Observation 2

For any random (or nonrandom) stimulus I and any 6 = (5x,
6y, at) E Z3,

C. Chubb and G. Sperling



1998 J. Opt. Soc. Am. A/Vol. 5, No. 11/November 1988

HI[6] = HI[-6J.

The proof is trivial.
In order to reclaim Fourier motion information from the

half-detector output, note first that, for any random stimu-
lus I,

II(w, 0, r)12 = E I[x, y, t]I[p, q, r]

X exp(j(w)(x - p) + 0(y - q) + T(t -r))),

(4)

where the sum is taken over all (x, y, t), (p, q, r) e Z3. We
can now collect terms of the sum in Eq. (4) that have identi-
cal exponential factors to obtain

II(w, 0, T)12 = E H[6bx, 6,, bjexp(j(cob, + 06y + r6t)), (5)

where the sum is over all (6x, by, at) e Z3 .
Equation (5) shows that point-delay half-detectors, by

themselves, contain all the information about the distribu-
tion of I's power in the Fourier domain (because HI depends
on only the output of half-detectors to I).

The next definition is useful for proving the main result of
this section.

Definition 5: Power Difference between Oppositely
Drifting Fourier Components
For any random stimulus I and any c, 0, -r e IR, set

1I(W, 0, T) = II(w, 0, )|12 - II(w, 0, -T)12.

Note that any random stimulus I is drift balanced iff
E[AI(w, 0, T)] = 0 for all w, 0, r e [0, 27r). Some facts about Al
are worth noting. First,

AI(cw, 0, r) = Z(HI[6x, 6y, 6t] - H[6., 6y,, -6t])
X exp(j(wb, + 06y + rTt))

= F2(HI[6b., 6,, 6t] - HI[-b, -by6, 6])

X exp(j(co6b + 06y + Tat))

= E RI[65, by, btlexp(j(W6. + 06y + Tat)),

where each sum is over all (6x, by, 6t) 6 Z3. The first identity
depends on the fact that

II(w, 0, -T)1
2

= E H1 [6, 6y,, bt]exp(j(wb6 + 06Y, Tt))

= E HI[6x, by, -6]exp(j(w6x + 06y + Tat)).

The second identity follows from observation 2.
Next note that any term

(HI[6x, by, at] - H1 [6,, 6y, -6tI)exp(j(w56 + Oby + Trt))

in the sum yielding AI(w, 0, r) is obviously 0 if at = 0. On the
other hand, this term is equal (by observation 2) to

(H[6,, 6y,, at] - H1 [-6x, -6y,, 6t)exp(j(w6, + 06y + r 6 t)),

which is evidently 0 if Ax = by = 0. This goes to show that for
any 6A, by6, t e Z, any class of Reichardt half-detectors, each
of whose members has (i) no separation between spatial
receptors or (ii) a delay factor of 0, does not influence
41(w, 0, T).

The following lemma summarizes these observations.

Lemma 2
For any random stimulus I, any w, 0, T R,

Ai(w, 0, r) = E RI[65, 6y,, t]exp(j(co6 + 06Y + r6t)), (6)

where the sum is taken over all integers Ax,, by, and at such
that at 5d 0 and either 6A 5d 0 or 6,, F 0.

Obviously, if

E[RI[60, 6,,, 6]] = 0

for all 64, 6y, and ft indexing the sum in Eq. (6), then AI(w, 0,
T) = 0. This proves half of the following proposition.

Proposition 4
A random stimulus is drift balanced' iff the expected pooled
output from every nontrivial class of Reichardt detectors is
0; that is, any random stimulus I is drift-balanced iff

E[R1 [6b, 6,,, 6J] = 0 (7)

for all integers Ax, by, and bt6 such that at id 0 and (6x, by) Fz
(0,0 ).

Proof
We have already observed that Eq. (7) implies that I is drift
balanced. It remains to be proved that Eq. (7) holds when-
ever I is drift balanced. Accordingly, let Q be the set of all
(6, 6y,, 6a) for which at id 0 and (6x, by) id (0, 0), and suppose
that, for any co, 0, r E [0, 27r),

E[AI(w, 0, T)] = 0.

When we take expectations of both sides of Eq. (6), and
multiply each side of the resulting identity by its conjugate,
we obtain

E2 [AI(w, 0, r)] = E E[RI[6, 6y, 6J]E[RI[6p, 6
q' 6r]]

X exp(j(w(6b - 6p) + 0(6, -q) + T(6 t - 6r))), (8)

where the sum is over all (6x, by, at), (6 pk 6 q, r) e Q. However,
recalling that

2 r2r 2r

J0 " J: Jo exp(j(w(6x - 6 p) + 0(6y - 6q) + r(6 t - br)))dwd0dr

27r2gr

J exp(jw7(6, - bp))dw lo" exp(j0(by - 6 q))dO

r27r

X J exp(jr(bt - br))dr

=(27r)3 if ax = 6
p, by =

amp 
6 t = 6

{027r) otherwise

we find that when we integrate both sides of Eq. (8) over the
interval [0, 27r)3 and divide through by (27r)3, we obtain

E 2 [RI[6S, 6y,, MI] = 8 J I: J E 2 [AI(w, 0, T)]dcodad-r.

where the sum is over all (6x, by, 6t) e Q. But the right-hand
side of this identity is 0 by assumption. Thus, since each
term in the left-hand sum is nonnegative, each must be 0. I

For current purposes, the importance of the Reichardt-
detector characterization of the class of drift-balanced ran-
dom stimuli (established in proposition 4) is that it provides

C. Chubb and G. Sperling
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easy access to the principal results concerning the critical
subclass of drift-balanced random stimuli that we call mi-

crobalanced. This is the focus of Section 8.

8. MICROBALANCED RANDOM STIMULI

Consider the following two-frame-block stimulus S: In
frame block 0, a bright spot (call it spot 0) appears. In frame

block 1, spot 0 disappears, and two new spots appear, one on

each side of spot 0. On the one hand, it is clear (from

proposition 4) that Sis drift balanced. On the other hand, it
is equally clear that a Fourier-based motion detector whose

spatial reach encompassed the location of spot 0 and only
one of the flashes in frame block 1 might be stimulated

strongly in a fixed direction by S. Although S is drift bal-

anced, some local Fourier motion detectors would be stimu-

lated strongly and systematically by S. These detectors can
be selected differentially by spatial windowing, and thereby
a drift-balanced stimulus S can be converted into a non-
drift-balanced stimulus.

In this section we introduce the class of microbalanced
random stimuli, a subclass of drift-balanced random stimuli,
any member I of which is guaranteed not to stimulate Fouri-
er-power motion detectors in any systematic way, regardless

of any space-time-separable window interposed between I
and the detector. As we shall prove in proposition 8 below, I

possesses this property if I satisfies the following definition.

Definition 6: Microbalanced Stimulus
Call any random stimulus I microbalanced iff, for any
(x, y, t), (x', y', t') e Z3,

EVI[x, y, t]I[x', y', t']] = EV[Ix, y, t']I[x', y', tfl.

Obviously, for any random spatial function f and temporal
random function g,

E[f[x, y]g[t]f[x', y']g[t'J] = E[f[x, y]g[t']f[x', y']g[t]],

yielding the following proposition.

Proposition 5

Any space-time-separable random stimulus is microba-
lanced.

A related result is stated in the next proposition.

Proposition 6

Any invariant microbalanced stimulus I is space-time-sepa-
rable.

Proof
If I = 0, there is nothing to prove (since, obviously, 0 is
space-time separable). Otherwise we choose a point (x', y', t')

e Z3, for which I[x', y', t'] # 0, and, for all (x, y, t) e Z3, we
define

f(x, y) = I[x, y, t']

and

g(t) = I[x', y, t]]

If either (x, y) = (x', y') or t = t', then immediately we obtain

I[x, y, t] = f(X, y)g(t).

On the other hand, if (x, y) F4 (x/, y') and t 7s t', I's invariance
and microbalancedness together imply that

I[x, y, t] = , ,[x y t,]I[x, ' t] = f(x, y)g(t).
I[x', A' ti I

An important property of microbalanced random stimuli
that sets them apart from the more general class of drift-
balanced random stimuli is explained in proposition 7.

Proposition 7
The product of independent microbalanced random stimuli
I and J is microbalanced.

Proof
For any (x, y, t), (x', y', t') e Z3,

E[IJ[x, y, t]IJ[x', y', t']]

= EVI[x, y, t]I[x', y', t']]E[J[x, y, t]J[x', y', t']]

= E[I[x, y, t']I[x', y', t]]E[J[x, y, t']J[x', y', t]]

= E[IJ[x, y, t']IJ[x', y', t]]. I
Earlier in this section we showed, by using the example of

a single spot splitting into two adjacent spots, that a drift-
balanced random stimulus (S) can systematically stimulate
motion detectors that operate on restricted regions of S.
With proposition 8 we shall establish that all and only those
random stimuli that are microbalanced avoid the systematic
stimulation of all local (and global) Fourier-power detectors.
The following lemma eases the proof of this important fact.

Lemma 3

Any microbalanced random stimulus is drift balanced.

Proof
Let I be microbalanced. From proposition 4, I is drift bal-
anced iff E[Hj[6, 6,, bt]] = E[HI[6b, by, -6t]] for any offset
(6., by6, t) e Z3 , such that (6x, by) # (0, 0) and 6 t $ 0.

However, since I is microbalanced, we note that for any such

(6., by, bt),

E[HI[6b, 6,, 6k]] = E[E I[x, y, t]I[x - 6, y - by, t - bt]]

= E[I[x, y, t]I[x - 6,y -6by, t - t]]

= E[I[x, y, t - bt]I[x - 6, Y -6by, t]]

= E[Y I[x, y, t - bt]I[x - 6, y - by, t]]

= E[ I[x, y, t]I[x - ax, y - by, t + 6t]]

= E[Hi[6b, 6,, -at]l,

where each of the sums is over all (x, y, t) e Z3. I

We can now state the main result of this section.

Proposition 8
For any random stimulus I, the following conditions are
equivalent:

I. I is microbalanced.
II. For any space-time-separable function W, WI is drift

balanced.
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Proof
First we prove that condition I implies condition II. Assume
that I is microbalanced. By proposition 5, W is also micro-
balanced; it thus follows proposition 7 that WI is microba-
lanced and hence drift balanced (from lemma 3).

Next we prove that not condition I implies not condition
II. Suppose that Iis not microbalanced; then, for some (x, y, t),
(x', y', t') S Z3

EVI[x, y, t]I[x', y', t']] 5Fd EVI[x, y, t']I[x', y', tfl.

[Note that this inequality implies that (x, y) Fd (X', y') and t
# t'.] Letf assign 1 to (x, y) and (x', y'), and let it assign O to
all other points of Z2; and let g assign 1 to t and t' and 0 to all
other points of Z. Then the function fgl is zero everywhere
except at the points (x, y, t), (x, y, t'), (x', y', t'), and (x', y', t').
It is obvious, from proposition 4, that fgl is not drift bal-
anced. In particular,

E[Hfgj[x - X', y - y', t - t']]

= E[I[x, y, t]I[x', y', t']]

dE[I[x, y, t']I[x', y', t]]

= E[HfgI[x - X', y - y', -(t - t')]] 

The results stated thus far in this section would not be
interesting if there were no microbalanced random stimuli
that displayed consistent apparent motion. The following
result makes it clear that, in fact, all the examples of drift-
balanced random stimuli that we considered previously are
microbalanced.

Proposition 9
Let r be a family of pairwise independent, microbalanced
random stimuli, all but at most one of which have an expec-
tation of 0; then any linear combination of r is microba-
lanced.

Proof
Since a microbalanced random stimulus multiplied by a
constant remains microbalanced, we assume that the linear
combination is a sum; then, for any (x, y, t), (x', y', t') e Z3,

E[ I[Xry,
Lser

t] E J[x', y', t']1
Jer

= Y Z E[I[x, y, t]J[x', y', t']].i Pr Je r

However, whenever I F- J,

E[I[x, y, t]J[x', y', t']] = E[I[x, y, t]]E[J[x', y', t']] = 0.

Thus Eq. (9) becomes

E[I[x Y, t]I[x', y', t']] = E E[I[X, y, t']I[x', y', t]]
Isr ler

[Z I[X y, t] E J[x', y', t]]
Nrr Js r

Next we secure the analog of proposition 2.

(9)

Proposition 10
The (spatiotemporal) convolution of two independent mi-
crobalanced random stimuli is microbalanced.

Proof
It is convenient to write

for a sum in which each of the variables ai ranges over all
integers. For any independent random stimuli I and J and
any (x, y, t), (x', y', t') e Z3,

E[I * J[x, y, t]I * J[x', y', t']]

= E[ I[x - p, y - q, t - r]J[p, q, r]
p,q,r

X > I[x' - p', y' - q', t' - r']J[p', q', r']]
p',q',r'

= E E[I[x-p, y-q, t-r]I[x'-p',y'-q', t'-r']]
pq,r,p',q',r'

X E[J[p, q, r]J[p', q', r']].

But if, in addition, I and J are microbalanced, then this last
sum is equal to

EV[Ix-p, y-q, t'-r']I[x'-p', y'-q', t-r]]
p,q,r,p',q',r'

X E[J[p, q, r']J[p', q', r]]

= E l'[X-p, y-q, t'-r']J[p, q, r']

X I[X-p', y'- q', t - r]J[p', q', r]
p',q',r

= E[I * J[x, y, t']I * J[x', y', t]]. I
Response of Reichardt Detectors to Microbalanced
Random Stimuli
Two Fourier-analytic motion detectors proposed for psycho-
physical data 3' 4 can be recast as variants of an ERD." 3 The
ERD has many useful properties as a motion detector with-
out regard to its specific instantiation."12 ,

21

Figure 6 shows a diagram of the ERD. It consists of
spatial receptors characterized by spatial functions f, and f2,
temporal filters gl* and g2*, multipliers, an adder, and an-
other temporal filter h*. The spatial receptors fi (i = 1, 2)
act on the input stimulus I to produce intermediate outputs,

Yi~t]= fi1x, y]I1x, yt].
(Xy)E Z2

At the next stage, each temporal filter gj* transforms its
inputyj (i, j = 1, 2), yielding four temporal output functions:
gj * yi. The left and right multipliers then compute

I
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Fig. 6. Diagram of the ERD. Let I be a random stimulus; then, in

response to I, for i = 1, 2, the box containing the spatial function fi:Z2

- IR outputs the temporal function F (x,,y)e Z2 fi[X, y]I[x, y, t]; each of
the boxes marked gi* outputs the convolution of its input with the
temporal function gi:Z - IR; each of the boxes marked with a X

outputs the product of its inputs; the box marked with a - outputs
its left input minus its right; and the box containing h* outputs the
convolution of its input with the temporal function h:Z - IR.

[g1 * Y1[t]][g2 * Y2[t]], [g1 * Y 2[t]][g2 * Y11t]],

respectively, and the differencer subtracts the output of the
right multiplier from that of the left multiplier:

D[t] = [g1 * yl[t]][g2 * Y2 [t]] - [g1 * Y 2 [t]][g2 * YA[t]].

The final output is produced by applying the filter h*, whose
purpose is to appropriately smooth the time-varying differ-
encer output D.

In the following discussion, we write

ala 3 . a,,

for a sum in which each of the variables ai ranges over all

integers. Given a random stimulus I as the input to the
ERD, the output of the differencing component at time B is

D[B] = [z glju E f 1[x, y]I[x, y, B - U]]

X [>3g2[t] > f2p, q]I[p, q, B -t]

t p,q

- [ g[u] I f2 [m q]I[p, q, B-u]
u p,q

X [> g2 [t] I f 1[x, y]I[x, y, B-t]

t xt y

which can be' rewritten as

D[B] = E3 g9u]g 2 [t]flx, Y]f2[p, q]
t,u,p,q,x,y

X [I[x, y, B-u]I[p, q,B - t] -I[x, y, B- t]I[p, q, B -u]].

However, if I is microbalanced, then (by definition 6) the

expectation of the square-bracketed difference is 0, and
hence E[D[B]] = 0 for any B e Z, implying the following
proposition.

Proposition 11
The expected response of any elaborated Reichardt detector
to any microbalanced random stimulus is 0 at every instant
in time.

Microbalanced random stimuli, then, compose a subclass
of drift-balanced random stimuli with special importance
for the investigation of non-Fourier motion perception. In
general, the fact that a random stimulus I is drift balanced
does not entail that all local areas of I be drift balanced; that
is, the window over which the Fourier power analysis of I is
carried out is critical to the drift-balancedness of I. This
constraint is escaped by microbalanced random stimuli (as a
consequence of proposition 8): a random stimulus I is mi-
crobalanced iff, for any space-time-separable function W,
the random stimulus WI (the result of windowing I by W) is
drift balanced.

9. RECOVERY OF MOTION FROM
MICROBALANCED RANDOM STIMULI

Nonlinear Transformations Hypothesis
The most plausible explanation for the recovery of motion
from drift-balanced random stimuli posits one or more non-
linear transformations that are routinely applied to the visu-
al input signal to generate a new signal, which is then sub-

jected to ordinary frequency-domain power analysis.
Consider, for instance, random stimuli such as those de-

scribed in demonstrations 1, 2, and 5 (Figs. 4a, 4b, and 4e),
whose motion depends on spatiotemporal modulation of
noise contrast. For concreteness, we focus on I, the con-
trast-reversing bar of demonstration 1 (Fig. 4a). The appar-
ent motion exhibited by I might result from a power analysis
in the frequency domain of a rectified version of the original
signal: for example, a transformation of the signal I such as
RI, Si, T,+, or T.-, where

(i) RI[x, y, t] = I[x, y, t]I (full-wave rectification),
(ii) SI[x, y, t] = I[x, y, t]2

(full-wave power rectification),
(iii) T1+[x, y, t] = maxlI[x, y, t], 01

(positive half-wave rectification),
(iv) TI-[x, y, t] = min{I[x, y, t], 01

(negative half-wave rectification).

RI and SI both transform I into a rectangle moving in a series

of brief steps from left to right, while T,+ and T.- map I into
a similar such moving rectangle, which randomly disappears
and reappears in the course of its left-to-right traversal.
The MFFC principle applied to any of these transformations
of I would indicate motion to the right (see Fig. 7a). In the
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Fig. 7. Consequences of full-wave and half-wave rectification. a, Space-time representation of a traveling, contrast-reversing bar; full-wave(fw) rectified representation; and positive (hw+) and negative (hw-) half-wave rectified representations, showing that either of theserectifications suffices to expose the motion to Fourier motion-energy analysis. b, Space-time representation of a traveling contrast reversal ofa random bar pattern; full-wave (fw) rectified representation; positive (hw+) and negative (hw-) half-wave rectified representations, showingthat none of these rectifications exposes motion. The analysis system for second-order motion stimuli is shown in the bottom row: c, the signalis linearly filtered (the impulse response of an appropriate space-time-separable linear filter is shown); d, the filtered signal is full-waverectified; and e, it is subjected to motion-energy analysis (e.g., by an ERD). This is a sufficient sequence of operations to expose the directionalmotion in all the demonstrations of this paper.

realm of spatial visual perception, rectification transforma-
tions were proposed by various authors to mediate boundary
formation and texture segregation.2 4-2 8 Logarithmic inten-
sity compression was also proposed,29 -3 2 because of its phys-
iological plausibility, although it is less effective than rectifi-
cation.

Although any one of the rectification transformers would
expose the motion information buried in I to frequency-
domain power analysis, the same is not true of the traveling

contrast-reversal J defined in demonstration 3 (Fig. 4c).
Full-wave rectification of J yields a constant output. Half-
wave rectification merely yields another drift-balanced ran-
dom stimulus: Tj+ = (J + 1)/2 and Tj- = (1 - d)/2. These
relations are illustrated in Fig. 7b. The motion of J does not
emerge directly from any of these forms of rectification.

For the traveling, random contrast-reversal J (demonstra-
tion 3, Fig. 4c), a time-dependent linear operator such as
temporal differentiation is required to transform it into a

t
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signal from which motion information can be extracted after

rectification. (Indeed, the partial derivative of J with re-
spect to time is I.)

Consider the space-time-separable bandpass filtering
that is usually assumed to occur in low-level visual process-

ing. If such linear filtering were applied to any of the dem-
onstrations considered in this paper, and if it were followed
by any of the rectification operations considered above, it
would suffice to expose the motion of any of these demon-

strations to Fourier power analysis. Figure 7 illustrates the
sequence of filtering, rectifying, and motion-power analysis.
A central issue concerning drift-balanced random stimuli
thus emerges: given the (largely unexplored) range of drift-

balanced random stimuli that elicit apparent motion, what
is the simplest array of transformations of the input signal
that suffices to expose (to frequency-domain power analysis)

the motion information carried by all the various types of
drift-balanced random stimuli?

What is the Purpose of Having Detectors for Drift-
Balanced Motion?
From a systems point of view, there is a problem in linearly

combining the information from many linear sensors (for
example, motion-sensitive sensors) because there is nothing
gained by the combination that could not have been accom-

plished by a single, large sensor. For an advantage to be

gained from the combination, this information must be non-
linearly related to the input. Nonlinearly computed quanti-
ties such as power and information are combined most use-

fully. In many classical detection problems the ideal detec-

tor is a power detector; that is, the power of the component

elements is summed to form the decision variable.33'34

When it comes to detecting motion, it would be surprising if

generally similar considerations did not apply in combining
information from various locations of the visual field and

from detectors of various sizes. Indeed, the MFFC theories
normally use motion detectors that compute Fourier pow-
er.'- 6

Assuming that evolution chooses detection modes because

of their advantages, what is surprising about the detection of
drift-balanced motion is that the advantages of nonlinear
combination are already available at the earliest stages of
sensory analysis. Ultimately, to appreciate why this is so

requires ecological analysis of the visual world. Obviously,

the ecological problem cannot be resolved by armchair spec-

ulation. On the other hand, given that combination mecha-
nisms operate with rectified inputs, it is not surprising that
the mechanisms that detect drift-balanced motion seem to
be of a much larger scale than the Fourier mechanisms. 3 5 A

possibly related observation is that the apparent motion in
various drift-balanced random stimuli that we have consid-
ered here tends to diminish with the retinal eccentricity of
the presentation." However, it remains to be determined
how much of this drop-off of apparent motion should be
attributed to the effective decrease in visual spatial sam-

pling rate with retinal eccentricity.

10. UTILITY OF RANDOM STIMULI AS A
RESEARCH TOOL

A general advantage of random stimuli compared with re-
peated stimuli is that the responses to a repeated stimulus
might be mediated by any of its features, including artifac-

tual stimulus features that are not anticipated by the experi-
menter. Responses to random stimuli represent the re-
sponses to the properties that distinguish a class of stimuli,
and these tend to be more general and more readily specifi-
able than the properties of a single stimulus. Thus, by
generalizing the notion of a stimulus to that of a random
stimulus, we obtain a much more extensive and adaptable
set of tools for studying perception.

In the study of motion perception, microbalanced random
stimuli play a crucial role: they avoid the complications
introduced by the spatial windowing that is unavoidably
performed by motion-perception units. Avoiding the possi-
ble artifacts of windowing is particularly important in inter-

preting the responses of single visual neurons. Only a mi-

crobalanced random stimulus is guaranteed to contain no
consistent Fourier components, regardless of how that stim-
ulus may be centered or fail to be centered in a given neur-

on's receptive field or in the observer's field of view. It is

possible for drift-balanced (but not microbalanced) random
stimuli to produce systematic Fourier motion components in
receptive fields of particular neurons that happen to be
placed advantageously with respect to those stimuli. Only
microbalanced random stimuli necessarily require non-Fou-
rier operations in order to yield motion perception.

An invariant stimulus is microbalanced (thereby avoiding
the windowing problem) only if it is space-time separable
(proposition 6). Unfortunately, there are no examples of
space-time-separable stimuli that yield a strong, consistent
perception of motion. Thus random microbalanced stimuli
that yield strong perceived motion offer a unique tool for the
investigation of non-Fourier motion perception.

11. NON-FOURIER STIMULUS ANALYSIS IN
OTHER SENSORY DOMAINS

Spatial Vision
One-dimensional motion stimuli in (x, t) can be represented
as two-dimensional stimuli in (x, y). From the point of view

of systems analysis, the (x, t) and (x, y) representations are
equivalent: motion in (x, t) is equivalent to orientation in
(x, y). There are inevitably some physical restrictions that
apply in the time domain, 2 so that x and t cannot be so

symmetrical with respect to each other as x and y. For
example, in human motion detectors, summation over time
(of comparator output) occurs within a single detector; sum-
mation over space occurs between detectors.

The space-time asymmetry in motion can be made obvi-
ous by adding two gratings. Thus, when a drifting sine-

wave grating of frequency (wX cot) is added to a stationary
sine pattern of frequency (wx, 0) (a standing grating), the
apparent motion is normally visible; when it is added to (0,
wt) (a uniform, flickering field), the apparent motion may

either be normal or be reversed, depending on the phase
relations.2 In the space domain, both combinations are
equivalent.

The fact that all the (x, y) spatial illustrations in the
figures of (x, t) motions were visible as oriented textures

demonstrates that the same or similar nonlinear dynamics
are involved in the extraction of orientation as are involved

in the extraction of direction of motion. Indeed, we have yet
to discover an (x, t) stimulus that is perceived as moving and

that is not perceived as oriented texture in an (x, y)
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representation. This suggests that the human array of pat-
tern-analytic detectors is at least as rich as the motion-
analytic array.

Audition
Obviously, a one-dimensional signal, such as an auditory
signal (which depends only on time), cannot be drift bal-
anced. Nonetheless, certain auditory phenomena bear a
resemblance to some of the visual effects that we have been
considering.

It has long been recognized that the auditory system ana-
lyzes sound-pressure waveforms into their component sinus-
oidal frequencies and that these frequency components cor-
respond, at least to a first approximation, to the sensation of
pitch. Indeed, the cochlea functions largely as a mechanical
frequency analyzer. In addition to pure frequency analysis,
especially at periodicities below 300 Hz, another mechanism,
periodicity analysis, also comes into play. One of the best
demonstrations is an experiment by Miller and Taylor.36

Some background facts about this experiment are useful
here. A broad-spectrum noise N is a random function of
time such that the expected power of all Fourier components
in N is equal. It is easy to show that any random function N
that assigns pairwise independent random variables, all with
mean 0, to distinct points in time is a broad-spectrum noise.
Obviously, multiplying any such random function N by an
arbitrary nonrandom function f yields yet another broad-
spectrum noise, since the values assigned by fN remain pair-
wise independent, each with mean 0.

In the experiment by Miller and Taylor, listeners heard a
broad-spectrum noise that was modulated on and off (multi-
plied) by a square wave of frequency f. Thus the stimulus
generated by Miller and Taylor had a uniform expected
power over all temporal frequencies. When f was less than
-10 Hz, the perception corresponded to the physical reality
of interrupted noise. At frequencies between 40 and 200 Hz,
the interrupted noise was perceived to have a pitch that
corresponded to the interruption frequency. That observ-
ers perceive a pitch implicates some mechanism other than
frequency analysis. Whereas a rectifying nonlinearity was
not proposed explicitly by Miller and Taylor, it is the obvi-
ous intermediate step in periodicity pitch perception.

12. FINAL REMARKS

We have given precise definition to the notion of a random
stimulus and focused our attention on the subclasses of
drift-balanced and microbalanced random stimuli as being
especially interesting for the study of visual perception. We
first showed that the (spatiotemporal) convolution of inde-
pendent drift-balanced random stimuli is drift balanced.

Proposition 3 (which states that the sum of drift-balanced
random stimuli is drift balanced when the elements are
pairwise independent and all but at most one have expecta-
tion 0, the non-0 element being invariant) and proposition 9
(which states a similar result for microbalanced random
stimuli) provide access to a large family of empirically useful
drift-balanced random stimuli. Instances that display
striking apparent motion may be constructed readily.

In Section 8 we introduced microbalanced random stimu-
li, a distinguished subclass of drift-balanced random stimuli
defined by the following property: A random stimulus I is

microbalanced iff, for any space-time-separable function W,
the product WI is drift balanced. Thus I is guaranteed to
avoid systematically stimulating any Fourier power motion
mechanisms encountering I through any space-time-separa-
ble window. It was proved that (proposition 5) any space-
time-separable random stimulus is microbalanced; that
(proposition 6) any invariant microbalanced stimulus is
space-time separable; that (proposition 7) the product of
two independent microbalanced random stimuli is microba-
lanced; that (proposition 9) any linear combination of pair-
wise independent microbalanced random stimuli, all but at
most one of which has expectation 0, is microbalanced; and
that (proposition 10) the spatiotemporal convolution of two
independent microbalanced random stimuli is microbal-
anced. An implication of proposition 9 is that all the dem-
onstration stimuli presented in this paper are not only drift
balanced but also microbalanced. Finally (in proposition
11), we showed that the expected response of any elaborated
Reichardt detector to any microbalanced random stimulus is
0 at any instant in time.

In light of earlier observations,7-1 4 the existence of non-
Fourier mechanisms is hardly surprising. Such mechanisms
have, however, received no thorough investigation. The
range of types of such mechanisms has not yet been elaborat-
ed, and their psychophysical properties remain largely un-
studied. The importance of proposition 3 and the results of
Section 8 lies in their utility for constructing stimuli for
probing both the nature of non-Fourier motion-detection
mechanisms as well as the interaction between such mecha-
nisms and the band-tuned motion detectors that were the
focus of most previous research.

APPENDIX A

In this appendix we verify that E[II(w, 0, r)12] exists for any
random stimulus I and any w, 0, T E IR (which was presumed
in definition 2). Let D = {(x, y, t) E Z31I[x, y, t] # }0; then

E[II(w, 0, r)121 = | E i[x, y, t]i[p, q, r]

X expU(w(x - p) + 0(y - q) + r(t - r))If(i)di

= EJ| i[x, y, t]i[p, q, r]f(i)di

X expUj(w(x - p) + 0(y - q) + T(t -r)),

where each sum ranges over all pairs of points, (x, y, t), (p, q,
r) E Z3. Note now that

A i[x, y, t]i[p, q, r]f(i)di = E[I[x, y, t]I[p, q, r]].

However, as a consequence of the (probabilistic version of
the) Schwartz inequality,3 7 we note that

EVI[x, y, t]Ibp, q, r]] ' (EVI[x, y, t12 ]E[Ibp, q, r]'])l/2.

However, by the definition of a random stimulus, the two
expectations on the right-hand side of the inequality exist.
Hence E[II(w, 0, r)12] exists for all w, 0, r e IR.

C. Chubb and G. Sperling
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APPENDIX B

In this appendix we prove lemma 1, which is as follows:

Let S be a random stimulus equal to the sum of a set Q of

pairwise independent random stimuli; then

E[1512 ] = IESI2 + > E[1NV1
2],

IsQ

where N. = I - EI for each I E Q.

First we write

S= (E, + NI).
Iso

The linearity of Fourier transformation then yields

S = E (E, + N.).
IsO

Thus

Isi2 = ;[E,(Ej)* + N,(RJ)* + P'(]j)* + N1(EJ)*],

where the sum is over all I, J e Q.
Note first, however, that, whenver I F J.

E[E,(Ej)* + N1 (Nj)* + RI(RJ)* + RJ(Ej)*] = 2,(Ej)*,

since I and J are independent and

E[N,] = E[(Nj)*] = 6.

M-1

I[X, y, t] = >3 dm[X, y] (cos(pm)h[t] - sin(pm)km[t]),
m=O

where, in each case, dim hm, and km are all real-valued func-

tions that equal zero at all but a finite number of points of
their respective domains. I is then drift balanced.

Proof
For m = 0, 1, . . ., M - 1, term m of I is space-time separable
and hence drift balanced. Moreover, for each m, the expec-

tations of sin(pm) and cos(pm) are both 0. Thus the expecta-
tion of each term of the sum yielding I is 0; the result follows

from proposition 3. I

We apply lemma C1 to prove the following corollary used

in constructing stimuli for demonstrations 4 and 5.

Corollary C1
For M, N e Z+, let po, p1, ... , PM-1 be pairwise independent
random variables, each uniformly distributed on [-7r, 70);

then, for any x, y, t & Z, define the random stimulus I by
setting

M-1 N-1
I[x, y, t] = >3> dm[X, y]pm'.[t]cos(qmn[t] + pm),

m=O n=O

where, for m = 0, 1, . . ., M-1, and n = 0, 1, ... ,N-1, the
functions dm, Pn,n, and qnn are real valued and zero at all but
a finite number of points of their corresponding domains. I
is then drift balanced.

Moreover, whenever I = J.

E[E,(E,)* + N,(N,)* + E,(Nj)* + N,(E,)*]

= E,(E)* + E[N1 (N1 )*].

Thus

E[1S12] = >3 1 E(EK)* + >3 E[1N,1
2 ]

JeQ KeQ IE Q

2

= - EJ +>EI1N1 121
JesQ IsQ

= I2R12 + > E[JN,1
2 ].

IsO

Proof
We recast I so as to apply lemma C1:

M-1 N-1

I[x, y, t] = > dm[x, y] >3 Pmn[t]
m=O n=O

X (cos(qn[t])cos(pm) - sin(qmsn[t])sin(pm))

M-1

= dm[x, y] (hm[t]cos(pm) - km[t]sin(pm))

m=0

for

N-1

hmnt] = o P.,n~t]cos(qm'n[t])

n=O

I

APPENDIX C

In this appendix we prove that the random stimuli G and H
of demonstrations 5 and 4 are drift balanced. These ran-
dom stimuli stem from proposition 3. To make the bridge

explicit, we shall need to derive a corollary (C1) that depends
on the following lemma.

Lemma C1
For M e Z+, let the random variables Po, Pi, * *, PM-1 be

pairwise independent, each uniformly distributed on [-7r,
7r); then, for any x, y, t e Z, define the random stimulus I by
setting

N-1

km[t] = O P.,n~ t]sin(qnn~ t])
n=O

I

Proof That H (Demonstration 4) Is Drift Balanced
H contains N frame blocks indexed 0, 1, ... , N - 1, each
composed of M rectangles indexed 0, 1, . . . , M - 1 from left
to right. Let po, p, .. ., PM-1 be pairwise independent ran-
dom variables, each uniformly distributed on [-7r, 7r). Let C

be a contrast value. We can express H as follows: For m =

0, 1, . . . , M - 1, let dm[x, y] = 1 for (x, y) in the mth rectangle

and 0 elsewhere, and for n = 0, 1, . . . , N - 1, let gn[t] = 1 in
the nth frame block and 0 elsewhere; then
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M-1 N-i
H[x, y, t] = C > 3> d.[x, y]gn[t]

m=O n=O

x cos(47r(I + Cos(2r(m _ n))) p)

To check that H is drift balanced, make the following identi-
fications, and then apply corollary Cl:

P.,n[t] = Cgn[t]

and

qm~n[t] = 4i1.(1 + Cos(27r(m -
( ( (M N))

Thus corollary C1 applies, and we conclude that H is drift
balanced. (Note that H does not exploit the full generality
of corollary C1, since, for these identifications, Pm A[t] does
not depend on m and qmsn[t] does not depend on t.)

Proof That G (Demonstration 5) Is Drift Balanced
The random stimulus G is made up of N frame blocks in-
dexed 0, 1, . . . , N - 1, each containing M rectangles indexed
0,1, .. ., M - 1 from left to right. Let po, p1, ... , PM-1 be
pairwise independent random variables, each uniformly dis-
tributed on [-7r, 7r). Let C be some contrast value. We can
then express G as follows: For m = 0, 1,... , M-1, let dM[x,
y] = 1 for (x, y) in the mth rectangle and 0 elsewhere; for n =
0, 1,. . . , N - 1, letgM[t] = 1 for t in the nth frame block and 0
elsewhere; then

C M-1 N-1
G[xy, t] = -2 > 3 d.[xy]gn[t]

m=O n=O

X (cos(27ra( M - N )) + l)cos(ry n + Pm)

To see that G is drift balanced, set

Pmbn[t] = 2 gnt]( Cos(27r( __ )) + 1)

and

q.,n~t] = 27r z N

and apply corollary C1. (Note that, as with Hp, G, does not
exploit the full generality of corollary C1, since qmsn[t] de-
pends on neither m nor t.)
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