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If quantitative estimates of the seismic properties do not exist at a location of interest then the site response
spectral amplifications must be estimated from data collected at other locations. Currently, the most
common approach employs correlations of site class with maps of surficial geology. Analogously, correlations
of site class with topographic slope can be employed where the surficial geology is unknown. Our goal is to
identify and validate a method to estimate site response with greater spatial resolution and accuracy for
regions where additional effort is warranted. This method consists of three components: region-specific data
collection, a spatial model for interpolating seismic properties, and a theoretical method for computing
spectral amplifications from the interpolated seismic properties. We consider three spatial interpolation
schemes: correlations with surficial geology, termed the geologic trend (GT), ordinary kriging (OK), and
kriging with a trend (KT). We estimate the spectral amplifications from seismic properties using the square
root of impedance method, thereby linking the frequency-dependent spectral amplifications to the depth-
dependent seismic properties. Thus, the range of periods for which this method is applicable is limited by the
depth of exploration. A dense survey of near-surface S-wave slowness (Ss) throughout Kobe, Japan shows
that the geostatistical methods give more accurate estimates of Ss than the topographic slope and GT
methods, and the OK and KT methods perform equally well. We prefer the KT model because it can be
seamlessly integrated with geologic maps that cover larger regions. Empirical spectral amplifications show
that the region-specific data achieve more accurate estimates of observed median short-period
amplifications than the topographic slope method.
pson).
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1. Introduction

The different factors that affect ground motions can be separated
into three broad categories: source, path, and instrument (Lay and
Wallace, 1995). Typically, the instrument response is known and can
be deconvolved from recorded groundmotions. Source effects include
the location, dimensions and orientation of the fault, the slip
distribution, and the rupture velocity. The path effects describe how
the waveform is modified between the source and the instrument;
this includes reflections, refractions, and phase conversions at
subsurface structures, attenuation, and the generation of surface
waves. The effect of the material within a few hundred meters of the
surface is often termed site effects or site response.

It has long been recognized that near-surface geologic materials
substantially modify recorded ground motions at frequencies that
are important for seismic hazards analysis (e.g., Borcherdt, 1970;
Shearer and Orcutt, 1987; Boore, 2004). The seismic properties of the
near-surface materials that affect site response are the seismic
slowness (S, inverse of velocity, V), density (ρ), and attenuation.
Generally, the S-wave slowness (Ss), is considered themost important
parameters to constrain.

The National Earthquake Hazard Reduction Program (NEHRP; ICC,
2006) site classifications are defined by Vs(30), defined as 30 m
divided by the S-wave travel time to 30 m depth. In situ measure-
ments of Vs are both time consuming and expensive. This limits the
number of locations where such data are available. Researchers have
addressed this need primarily by developing spatial models to predict
site class or spectral amplifications at unsampled locations (Tinsley
and Fumal, 1985;Wills and Silva, 1998;Wills et al., 2000; Holzer et al.,
2005; Wills and Clahan, 2006; Wald and Allen, 2007; Yong et al.,
2008).

Three of these methods are similar in scale to this study. Tinsley
and Fumal (1985) presented an index of site amplification for Los
Angeles that is primarily based on soil type, age, and the average Vs of
the unit. Holzer et al. (2005) developed a three-dimensional Vs model
for a portion of the San Francisco Bay Area by combining stratigraphic
and Vs information from 210 seismic cone penetration tests (SCPTs)
and used the Vs model to map NEHRP site class. Yong et al. (2008)
created maps that classify the range of Vs(30) from satellite imagery
for Islamabad, Pakistan.
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Our goal is to identify and validate a method to estimate site
response spectral amplifications with greater spatial resolution and
accuracy than previous studies. Previous methods have focused on
making predictions over large regions of interest, such as the state of
California (Wills and Clahan, 2006) or the globe (Wald and Allen,
2007). The method we propose cannot be applied at such scales, and
our goal is not to replace these methods. The methods outlined in this
paper are appropriate for regions where special attention is
warranted, such as urban regions exposed to moderate to high
seismic risk. The method we employ consist of three components: (1)
region-specific data collection, (2) a spatial model for interpolation of
seismic properties, and (3) a theoretical method for computing
spectral amplifications from the seismic properties.

Previously developed spatial models of site response can be
organized in terms of increasing data availability and increasing
model complexity. TheWald and Allen (2007)model does not require
region-specific observations; this method correlates global topo-
graphic slope data (Farr and Kobrick, 2000) with NEHRP site class and
utilizes previously published correlations of NEHRP site class with
spectral amplifications (Borcherdt, 1994), herein termed the TS
model.

Wills and Clahan (2006) developed a model for California that
requires surficial geologymaps, which are not available globally.Wills
and Clahan (2006) compiled Vs(30) measurements for sites through-
out California and defined generalized surficial geologic units. Each
unit is assigned a representative Vs(30) value, which defines the
NEHRP site class. The spectral amplifications can then be computed
from the Borcherdt (1994) correlations.

We employ a separate but related method that we term the
geologic trend (GT) method. An important aspect of this method is
that seismic profiles are approximately evenly distributed throughout
the region of interest. Note that this would be an inefficient strategy
for a region the size of California. This is one reason why it is
important to distinguish between the GT method and the Wills and
Clahan (2006) method. Both methods, however, compute average Vs

values for surficial geologic units. Limitations of the GT and Wills and
Clahan (2006) approach include: (1) the mapped geology is a surface
value while the Vs(30) is a function of the materials at depths of 30 m,
and (2) geologic maps are not typically collected with the application
to correlations with Vs in mind (Tinsley and Fumal, 1985). Wills and
Clahan (2006) compute only Vs(30), but the GT method retains more
of the available information in the soil profiles by computing the
average Ss to a range of depths.

Aside from the GT model, we consider two alternative spatial
interpolation techniques that expand on the geostatistical approach of
Thompson et al. (2007). Specifically, we employ the geostatistical
methods of ordinary kriging (OK) and kriging with a trend (KT). The
geostatistical methods achieve a better spatial resolution than the GT
model because they are capable of modeling variability within
geologic units but also require more observations to achieve accurate
results. We will address the accuracy of these models with a cross
validation of the predicted Ss and comparisons of the predicted and
observed spectral amplifications.

We also consider two alternative methods for linking seismic
properties to spectral amplifications: the Borcherdt (1994) empirical
correlations and the square root of impedance method (SRI), as
described by Joyner et al. (1981). The Borcherdt (1994) correlations
rely on a single site parameter for estimating the spectral amplifica-
tions, namely Vs(30). In contrast, the SRI method links the depth-
dependent seismic properties to the frequency-dependent site
response amplification.

We choose to focus this study on the Kobe region because it is a
densely populated urban area that is located in a deep sedimentary
basin and exposed to heightened earthquake hazard. These char-
acteristics are not unique to Kobe, but Kobe is distinguished from
other such examples by the damage that was caused by the 1995
Hyogo-ken Nanbu earthquake. The maps of Vs(30) presented in this
article, along with the Vs profiles they are derived from, can be
downloaded and viewed within the context of geographic, geotech-
nical, and earthquake effect data on the web-based geographic
information system that we have created at http://gdcmaps.cee.
tufts.edu/kobe/.

2. Data

We use the spectral analysis of surface waves (SASW) method
(Nazarian and Stokoe, 1984; Stokoe et al., 1989) to estimate the Ss
profiles following the methodology of Kayen et al. (2005). The SASW
method has repeatedly fared well in blind comparisons to invasive
measurements (Brown et al., 2002; Asten and Boore, 2005; Boore and
Asten, 2008). Other surface wave methods, including passive source
methods such as the multichannel analysis of surface waves (MASW)
method (Park et al., 1999), may also provide inexpensive and efficient
alternatives for mapping site response amplifications. Fig. 1(a) shows
the locations of the 103 SASW sites included in our analysis. The
geologic units are from the “Active Fault Map in Urban Area” map
published by the Geographical Survey Institute of Japan at 1:25,000
scale.

The locations of the SASW surveys were chosen in two stages. First,
the SASW sites were located at historical liquefaction sites for
developing a deterministic and probabilistic model of liquefaction
based on Vs (Kayen et al., 2010). Subsequently, the liquefaction data
were augmented to extend the coverage to the edge of the basin. In
the second stage, the goal was to keep the spacing between seismic
profiles as uniform as possible while adding upper alluvial fan sites
between the zone of liquefaction susceptible soil near the bay, and
bedrock outcropping at the base of the Rokko Mountains. Specific
locations were selected based on available space for seating the SASW
seismometer array. Fig. 1(b) shows the locations of the temporary
seismometer array that recorded aftershocks of the 1995 Hyogo-ken
Nanbu earthquake (Iwata et al., 1996). We use these recordings to
judge the accuracy of the different models in terms of spectral
amplifications.

3. Methods

All calculations and analyses presented in this paper were
completed with the free open-source software R (R Development
Core Team, 2009) with the exception of the Wald and Allen (2007)
topographic slope model discussed below, which was computed with
Generic Mapping Tools (Wessel and Smith, 1991).

3.1. Topographic slope model

Wald and Allen (2007) presented a model that computes spectral
amplifications from topographic slope. They compute slope from
Shuttle Radar Topography Mission (SRTM) 30-sec global topography
(Farr and Kobrick, 2000). This method predicts NEHRP site class based
on empirical correlations of Vs(30) with topographic slope. After
obtaining site class from the topographic slope correlation, spectral
amplifications can be estimated from the Borcherdt (1994) correla-
tions with site class.

An important attribute of this model is that it is applicable across
the entire globe, and thus it can be applied to Kobe. This also means
that the resolution is relatively coarse: the 30-sec pixel size of the
SRTM30 data is approximately a 1 km by 1 km square. We consider
this model to be an appropriate baseline model to judge our proposed
alternatives because it is the simplest available model, requiring
minimal investment of time to obtain estimates of spectral amplifica-
tions. If we cannot improve on theWald and Allen (2007) model, then
the effort and investment into the dense SASW survey is not justified.

http://gdcmaps.cee.tufts.edu/kobe/
http://gdcmaps.cee.tufts.edu/kobe/


Fig. 1. (a) Geologic map of Kobe, Japan, and the site characterization locations. The Ss(30) range is shown for each SASW site. (b) Locations where Iwata et al. (1996) recorded
aftershocks of the Hyogo-Ken Nanbu earthquake.

332 E.M. Thompson et al. / Engineering Geology 114 (2010) 330–342
3.2. Geologic trend model

The Wills and Silva (1998), Wills et al. (2000), and Wills and
Clahan (2006) method for predicting Vs(30) is based on previously
mapped surficial geologic units. The underlying assumption of this
method is that Vs, or at least Vs(30), is approximately homogeneous
within the spatial extent of surficial geologic units. Here, we must
distinguish between the Wills and Clahan (2006) method and the
specific model they develop. We use the term “Wills and Clahan
(2006) method” to mean the process of correlating a seismic property
with geologic units and predicting the expected value of that unit at
all locations where that unit is mapped. In contrast, we use the term
“Wills and Clahan (2006) model” to mean the specific correlations to
the geologic units that they have derived. In this paper, we cannot
apply theWills and Clahan (2006) model because the geology of Kobe
is different than the geology of California. Instead, we apply the Wills
and Clahan (2006) method to Kobe, deriving new correlations of
surficial geology with local SASW data. Additionally, we extend this
method to a range of averaging depths, which can be paired with the
SRI method for obtaining spectral amplifications (see Section 3.5).
Throughout this paper, we refer to the spectral amplifications that
result from pairing the SRI method with geologic correlations of Ss as
the geologic trend (GT) model.

The primary variable of interest in this paper is

SsðdÞ =
1
d
∫d
0
Ssdz ; ð1Þ

which is computed for Ss as function of depth z. To express that Ss(d)
varies in space, we write Ss(x, d), where x=(x1, x2) is the two-

image of Fig.�1


Fig. 2. Density functions for Ss(30) by geologic unit in Kobe, Japan. We assume that the
density functions are lognormal. Shaded polygons indicate the range of NEHRP site
classes A through E.
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dimensional position vector. We assume that the distribution of Ss(d)
is lognormal.We are unaware of evidence that supports or contradicts
this assumption. We choose the lognormal rather than the normal
distribution simply because we require a non-negative distribution,
although other distributional alternatives also meet this criteria.

Assuming a lognormal distribution, themean of ln[Ss(x, d)] is equal
to the natural logarithm of the median of Ss(x, d):

μ ln Sð Þ = ln Smed
s x;dð Þ

h i
; ð2Þ

where Ssmed (x, d) is the median of Ss (x, d). A maximum likelihood
estimate for Ssmed (x, d) is

Smed
s x;dð Þ = exp 1

n
∑
n

i=1
ln Ss xi; dð Þ½ �

� �
; ð3Þ

where Ss(xi, d) are the n observed values of the random variable
Ss(x, d)for i=1,2,…,n. A maximum likelihood estimate for the
standard deviation is

Sln x;dð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i=1
ln Ss xi;dð Þ½ �−Smed

s x; dð Þ� �2s
⋅ ð4Þ

3.3. Geostatistical models

We use the geostatistical method of kriging to estimate Ss(x, d) at
unsampled locations from the observed values. Kriging is a general-
ized least-squares regression algorithm. Following a formulation from
Cressie (1993), wemodel Ss(x, d) as a random field that varies in space
as

Ss x;dð Þ≡μ x;dð Þ + δ x; dð Þ; ð5Þ

where the deterministicmodel μ(x, d) describes the spatial fluctuation
of the mean, and the correlated error process δ(x, d) includes any
spatially-uncorrelated measurement error (white noise) and the
spatially-correlated zero-mean fluctuation of Ss(x, d) about μ(x, d).

The kriging linear regression estimator of Ss(x, d) is defined as

Ss⁎ x; dð Þ = ∑
n

i=1
λi Ss xi; dð Þ−μ xi; dð Þ� + μ x; dð Þ;½ ð6Þ

where λi are weights assigned to the different observations computed
by minimizing the error variance σE

2(x, d)=Var[Ss⁎(x, d)−Ss(x, d)].
The different types of kriging are defined by how μ(x, d) is

modeled. Simple kriging (SK) assumes that μ(x, d) is known and
constant, ordinary kriging (OK) assumes μ(x, d) is unknown but still
constant, and kriging with a trend (KT), also known as “universal
kriging,” allows μ(x, d) to fluctuate in space (Goovaerts, 1999).

If μ(x, d) is a function of external or secondary data (i.e., not defined
as a function of Ss(xi, d)), then the KT method can be implemented in
three steps: (1) detrend the data by subtracting μ(x, d) from the Ss(xi, d)
to get δ(xi, d), (2) estimate δ(x, d) throughout the region of interestwith
SK, and (3) add back μ(x, d) to δ(x, d) to get Ss⁎(x, d) (Goovaerts, 1999).
For the KT model, we define μ(x, d) as Ssmed (x, d) (i.e., the GT model).

To characterize the spatial correlation structure of Ss(x, d), it is
convenient to plot the variance as a function of separation distance

2γ hð Þ = Var Ss x1; dð Þ−Ss x2; dð Þ½ � ð7Þ

where h is the Euclidean distance between two locations x1 and x2,
and 2γ(h) is termed the variogram. It is common to describe the
spatial correlation structure with the semivariogram, γ(h), rather
than the variogram. The semivariogram can be estimated from data
with

γ̂ hð Þ =
1

2N hð Þ ∑N hð Þ
Ss xi; dð Þ−Ss xj; d

� �h i2
; ð8Þ

where the sum is over all i and j (i.e., all pairs of observations), andN(h)
is the number of measurements for a given class of h.

Once the measurements have been demonstrated to exhibit a
strong spatial dependence by noting an increase in the experimental
semivariogram γ(̂h) as h increases, we need to model the spatial
structure with a conditionally negative definite function to compute
the weights λi in Eq. (6). Typically, γ̂(h) will remain constant for hNϕ;
ϕ and γ(̂h=ϕ) are termed the range and sill, respectively.

One may expect that γ(̂h) should approach zero at h=0, which
indicates that points in the same location have the same value.
However, this rarely occurs in real data. The value of γ̂(h) at h=0 is
called the nugget, and can be interpreted as the measurement error or
the amount of variability within the sample.

The semivariogram model we choose is a generalization of the
exponential model, termed the Whittle–Matérn model

γ hð Þ = σ 2 1− 21−ν

Γ νð Þ
h
a

� �ν
Kν

h
a

� �" #
+ τ; ð9Þ

where σ2 is the partial sill, τ is the nugget, a is the range parameter, ν
is the shape parameter, Kν is the modified Bessel function of the
second kind of order ν, and Γ(·) is the gamma function (Diggle and
Ribeiro, 2006; Morgan et al., 2008). Note that the complete sill
variance is σ2+τ. Guttorp and Gneiting (2005) discuss the different
names that are given to this model depending on the field of study.

3.4. Spectral amplifications from empirical correlations

Borcherdt (1994) developed a simple methodology for estimating
the spectral amplifications as a function of input ground motion
intensity and NEHRP site class or Vs(30). The equations that Borcherdt
(1994) presented are empirical correlations developed from recorded
ground motions primarily from the San Francisco and Los Angeles
regions with additional data from Salt Lake City, Seattle, and
Memphis. Including the ground motion intensity as an input
parameter gives the equations the flexibility to model the nonlinear
damping behavior of soils. Borcherdt (1994) defined the short-period

image of Fig.�2
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(0.1–0.5 s) and mid-period (0.4–2 s) amplification factors, Fa and Fυ,
as

Fa = ½V ref
s ð30Þ=Vsð30Þ�ma ; ð10Þ

Fυ = ½V ref
s ð30Þ=Vsð30Þ�mυ ; ð11Þ

where Vs
ref(30) is the Vs(30) of the reference site, and ma and mυ are

constants that are selected as a function of input ground motion
intensity from Table 2 of Borcherdt (1994). In this paper, however, we
restrict our analysis to groundmotions in the linear range. Thus, for all
cases in this paper,ma=0.35 andmυ=0.65. If a quantitative estimate
of Vs(30) is unavailable but the site class can be inferred, then the
Fig. 3.Maps of Ssp (x, 30) for (a) theWald and Allen (2007) topographic slopemethod (TS), an
amplification factors can also be selected from Table 2 of Borcherdt
(1994).
3.5. Square root of impedance model

The plane SH-wave (the horizontally polarized component of the S
wave) amplifications can be computed exactly for all reflections and
refractions within a horizontally stratified medium over a non-
attenuating halfspace, termed the SH1D model (Thomson, 1950;
Haskell, 1953). A shortcoming of this method is that the peaks and
valleys of amplifications are sensitive to details of the seismic profile
that are not knownwith confidence (Brown et al., 2002). Additionally,
Joyner et al. (1981) showed that the dominant process that
d (b) the geologic trend (GT) method, which is based on the local SASWmeasurements.

image of Fig.�3


Fig. 4. Empirical (symbols) and model (curve) semivariograms for Ss(x,30) (for the OK
model) and δ(x,30) (for the KT model). For illustration, we have labeled τ, σ2, and the
range on the Ss(x,30) model semivariogram.
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contributes to site amplification is the passing of seismic waves from a
higher impedance material into a lower impedance material, where
impedance is defined as ρ×V, and the resonance that is created by the
interference of multiply reflected waves is less important. The
resonance effect of reflected waves is likely to be diminished because
of the natural heterogeneity that is inherent in natural materials,
which cannot be accounted for in one-dimensional models (Thomp-
son et al., 2009). The SRI method is also based on averaged material
properties, which exhibit stronger spatial dependence than more
detailed properties, making the averaged values more appropriate for
geostatistical interpolation (Baise et al., 2008).

The SRI method derives its name from the relationship between
the amplitude (A) of a seismic wave to the impedance of the medium.
Shearer (1999) shows that if the impedance varies in space, then the
amplitude varies as

A2

A1
=

ffiffiffiffiffiffiffiffiffiffiffi
ρ1V1

ρ2V2

s
; ð12Þ

assuming that the energy in the seismic wave is completely
transmitted from one material to the other. If Eq. (12) is put in
terms of S rather than V, then we see that the amplification is directly
proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 = S1

p
. This is why the primary variable of interest in

this paper is Ss(d) (Eq. (1)) rather than Vs(d) (see also Brown et al.,
2002).

Restricting our analysis to the averaged value of Vs to a single
depth, typically 30 m, is undesirable because the resulting approxi-
mation does not account for the depth dependence of the seismic
properties which influence the frequency dependence of the spectral
amplifications.We generalize Vs(30) to Vs(d), and use its inverse Ss(d).
These values are related to the frequency ( f) dependence of
amplification, A( f), through the quarter wavelength approximation

f ðdÞ = 1
4 d Sps ðdÞ

; ð13Þ

A½ f ðdÞ� = expð−πκ0 f Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρrSps ðdÞ
ρsSrs

s
; ð14Þ

where Ssr and ρr are the S-wave slowness and density of thematerial at
the hypocenter of the source, ρs is the density of the surficial material,
κ0 is the attenuation parameter, and Ss

p(d) is the predicted value of
Ss(d). Note that Ssp(x, d) corresponds to Ss

med(x, d)for the GT model
(Eq. (3) and to Ss⁎(x, d) for the OK and KT models (Eq. (6)).

A map of A(f) for a given f (or range of f) is more useful for seismic
hazard analysis than a map of Vs(30). To achieve this, we compute
Ss
p(d) for d=1, 2, …, 30 m at the location of interest and for each of

the GT, OK, or KT methods. Then for each d, we compute f and A( f)
from Eqs. (13) and (14) and linearly interpolate the A(f) to the
frequency of interest. The map is produced by repeating this
procedure for every point on a regularly spaced grid that spans the
area of interest. We use a grid spacing of 51 m for all maps of Ssp(d).

We assume Ssr=0.289 s/km and ρ r=2.7 for the rock in the vicinity
of the hypocenter. These values are taken from Table 2 of Pitarka et al.
(1998), which reports the bedrock parameters that they chose for the
three-dimensionalmodel of the Kobe region.We also assume ρ s=2.0.
Following Boore and Joyner (1997), we assume κ0=0.035. Note that
we also must divide A( f) by the A( f) for the reference site. For this, we
assume the Ss and ρ profiles published by Iwata et al. (1996) for site
KMC (see Fig. 1(b) and the discussion of reference sites in Section 3.7).

3.6. Cross validation

We employ the “leave-one-out” cross validation method for each of
the spatial models derived from the local SASW data (see Harrell, 2006,
for a discussion of different validation methods). Considering each
spatial model independently, and for each of n=103 samples, the
spatialmodel is built as though that sample did not exist. Then the value
at the location of the removed sample is estimatedwith the newmodel.
Thus, for each spatial model we have a complete set of n Ss

p(x, d) which
we compare to Ss(xi, d) to quantify model performance.

This procedure can be thought of as a k-fold cross validation where
k=n. For the two kriging models, we estimate the empirical
semivariogram and optimize the model parameters after removal of
each observation. Then we compute Ss

p(x, d) from Eq. (6) at the
location of the removed observation. For the GT model, Ssp(x, d) is
computed from Eq. (3) for all observations within the same geologic
classification as the removed sample.

Legates and McCabe (1999) compare different methods for
evaluating the goodness-of-fit of a model. They conclude that
correlation-based methods, such as the coefficient of determination
(R2), are insensitive to additive and proportional differences between
predictions and observations. They advocate for the coefficient of
efficiency

E = 1−∑n
i = 1 Ssðxi;dÞ−Sps ðx;dÞ

	 
2
∑n

i = 1 Ssðxi;dÞ−S̄sðx;dÞ
h i2 ; ð15Þ

where S
_
s(x, d) is the sample mean of Ss(xi, d), and the possible values

of E include the interval (−∞, 1). E is sensitive to additive and
proportional differences, and E is easier to interpret in terms of model
performance than are correlation-based parameters (Legates and
McCabe, 1999). The numerator in Eq. (15) is the mean square error of
the model, while the denominator is the variance of the observed
data. It is easy to see that if Ssp(x, d)=S

_
s(x, d) (i.e., the model simply

predicts the mean value of the observations everywhere) then E=0.
Thus, any model where E≤0 should be rejected because a model that
simply predicts the mean of the observations would perform better. If
E=1, then predicted values exactly match the observed values.

3.7. Response spectra

Pseudospectral acceleration (PSA) is a convenient parameter for
describing a ground motion. This representation is particularly

image of Fig.�4
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meaningful from an engineering perspective because the PSA at
period T is the maximum acceleration of a single-degree-of-freedom
(SDOF) system with damping ratio ξ and natural period T in response
to the input ground motion (Kramer, 1996). We compute an
orientation-independent PSA(T) termed GMRotI50 by Boore et al.
(2006). We employ the Boore (2008) Fortran programs to compute
GMRotI50. GMRotI50 is derived from the set of geometric means of
the two horizontal components rotated to all possible orthogonal
rotation angles (see Boore et al., 2006, for further details). Following
convention, all PSA(T) in this article are for a SDOF systemwith ξ=5%.

This article is concerned with site response, but many other factors
influence the recorded ground motions at a site. Assuming that the
observed seismogram is exactly the combination of linear time-
Fig. 5. Maps of Ssp(x,30) for (a) ordinary krigin
invariant systems (source, path, and instrument), we can isolate the
site response by dividing the PSA(T) of the recording that includes site
response by the PSA(T) of the recording that contains no site effects

aðTÞ = PSAðTÞ
PSAref ðTÞ ; ð16Þ

where PSAref(T) is the PSA(T) at the reference site. Note that A(T)
refers to the amplifications predicted by the assumptions of the SRI
method (Eq. (14)), while a(T) is an empirical estimate of site response
from pairs of recorded ground motions. Two types of ground motion
pairs are typically employed to isolate site response. If both receivers
are located at the free surface and the reference site is seated on
g (OK), and (b) kriging with a trend (KT).
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outcropping bedrock then the receivers are categorized as a soil-
outcrop pair. Alternatively, if one receiver is located at the free surface
and the other is located beneath it then the receivers are categorized
as a surface-downhole pair.

A soil-outcrop pair is more conceptually intuitive because the
resulting a(T) represents the transfer function that is often desired in
practical applications, such asmodifying a synthetic groundmotion or a
previously recorded rock motion to include the site response. All site
response transfer functions in this paper are computed for a soil-outcrop
pair where the outcrop motion is derived from site KMC in Fig. 1 (b).

The assumption that the reference site is free of site effects can be
severely violated for most soil-outcrop pairs, biasing the transfer
function. Detailed studies of surface-downhole receiver arrays by
Abercrombie (1997) demonstrated that even very hard outcropping
rock modifies the wavefield as it approaches the surface.

We assume that a(T) follows a lognormal distribution. Thus, we
simply modify Eq. (3) to compute the median of a(T), termed amed(T).
Fig. 6. Cross validation of four met
4. Results

4.1. Topographic slope and geologic trend models

Fig. 2 shows the lognormal density functions for Ss(30) within
most of the geologic units illustrated in Fig. 1. The density functions in
Fig. 2 show that the differences in the median of the Kobe Ss(x,30) are
small. In general, we expect the GT model to perform better when the
distributions of the geologic units exhibit more separability. The
relatively large amount of overlap of the distributions could be
attributed to the fact that our samples in Kobe are all from young
sedimentary units.

Fig. 3 presents maps of Ssp(x,30) for (a) the TS model and (b) GT
model. These figures show that the GT map is more detailed than the
more widely applicable TS map. Both maps show a similar trend of
increasing Ss

p(x,30) toward the coast; however, the TS map exhibits
significantly smaller values of Ssp(x,30) than the GT map.
hods for computing Ss
p(x,30).
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4.2. Geostatistical models

The ability of kriging to model a spatially variable property such as
Ss must first be judged by inspection of the empirical semivariogram.
If the data are not characterized by a strong spatial correlation
structure, then kriging cannot accurately model the data. Fig. 4 shows
the empirical andmodel semivariograms of Ss(x,30) and δs(x, d). Note
that the semivariogram of Ss(x,30) is pertinent to the OK model, and
the semivariogram of δs(x, d) is pertinent to the KT model. For
illustration, we have labeled τ, σ2, and the range on the Ss(x,30) model
semivariogram.

Fig. 4 shows that the sill variance (σ2+τ) of δ(x,30)is about 33%
smaller than that of Ss(x,30). This indicates that μ(x, d) is accounting
for a significant portion of the variability in the KT model.
Fig. 7. Maps of 3 Hz spectral amplifications for (a) the geologic trend (GT) model, (b
The nugget-to-sill ratio approximates the strength of the spatial
dependence of the data (Cambardella et al., 1994). Cambardella et
al. (1994) proposed that a ratio smaller than 0.25 indicates strong
spatial dependence, a ratio of 0.25 to 0.75 indicates moderate
spatial dependence, and a ratio greater than 0.75 indicates weak
spatial dependence. The nugget-to-sill ratio is 0.22, 0.20, and 0.21
for Ss(x,10), Ss(x,20), and Ss(x,30), respectively. The nugget-to-sill
ratio is 0.27, 0.25, and 0.39 for δ(x,10), δ(x,20), and δ(x,30),
respectively. Thus, both OK and KT should perform well in this
region for a spectrum of averaging depths.

Fig. 5 presents maps of Ss
p(x,30) using the two geostatistical

methods (OK and KT). As seen in Fig. 5(a), the OK method ignores
geologic boundaries. The inclusion of geologic units into the KT model
is seen in Fig. 5(b) as discontinuities of Ssp(x,30) at the geologic unit
) the ordinary kriging (OK) model, and (c) the kriging with a trend (KT) model.
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interfaces. Note that the three maps representing the GT, OK, and KT
models use local SASW measurements and show similar trends. Only
the geostatistical methods, however, allow for spatial variability
within a geologic unit.

4.3. Cross validation

Fig. 6 summarizes the cross validation of the four spatial models.
The TS and GT Ss

p(x,30) are binned because of the discrete nature of
the predictions. The three methods that use the local SASW data are
validated with the “leave-one-out” procedure. But cross validation is
not applicable to the TS method because it was not developed with
the SASWdata. The TS Ssp(x,30) are simply compared to Ss(xi,30). Note
that EN0 for the three models that use the local SASW data, but Eb0
for the TS model.

Both OK and KT outperform GT, but the difference in performance
between OK and KT is negligible. Thus, Fig. 6 and the associated values
of E provide no insight into which geostatistical method will perform
better.

4.4. Spectral amplification maps

The maps of Ssp(x,30) in Figs. 3 and 5 can easily be paired with the
Borcherdt (1994) equations for estimating spectral amplifications.
The maps of A(f=3 Hz) in Fig. 7, however, are derived from the SRI
method, where Ss

p(x, d) is computed from (a) the GT model, (b) the
OK model, and (c) the KT model. We use f=3 Hz because it is
approximately the midpoint of the Borcherdt (1994) short-period
passband (0.1–0.5 s). The minimum usable f is determined by both
the maximum d and the value of Ss(d) as indicated by Eq. (13). Thus,
A(f) for longer periods require deeper profiles. Although we see that
there are locations where the three models predict different
amplifications, we cannot yet determine which model performs
better than the others.

4.5. Ground motion validation

If our final goal is to compute A(f) from the SASW data, then the
most appropriate form of validation is to compare A(f) to a(T). Iwata
et al. (1996) recorded aftershocks (for which 2.9≤MJMA≤4.9) of the
1995 Hyogo-ken Nanbu earthquake at five soil sites and a reference
rock site. The ground motion data are not available for one of the soil
sites, which leaves four soil sites (NOM, FKI, FKE, and ASY) with which
we compute PSA(T) as described in Section 3.7. The locations of these
sites and the reference rock site (KMC) are shown in Fig. 1 (b).

Fig. 8 compares the a(T) to the A(f) computed from the TS, GT, OK,
and KT models. Additionally, Fig. 8 includes the amplifications that
result when Eqs. (10) and (11) (Borcherdt, 1994) are combined with
the GT model, denoted GT+B (discussed in more detail below).
Although the inter-event scatter is large, Fig. 8 shows that the amed(T)
at sites FKI, FKE, and ASY is more accurately modeled by the A(f)
computed from the GT, OK, and KT models than the TS and GT+B
models. The amed(T) at NOM, in contrast, exhibit a distinct peak
between 0.1 and 0.2 s that is not reflected in any of the models. It is
also important to note that the GT, OK, and KT models result in nearly
identical A(f), especially when compared to the amount of inter-event
variability of a(T). These models, however, are closer to the amed(T)
than the amplifications predicted by the TS or GT+Bmodels, even for
site NOM.

There are two factors that contribute to the relatively poor
performance of the TS method in Fig. 8: (1) The Ss

p(x,30) values are
underpredicted in Kobe by the correlation with topographic slope, as
illustrated by Fig. 6; and (2) Eqs. (10) and (11) are a relatively coarse
approximation of spectral amplifications.We separate the effect of the
Borcherdt (1994) approximation by applying Eqs. (10) and (11) to
Ss
med (x, 30), termed the GT+Bmodel. We assume Vs

ref(30)=1200 m/
sec (from the Iwata et al. (1996) Vs profile for KMC). The GT+Bmodel
still underpredicts the short-period amplifications, but substantially
improves the predictions compared to the TS model. Additionally, the
GT+B model performs relatively well for the mid-period passband
(0.4–2 sec), which cannot be computed from the SASWdata due to the
limited depth of exploration in this dataset. Thus, a substantial
percentage of the TS model misfit in Fig. 8 stems from the
approximation of the Borcherdt (1994) equations.

We may expect the spatial models to perform poorly at NOM if Ss
exhibits a distinct spatial trend that is not captured by the spatial
models because of the limited spatial extent of the Ss data. If this is the
source of the bias then the bias could be reduced by collecting more
data. We think this is an unlikely explanation for the misfit at NOM
because it is actually located closer to SASWprofiles than site ASY, and



Fig. 8. Predicted response spectra amplifications for the topographic slope (TS), the geologic trend (GT), ordinary kriging (OK), kriging with a trend (KT), and the GTmodel combined
with the Borcherdt (1994) equations (GT+B). For comparison, we include observed spectral amplifications computed from the Iwata et al. (1996) ground motion records. The gray
horizontal line indicates an amplification of one (i.e., no amplification).
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ASY is more accurately modeled by the GT, OK, and KT methods.
Alternatively, if the inaccuracy results frommore complex path effects
that are not modeled by the SRI method, then improving the accuracy
of Ssp(x, d) will not improve the accuracy of A(f). Analysis of ground
motions in the Kobe region for the 1995 Hyogo-ken Nanbumainshock
by Pitarka et al. (1998) indicate that the three-dimensional basin
structure influenced the ground motions along the basin edge.
Additionally, site NOM is closest to the edge of the basin, which
supports the hypothesis that the misfit at NOM is largely the result of
more complex wave propagation effects.

5. Discussion

As many researchers have found, the current practice of approx-
imating site response with correlations to Ss(30) based on topography
or geologic units is useful when local data are not available. This paper
attempts to quantify the improvement in accuracy that can be
achieved for mapping A(f) when a region is uniformly sampled with
additional Ss measurements.
As expected, the three methods presented here that employ local
SASW measurements (GT, OK, KT) yield more accurate A(f) than the
TSmethod,which relies on global correlations (see Fig. 8). Further, the
geostatistical methods (OK and KT) provide more accurate predic-
tions of Ss(x,30) than the GT method, which assumes homogeneous
geologic units (see Fig. 6). These methods, however, require local data
collection. Therefore, we propose that this method is appropriate for
urban regions with moderate to high seismic risk. The cost of the local
data collection can be minimized by using noninvasive in situ
measurements like SASW or MASW.

Fig. 6 shows that the OK and KT models outperform the GT model
in a leave-one-out cross validation of Ss(x,30). These three methods,
however, perform equally well in terms of A(f). We prefer the KT
model over the OK model for two reasons: First, E=0.40 for the GT
model, which indicates that μs(x,30) is relatively well modeled by the
surficial geology; this information is incorporated in the KT model,
whereas it is ignored in the OK model. Second, as distance between
the location of the prediction and the observations increases, Ssp(x, d)
will approach Ss

med(x, d) for the KT model, but Ssp(x, d) will approach
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S
_
s(x, d) for the OKmodel. Thus, the KTmodel can bemore seamlessly

combined with a larger regional geology model, such as the Wills
and Clahan (2006) model for California.

The GT, OK, and KTmodels predict similar amplifications at all four
sites where ground motions are available to compute a(T). The
amplifications predicted by these methods at 3 Hz in Fig. 7 differ by as
much as 25%, where the percentage difference is defined as the
absolute difference divided by the arithmetic mean. These differences,
however, are small relative to the differences observed in the
recorded amplifications; Fig. 8 shows that the empirical amplifica-
tions vary by as much as 133% at ASY, 97% at FKE, 132% at FKI, and
146% at NOM (for f=3 Hz). This underscores the limited sensitivity of
one-dimensional site response models to reasonable variations of the
seismic properties. Similarly, Boore and Thompson (2007) found that
the theoretical site response amplifications do not vary significantly
(below 5 Hz) as a 0.25 m resolution suspension log profile is
approximated by coarser layers up to 10 m thick. Additionally,
Thompson et al. (2009) found that the differences between the
theoretical site response amplifications computed from downhole
logging profiles versus SASW profiles are relatively minor even when
substantial differences are observed between the two independent
profiles. In contrast, if the calculation is performed in three-
dimensions then reasonable variations in the seismic properties can
substantially change the site response amplifications (Thompson
et al., 2009).

6. Conclusions

We quantitatively demonstrate the benefit of local seismic
measurements for estimating the site response spectral amplifications
in an urban area. We show that geostatistical methods achieve more
accurate predictions of Vs(30) at unsampled locations than correla-
tions with surficial geology or topographic slope. The differences
between the OK and KT methods, in terms of the slowness estimates
and the resulting amplifications, are negligible. However, we prefer
the KT method because it is more easily integrated with maps of
surficial geology that can cover larger regions (e.g., Wills and Clahan,
2006). Due to the increased costs of the data collection relative to the
Wald and Allen (2007) topographic slope method and the Wills and
Clahan (2006) geology method, the methods that we propose are
appropriate for urban regions with moderate to high seismic risk. The
resulting maps can be used by engineers to estimate spectral
amplifications at periods of interest and the maximum usable period
is controlled by the maximum depth of exploration of the seismic
surveys. Spectral amplifications computedby combining a spatialmodel
derived from local Ss(d) measurements with the square root of
impedance method produces more accurate estimates of observed
median short-period amplifications than the topographic slopemethod.
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