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Introduction

Lung cancer accounted for approximately one-third of all can-
cer deaths in the United States in 2011, making it the foremost 
cause of cancer mortality in the United States and worldwide. 
Unfortunately, less than 15% of patients with lung cancer sur-
vive five years.1-3 Thus, conventional approaches to the diagnosis 
and management of lung cancer patients have achieved limited 
success. Until recently, lung cancer was primarily diagnosti-
cally classified on a histological basis as either non-small cell 
(NSCLC, ~85% of cases) or small cell (SCLC, ~15% of cases). 
NSCLC encompasses adenocarcinoma, squamous cell carcinoma 
and large-cell carcinoma.4 Patients with either advanced stage 
NSCLC or SCLC traditionally have been treated with systemic 
cytotoxic chemotherapy. This approach has been largely unsuc-
cessful and resulted in heterogeneous, incomplete and transient 
clinical responses (with few notable exceptions) and little progress 
in reducing lung cancer-related mortality. Over the past decade, 
the identification of specific genetic alterations (oncogene drivers) 
in lung (and other) cancers has paved the way for a new classifica-
tion of lung cancer wherein distinct clinical subsets are defined by 
molecular criteria. These discoveries have simultaneously led to 
the development of more effective therapies that capitalize on the 
key tumor-specific genetic changes upon which tumor growth is 
dependent (oncogene dependence).5 Thus, clinical practice has 
moved into an era in which individualized, precision approaches 
to the diagnosis and treatment of many lung cancer patients are 
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eGFr is a validated therapeutic target in many human 
cancers. eGFr targeted therapies are in widespread clinical 
use in patients with non-small cell lung cancer and other 
tumor types. Despite the clinical success of eGFr targeted 
therapy, resistance to treatment is a significant barrier to the 
optimized use of eGFr inhibitors to cure patients with lung 
and other cancers. Here, we review established and emerging 
mechanisms of resistance to eGFr targeted therapy and 
highlight strategies that could overcome treatment resistance 
and therefore enhance clinical outcomes.
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leading to improved clinical outcomes, although resistance to 
these personalized approaches also develops. In this review, we 
will focus on mechanisms of drug resistance in EGFR-driven 
lung cancers and briefly address the role of EGFR signaling and 
EGFR-directed therapies in other cancers.

Somatic activating mutations in the epidermal growth fac-
tor receptor (EGFR) gene occur in approximately 15–30% of 
NSCLCs.6 EGFR belongs to the ErbB/HER family of ligand-
activated receptor tyrosine kinases (RTKs), whose members play 
important roles in the regulation of cellular processes includ-
ing cell proliferation, survival and migration. Regulation of 
EGFR kinase activity can be disrupted by several mechanisms, 
including increased production of ligands (i.e., EGF, TGFα and 
Heregulin), upregulation of EGFR expression, impaired down-
regulation of EGFR, cross-talk with other receptors (i.e., other 
ErbB family members, RTKs, cell adhesion molecules, cytokine 
receptors, ion channels and G-protein coupled receptors) and acti-
vating mutations.7 Since 2004, several activating lesions in EGFR 
have been identified in exons 18 to 21 and are localized around 
the ATP-binding site of the kinase domain.8,9 The most common 
mutations are an in-frame deletion within exon 19 that removes 
residues amino acids 746–750 (del746–750) and an exon 21 mis-
sense mutation replacing leucine 858 with arginine (L858R).10 
The crystal structures of the L858R and G719S EGFR mutants 
provide evidence that these mutations increase kinase activity by 
50- and 10-fold, respectively, through abrogation of autoinhibi-
tory interactions proximal to the ATP-binding cleft of the EGFR 
protein.11 Additionally, the EGFR juxtamembrane domain func-
tions differently from other receptor tyrosine kinases in that it 
activates, rather than inhibits, the kinase domain through stabi-
lization of an asymmetric kinase dimer.12,13 Indeed, a lung can-
cer mutation (V665M) identified within the activating region of 
the EGFR juxtamembrane domain has been shown to activate 
EGFR constitutively through increased receptor dimerization.14 
Thus far, the crystal structure of EGFR (del746–750) has not 
been determined.

Targeting EGFR Mutations

EGFR-mutant NSCLC cells are a characteristic example of onco-
gene dependence because these cells are addicted to the aberrant 
signaling of the mutant kinase for their growth and survival. 
This characteristic provides a tumor-specific vulnerability and 
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Secondary genetic alterations in EGFR. NSCLCs harbor-
ing mutant EGFR can exhibit de novo resistance to EGFR TKI 
therapy due to the nature of the primary activating lesion or the 
presence of a secondary drug-resistant EGFR mutation (Table 1). 
NSCLCs that are initially sensitive to EGFR TKI treatment have 
EGFR mutations primarily in exons 18, 19 and 21, whereas 
NSCLCs with infrequent exon 20 insertions or duplications 
are less responsive to EGFR TKI treatment both in vitro18 and 
in patients.29 Likewise, the T790M substitution in exon 20 is 
occasionally detected in a minor cell population in tumors dis-
playing de novo drug resistance30 and can also be found at low 
frequency in circulating tumor cells captured from EGFR TKI 
naïve patients with metastatic disease.31 Interestingly, the pres-
ence of a germline EGFR T790M mutation associated with 
familial NSCLC may enhance the effect of other EGFR activat-
ing mutations that occur in cis,32 as well as increase the risk of 
developing NSCLC.33-35 In addition to T790M, other secondary 
mutations in EGFR may cause primary resistance. For example, 
the presence of D761Y in cis with the drug-sensitive L858R 
mutation reduces EGFR sensitivity to EGFR TKIs.36 Altogether, 
these findings suggest that early detection of small fractions of 
second-site mutant alleles could be used for predicting response 
to NSCLCs that harbor drug-sensitive EGFR mutations. It is also 
becoming apparent that the intrinsic nature of different EGFR 
mutants elicits varying responses to EGFR TKI therapy,11 and 
that successful treatment of lung cancers with drug-resistant 
mutations will require alternative strategies for EGFR kinase 
inhibition.

The second-site T790M mutation accounts for acquired 
EGFR TKI resistance in over 50% of NSCLC patients with 
EGFR-mutant tumors who initially respond to erlotinib or gefi-
tinib. This amino acid change of a highly conserved “gatekeeper” 
residue near the kinase active site is frequently detected in TKI-
resistant tumors. The T790M mutation in EGFR is analogous 
to the T315I substitution found in BCR-ABL in chronic myelog-
enous leukemia patients who have acquired resistance to the ABL 
kinase inhibitor imatinib.37 While T315I causes a steric clash that 
blocks imatinib from binding in the ATP pocket of ABL kinase,38 
EGFR T790M most likely confers drug resistance primarily by 
enhancing the ATP affinity of EGFR L858R and thus reducing 
the efficacy of an ATP-competitive kinase inhibitor.39 Although 
EGFR T790M mutations are rarely detected in EGFR TKI naïve 
patients, continuous treatment with erlotinib or gefitinib may 
promote positive selection and proliferation of even a small frac-
tion of T790M-harboring cells present at the start of EGFR TKI 
therapy.30

Other secondary mutations in EGFR have been reported 
in cases of acquired resistance, but at much lower frequency 
than EGFR T790M. These EGFR mutations include the exon 
19 mutations L747S40 and D761Y,36 and the exon 21 mutation 
T854A.41 Crystallographic studies indicate that L747S could 
affect the binding of ATP and small molecules or shift the con-
formational equilibrium of EGFR toward the active state, while 
D761Y is situated in the putative α-C helix and predicted to 
affect the kinase activation loop.42 The T854A substitution in the 
ATP-binding site may cause loss of contact and binding affinity 

therapeutic opportunity to target mutant EGFR specifically in 
the tumor cells while sparing normal cells. The ATP-competitive 
EGFR tyrosine kinase inhibitors (TKIs), erlotinib (and gefitinib 
in Europe and Asia), are currently approved for first-line use in 
lung cancer patients whose tumors harbor an EGFR activating 
mutation. These small molecule inhibitors of EGFR achieve 
clinical efficacy by suppressing the activity of the mutant kinase 
and downregulating downstream signaling.15-17 Importantly, acti-
vating EGFR mutations show significantly greater sensitivity to 
treatment with EGFR TKIs than wild type EGFR. For example, 
the EGFR L858R mutant is approximately 100 times more sen-
sitive to EGFR TKI inhibition than wild type EGFR.18-20 This 
exquisite response is attributed to the preferential binding of 
TKI-sensitive mutants to erlotinib or gefitinib vs. ATP.4 Since 
the presence of activating EGFR mutations is associated with 
enhanced clinical responsiveness to EGFR TKI therapy,15-17,21 ini-
tial molecular analysis of NSCLC tumors for activating EGFR 
mutations is now standard of care for patients with advanced 
NSCLC.22

Another approach to targeted EGFR inhibition is the use of 
monoclonal antibodies that bind to the extracellular domain 
of EGFR. Antibody binding prevents ligand-induced receptor 
dimerization and activation or induces receptor endocytosis and/
or degradation. Cetuximab is a monoclonal human-murine chi-
meric antibody approved for the treatment of colorectal cancer 
and head and neck squamous cell carcinoma (HNSCC), but 
its effectiveness in EGFR-mutant NSCLC has been limited to 
date.23-25 Cetuximab interferes with EGFR ligand-binding and 
activation of downstream signaling cascades and may also activate 
the complement pathway to induce antibody-dependent cytotox-
icity. Panitumumab is a similar, but fully humanized, monoclo-
nal antibody directed against EGFR that has been approved for 
the treatment of colorectal cancers that harbor wild type KRAS. 
Panitumumab also acts by blocking the binding of EGFR ligands 
to EGFR, but in contrast with cetuximab does not lead to activa-
tion of the complement pathway.26,27 Unlike the positive correla-
tion between EGFR mutations and response to EGFR TKIs, the 
role of EGFR mutations as predictive markers for sensitivity to 
anti-EGFR antibodies has not been demonstrated. While anti-
bodies are capable of blocking ligand-induced receptor activation 
and promoting antibody-mediated receptor downregulation, 
mutations that confer ligand independence, such as those found 
in EGFR in NSCLCs, may abrogate the efficacy of anti-EGFR 
antibody therapy.28

Mechanisms of Resistance  
to EGFR-Targeted Therapies

Despite the effectiveness of EGFR TKIs in NSCLC patients with 
EGFR activating mutations, the success of EGFR-targeted ther-
apy is limited by the challenge of drug resistance (Fig. 1). Some 
patients exhibit de novo resistance to EGFR inhibition and are 
refractory to therapy that is expected to be effective based on the 
biology or genetics of the cancer. Furthermore, patients who ini-
tially respond to therapy invariably develop acquired resistance 
to treatment.
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T790M allele.48 The limited clinical efficacy of these inhibitors 
may be attributed to the increased potency of these agents against 
both mutant and wild type EGFR. As the ATP affinity of EGFR 
T790M is similar to that of wild type EGFR, the inhibitor con-
centration needed to suppress EGFR T790M also inhibits the 
wild type EGFR protein, resulting in dose-limiting toxicity in the 
form of skin rash and diarrhea.49 Consequently, targeting EGFR 
T790M with these irreversible inhibitors has had limited clinical 
efficacy thus far.

The toxicity ascribed to the concurrent inhibition of wild type 
and T790M-mutant EGFR proteins underscores the need to 
develop small molecule inhibitors of EGFR that selectively target 
tumor cells that express mutant EGFR while sparing cells that 
express wild type EGFR. In contrast to the quinazoline-based 
EGFR inhibitors, the pyrimidine-based EGFR TKI WZ4002 is 
approximately 100-fold more potent against EGFR T790M and 

to EGFR TKIs due to the replacement of the bulky threonine 
with the smaller alanine. Alternatively, the T854A mutation 
could induce a local conformational change in the kinase that 
abrogates EGFR TKI efficacy.

Attempts have been made to inhibit EGFR T790M using 
second-generation irreversible quinazoline-based EGFR TKIs, 
including afatinib (BIBW2992), dacomitinib (PF299804), 
canertinib (CI-1033) and neratinib (HKI-272).43-45 While clinical 
studies showed that afatinib did not increase survival in NSCLC 
patients who developed resistance to erlotinib or gefitinib,45 dual 
targeting of EGFR with afatinib and the monoclonal antibody 
cetuximab has recently been reported to be effective at targeting 
T790M-driven tumors in mouse models of T790M-mediated 
resistance and in some patients.46,47 Unfortunately, preclinical 
studies indicate that EGFR T790M mutant tumor cells quickly 
acquire resistance to dacomitinib through amplification of the 

Figure 1. A schematic of the molecular pathways implicated in resistance to eGFr TKis. Mutations in the eGFr kinase domain (predominantly T790M, 
which accounts for 50–60% of eGFr inhibitor resistance) abrogate the ability of first generation eGFr TKis to inhibit mutant eGFr. Second generation 
eGFr TKis BiBw2992, PF299804 and wZ4002 are currently in clinical trials and show promise as inhibitors of eGFr T790M. eGFr TKi resistance can also 
occur via upregulation or activation of other rTKs, such as AXL (20–25%), MeT (5%) and Her2, which can bypass the inhibition of oncogenic eGFr 
signaling and activate downstream effector pathways. rTK-independent activation of some of these downstream effectors can also occur, leading to 
resistance. PTeN loss and activating Pi3K mutations (i.e., e545K) have been observed, leading to constitutive AKT activation. Activating BrAF v600e 
mutations and MAPK1 amplification have been reported which lead to hyper-activation of MAPK signaling and resistance. NFκB pathway activation 
has been associated with resistance to eGFr TKi treatment. The epithelial-mesenchymal transition (eMT) and transition to small-cell neuroendocrine 
phenotype have each been associated with resistance to eGFr TKis, though the mechanistic underpinnings of these observations are unclear.
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inhibitor alone was not able to induce apoptosis, but required 
combination therapy with an EGFR inhibitor. Importantly, in 
these studies, combining PI3K or AKT inhibition with WZ4002 
was also unable to induce apoptosis in EGFR-mutant NSCLC 
cells resistant to WZ4002 treatment, suggesting that therapeutic 
strategies must be personalized according to the specific molecu-
lar event through which resistance occurs. Additionally, there 
have been recent reports of patients whose resistant tumors har-
bor an activating BRAF V600E or G469A mutation.55 Together, 
these findings suggest that resistance to EGFR TKI treatment 
can occur through reactivation of MAPK signaling.50,56

“Bypass signaling” via receptor tyrosine kinases (RTKs). 
Upregulation of specific RTKs can promote lung tumorigenesis 
and drive therapeutic resistance in several cancers, including 
NSCLCs harboring mutant EGFR or the EML4-ALK fusion, 
CRC, HNSCC, breast cancer and others. Here, we review the 
roles of several of these RTKs, including MET, IGF1R, AXL 
and HER2 (ERbB2) in resistance to EGFR inhibitor treatment 
in NSCLC.

MET amplification. Approximately 5% of lung cancer 
specimens from patients who develop resistance to gefitinib or 
erlotinib harbor amplification of the MET RTK.57 MET (also 
known as hepatocyte growth factor receptor, HGF-R) activation 
bypasses EGFR inhibition through sustained activation of 
the PI3K/AKT signaling pathway.53,58 Interestingly, MET 
amplification and the EGFR T790M resistance mutation can 
coexist in resistant tumor specimens.53 EGFR-mutant lung 
cancer cells exposed to HGF, the ligand for MET, are resistant 
to EGFR TKI treatment, suggesting that MET activation 
is sufficient to confer resistance in otherwise drug-sensitive 
cells.59 Interestingly, these studies have shown that MET can 

100-fold less effective against wild type EGFR.49 This suggests 
that EGFR T790M can be sufficiently inhibited at physiological 
doses that will not target wild type EGFR and result in toxicity, 
making WZ4002 a promising therapeutic candidate.4

Activation of PI3K/AKT signaling. Cell death in EGFR-
mutant cancer cells is associated with a decrease in phosphoinosit-
ide-3-kinase (PI3K)/AKT signaling upon EGFR inhibition. The 
ability to survive in the face of inhibition of oncogenic EGFR 
often involves re-activation of the PI3K/AKT pathway through 
a variety of mechanisms in tumor cells. Loss of PTEN expres-
sion (found in approximately 4% of EGFR-mutant cases) is 
associated with resistance to EGFR TKI treatment through 
activation of the PI3K/AKT signaling pathway.51,52 In patients 
who develop EGFR TKI resistance, approximately 5% have 
been found to have a PIK3CA (p110alpha catalytic subunit of 
PI3K) mutation.54 This is consistent with in vitro work showing 
that introduction of activated PIK3CA can confer resistance to 
NSCLC cell lines initially sensitive to EGFR TKI treatment.53,54 
As we will discuss in detail below, many of the mechanisms that 
cause resistance to EGFR TKI treatment, including the EGFR 
T790M gatekeeper mutation and RTK bypass signaling, lead to 
activation of PI3K/AKT signaling.

Activation of MAPK signaling. Although many studies 
implicate PI3K/AKT as a critical pathway mediating EGFR-
mutant NSCLC cell survival and drug resistance, the role of the 
MAPK signaling pathway in EGFR TKI resistance has been less 
clear until recently. However, MAPK1 amplification was recently 
observed in EGFR-mutant lung cancer cells that developed resis-
tance to the irreversible EGFR inhibitor WZ4002 and also in 
one patient specimen with acquired resistance to erlotinib.50 In 
these drug resistant models, treatment with a MEK or ERK 

Table 1. eGFr alterations in cancer and mechanisms of resistance to eGFr TKis

Cancer
Predominant EGFR 

alteration
EGFR inhibitors Resistance mechanisms

Non-small cell 
lung cancer

eGFr activating 
mutations

erlotinib*

Gefitinib

Afatinib

Dacomitinib

Canertinib

Neratinib

CO-1686

wZ4002

Cetuximab

Secondary eGFr mutations, Pi3K/AKT, MAPK, MeT, AXL, Her2, NFκB, BrCA1, BiM

iGF1r, FGFr (preclinical)

Glioma eGFrviii Dacomitinib PTeN loss

Colorectal 
cancer

eGFr overexpression
Cetuximab*

Panitumumab*
KrAS mutations

Head and neck 
squamous cell 

carcinoma
eGFr overexpression

Cetuximab*

Afatinib
Preclinical

Pancreatic 
cancer

eGFr and ligand 
upregulation

erlotinib* Preclinical

*FDA approved.
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GAS6 was observed in approximately 25% of EGFR-mutant 
NSCLCs obtained from patients that developed acquired resis-
tance to erlotinib or gefitinib.69 The data showed that AXL 
upregulation is a clinically important mechanism of acquired 
resistance to EGFR inhibitor treatment. AXL is a novel rational 
therapeutic target that when inhibited may enhance response 
to EGFR TKI treatment in selected NSCLC patients. Current 
efforts are focused on the development of specific AXL inhibi-
tors and the design of clinical trials testing AXL and EGFR 
inhibition in the clinic.

HER2 amplification. Studies examining the mechanisms 
of acquired resistance to the anti-EGFR monoclonal antibody 
cetuximab have led to the identification of upregulation of other 
ErbB family members as a potential mechanism of resistance 
to EGFR targeted therapies.70 In these studies, initially sensi-
tive NSCLC cell lines that developed resistance to cetuximab 
in vitro harbored amplification of HER2. HER2 overexpression 
or knockdown conferred resistance or sensitivity, respectively, 
to cetuximab in some NSCLC models. Interestingly, inhibition 
or disruption of HER2/HER3 hetero-dimerization via treat-
ment with the monoclonal antibody pertuzumab was sufficient 
to restore sensitivity to cetuximab both in vitro and in xeno-
graft models.71 Furthermore, using FISH analysis, Takezawa 
et al. revealed that HER2 was amplified in approximately 12% 
of tumors with acquired resistance to EGFR TKI treatment, 
whereas HER2 amplification was present in only 1% of EGFR 
TKI naïve tumors.70 Of note, HER2 amplification was not 
found to coexist with the EGFR T790M gatekeeper mutation 
in these clinical specimens.

Activation of NFκB signaling. The NFκB signaling path-
way is implicated in a wide spectrum of biological functions, 
including immune and inflammatory responses and cancer.72 In 
a search to better define the molecular determinants of EGFR 
oncogene dependence and of response and resistance to EGFR 
targeted therapy in NSCLC, a novel genetic approach demon-
strated that NFκB pathway activation can promote primary 
resistance to EGFR TKI treatment in EGFR-mutant NSCLCs.73 
This study applied a RNA interference based screening approach 
using a pooled shRNA screening library to identify genes that, 
when knocked down, restored sensitivity to an erlotinib-resis-
tant EGFR-mutant NSCLC cell line not harboring the EGFR 
T790M resistance mutation. Unexpectedly, 18 of the 36 screen-
ing hits were previously implicated in NFkB signaling, including 
CD95/FAS. Furthermore, NFκB activation levels were shown 
to be a specific predictive biomarker of response to treatment 
with an EGFR TKI, but not chemotherapy, in EGFR-mutant 
NSCLC patients. High NFκB activity as indicated by low lev-
els of IκB, a negative regulator of NFκB signaling, identified 
EGFR-mutant NSCLC patients that responded poorly to EGFR 
TKI treatment. These results indicate that the NFκB pathway 
plays an important role in modulating response to EGFR inhi-
bition by enabling EGFR-mutant tumor cells to bypass depen-
dence on oncogenic EGFR. Combined therapy with an EGFR 
TKI and an inhibitor of NFκB signaling can enhance responses 
in some EGFR-mutant NSCLC models and is currently being 
pursued in clinical trials.73,74

also act through ErbB3-mediated activation of PI3K. Further 
reports have shown that MET-mediated resistance to EGFR 
TKI treatment can be overcome by inhibition of PI3K alone 
or in combination with erlotinib in vitro and in vivo.60 It is 
unclear whether EGFR-mutant cells actively “acquire” MET 
amplification or whether a pre-existent, minor subpopulation 
of tumor cells with MET amplification are selected for during 
EGFR TKI treatment. The latter hypothesis may be supported 
by the clinical observation that MET amplification is seen at low 
frequency in EGFR-mutant lung cancers prior to treatment and 
was associated with resistance to EGFR TKI treatment in these 
patients.61

Presently, it is uncertain whether MET inhibition will be 
effective in overcoming acquired EGFR TKI resistance in the 
clinic; however, clinical trials are underway. Recently, the MET 
inhibitor ARQ197 showed a statistically significant increase 
in progression free survival in combination with erlotinib in a 
Phase III trial, but the trial was ultimately discontinued due to 
failure to satisfy the primary endpoint of overall survival benefit 
in this patient cohort.62,63 Additionally, a Phase I clinical trial 
combining erlotinib and the MET/VEGFR2/RET inhibitor 
XL184 has been completed.64 In this trial, one NSCLC patient 
with acquired resistance to erlotinib associated with MET 
copy number gain was able to achieve a partial response to the 
combination.

IGF1R. Insulin-like growth factor receptor 1 (IGF1R) is a 
RTK that is known to engage in cross-talk with EGFR and acti-
vates both the PI3K/AKT and MAPK pathways.65 Combined 
inhibition of IGF1R and EGFR induces apoptosis in a subset of 
EGFR-mutant lung cancer cell lines whereas inhibition of IGF1R 
or EGFR alone induces only cell cycle arrest.66 Furthermore, 
loss of the inhibitory IGF-binding proteins (leading to increased 
IGF1R signaling) has been associated with acquired resistance 
to EGFR TKI treatment in squamous cell lung cancer models 
that overexpress wild type EGFR. Thus, IGF1R may contrib-
ute to resistance to EGFR TKI treatment in some NSCLCs. 
However, IGF1R has yet to be validated as a bona fide driver of 
resistance to EGFR TKI treatment in human clinical samples.

Activation of AXL kinase. AXL is a RTK previously impli-
cated in resistance to imatinib in some KIT-driven gastro-
intestinal stromal tumor cells and in resistance to lapatinib 
treatment in some breast cancer cells.67,68 More recently, activa-
tion of AXL has been shown to drive resistance to EGFR TKI 
treatment in EGFR-mutant NSCLC as well. Preclinical stud-
ies using multiple in vitro and in vivo EGFR-mutant NSCLC 
models of acquired EGFR TKI resistance revealed that activa-
tion of AXL either through overexpression or upregulation of 
its ligand GAS6 conferred drug resistance.69 AXL activation 
resulted in a restoration of MAPK, PI3K/AKT and NFκB 
signaling in the EGFR-mutant NSCLC models with acquired 
erlotinib resistance. Combined treatment with erlotinib and 
an AXL inhibitor restored sensitivity in the resistant models by 
inducing cell death, whereas single agent treatment was inef-
fective. Conversely, forced overexpression of AXL in an EGFR 
TKI-sensitive EGFR-mutant NSCLC cell line was sufficient to 
induce erlotinib resistance. Increased expression of AXL and 
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because each of the resistant specimens harbored the EGFR-
mutant allele prior to therapy. Additionally, no specimen had the 
EGFR T790M gatekeeper mutation or MET amplification. The 
histological transformation was clinically important because the 
EGFR TKI resistant tumors with SCLC transformation were 
sensitive to standard SCLC treatments.54 To our knowledge, a 
small cell transition has not been demonstrated in in vitro models 
of acquired EGFR TKI resistance. However, pulmonary alveolar 
cells can transition to a neuroendocrine morphology upon p53 
and Rb1 loss, although at low frequency.82

Epithelial-mesenchymal transition (EMT). In addition 
to SCLC transformation, another histological transformation, 
EMT, has also been reported in human tumors with acquired 
resistance to EGFR TKI treatment.83 EMT is implicated in 
enhanced migratory capacity, resistance to apoptosis and a stem 
cell like phenotype. However, the function and mechanistic 
underpinnings of EMT in the setting of EGFR TKI resistance 
are incompletely understood. High expression of Slug, a key tran-
scriptional regulator of the EMT program, has been correlated 
with increased recurrence and decreased survival in NSCLC 
patients.84,85 Furthermore, E-cadherin expression was shown to 
be a biomarker predicting erlotinib response in some NSCLC 
patients.86 Similar observations have been made in NSCLC in 
vitro models as well. NSCLC cells initially sensitive to erlotinib 
that acquire resistance in vitro express biomarkers of an EMT 
including loss of E-Cadherin and upregulation of vimentin, 
Twist, Slug and enhanced migration. Interestingly, vimentin has 
been shown to modulate AXL expression in erlotinib-resistant 
EGFR-mutant NSCLC cell lines driven by AXL.69 Further stud-
ies have shown that Slug overexpression alone can induce EMT 
in EGFR-mutant NSCLC lines and protect cells from gefitinib-
induced apoptosis. Conversely, ectopic expression of E-cadherin 
enhances sensitivity to gefitinib.87 Likewise, low levels of miR-
200, a suppressor of EMT, can promote EGFR inhibitor resis-
tance.88 The role of EMT in acquired EGFR TKI resistance 
remains to be fully clarified. Altogether, the data raise the 
intriguing possibility that therapies targeting Slug or other EMT 
regulators in combination with EGFR may overcome EGFR TKI 
resistance in some NSCLCs.

Whether the emergence of EMT and SCLC phenotypes in 
acquired resistance is the result of broad epigenetic changes or 
whether inhibition of oncogenic EGFR regulates epigenetic mod-
ifiers themselves, is unclear. However, emerging evidence has 
linked epigenetic alterations such as CpG methylation to drug 
resistance in multiple models.89 In support of this, EGFR-mutant 
NSCLC cells that persist after EGFR TKI treatment exhibit a 
distinctive chromatin state that is regulated by histone demeth-
ylase and other epigenetic modifiers.90 Overall, the broader 
genomic, epigenetic and proteomic changes occurring during 
acquired resistance have been challenging to study and remain 
poorly defined. Thus, further investigation is necessary to clarify 
how acquired resistance evolves in EGFR-mutant NSCLC, par-
ticularly in the context of histologically transformed phenotypes. 
Furthermore, recent data indicate that the tumor microenviron-
ment and paracrine signaling may contribute to drug resistance in 
NSCLC and some other tumor types.91,92 Given the abundance of 

The DNA Damage Response and Efficacy  
of EGFR TKI Treatment

Recent data suggest a role for the DNA damage response (DDR) 
in modulating sensitivity to EGFR inhibitor treatment. In breast 
cancer, it has been observed that low BRCA1 levels can be used 
as a biomarker for sensitivity to PARP inhibitor treatment.75,76 
Additionally, erlotinib has been shown to suppress DNA repair in 
some breast cancer lines and cetuximab treatment can modulate 
the expression of DDR genes and sensitize to PARP inhibitor 
treatment in some HNSCC cell lines.77 These data suggest that 
there could be a link between EGFR inhibition and the DDR in 
some EGFR-driven tumors.

In NSCLC, emerging evidence indicates that the DDR could 
be an important regulator of response to EGFR inhibitor treat-
ment in some patients. Recent clinical evidence showed that 
EGFR-mutant NSCLC patients whose tumors harbored low 
BRCA1 levels achieve significantly longer progression free sur-
vival during erlotinib treatment.78 A possible explanation for 
these clinical observations is that EGFR may activate elements 
of the DDR. EGFR inhibition may therefore decrease activation 
of the DDR, create a potential synthetically lethal relationship 
between EGFR inhibition and the DDR in tumor cells in which 
elements of the DDR, such as BRCA1, are suppressed through 
EGFR-independent mechanisms. Furthermore, a genetic screen 
identified several DDR genes that, when knocked down, can 
confer erlotinib sensitivity in EGFR-mutant cell lines that are 
otherwise resistant to the drug.73 These observations provided 
rationale for the initiation of clinical trials assessing the efficacy 
of PARP inhibitor treatment in NSCLC patients with EGFR 
TKI-resistant tumors. Further investigation is required to explain 
mechanistically the clinical response observed in EGFR-mutant 
NSCLC patients whose tumors harbor low BRCA1 levels and to 
understand the molecular basis for the interplay between compo-
nents of the DDR and EGFR oncogene dependence. The studies 
to date provide rationale to determine whether additional DDR 
components regulate EGFR oncogene dependence and EGFR 
inhibitor sensitivity.

Morphological Changes, Cellular Reprogramming 
and Other Factors Associated  

with EGFR TKI Resistance

Histological transition to small cell lung cancer (SCLC). 
Whether drug resistance mechanisms observed in NSCLCs occur 
due to the selection of minor resistant sub-clones that exist prior to 
therapy, focal genetic alterations induced during therapy or more 
global epigenetic reprogramming events that occur in response 
to therapy remains unclear in most cases. Interesting insight into 
this unresolved issue comes from the recent demonstration that 
some EGFR-mutant lung adenocarcinomas can transform to 
small cell lung cancer histology and aberrantly express neuroen-
docrine biomarkers during the acquisition of resistance to EGFR 
TKI therapy.54,62,79-81 This histological transformation could have 
resulted from an epigenetic reprogramming event that occurred 
in the context of the original genetic landscape of these tumors 
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activating mutation.98 Furthermore, studies have found that the 
common loss of PTEN in gliomas is associated with significantly 
diminished responsiveness to EGFR kinase inhibitors.99

In contrast to lung cancer and glioma, EGFR mutations are 
uncommon in colorectal cancers.100,101 Instead, overexpression 
of EGFR is commonly detected in colorectal cancer cell lines 
and tumors.102 EGFR expression is positively correlated with 
increased malignant properties in colorectal cancers,103-105 and is 
increased in most colorectal cancer metastases.106,107 The clinical 
significance of EGFR overexpression and its influence on patient 
prognosis, however, remains unclear.103,108-110 Treatment with the 
anti-EGFR antibodies cetuximab and panitumumab has shown 
anti-tumor effects and blocking of EGFR signaling in some 
colorectal cancer patients with metastatic disease, and is clini-
cally approved for use in those patients whose tumors harbor wild 
type KRAS.111-113 However, response to EGFR-directed antibody 
therapy does not uniformly correlate with EGFR expression lev-
els in colorectal cancers.114,115

EGFR is overexpressed in 80–90% of HNSCC cases and 
increased EGFR expression is associated with decreased sur-
vival.116-120 Thus, the EGFR signaling pathway is a therapeutic 
target in HNSCC. Clinical trials employing both anti-EGFR 
monoclonal antibodies and TKIs have produced promising 
results. Although these inhibitors have had limited success in 
HNSCC as single agents, there is evidence that they can act 
synergistically with radiotherapy in locally advanced disease 
and with platinum-based chemotherapy in metastatic or recur-
rent disease.23,121,122 Thus far only cetuximab has been approved 
for the treatment of HNSCC, but the use of other monoclonal 
antibodies and EGFR TKIs (including erlotinib and gefitinib) is 
currently being investigated.123

Recent studies indicate that EGFR plays a critical role in 
KRAS-induced tumorigenesis in pancreatic ductal adenocarci-
noma (PDAC). Current models suggest that oncogenic driver 
mutations within an individual signaling pathway do not co-
exist in a given cancer cell. Consistent with this theory, KRAS 
and EGFR mutations are purported to be mutually exclusive 
in NSCLC tumors.124 Similarly, clinical trials have shown that 
EGFR inhibitors are only effective in CRC patients harboring 
non-mutant RAS.125 EGFR mutations occur in less than 3% of 
human pancreatic cancers. Intriguingly, however, these muta-
tions have been observed to co-occur with KRAS mutations 
in PDAC.126 Furthermore, the presence of oncogenic KRAS 
mutations in non-tumorigenic human pancreata suggests that 
secondary lesions are required for PDAC tumorigenesis.127 Injury-
induced inflammation or activation of KRAS induces acinar-
to-ductal metaplasia (ADM), an early step in PDAC in which 
damaged acini are replaced with duct-like cells.128 Pancreatic 
overexpression of the EGFR ligand, TGFα, has been shown to 
induce ADM and tumorigenesis in mouse models of PDAC129 
by a mechanism dependent on the EGFR ligand sheddase 
ADAM17.130 Furthermore, upregulation of EGFR expression 
in ADM has been reported in KRAS-driven mouse models and 
human pancreatitis samples.131,132 Studies indicate that EGFR 
is required for both tumor initiation and maintenance of early 
neoplastic lesions and that genetic ablation or pharmacologic 

RTK bypass mechanisms and the previously unappreciated role 
of NFκB signaling in EGFR TKI resistance, factors produced by 
neighboring cells, stromal elements, the ECM and infiltrating 
immune cells could all potentially promote resistance to EGFR 
targeted therapies in patients.

The Role of BIM in Drug Resistance

Upregulation of the pro-apoptotic B-cell CLL/lymphoma 2 
(BCL2) family member, BIM, is required for some TKIs to induce 
apoptosis in kinase-dependent malignancies such as EGFR-
mutant NSCLC. One group found that cell lines sharing a com-
mon oncogenic driver and treated with the corresponding kinase 
inhibitor exhibited varying degrees of TKI-mediated apoptosis 
despite comparable inhibition of the target kinase and down-
stream effectors.54 Interestingly, BIM RNA levels prior to TKI 
treatment correlated positively with the ability of the appropriate 
TKIs to induce apoptosis in EGFR-mutant, HER2-amplified and 
PIK3CA-mutant cancers. Similarly, BIM RNA levels in EGFR-
mutant lung cancer primary specimens were also predictive of 
clinical response to EGFR inhibitors. In addition, paired-end 
DNA sequencing recently identified a common intronic deletion 
in BIM that results in expression of BIM isoforms that lack the 
pro-apoptotic BCL2-homology domain 3 (BH3).93 In NSCLC 
cell lines, this polymorphism was shown to be sufficient to confer 
EGFR TKI resistance that was overcome by treatment with small 
molecule BH3 mimetics. Notably, NSCLC patients harboring 
the BIM intronic deletion exhibited poorer responses to EGFR 
TKI treatment. These data provide rationale for the clinical test-
ing of BH3 mimetics to overcome drug resistance mediated by 
the BIM polymorphism. Altogether, these recent studies suggest 
impaired function of BIM by various mechanisms could account 
for some of the heterogeneity of response to TKI treatment in 
patients.

EGFR as a Target Beyond Lung Cancers

In addition to NSCLC, EGFR has been implicated as an onco-
genic driver in a number of other cancers, including glioma, 
colorectal cancer, head and neck squamous cell carcinoma and 
pancreatic cancer.

Malignant glioma is commonly characterized by amplifica-
tion of a truncated EGFR protein, EGFRvIII, that lacks part of 
the extracellular ligand-binding domain due to genomic dele-
tion of exons 2 to 7 and is thus ligand-independent and consti-
tutively active.94-96 Unlike NSCLC patients who harbor mutant 
EGFR, glioma patients with EGFRvIII generally respond poorly 
to EGFR TKI treatment despite evidence indicating that erlo-
tinib is able to cross the blood-brain barrier.97 This disparity in 
response has been attributed to mutant-specific differences in the 
kinetics of kinase site occupancy by EGFR TKIs. Relative to wild 
type EGFR, the glioma-derived EGFRvIII releases erlotinib more 
quickly from its active site, while the EGFR L858R and EGFR 
del746–750 mutants typically found in NSCLC release erlotinib 
more slowly. These data suggest that sensitivity to EGFR TKI 
therapy may depend at least in part on the nature of the EGFR 
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to translate this knowledge into the clinic to optimize outcomes 
for patients by preventing or overcoming drug resistance. While 
NSCLC has served as the archetype for EGFR-driven cancer, 
ongoing studies will hopefully shed light on the biological mech-
anisms by which EGFR promotes the growth of other tumor 
types, perhaps in cooperation with other molecular lesions. This 
information will allow us to use EGFR-directed therapies more 
effectively to improve outcomes for a wider spectrum of cancer 
patients.
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inhibition of EGFR can prevent KRAS-driven PDAC develop-
ment.130,132 These results support a model in which EGFR signal-
ing is necessary to sustain the threshold of RAS activity needed 
for tumorigenesis.130,133 In 2007, a clinical trial combining erlo-
tinib with gemcitabine provided only modest benefit to a limited 
number of unselected PDAC patients.134 This clinical evidence 
and the recent data from preclinical models of PDAC suggest 
that appropriately selected patients whose PDAC harbors activa-
tion of EGFR could benefit from EGFR inhibitor treatment.

Conclusion

In recent years, tremendous advances in our genetic and bio-
logical understanding of cancer, the development of numerous 
targeted cancer therapies, and the pace of translational research 
has led to a paradigm shift in oncology toward a targeted, preci-
sion approach to diagnosis and treatment. An increased under-
standing of the molecular basis of mechanisms of primary and 
acquired resistance to EGFR-targeted therapy in NSCLC and 
other cancers has contributed to this remarkable transformation 
in oncology. This knowledge has also led to the development 
of effective and promising therapeutics for the clinical subset of 
patients with mutant EGFR-driven lung cancers. The challenge 
now is to characterize completely the molecular events that regu-
late response and resistance to EGFR inhibition in patients and 
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