
UC Irvine
UC Irvine Previously Published Works

Title
eBPF-based Content and Computation-aware Communication for Real-time Edge
Computing

Permalink
https://escholarship.org/uc/item/35n6s7vw

Authors
Baidya, Sabur
Chen, Yan
Levorato, Marco

Publication Date
2018-04-01

DOI
10.1109/infcomw.2018.8407006

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35n6s7vw
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

This article has been accepted for publication in the IEEE International Conference on Computer Communications
(INFOCOM Workshops), 2018.

eBPF-based Content and Computation-aware
Communication for Real-time Edge Computing

Sabur Baidya1, Yan Chen2 and Marco Levorato1

1Donald Bren School of Information and Computer Science, UC Irvine
e-mail: {sbaidya, levorato}@uci.edu

2America Software Laboratory, Huawei, e-mail: y.chen@huawei.com

Abstract—By placing computation resources within a one-hop
wireless topology, the recent edge computing paradigm is a key
enabler of real-time Internet of Things (IoT) applications. In
the context of IoT scenarios where the same information from a
sensor is used by multiple applications at different locations, the
data stream needs to be replicated. However, the transportation
of parallel streams might not be feasible due to limitations in the
capacity of the network transporting the data. To address this
issue, a content and computation-aware communication control
framework is proposed based on the Software Defined Network
(SDN) paradigm. The framework supports multi-streaming using
the extended Berkeley Packet Filter (eBPF), where the traffic flow
and packet replication for each specific computation process is
controlled by a program running inside an in-kernel Virtual Ma-
chine (VM). The proposed framework is instantiated to address a
case-study scenario where video streams from multiple cameras
are transmitted to the edge processor for real-time analysis.
Numerical results demonstrate the advantage of the proposed
framework in terms of programmability, network bandwidth and
system resource savings.

I. INTRODUCTION

In the Internet of Things (IoT), interconnected sensors
collect and transmit data for analysis to remote servers [1].
However, the delivery of content-rich data may incur delay
or loss due to the limited network resources. Indeed, network
congestion may impair the ability of the system to support
real-time services, such as video surveillance, traffic moni-
toring, smart transportation or the virtual reality (VR) and
augmented reality (AR) [2]. For this family of applications,
the cloudlets [3] and edge computing [4] paradigms mitigate
the issue of latency by placing computation-capable devices
within a one-hop wireless topology. However, in many network
scenarios of interest, the coexistence of these demanding data
streams with other services over constrained wireless networks
necessitates new technical solutions.

Recent frameworks based on Software Defined Networks
(SDN) [5] have demonstrated the ability to improve network
resource management using dynamic flow control and Net-
work Function Virtualization (NFV) [6]. At the communica-
tion level, Software Defined Radios (SDR) [7] have been used
to dynamically adapt the parameters of wireless transmissions.
However, the main challenge of effectively utilizing the avail-
able bandwidth to support real-time applications producing
large volume traffic stands. To this aim, the notion of Quality
of Computing (QoC) [8] has been recently proposed to relax

interference constraints on IoT data streams and facilitate their
coexistence.

In this paper, we propose a computation-aware commu-
nication control framework for real-time IoT applications
generating high-volume data traffic processed at the network
edge. Driven by QoC requirements, the framework provides
real-time user-controlled packet replication and forwarding
inside the in-kernel Virtual Machines (VM) using an extended
Berkeley Packet Filter (eBPF) [9]. The implementation uses
the concepts of SDN and NFV to achieve highly program-
able and dynamic packet replication. Resource allocation is
semantic and content-aware, and, in the considered case,
informed by the structure of data encoding. Numerical results
are provided from real-world experiments demonstrating the
enhanced adaptability and efficiency of the proposed solution.

The rest of the paper is organized as follows. In sec-
tion II, we describe the real-time edge computing scenario
and formulate the problem. Section III discusses related work.
In Section IV, we present the architecture of the proposed
framework and in section V, we describe the computation-
aware communication protocol and provide the implementa-
tion details. Section VI provides numerical results validating
the proposed approach. Section VII concludes the paper.

II. EDGE COMPUTING FOR REAL-TIME APPLICATIONS

One of the core concepts used in this paper is edge
computing, which can reduce the computation latency of
real-time applications. It is generally assumed that the edge
servers are more powerful compared to the sensors, but offer
inferior performance compared to cloud servers in terms of
computation capabilities. We consider an application scenario
where video data from different video sensors (cameras) are
sent to the edge server, which runs in parallel several real-
time processes analyzing the streams as shown in Fig. 1.
Each computation process may use partial data from multiple
sensors to accomplish its task. For instance, a computation
process aimed at fine-grained object detection may require
high quality video whereas coarse-grained object detection
(e.g. object counting) can operate on relatively lower quality
and lossy video. We remark that this setup corresponds,
for instance, to Urban IoT scenarios and, in particular, city
monitoring.

c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:1

80
5.

02
79

7v
1

 [
cs

.N
I]

 8
 M

ay
 2

01
8

Fig. 1: Real-time edge-based scenario: each computation pro-
cess uses partial data from various sensors.

Thus, in the considered multi-sensor multi-computation
scenario, each sensor data might be reused at different system
scales for different computational tasks. Note that if the sen-
sors are mobile, the subset of sensors contributing to a specific
computation process may also change over time. The “quality”
of data a sensor should provide to a specific application
is determined by the QoC requirements of the associated
computation algorithm. Here, we define these requirements
in terms of a set of metrics measuring characteristics of data
delivery, such as loss and delay.

Let say, then, that at time T , N video sensors
{S1, S2, ..., SN} are streaming video to M computation pro-
cesses {C1, C2, ..., CM} running at the edge server. The ith
sensor data stream Si is used by the jth computation process
Cj with quality Ωij , where i = 1, 2, ..., N and j = 1, 2, ...,M .
In a naive approach, each sensor Si would transmit M streams
of data over the network with full transmission quality Qfull

i .
Denote the bandwidth consumption stream Si with quality
Q as Si(Q) with Bi. The total bandwidth consumption for
transmission with full quality is:

Btotal =

N∑
i=0

M∑
j=0

Si(Q
full
i)=M

N∑
i=0

Si(Q
full
i) (1)

As an alternative approach, instead of sending M instances
of Si(Q

full
i) to M processes, the data streams are replicated

in-network – that is, at the network edge – and sent to the
M processes in order to reduce the network load to Btotal =∑N

i=0 Si(Q
full
i). Thus, the number of streams is reduced to the

minimum, but they are still transmitted at maximum quality
Qfull to support any requirement the computation processes
may impose. In the framework we propose, we further reduce
the network load by dynamically tuning the quality of the
data streams produced by the sensors to that required by the
computation processes at any given time.

In the framework proposed herein, packets are replicated
inside an in-kernel VM at the data link layer (layer 2) before
forwarding the packet to upper layers. This results in a
decreased use of memory at the upper layers of the network
protocol stack. Our framework further reduces the system
memory and CPU usage by incorporating content-based se-
lective packet cloning, which is driven by the requirements of
the individual computation processes.

In the light of these functionalities and objectives, in this
paper we address the following technical challenges:

i) Determine the quality of the data streams transmitted by
each sensor at run-time.

ii) Select which of the data streams received at the network
edge need to be forwarded, and to which computation
process(es) at any point of time.

iii) Efficiently manage network and computation resources
used by each computation process.

In order to solve the aforementioned challenges, we propose
an approach based on SDN whose goal is to seamlessly
control the resources of the network from the user space at
the application layer.

III. RELATED WORK

Several recent contributions focus on real-time IoT data
streaming in edge computing architectures. A real-time video
surveillance application is proposed in [10] where the trans-
mission policy of the sensor is interference aware to facilitate
coexistence with other communications. In [11], the authors
adopt a stochastic optimization approach to maximize the
efficiency of bandwidth usage by efficiently offloading compu-
tation to edge servers. However, the architectures presented in
these works are not programmable. In [12], the authors present
an edge-assisted SDN-based framework for the dynamic se-
lection of the network used to transport data from real-
time applications, and [13] proposes an SDN-based resource
management framework to perform content caching and server
selection. However, the aforementioned works do not address
content reusability and flow orchestration framework at the
network edge.

Some recent contributions proposed flow orchestration
schemes using NFV at the network edge. Examples include
NetFATE [14], a framework based on Open vSwitch (OVS)
[15] running at the mobile edge. In [16], the authors proposed
the platform NFVnice, which is built on OpenNetVM for the
user space-controlled scheduling of NFV chains. However,
while providing some level of flow control, these frameworks
do not provide sufficiently low level control to extract in
real-time for the content transported by the data streams
and inform content- and computation-based policies. Differ-
ent from these contributions, the framework proposed herein
adopts a content and computation-aware approach for resource
management and dynamic control, and realizes an adaptable
and programmable user-controlled platform.

IV. PROPOSED ARCHITECTURE

To develop the proposed framework, we use a built-in kernel
feature called extended Berkeley Packet Filter (eBPF). In the
following, we briefly introduce eBPF and, then, describe in
detail the framework.

Packet filtering was first proposed by Mogul et al. [17] to
provide user-controlled filtering of a subset of packets in the
network stack of kernel which is known as CMU/Stanford
packet filter (CSPF). The Berkeley Packet Filter (BPF) [18]
has been developed to overcome the stack-based instructions
and tree-based filtering model of CSPF. BPF employs a
register based instruction set with directed acyclic control

c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

flow graph (CFG) for filtering mechanism which provides a
significant performance gain over CSPF as CFG can retain
the packet parsing states to avoid redundant comparisons. The
BPF filter was implemented in Linux kernel 2.1.75 which
supports 32 bit registers for instructions. However, a recent
development of BPF called (eBPF) [19] in kernel 3.18 and
above, further improves its performance by introducing ten
64 bit registers and employing the JIT (just-in-time) compiler.
Also, eBPF programs can be invoked from different layers
of the network stack, e.g. socket, qdisc, and drivers. This
latter feature enables BPF to process the captured packets
before forwarding them to the subsequent layer, and load user
defined program inside the BPF in-kernel virtual machine to
process the traffic dynamically. Also eBPF maps can be shared
between the user and kernel space to enable seamless control.
The recent development of BPF within the context of the open-
source project IO Visor [20] resulted in the BPF compiler
collection (bcc) with LLVM back-end and clang front-end. The
main advantage is that the front-end code can be written in
high level languages such as python or C, which is translated
in the bytecode by the BPF compilers to be loaded inside
in-kernel virtual machine.

Based on these recent advancements, the schematics of the
proposed framework are shown in Fig. 2, whose components
are described in the following.

Quality of Computing Requirements: The QoS requirements
of each computation process are continuously evaluated at the
communication and computation layers performance over a
temporal window. In the considered case, the QoC require-
ments are used to determine the minimum quality and portions
of the data stream needed by the computation process. This
parameter is reported by the computation processes to the
application program, which updates the corresponding eBPF
maps. The edge, in turn, reports it back to the corresponding
sensor, which only transmits the required portion of the data
stream and suppresses remaining portions to reduce the net-
work bandwidth used by the stream. Based on the determined
requirements, the appropriate packets to be transmitted are
identified by the sensor using a Deep Packet Inspection (DPI)
module [8] at the application layer.

Layer 2 forwarding: Traffic forwarding to specific set of inter-
faces can be achieved by ingress/incoming and egress/outgoing
port mapping through eBPF. In the proposed implementation,
the user space application dynamically sets the ingress and
egress port pairs in the eBPF map.

DPI eBPF Function: A DPI module is also implemented at
the edge filters to select the packets to be forwarded to the
computation process(es). This feature enables the implementa-
tion of content and computation-specific filtering policies. The
DPI eBPF module runs inside the kernel, but can be accessed
from the user space in real-time.

Selective Packet Cloning and Transmission: The function of
this module is to reduce the usage of computation resources
at the edge servers. To this aim, the module employs content-

Fig. 2: Schematics of the content- and computation-aware
stream control framework proposed in this paper.

aware selective cloning of packets to be forwarded toward
a specific computation process, thus minimizing the socket
buffer allocation of reusable packets. The eBPF program
running inside the in-kernel VM reads the QoC requirement
for each specific computation process through the eBPF maps,
and makes decisions in real-time regarding the cloning policy
and packet forwarding.

V. CONTENT- AND COMPUTATION-AWARE
COMMUNICATION CONTROL PROTOCOL

In this section, we make specific the optimization problem
and the control strategy integrated in the framework to the
application scenario we consider. We remind that the objective
of the multi-sensor and edge system is to minimize total
bandwidth usage, while meeting the QoC requirements, that
is, maintaining the QoC metric γj above a threshold δj for
each computation process Cj . If each sensor uses a single
stream Si with transmission quality Qi as described earlier,
the optimization problem can be expressed as:

min
Qi

∑
i

Si(Qi) s.t. γj≥δj , ∀i = 1, .., N ; ∀j = 1, ..,M.

(2)
To solve this problem, we first make the communication

between the sensor and edge computation-aware. The sensor
determines a transmission quality Qi that satisfies Ωij for all
j = 1, 2, ...,M . Thus, we define effective quality of stream Si

as:
Qeff

i =

M⋃
j=1

Ωij (3)

Intuitively, Qeff
i is smaller than or equal to Qfull

i . The
reduction in terms of network usage can be expressed as
the difference between Btotal and effective access network
bandwidth Beff :

Bsaved =

N∑
i=0

Si(Q
full
i) −

N∑
i=0

Si(Q
eff
i) (4)

c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

We further reduce Qeff
i by making the communication

content-aware. In the context of the specific application sce-
nario considered in this paper, the video data stream is
differentially encoded. As a result, the data stream is composed
of packets transporting information relative to reference frames
(full pictures) or differential frames (encoding differences with
respect to reference frames). In [8], we provided a preliminary
study on the effect of packet loss on the performance of
object detection algorithms. Our work illustrates the much
larger impact of packet loss localized in portions of the stream
transporting reference frames compared to the loss of packets
transporting differential frames. The solution we proposed
concentrates interference on differential frames, rather than
equally spreading it over the data stream.

In this paper, we use this observation to build a content-
aware packet filtering strategy. Specifically, when a reduction
in the overall used bandwidth is necessary, the filter first drops
packets that are transporting differential frames instead of
uniformly dropping packets. Herein, we use a pre-built map,
shown in Table 1, between the QoC requirement and packet
loss in the two classes of content – that is, reference and
differential frames. The advantage in terms of used bandwidth
to achieve a given object detection accuracy is apparent. Object
detection is performed using the Speeded Up Robust Feature
(SURF) detection [21]. We summarize the steps of the filtering
strategy and describe how content and computation-aware
communications are implemented at the edge server and sensor
side in Algorithm 1.

To implement the DPI eBPF function, and the cloning
and forwarding function, we use Virtual Network Functions
(VNF) which can run inside in-kernel VM. The VNFs can
be invoked by the application program using APIs as shown
in Listing 1. This allows the dynamic modification of the
policies in the shared BPF maps. We further optimize the
DPI VNF implementation by setting the MTU size as multiple
of transport stream (TS) packet size (188 bytes); so that the
module does not scan every byte of the UDP payload, rather,
jumps from one TS header of 4 byte size to the next TS header
in the packet. This minimizes the number of instructions
needed in the BPF. The implementation can integrate any
future VNF accessible though a BPF API at the user program.

Listing 1: APIs for accessing eBPF VNFs
// Access eBPF functions through API
bpf = BPF(src_file = "ebpf_vnfs.c", debug=0)
function_DPI = bpf.load_func("vnf_DPI", BPF.

SCHED_CLS)
...
function_clone_forward = bpf.load_func("

vnf_clone_forward", BPF.SCHED_CLS)
...

// Access and update eBPF shared Maps
pol_map = bpf.get_table("policymap")
pol_map[pol_map.Key(idx)] = pol_map.Leaf(arr, 0)
...

VI. PERFORMANCE EVALUATION

In this section, we first describe the experimental setup, and
then provide numerical results assessing the performance of

Algorithm 1: Content & Computation-aware Communication

Input: S = {Si : i = 1, 2, ..., N} : Sensors
C = {Cj : j = 1, 2, ...,M} : Computation processes
Ω[i, j] : Quality Requirement of Si for Cj

Output: Sensor to Computation Map : G : S 7→ C
Q[n] : Sensor Data Transmission Quality
∆[i, j] : Edge Suppression Factor

1 Function EdgeControl (S,C,Ω) :
2 {Ii} : Interface list for Si

3 for i = 1 to N do
4 {Ii} ← null
5 for j = 1 to M do
6 if Cj includes stream Si then
7 {Ii} ← {Ii}+ Ij
8 else
9 continue

10 Qeff
i =

M⋃
j=1

Ωij ; Q[i] = Qeff
i

11 for k = 1 to |Ii| do
12 Ak : Application on kth VM
13 δi : Packet loss tolerance of Ak for sensor data Si

∆[i, k] = δi
F : Frame type obtained by DPI of Si for Ak

14 if F ∈ Reference Frame then
15 Clone and forward packets to interface Ik
16 else
17 Apply ∆[i, k] suppression at interface Ik

Clone and forward packets to interface Ik

18 Function SensorControl (Q[n]) :
19 for i = 1 to N do
20 αi : Loss tolerance of Si for transmission quality Q[i]

Pi : List of packets to be suppressed using DPI
Si ← Si − Pi ; Transmit Si

the proposed framework.
A. Experimental Setup

We implemented the eBPF program on a network edge
server with 8 core CPUs. All the VMs run on QEMU
hypervisor and we used the docker version 1.11.2 to define
network containers. The implementation is based on Linux
kernel 4.7. As sensor data stream, we used a real-world video
of 640x360 pixels and 372 frames encoded in H.264/AVC
format at 30 frames per second. The video is converted to
transport stream (TS) with the ffmpeg tool and transmitted
from the sensor to the edge over UDP.

B. Results

We evaluate the performance of the framework in terms
of programability, layer 2 forwarding performance, bandwidth
utilization as a function of the computation requirement,

Object Detection (%) 0.5 1.0 2.0 5.0

Uniform packet loss 0.95 0.84 0.46 0.1
Differential packet loss 0.99 0.96 0.74 0.4

Packet loss (%)

Table 1: Object detection as a function of packet loss when the uniform
and selective packet dropping policies are used.

c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

33.544.555.56

Bandwidth (Mbps)

10

15

20

25

30
A

v
e
ra

g
e
 P

S
N

R
 (

d
B

)

 Uniform Packet drop

 Differential Packet drop

Fig. 3: PSNR as a function of channel capacity.

system resource usage and scalability. We tested the real-
time redirection of traffic to the corresponding interfaces with
respect to dynamic modifications in the mapping between the
network source and destination ports, and the programmability
demonstrated to be seamless.

Layer 2 forwarding performance: As discussed previously,
the selective cloning and forwarding mechanism is imple-
mented at Layer 2 using the DPI module at the edge server.
The program is executed inside the in-kernel VM which
runs with low level instructions. As a consequence, the flow
does not incur significant delay traversing through the upper
layers of the network protocol stack. Moreover, the layer 2
forwarding function in eBPF is connected to the qdisc of the
kernel similarly to the Linux bridge. Hence, the eBPF switch
achieves analogous layer 2 forwarding speeds as Linux bridge.
We compare them by measuring their average throughput
using the “packetgen” utility setting the packet size to 512
bytes. We further compare the two cases using TCP and UDP.
Both eBPF and Linux Bridge achieve ∼ 1 Gbps throughput
over UDP and ∼ 2.5 Gbps throughput over TCP (without
TCP Segmentation Offload (TSO) and Generic Segmentation
offload (GSO)).

Computation Performance: We assess the performance of the
proposed framework in terms of quality of the received video
with respect to the network bandwidth utilization. First, we
measure the average Peak Signal-to-Noise Ratio (PSNR) of
the video by suppressing packets at the sensor. Fig. 3 shows
that as bandwidth usage is reduced by uniformly dropping
an increasing number of packets, the PSNR decreases very
sharply compared to the case where packet drop is focused
on differential frames. The DPI-based differential packet drop
achieves significantly higher PSNR for any given bandwidth
compared to the uniform, and non-selective, packet drop. For
instance, when the available capacity of the communication
link is equal to 5.5 Mbps, the selective filtering strategy
achieves a PSNR equal to 18 dB, whereas the PSNR obtained
using a uniform drop strategy is equal to 14 dB. A PSNR
equal to 15 dB requires a capacity equal to 5.75 Mbps and
3.6 Mbps in the uniform and selective strategy, respectively.

Further, we assess the performance of SURF-based object
detection with respect to channel usage (see Fig. 4). The

33.544.555.56

Bandwidth (Mbps)

0

0.2

0.4

0.6

0.8

1

O
b
je

c
t
D

e
te

c
ti
o
n
 R

a
te

 (
%

) Uniform packet drop

Differential Packet drop

Fig. 4: Object detection rate as a function of channel capacity.

0 10 20 30 40 50

Total Packet drop (%)

10

20

30

40

50

T
o
ta

l
C

P
U

 U
s
a
g
e
 (

%
)

 Stream 1 (All packet drops in VM1)

 Stream 2 (Distributed drop in VM1and VM2)

Fig. 5: CPU utilization as a function of packet drop rate.

selective strategy provides a significant gain in terms of
object detection rate compared to uniform packet drop for any
given channel usage. For instance, when the available channel
capacity is equal to 4.5 Mbps, the object detection rate is
equal to 0.4 and 0.7 in the uniform and selective drop strategy,
respectively.

System Resource Utilization: By selectively suppressing pack-
ets and avoiding cloning all the packets at the network edge,
the proposed framework also improves system utilization. In
the considered case-study, we use two video streams, each of
which is processed by two processes running on two separate
VMs (VM1 and VM2 respectively). We measure average
CPU usage of all VMs with respect to packet drop rate. We
distribute packet drop differently in the two streams: all the
packets belonging to Stream 1 (first video) are dropped by
VM1, whereas VM2 equally drops packets of Stream 1 and
Stream 2. Fig. 5 shows that the CPU usage is reduced by
∼ 3% on average for every 10% total packet drop increase
when all packet drops are performed on one VM. However, if
packet drops are equally distributed between two VMs, then
for every 10% total packet drop increase, the CPU usage is
reduced by ∼ 5% on average. This indicates that the proposed
framework provides an increasing advantage as the differences
in QoS requirements of the computation processes increase.

Scalability: In order to test the scalability of the framework,
we create a large number of docker containers for parallel
computations (see Fig. 6). On the sensor side, we use two
sensor devices streaming data. The main goal of this test is to
assess whether or not the framework can handle the execution

c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Fig. 6: Multi-streaming test with 100 docker containers.

of many parallel instructions in the kernel. Our tests show
that due to the light-weight implementation of the DPI and
selective clone-forward functions, and the low-level execution
of our framework, the framework performs adequately even
when the number of computation processes is large. Fig. 7
shows that the total system utilization almost linearly increases
with the number of containers. However, the slope decreases
as the number of containers grows. This result indicates a
tendency of the system resource utilization to become more
efficient for large number of containers. Note that the total
system utilization increases by ∼ 8% for every 25% increase
in packet drop rate, that is, the efficiency increases as the load
increases.

VII. CONCLUSIONS

The main contribution of this work is the design, implemen-
tation and test of an open-source, programmable computation-
driven communication control framework for real-time edge
computing systems using built-in kernel eBPF. The main
features of the proposed system are: (a) reduced network
utilization to support computation processes; (b) highly dy-
namic network and packet filtering control; and (c) efficient
system resource utilization at the edge server. Although the
framework is demonstrated in a specific application, that is,
video processing, the architecture is flexible and can support
a broad range of IoT applications. Numerical results obtained
by means of real-world testing demonstrate the ability of the
proposed system to dynamically adapt data streams supporting
remote computation processes.

REFERENCES

[1] J. Jin, J. Gubbi, T. Luo, and M. Palaniswami, “Network Architecture and
QoS Issues in the Internet of Things for a Smart City,” in International
Symposium on Communications and Information Technologies (ISCIT),
2012. IEEE, 2012, pp. 956–961.

[2] A.-S. Ali and O. Simeone, “Energy-Efficient Resource Allocation for
Mobile Edge Computing-Based Augmented Reality Applications,” IEEE
Wireless Communications Letters, 2017.

[3] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the Cloud to the Mobile User,” in Proceedings of the third
ACM workshop on Mobile cloud computing and services. ACM, 2012,
pp. 29–36.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
Edge Computing?A Key Technology towards 5G,” ETSI White Paper,
vol. 11, 2015.

[5] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

10 20 30 40 50 60 70 80 90 100

Number of Computation Processes

10

20

30

40

50

60

70

T
o
ta

l
S

y
s
te

m
 U

ti
liz

a
ti
o
n
 (

%
) 0% Packet drop

 25% Packet drop

 50% Packet drop

 75% Packet drop

Fig. 7: Variation of total system utilization vs number of
containers for different packet drop percentage.

[6] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “Nfv: State of the Art,
Challenges, and Implementation in Next Generation Mobile Networks
(vEPC),” IEEE Network, vol. 28, no. 6, pp. 18–26, 2014.

[7] H. Arslan, Cognitive Radio, Software Defined Radio, and Adaptive
Wireless Systems. Springer, 2007, vol. 10.

[8] S. Baidya and M. Levorato, “Edge-assisted Computation-Driven Dy-
namic Network Selection for Real-Time Services in the Urban IoT,”
in IEEE International Workshop on Advances in Software Defined and
Context Aware Cognitive Radio Networks (IEEE SCAN-2017).

[9] A. Begel, S. McCanne, and S. L. Graham, “Bpf+: Exploiting Global
Data-Flow Optimization in a Generalized Packet Filter Architecture,”
in ACM SIGCOMM Computer Communication Review, vol. 29, no. 4.
ACM, 1999, pp. 123–134.

[10] S. Baidya and M. Levorato, “Content-based cognitive interference
control for city monitoring applications in the urban iot,” in Global
Communications Conference (GLOBECOM), 2016 IEEE. IEEE, 2016,
pp. 1–6.

[11] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic Joint Radio
and Computational Resource Management for Multi-User Mobile-Edge
Computing Systems,” arXiv preprint arXiv:1702.00892, 2017.

[12] S. Baidya and M. Levorato, “Content-based Interference Management
for Video Transmission in D2D Communications underlaying LTE,” in
International Conference on Computing, Networking and Communica-
tions (ICNC), 2017. IEEE, 2017, pp. 144–149.

[13] Q. Chen, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “Integrated
Resource Management in Software Defined Networking, Caching and
Computing,” arXiv preprint arXiv:1611.05122, 2016.

[14] A. Lombardo, A. Manzalini, G. Schembra, G. Faraci, C. Rametta, and
V. Riccobene, “An open framework to enable netfate (network functions
at the edge),” in 1st IEEE Conference on Network Softwarization
(NetSoft), 2015. IEEE, 2015, pp. 1–6.

[15] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The Design and
Implementation of Open Vswitch,” in 12th USENIX symposium on
networked systems design and implementation (NSDI 15), 2015, pp.
117–130.

[16] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan,
T. Wood, M. Arumaithurai, and X. Fu, “Nfvnice: Dynamic backpressure
and scheduling for nfv service chains,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication. ACM,
2017, pp. 71–84.

[17] J. Mogul, R. Rashid, and M. Accetta, The Packer Filter: An Efficient
Mechanism for User-Level Network Code. ACM, 1987, vol. 21, no. 5.

[18] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture.” in USENIX winter, vol. 46, 1993.

[19] B. Gregg, “ebpf: One small step,” URL
http://www.brendangregg.com/blog/2015-05-15/ebpf-one-small-
step.html, May, 2015.

[20] L. Foundation, “Io visor project,” URL http://iovisor.org, 2015.
[21] “SURF: Speeded up Robust Features, author=Bay, Herbert and Tuyte-

laars, Tinne and Van Gool, Luc, journal=Computer vision–ECCV 2006,
pages=404–417, year=2006, publisher=Springer.”

c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

	I Introduction
	II Edge Computing for Real-time Applications
	III Related Work
	IV Proposed Architecture
	V Content- and Computation-Aware Communication Control Protocol
	VI Performance Evaluation
	VI-A Experimental Setup
	VI-B Results

	VII Conclusions
	References

