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A GEOMETRIC SPECTRAL THEOREM1

By YAAKOV FRIEDMAN and BERNARD RUSSO

[Received 4th June 1985]

§ 0. Introduction

IN this paper we discuss the problem of characterizing geometrically those
Banach spaces which admit an algebraic structure.

For ordered Banach spaces well known results of Alfsen-Schultz [3]
and Alfsen-Schultz-Hanche-Olsen [1] give geometric characterizations
of the state spaces of Jordan operator algebras and C* -algebras respec-
tively. Several of the properties occurring in these characterizations are
natural assumptions for the state space of a physical system. This gives
added importance to the problem we are considering.

Let's examine two known mathematical models for quantum mechanics
(cf. e.g. [6]). In the Hilbert space model, states are unit vectors on a
separable complex Hilbert Space %€, identified modulo the unit circle,
and the observables are self-adjoint operators on 3€. The spectral
decomposition A = JR A AEk of observable A yields the distribution of A
and its expected value in the state V via the formulas

d(E^, V) = J
(0.1)

A d HE^II2. (0.2)

In the algebraic model, the set of observables is assumed to be
equipped with two algebraic structures, namely sum and square. This
leads to a Jordan algebra structure in which the states are now positive
functional of norm 1. The fact that the classification theorem of
Jordan-von Neumann-Wigner has now been extended to infinite dimen-
sions [8], has lead to renewed interest in this approach.

In order to avoid some of the unnatural algebraic assumptions in these
models we propose here a geometric model for quantum mechanics. Our
starting point will be the assumption that the states of a physical system
are the unit vectors of some normed space Z. We shall impose some
natural axioms on the geometry of the unit ball of Z which involve its
facial structure and certain symmetries of Z. The observables will be
elements of the dual space Z* and so a spectral theorem is needed for
elements of Z*. This requires that an analog of "spectral projection" be
defined and that an appropriate notion of orthogonality be formulated.
1 Research supported by.NSF grant DMS-8402640.
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For ordered Banach spaces, a complete theory exists (Alfsen-Schultz [2])
which can be used to construct a Jordan algebra structure on Z* under
appropriate additional assumptions.

Let's see why an order structure on Z is needed in order to obtain a
binary product structure on Z*. For simplicity we temporarily assume Z
is finite dimensional.

Generally, the building blocks for the affine geometric structure of any
convex subset K of a Banach space are the extremal points of K, or more
generally, extremal subsets or faces of K.

As shown originally by Effros [5] and Prosser [9], the norm closed faces
of the normal state space of a von Neumann algebra M are in one-to-one
correspondence with the projections (self-adjoint idempotents) of M,
which are the building blocks for the algebraic structure of M. Moreover,
orthogonality of faces (defined geometrically) corresponds to or-
thogonality of projections (defined by having zero product).

In principle then, a spectral decomposition of an element x e Z* should
*

have the form x = E <*(«, where a, is a scalar and {uj, . . . , uk) is an

orthogonal (in an appropriate sense) family of "n-potents", i.e., for an
/i-ary product, u" = u. The "n-potents" should form a distinguished
subset of Z* which is in one-one correspondence with the set of norm
exposed faces of a convex subset of the unit ball Zx of Z.

It is natural to assume that any algebraic structure should be real linear
in each component. We ignore unary operations and consider first the
construction of a binary product on the real Banach space Z*. As noted
earlier, each face F in Zx should correspond uniquely to an idempotent
( = 2-potent) e in Z*, e2 = e. But -F is also a face, corresponding to —e,
which is not an idempotent: (—e)2 = e =f —e. In order to distinguish F
from -F, geometry alone is not enough. One needs a mechanism for
picking out faces F which corresponds to idempotents. That mechanism is
given by an order structure on Z, i.e., a convex cone P with P D (—P) =
(0) and Z = P - P.

We conclude that if one wishes to construct a binary structure, one
must begin with an ordered Banach space. Stated another way, in order
to construct an algebraic structure on a Banach space without order, one
must consider rc-ary operations, with n ^ 3 . Fortunately, n = 3 should be
enough, as suggested below.

If a triple product is to exist, then n-potents become "tripotents", i.e.,
e3 = e, and if e corresponds to a face F then — e, which corresponds to
—F, is also a tripotent: (—e)3 = -e . Furthermore, upon moving to the
case of a complex Banach space, the faces aF with |or| = 1, a- complex,
correspond to ae and in order to have (ae)3 = ae, our triple product must
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be conjugate linear in one component, which we may assume to be the
"middle" variable, and complex linear in the two outer variables.

Returning to a binary structure for a moment, a binary product can be
defined as follows: H x = T, a,ut is the spectral decomposition of x e Z*,
then by the orthogonality of u,, and the bilinearity of the product, one
has JC(2) = E <x?Ui, and finally

( y ) y
x°y = .

In a similar way, in the ternary context, as soon as one has a spectral
theorem together with the appropriate notion of orthogonality, one can

define the "cube" of x = t h^i as x0) = E A,!^"*- It follows that if
/=i (-1

(x, v, z) denotes our triple product, then, by the linearity and conjugate
linearity,

(xyz) + (zyx) = kl «0(x + ay + fizf*- (0-3)

Thus if you have a triple product which is complex linear in two
variables and conjugate linear in the third, only the symmetrized version
of it can be defined in terms of cubes. Stated otherwise, a triple product,
which is to be derived from geometry alone must be symmetric in the 2
variables in which it is linear.

In order to motivate our main axiom, let's return again to the
geometric setting appropriate for binary products. In this case there is a
set of projection operators on Z (called />-projections, and occurring in
pairs P, P') in one-one correspondence with the sets of idempotents and
norm exposed faces [2: § 2]. Thus each norm exposed face gives rise to a
symmetry (a surjective linear map of order 2), given by SF = 2(PF +
P'F) — I (where the face F corresponds to the P-projection PF), and the
fixed point set of SF is generated by F and its complementary face F'.
This situation also prevails in the non-ordered context considered by the
authors in [7], i.e., for any norm exposed face of the unit ball of the
predual of a JBW*-triple, there exists an isometric symmetry which fixes
precisely spF and the set of elements which are orthogonal to each
element of F.

In the present paper, we shall postulate the existence of such a
symmetry corresponding to each norm exposed face of the unit ball Xy.
With this axiom alone we are able to give an abstract definition of
tripotent corresponding to each norm exposed face, and prove the
one-to-one correspondence of these two sets. This is done by showing
that the existence of a symmetry SF corresponding to the face F gives rise



266 YAAKOV FRIEDMAN AND BERNARD RUSSO

to a family P0(F), Pi(F), P2(F) of contractive projections, which are
analogs of the Peirce projections corresponding to a tripotent in a Jordan
triple system, (cf. [7]).

In Section 1 we develop the notion of orthogonality for elements and
faces of Z, and establish the one-to-one correspondence between
generalized tripotents (the building blocks in the spectral theorem) and
norm exposed faces.

In Section 2 we define orthogonality for elements of Z*, and discuss
properties relating orthogonality of elements and projective units in Z*
with norm exposed faces in Z. The main result (Theorem 1) gives, for a
reflexive space Z satisfying the symmetry axiom, the existence and
uniqueness of a spectral decomposition of an arbitrary element of Z*.

This paper is completely self contained. All of the proofs used only
elementary functional analysis, except for some remarks which are
included for motivational purposes only.

§ 1. Orthogonality and projective units
We begin by making precise what is meant by orthogonality.

PROPOSITION 1.1. Let Z be a real or complex normed space, and let
f, g e Z. The following are equivalent:

(a) \\g+f\\ = h-f\\
(b) || ocg ± j8/|| = a \\g\\ + p Il/H for all oc, p with a>0, p>0, a + p =

1;

(c) ||«S + 0/|| = M||g| | + |j8||l/|| forall a.fieM.

If '/=f 0 and gj=O, we may add
(d) There exist u,veZ* such that \\u\\ = ||v|| = 1 = \\u ±v\\, f(u) =

llIU iy
Proof (a)=>(b): \\f\\ + ||g|| = \\f ± g\\ = ||(ar + /9)/± (a- + P)g\\ =

± Pg) + (Pf± ag)\\ =s \\af± Pg\\ + \\Pf± ag\\ ^ a \\f\\ + p \\g\\ +
\ \ \ \ M \\\\fiM \ \ 8 \ \ M \\8\\

(b)=>(c): Let y = \a\+ |/3| and/, g denote ±f, ±g respectively. Then
\\«g + Pf\\ = r II k l Y'lg + \P\ y-lf II = ( r k l V1 Illll + \P\ r'1 ll/ll) =
M \\s\\ + \P\ \lf\l

(c)^>(a): Trivial.
(a)^>(d): We may assume ||/|| = ||g|| = 1. Choose x,y eZ* of norm 1

with f(x) + g(x) = 2 =/(y) - g(y). Then u = \{x + y), v = \(x- y) satisfy
the requirements.

(d) >̂ (a): ||g|| + ll/ll = g(v) +/(M) = (g ±f)(v ± u) ̂  \\g ±f\\ < \\g\\ +



A GEOMETRIC SPECTRAL THEOREM 267

We shall say / and g are orthogonal if they satisfy one , hence all of the
conditions of Proposition 1.1. The zero vector is orthogonal to a l l / . Note
that, by (b) , if \\f\\ = | |g| | = 1 and / is orthogonal to g, the four line
segments connecting f to g and —g, and - / to g and -g, all lie in the
boundary of the unit ball. Z j , which we denote by dZ^. Thus Z t n
spR {f,g} is the closed parallelogram with vertices ±f, ±g.

•f g

/ •» /

—g —7

We shall write / O g to indicate that / i s orthogonal to g. For a subset 5
of Z we let 5 ° = {/ e Z: / O g for all geS} and call 5 ° the orthogonal
complement of 5. It is obvious that S<= T=$>S°=> T°; and SaS00.
Hence 5 ° = S< x x > . It follows that 5 c T^ if and only if T <= 5° . In this
case we say that 5 and T are orthogonal and write S<^T.

We note that 5 ° is invariant under real scalar multiplication but we
shall show that in general, 5=f 5*°^ and 5 ° is not additive or complex
linear.

If Z is an L1 space, it is well known that our notion of orthogonality
corresponds precisely to disjointness of the supports of the real functions
/ and g. A similar result holds if Z is the self-adjoint part of the pre-dual
of a von-Neumann algebra. It is easy to extend this result, via the polar
decomposition to all (complex valued) normal functionals. The following
remark is for motivational purposes only and will not be used in the
sequel.

Remark 1.2. Let/and g be normal functionals on a /BW*-triple U (cf.
[7]). Then / O g if ana" only if e(f) and e(g) are orthogonal tripotents of
U, where e(f) is the tripotent occurring in the polar decomposition of /
[7: Prop. 2].

Proof. We may assume \\f\\ = ||g|| = 1. Suppose first that e(f) and e(g)
are orthogonal tripotents. Then e± : = e(f) ± e{g) is of norm 1, and
(f±g)(e±) = 2 so | l / ± g | | = 2 = |L/1l + llg|l- Conversely if fOg, set
w = e(\[f + g)). Then 2 = (f + g)(w) =f(w) + g(w) « \f(w)\ + \g(w)\ «
\\f\\ + \\g\\=2 so that f(w)=g(w) = l. It follows that ||P2(w)/|| = ||/||
and ||/2(w)g|| = ||g||, so by [7: Prop. 1] / and g may be identified with
normal states on the 75W*-algebra U2(w). We still have | [ /±g| | = 2, so
by the Jordan decomposition in /BW-algebras, / and g are orthogonal in
the /BW*-algebra U2(w), and hence orthogonal.

Now let Z = M2 3(C) with the trace norm, which is the predual of the
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JBW*-tnple M3 2(C) and let 5 = {(a^ e Z: al3 = a^ = 0}. Then 5 ° = {0}
and SO<> = Z, so S±SOO.

We now consider orthogonality of faces of the unit ball Zx of Z.
Let K be a convex set. A face of AT is a non-empty subset F of K with

the following property: if / e F and g, h e K satisfy / = kg + (1 - X)h for
some A e (0, 1), then g, h eF. An important example for us is: K = Zj =
the unit ball of Z and F = {f eK: f(x) = 1} for some element xeZ* of
norm 1. We shall denote this F which is either empty, or a face (called a
norm exposed face), by Fx.

We now have the following consequence of Proposition 1.1.

COROLLARY 1.3. (a) Let Fx and Fy be norm exposed faces of Zx with
| |x±v| | = l. ThenFx<>Fy.

(b) Let f, g be unit vectors in Z with fOg. Then there exist orthogonal
norm exposed faces Fx, Fy of Z± with f e Fx, g e Fy.

Proof, (a) If p e Fx, then 1 3= \p{x ±y)\ = |1 ± p(y)\ and so p(y) = 0.
Similarly if a e Fy, then o(x) = 0. By (d) of Proposition 1.1, p O> a.

(b) This follows immediately from Proposition 1.1 (d) and (a).

We next consider some examples of unit balls in U3 which illustrate the
concepts just introduced.

EXAMPLE 1. Let C be a double cone in R3 with circular base and let x
be the apex (Fig. 1). Since C is convex and symmetric it is the unit ball Zj
for some norm on Z = R3. Then {x}° n dZj is the base circle so {x}0 is
a linear space.

FIG. 1 Fio. 2
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EXAMPLE 2. Chop C by two parallel planes to define C, a convex
symmetric set which is the unit ball Z^ of some norm on Z = R3 (Fig. 2).
In this case {x}0 n 3Zj consists of two arcs and so {x}° is not a linear
space.

We shall call an element ueZ* a projective unit if ||u|| = l and
(u, F$) = 0. Note that this implies Fu=f 0 so that Fu is a norm exposed
face in Z1; and Fu is "parallel" to F$, i.e., (u, Fu) = 1, (u, F?) = 0.

In Examples 1 and 2, {x} is a face and the unique plane passing
through x which is parallel to the base determines a projective unit.

Let 9 and °U denote the collections of proper norm exposed faces of Zx

and projective units in Z*, respectively. The map °U a u>->Fu e 9 is not
onto in general (see Example 4).

EXAMPLE 3. Consider a "straight" tent of height 1 sitting on a frozen
lake (Fig. 3). This is the unit ball for some norm on Z = R3. The face
F = [—l, 1] x {0} X {1} is of the form Fu for the projective unit u =
(0, 0, 1) e Z* since (u, F) = 1 and (u, F°) = 0.

Fio. 3

EXAMPLE 4. Consider a "crooked" tent, extended downward so as to
remain convex and symmetric (Figure 4). It is clear that F is norm
exposed but not of the form Fu for any ue°U, since F and F^ are not
parallel.

In order to motivate the next definition, consider the following. Let Z
be the pre-dual of a JBW*-triple. As follows from [7], the set <U of
projective units coincides with the set of tripotents and the map u-* Fu is
a bijection of It onto the set of all norm exposed faces of Z^. Moreover,
the Peirce projections P*(w), k = 0, 1, 2 corresponding to a tripotent u
give rise to a symmetry 5U = P2(u) - P^u) + Po(") which makes the norm
exposed face Fu into a symmetric face, which is defined as follows.
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FIG. 4

DEFINITION. A norm exposed face F of the unit ball Zx of a complex
normed space Z is a symmetric face if there is a unique linear isometry SF

of Z onto Z of order 2 whose fixed point set is spc F © F®.

Note that if F0 is not a linear space, then F is not a symmetric face.
For instance the face {*} in Example 2 is not symmetric.

Symmetries of this type occur naturally in measuring processes in
quantum mechanics. With any measurement we can associate a filtering
projection pf, a face /, which consists of states which "pass" through the
filter with probability 1, and a projective unit exposing this face (cf.
Araki [4]). Each filtering projection has a complementary filtering
projection pf = pf corresponding to particles which do not pass the
filter. The mapping 2{pf + pf — id.) is a symmetry which fixes span / and
span f*. Under appropriate assumptions this leads to a Jordan algebra
structure on the set of observables.

Our model differs from the Jordan algebra model in the following way.
The latter model implies uniqueness of the complementary filtering
projection, which may be questionable from a physical standpoint. In our
model this is not the case, as seen from the example of a /flW*-triple.
Here, the complementary projection corresponding to a face of F
(namely PQ(F)) is the smallest projection containing all possible com-
plementary filtering projections.

We shall now construct a family of projections, called generalized
Peirce projections, corresponding to each symmetric face.

Let S?( T, A) denote the eigenspace of an operator T corresponding to
the eigenvalue A. If F is a symmetric face, we have

°. (1.1)
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For each symmetric face F, we may define contractive projections
Pk(F), k = 0, 1, 2 on Z as follows. First, P t(F): = $(1 - SF) is the
projection on %(SF, -1) . Secondly, because of (1.1) we may define P2{F)
as the composition of the projection P(F): = \(I + SF)(= the projection
on £(SF, 1)) followed by the projection of #(SF) 1) onto spc F. Similarly
P0(F) is the projection with range F°. Note that P2(F) + P0(F) = \{I +
SF) is a contractive projection. We also have

\\P2{F)p\\ + \\P0(F)p\\ = \\P2(F)p + Po(F)p\\, (peZ);

P2(F)-P1(F) +

In the geometric framework appropriate to ordered Banach spaces,
there are one-to-one correspondences between three collections of
objects: certain faces, certain projections (called P-projections) and
certain elements (called projective units), cf. [2: § 2].

The following proposition gives a one-to-one correspondence between
generalized tripotents and symmetric faces, analogous to [2: Corollary
2.18].

DEFINITION. A generalized tripotent is a projective unit ue°U with the
property that Fu is a symmetric face and SFji = u.

PROPOSITION 1.4. The map u—*Fuis a bijection of the set of generalized
tripotents and the set of norm exposed symmetric faces of

Proof. Let F be a symmetric face and suppose F = Fx for some x e Z*
with ||;t|| = 1. Set u: = P2{F)*x. Then u is a tripotent and Fu = F. Indeed,
let peF. Then (u, p) = (P2(F)*x, p) = (x, P2(F)p) = (x, p) = 1. This
shows that F c Fu and ||u|| 3= 1. Since P2(F) is contractive, ||u|| = 1.

Now suppose p e Fu. Then (P2(F)p, x) = (p, P2{F)*x) = (p,u) = l
and so P2(F)peF, and \\P2(F)p\\ = 1. Then 1 = ||p|| > \\P2(F)p +
Po(F)p|| = ||P2(F)p|| + ||Po(F)p|| = l + ||Po(F)p|| and so P0(F)p = 0.
Hence \{P + SFP) = Pi(F)p e F and since F is a face, p eF. This proves
FuczF, so F = FU is symmetric and (u, F?) = (P2(F)*x, F°) =
(x, P2(F)F<>) = 0. Since obviously S*Fu = (P2(F)* - P^F)* + P0(F)*) x
P2{F)*x = u, u is a generalized tripotent, and the map u—>Fu is onto.

Suppose ux and u2 are tripotents and FUl = FU2 = F say. By definition of
tripotent, P^FyUj = 0 for i = 1, 2. By definition of projective unit,
(PoiFyut, Z) = (ult F£> = 0, i.e., P0(F)*u, = 0,i = 1, 2. Therefore, for
arbitrary peZ, (uh p) = ((P0(F)* + P1(F)* + P2(F)*)uh p) =
(P2{FYuh p) = (u,, P2(F)p). But P2(F)Z = spcFand <«lJF> = l, so
Ml = U2.
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§ 2. Spectra] theorem
In this section we shall prove, for a certain class of normed spaces, the

existence and uniqueness of a spectral decomposition for each element x
in the dual.

Let Z be any normed space. Elements a, b e Z* are orthogonal if there
is a symmetric face F <= 7^ such that either

(i) a eimP2{F)* and beimP0(F)*;

or

(ii) a e im P0(F)* and b e im P2(F)*.

We shall write a <£>b or b O a t o indicate this relation.

LEMMA 2.1. Let a, b e Z* and suppose a<$b. Then

(i) ||fl + &|| = max(||fl|U|6||)
(ii) F a c F a + t if ||a|| = l and

(iii) FaOft if ||a|| = l and

Froo/. Without loss of generality, we may assume that a eim P2(F)*
and beimP0(F)* for some symmetric face F. If Af denotes
max(||a||, \\b\\), and p e Z , we have \(a + b, p)\ = \{P2(F)*a, p) +
{P0{F)*b,P)\ =£ ||fl||||P2(F)p|| + \\b\\ \\P<£F)p\\ * M\\(P2(F) +
P0(F))p|| =£ M||p| | , so that ||a + 6||«Af. On the other hand since
P2(F)*(a + b) = a, P0(F)*(a + b) = b, we have \\a + b\\s*M.

Now suppose | | a | |= l and ||fc||«l. Then | | a±6 | | = l, and \{a ±
b, p) « ||p || for peZ. This implies Fa c i^,+6.

The last statement follows from Corollary 1.3(a) since ||a ±b\\ = 1 by
(0-

COROLLARY 2.2. If Z is a reflexive Banach space then every family of
pairwise orthogonal elements of Z* is finite.

Proof. If the conclusion were false we would have an infinite sequence
of pairwise orthogonal non-zero elements in Z*. By the lemma their span
would be a copy of /" in Z*. Therefore Z* and hence Z cannot be
reflexive.

DEFINITION. Let Z be a normed space. We call Z a facially symmetric
normed space if each norm exposed face F in the unit ball Zx is strongly
symmetric, i.e., F is symmetric and for each y eZ* of norm one with
F c.Fy> we have Spy = y, where SF is the symmetry corresponding to F.

From the theory of 7B*-triples developed in [7] we know that if Z is
the dual of a /fi*-triple, or more generally, if Z is the pre-dual of a
/BW*-triple, then Z is a facially symmetric Banach space. In particular,
the dual of a C*-algebra (or a 75'-algebra) or more generally the predual
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of a von Neumann algebra (or a /BW*-algebra) are examples of facially
symmetric Banach spaces.

Note that Example 2 shows that, in general, not every projective unit is
a tripotent. However, for facially symmetric spaces we have:

i

Remark 2.3. Let Z be a facially symmetric normed space. Then every
projective unit in Z* is a generalized tripotent. Hence by Proposition 1.4,
the map u—*Fu is a bijection of the set of projective units in Z* and the
set of norm exposed faces of Zx.

Throughout the rest of this section we shall assume for convenience
that Z is a facially symmetric normed space. By Remark 2.3 we can
denote by vF the unique projective unit with the property that FVp = F
where F is any norm exposed face of Zx.

LEMMA 2.4. Let S be a linear isometry of Z onto Z. Then S~1(F) =
Fs'(vP) and S*(vF) = Vs-i^ for each norm exposed face F of Zx.

Proof. Let G denote the face S~\F). Then (S*(vF), G) = (vF, F) =
1, so GcFs.{Viry Conversely, peFs.(VF) implies 1 = (S*(vF), p) -
{vF, Sp), i.e., Sp e F or p e S~\F). Hence G = FS.{VF).

We next show that (S*(vF), G°) = 0. If p e G°, then Sp e SiG0) =
SiG)0 = FO, and so (S*(vF), p) = (vF, Sp > = 0.

We have shown that S~\F) = FS.(VF) and that S*(vF) e aU. By Remark
2.3 the lemma follows.

The following gives equivalent conditions for orthogonality of projec-
tive units in the dual of a facially symmetric Banach space.

LEMMA 2.5. For u, v eQl, the following are equivalent:

(1) uOv

(2) FU<>FV

(3) ueim/>„(")*
(4) ueim P0(v)*

(5) u±veaU.

Proof. (1)=>(2): By Lemma 2.1, | |u±t/ | | = l. By Corollary 1.3(a),
(2) follows.

(2)=>(3): Since Fv c F<> = im P0(u), we have SU(FV) = FV where 5U

denotes the symmetry corresponding to Fu. By Lemma 2.4, 5*(u) =
S2(vFv) = vs^Fv) = vK = v, i.e., Px{u)*v = 0.

To prove (3) it remains to show that P2(u)*v = 0. Since Fu c F$" and
(v, F^) =0, we have (v, Fu) =0. Now let peZ. Then (P2(u)*v, p) =
(v, P2{u)p) = 0 since P2(u)p e im P2(u) = sp Fu. Hence P2(u)*v = 0.
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Similarly,

(3)=>(1): trivial.

): trivial.

Thus (1), (2), (3), (4) are equivalent.
(1)4>(5): By Lemma 2.1, (1) implies that | | K ± U | | = 1 and FuUFvc

Fu±v. Therefore F<>nF<>IDF$±V and {u ±v, F?±v) = (u, F?±v) ±
(v,F?+v)=0.

(5)=>(2): By CoroUary 1.3(a).

COROLLARY 2.6. Let Ui, u2, u3e$t and suppose ux O u2 and u3 <0 (ul +
u2). Then u3<Oui and

Proof. By Lemma 2.1, FU1 <=FUl+U2. Therefore F ^ r > F ^ + U 2 . Now
( + "2) => FU3OFUl+U2 4> FU3 c F<^+U2 < <̂

The following lemmas describe connections between faces and ele-
ments exposing them.

LEMMA 2.7. Let ue'U, xeZ*, \\x\\ = 1 and suppose FucFx. Then
either Fu = Fx or F? (1 Fxj= 0 .

Proof. Suppose Fu=f Fx and fix peFx with p^Fu. Since Z is facially
symmetric, (SJJ, x) = (p, S*x) = (p, x) = 1 and therefore P2(u)p +

Case 1 P2(u)p = 0; then P0(")P eF?nFx.

Case 2. Fo(«)P=f0 and P2{u)pj=0; then since P2(«)P + ^o(«)

By definition of face,

Case 3. Po(u)p = 0; then P2(u)peFx. But P2{u)p e im P2(u) = sp FU

implies P2(")P = lim E Afof with of e Fu. Since FU(=FX, of e Fx and

p(«) = (P2(u)p, u ) = Urn E Afaf(«) = lim E A?af(JC) = < P2(i*)p, x> =

l,so p e Fu a contradiction, and this case does not occur.

LEMMA 2.8. Let ueil, xeZ*, ||;c|| = l and suppose FucFx. Then
x = u + P0(u)*x. Moreover, if Z is reflexive, then Fu = Fz if and only if,
x = u + P0(u)*x, with ||PO(")**II < I-
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Proof. By definition, since Fu c Fx, S*x = x, i.e., P,(u)*;t = 0.

Now let y = P2(u)*x so that | M | « 1 . Let peFu. Then (y, p) =
(P2(u)*x, P2(u)p) = {x,p) = \ since FBcF r Thus FucFy and ||y|| = 1.
Now (y, F?) = {P2{u)*x, Po(u)Z)=0 and since FfczF? we have

We next show that Fu = Fy. If Fu =f Fy then by Lemma 2.7 we can find
oeFfDFy. But oeF? implies (>>, a) = (P2(u)*x, P0(u)o)=0 con-
tradicting a e Fy. Therefore Fu = Fy, u=y = P2(u)*x.

Suppose now that Z is reflexive and that Fu = Fx. By the first statement,
x = u + P0(u)*x. If c: = P0(u)*x has norm one, then by reflexivity Fc =£ 0 .
By Lemma 2.1 then Fcc.Fx which is a contradiction since Fc^Fu.

Conversely, suppose ||c|| < 1. If Fu=f= Fx then by Lemma 2.7 there exists
p e F^ r\Fx, so 1 = p(x) = p(c) < 1, contradiction.

The following is the key step in the proof of our spectral theorem.

LEMMA 2.9. Suppose that Z is reflexive and let ue°U, b eim P0(u)*,
||6|| = 1. Then there exists w e °U., w0u, such that b = w + c, with
\\c\\<l and c O (u + w).

Proof. Choose w e°U such that Fb = Fw. By Lemma 2.8, b = w + c with
| | c | |< l and c eimP0(w)*. By Lemma 2.1(iii) Fb<£>Fu and therefore
Fw<yFu. By Lemma 2.5, «Oiv. It remains to prove that c eimP0(« +
w)*.

Notice that by Lemma 2.1, \\b + u|| = ||w + u\\ = 1. We will show that
Fb+U = Fw+U. To do this consider p e Z, ||p|| = 1 and a e Z*, ||a|| = 1 with
a<>u. Then p(a + u) = p(a) + p(u) = (P0(u)p, a) + {P2(u)p, u) *s
||PO(«)P|| + ||P2(«)p|| « ||p|| = 1. Thus

and

and
P2(u)p

P0(u)p
w ^ ^ II r» / \ II ***

i i p 2 ( W ) P i r — •-' *•
There fore Fb+U = Fw+U.

Finally, by Lemma 2.8, b + u = w + u + P0(w + u)*{b + u) or c = b -
w e im P0(u + w)*.

THEOREM 1 (Spectral Theorem). Let Z be a reflexive facially symmetric
Banach space. Then for each non-zero x in Z*, there exist a unique family
of pairwise orthogonal generalized tripotents ux, . . . , un and real numbers
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kx, . . . , Xn such that

n

x = 2 hui and Aj > A2 > • • • > An > 0.

Proof. Let x be given. We shall prove by induction the following
proposition:

For any integer ksd, either
(1) the theorem holds for some n^k, or
(2) there is a family of pairwise orthogonal generalized tripotents

ux, . . . , uk, real numbers Ai > A2 > • • • > Xk > 0, and non-zero
k

dk e Z* such that x = E AjU, + dk, dkQ(ux + • • • + uk), and

(*)

Consider first the case k = 1. Let £>! =JC/||JC||. Since Z is reflexive, Fbl is
a norm exposed face. Let ux be the generalized tripotent corresponding
to this face, i.e., FU] = Fbl. By Lemma 2.8 bx = ux + cx, where cx<^>ux and

< l . Let A1 = ||x||, d1 = A1c1. Then x = A1u1 + d1, d^^u^ and

INI
Suppose now that (*) holds for k = l — \. If (1) holds for k = l — \,

then it holds for k = /. If (2) holds for fc = / - 1, we define A, = ||d;_i|| and
6/ = kf1d/_1. By Lemma 2.9 (since bt e im P0("i + • • • + U;_i)*), we have
U/ e °U with u, O> (uj + • • • + Mz-x), &/ = U/ + c,, c, O (uj + • • • + u;) and
||c/|| < 1. This implies x = Xxux + • • • + k,u, + A/C,. With d, = X,c, we have
that d, satisfies (*). By Corollary 2.6, w,, . . . , u, is a pairwise orthogonal
family. Thus (*) holds for k = /.

By Corollary 2.2, for sufficiently large k, only (1) can occur. This
proves existence.

n

Suppose now that x has two such decompositions, say x = E A,u, and
/ - 1

m

x = E fi/Wj, with Aj > A2 > • • • > An > 0, /ij > n2 > • • • > l*m > 0, uh wte
°iL, ux, . . . , un pairwise orthogonal, wx, . . . , wm pairwise orthogonal.

If, for some k s* 1 we have A, = fit and u, = wt for all i «£ k — 1, then set

y : = x — E A,M, = JC — E HjWj. By Lemma 2.1 kk = \\y\\ = fik. Moreover

FUk = -f̂ r/iLvit = FWk so by Remark 2.3, uk = wk. The uniqueness follows by
induction.
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