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Abstract

Work over the past several decades has identified that aberrations in the ErbB signaling pathways 

are key drivers of oncogenesis; and, concurrent efforts to discover targetable vulnerabilities to 

counter this aberrant oncogenic signaling offer tremendous promise in treating a host of human 

cancers. These efforts have been centered primarily on EGFR (also known as HER1), leading to 

the discovery of the first targeted therapies approved for head and neck cancer. More recently, 

HER2 and HER3 signaling pathways have been identified as highly dysregulated in head and neck 

cancer. This review highlights the HER2 and HER3 signaling pathways and clinical efforts to 

target these receptors and their aberrant signaling to treat head and neck squamous cell carcinomas 

and other head and neck malignancies, including salivary gland carcinomas. This includes the 

use of small molecule inhibitors and blocking antibodies, both as single agents or as part of 

multimodal precision targeted and immunotherapies.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is a highly lethal cancer that affects 

over 60,000 people in the US annually and has been traditionally associated with tobacco 
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and ethanol exposure as well as Human Papilloma Virus (HPV) infection. The majority 

of patients with HNSCC initially present with locally advanced disease; and, despite 

aggressive, combined-modality treatment, a significant proportion of patients will develop 

recurrent or metastatic disease that is no longer amenable to curative therapy [1]. Currently, 

treatment options include platinum-based doublets, EGFR inhibition, and immunotherapy, 

but outcomes are generally poor, and most patients succumb to disease within a year of 

diagnosed recurrent/metastatic (r/m) HNSCC. However, insights gleaned from ongoing work 

to define dominant oncogenic signaling pathways in HNSCC – namely, the ErbB oncogene 

family – offers promise for the development of new and more efficacious multimodal, 

precision therapies [2].

Initially identified in carcinogen-induced rat brain tumor models and as the oncogene neu in 

mouse embryonic fibroblasts [3, 4], the ErbB family of oncogenes consists of four related 

tyrosine kinase receptors: HER1 (EGFR, ErbB1), HER2 (Neu, ErbB2), HER3 (ErbB3), 

and HER4 (ErbB4)[5]. They are now known to play a major role in the pathogenesis 

of many types of cancers, such as lung, breast, colorectal, thyroid, melanoma and head 

and neck. The ErbB receptors are characterized by their defining feature: they are type 

1 single membrane-spanning tyrosine kinase (RTK), which dimerize to initiate a host of 

signaling cascades which, ultimately, converge to promote cell growth, migration, and 

differentiation, and if persistently activated, can lead to cancer (Fig. 1). As an example, 

amplification and overexpression of HER2 is now recognized as an oncogenic driver in 

many human malignancies [6] and has been the focus of tremendous preclinical and clinical 

research, converging upon the development of a host of targeted therapeutics, some of 

which are now standard of care as discussed below. Similarly, EGFR (epidermal growth 

factor receptor, Erb1) is overexpressed, mutated or aberrantly activated by excess expression 

of its ligands, including EGF, transforming growth factor-alpha (TGF-α), amphiregulin, 

heparin-binding EGFR, and betacellulin, in some of the most prevalent human cancers [7]. 

Remarkably, ErbB family members represent the first growth factor receptors that were 

successfully targeted with blocking monoclonal antibodies (mAbs) in the clinic. Indeed, 

cetuximab (targeting EGFR) and trastuzumab and pertuzumab (targeting HER2) have 

been approved for the treatment of many solid malignancies. The FDA initially approved 

cetuximab, a humanized IgG1 monoclonal antibody against the EGFR extracellular domain, 

for metastatic colorectal cancer in 2004, thereby initiating the era of immunotherapies 

for solid tumors [8, 9]. Subsequently, it was demonstrated in seminal clinical studies 

that cetuximab prolonged the median overall survival and reduced disease progression in 

advanced HNSCC patients when delivered in combination with radio- and chemotherapies 

[10, 11]. Based on these findings, cetuximab in combination with standard chemotherapy 

gained FDA approval in 2006 for use together with radiation or as a single agent in HNSCC 

patients that failed to respond to platinum-based therapy and for recurrent or metastatic 

disease [11]. However, the overall increased response of adding cetuximab to radiation 

and/or chemotherapy is ~10–20% [10, 11], much lower than initially expected considering 

the high level of EGFR expression in HNSCC. The mechanism of resistance to cetuximab 

and emerging opportunities for targeting EGFR in HNSCC has been extensively reviewed 

(see Chapter 1). More recently, HER2 and HER3 signaling pathways have been identified as 

highly dysregulated in HNSCC, which will be the focus of this Chapter.
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HER2 and HER3 Signaling

HER2 (ErbB2) is 185-kDa and an orphan receptor without an endogenous ligand-binding 

domain, but it is recognized as the preferred and most catalytically potent binding partner 

for other EGFR family members – a status conferred both by its overexpression and 

rapid cell membrane recycling imbue [12–15]. Another characteristic feature of HER2 is 

that, unlike other ErbB family members, it does not cycle between active and inactive 

conformations but rather is constitutively in the activated state, which relates to its inability 

to bind ligand [16, 17]. Clinically, HER2-targeted therapies are best-known for their role in 

treating breast cancers and are now a bedrock of standard oncologic therapy for breast 

cancers featuring aberrant HER2 expression signaling [18, 19]. Trastuzumab, the first 

HER2 targeting monoclonal antibody and developed in 1990, blocks HER2 signaling via 

several mechanisms – by promoting receptor internalization and degradation, inhibiting 

dimerization, blocking downstream PI3K-AKT signaling, and through antibody-dependent 

cellular cytotoxicity (ADCC) [20].

HER3 (ErbB3), lacks intrinsic tyrosine kinase activity, hence often referred to as 

pseudokinase [21]. HER3 is an obligate dimerization partner and serves as a central enabler 

for other kinases, principally other ErbB family members [5, 22, 23]. Additionally, and 

particularly with respect to its role in cancer signaling, HER3 serves as a scaffolding protein 

that enables the maximal induction of the phosphoinositide 3 kinase (PI3K)/ PI3K protein 

kinase B (AKT)/mTOR pathway. Specifically, HER3 harbors a cluster of 6 C-terminal 

tyrosine-containing motifs that, when phosphorylated, represent a consensus PI3K/p85 

binding site [24–27]. Accordingly, by forming heterodimers with HER3, the upstream 

kinase-active oncodrivers (HER2 or others) can couple efficiently with and signal through 

the PI3K/AKT/mTOR pathway [28, 29] (Fig. 1). Therefore, it is reasonable to expect that a 

loss of HER3 activity may block cancer progression in diverse systems driven by divergent 

RTKs. In this regard, preclinical and clinical studies have implicated HER3 as a potential 

resistance pathway to other targeted therapies [30], particularly ErbB family-targeted 

therapies; and, overexpression of HER3 is known to correlate with poor prognosis for 

some cancers, including breast [31], gastric [32] and head and neck cancer [28], discussed 

in more detail below. Indeed, HER3 is now appreciated to confer therapeutic resistance 

to several targeted oncologic therapies: namely, monoclonal antibodies and tyrosine kinase 

inhibitors that target HER2 [30, 33–35] and EGFR [36, 37], as well as small molecule 

inhibitors of downstream targets such as PI3K/AKT [38, 39], BRAF [40], and MEK [41]. 

By virtue of its direct cancer promoting signaling via PI3K/AKT/mTOR in addition to 

its role as a resistance pathway from other therapies, HER3 is increasingly appreciated as 

an attractive therapeutic target. Moreover, HER3 has recently been shown to be expressed 

exclusively within epithelial cells and not immune cells in HNSCC, raising the possibility of 

effective next-generation, multimodal precision therapies with targeted HER3 blockade plus 

immunotherapy [28].

Apart from HER3 as described above, the ErbB RTKs can become activated with ligand 

binding to the extracellular domain, which subsequently leads to conformational changes 

that promote homo- and heterodimerization. With respect to HER3, it has been shown to 

bind neuregulin-1 and neuregulin-1 and to be a promiscuous dimerization partner [33, 36]. 
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Dimerization then leads to reciprocal allosteric activation and C-terminal phosphorylation 

of tyrosine residues [2]. Once phosphorylated, tyrosine residues can bind and recruit PTB-

binding proteins and SH2 domains, ultimately converging upon downstream activation. 

Interestingly, HER2:HER3 heterodimers can be formed in a ligand-dependent or ligand-

independent fashion [29]. However, the heterodimers that result consequent to ligand-

depended vs -independent binding are structurally and functionally distinct as elucidated 

by the study of two different HER2-binding antibodies, trastuzumab and pertuzumab. 

While pertuzumab disrupts only ligand-dependent HER2:HER3 heterodimer signaling, 

trastuzumab disrupts only ligand-independent HER2:HER3 signaling [42]. This insight, and 

a large body of published studies into the nuances of ErbB signaling have led to combination 

strategies with dual ErbB inhibition, yielding clinical benefit in both the preclinical and 

clinical settings [43, 44].

Anti-HER2 and anti-HER3 therapies in clinical practice

To date, an array of antibody, antibody-drug conjugate and small molecule inhibitors of 

HER2 and HER3 signaling have been under study in early-stage clinical trials of HNSCC. 

A summary of currently available agents is available in Table 1. Additional preclinical and 

early-stage clinical trials utilizing anti-HER2 and -HER3 therapies in combination with 

other targeted treatments (e.g., anti-VEGF, pan receptor tyrosine kinase inhibitors) have 

been reported and are beyond the scope of this focused review.

Anti-HER2 antibodies

Trastuzumab is and FDA approved for the treatment of HER2+ breast and metastatic gastric 

cancers. In head and neck cancers – encompassing both mucosal and salivary tumors - 

4 phase II clinical trials have been published demonstrating promising results in HER2+ 

disease. This agent was studied in the first-line setting in metastatic or recurrent HNSCC 

in combination with chemotherapy [45]. Of 61 patients treated, PFS was 19.8% (95% 

CI, 10.6–30.9) and OS was 44% (95% CI, 31.6–56.2) at one year. Of note, they found a 

statistically significant difference in these parameters for patients with <10% compared to 

>10% EGFR expression. PFS was 6.7 vs. 3.1 months (p=0.003) and OS was 16.1 vs. 7.4 

months (p=0.005). The study by Haddad et al. was meant to evaluate patients with HER2 

overexpressing advance salivary gland tumors but was stopped early as it was found that 

most of the screened tumors were not overexpressing HER2. Ultimately of the 14 patients 

enrolled, median PFS was 4.2 month [46].

In addition to HNSCC, trastuzumab in combination with docetaxel for patients with HER2-

positive salivary ductal carcinoma was studied in a single institution, open label, single-arm 

phase II trial that enrolled 57 patients [47]. Patients exhibited a response rate of 70.2% (95% 

CI, 56.6–81.6) with median PFS 8.9 months (95% CI, 7.8–9.9 months) and overall survival 

39.7 months (95% CI, not achieved). Trastuzumab has also been studied in combination 

with pertuzumab by Kurzrock et al. In this study of stage III/IV HER2-positive salivary 

gland cancers, 15 patients were found to have an objective response rate of 60% (95% CI, 

32–84%) with 8.6-month PFS and OS of 20.4 months [48].
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Anti-HER2 therapy in the standard of care for salivary tumors

Current standard of care guidelines by multi-disciplinary consensus from the National 

Comprehensive Caner Network (NCCN) recommend testing for HER2 expression in the 

setting of recurrent, unresectable, or metastatic salivary tumors. In this setting, HER2 

expression is assessed as part of a biomarker panel that includes androgen receptor (AR), 

neurotrophic tyrosine receptor kinase (NTRK), Harvey rat sarcoma viral oncogene homolog 

(HRAS), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) 

and tumor mutational burden (TMB) prior to initiating treatment. This recommendation 

is based on accumulated high-quality evidence from preclinical and clinical studies 

demonstrating the efficacy, and safety of agents that target each of these biomarkers. 

Approved systemic therapy regimens include Trastuzumab [49], Ado-trastuzumab emtansine 

(TDM-1) [50], Trastuzumab/pertuzumab [48], docetaxel/trastuzumab [47], Fam-trastuzumab 

deruxtecan-nxki (T-DXd) [51], with or without Pembrolizumab [52]. These anti-HER2 

agents are appropriate for clinical use in this setting due to moderate effectiveness, mild 

toxicity, average quality of evidence and relatively consistent clinical trial outcomes, despite 

the high financial cost. All regimens are given in conjunction with radiotherapy when the 

extent of disease makes locoregional therapy feasible (NCCN guidelines). Conversely, for 

resectable disease, complete surgical clearance remains the standard of care due to superior 

clinical outcomes. In the setting of distant HER2+ salivary gland metastases, anti-HER2 

treatment alone should be given only in the case of appropriate performance status and is 

preferred in the context of a clinical trial (NCCN guidelines). At this time, routine testing for 

neither HER3 expression, nor HER2 expression in other head and neck cancer subtypes is 

recommended but is often conducted as part of clinical trial enrollment.

Anti-HER3 antibodies

A phase Ib evaluating the addition of duligotuzumab, an antibody with activity against 

EGFR and HER3, to chemotherapy in first-line treatment of patients with recurrent or 

metastatic head and neck squamous cell carcinoma revealed a promising response rate of 

67% [53]. This agent was further studied in MEHGAN, which compared it to cetuximab 

in the recurrent or metastatic squamous cell carcinoma population following progression 

on chemotherapy [54]. This study found no significant improvement with duligotuzumab, 

with an OS of 7.2 vs. 8.7 months for cetuximab, with a HR of 1.15 (90% CI, 0.81–

1.63). Additionally, the anti-HER3 monoclonal antibody, LJM716, was studied in Phase 

I trial including 21 patients with advanced HNSCC [55]. Of these, one had an extended 

period of stable disease greater than forty weeks. The maximum tolerated dose was not 

reached, and 40mg/kg weekly was determined to be the dose for further studies. Grade 

3 diarrhea and hypokalemia was experienced by one patient during the dose expansion 

period. Patritumab, another HER3-targeting antibody, was studied in untreated recurrent 

and/or metastatic HNSCC [56]. Patients were assigned to receive this treatment or placebo, 

in combination with cetuximab and up to six cycles of platinum therapy. There was no 

statistically significant improvement in PFS or OS, with the trend favoring the placebo group 

in OS.

Most promisingly, the activity of the HER3 antibody CDX-3379 was investigated in the 

neoadjuvant setting in a window of opportunity trial in patients with untreated head and neck 
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squamous cell carcinoma who were surgical candidates [57]. A total of 12 patients were 

treated with two doses of CDX-3379. Among them, 83% of patients showed a reduction in 

phosphorylation of HER3 upon treatment and tumors decreased in size in 42% of patients. 

These findings have led to a completed phase II clinical trial evaluation of this treatment 

in combination with cetuximab in advanced head and neck squamous cell carcinoma with 

cetuximab-refractory disease, finding a 6.7% overall response rate in genomically unselected 

patients [57].

HER2 and HER3 Antibody-drug conjugates

The efficacy of Ado-trastuzumab emtansine (T-DM1) in salivary gland carcinomas with 

HER2 amplification was reported as a subset of the NCI-MATCH trial (EAY131) [50]. 

Three patients with salivary gland tumors were included and two of these patients showed a 

partial response to T-DM. Response appeared to correlate with higher gene copy numbers. 

An abstract presented at ASCO 2019 by Li et al. supported this high response rate, where 

they demonstrated an objective response in nine of ten patients with HER2 amplified 

salivary ductal carcinoma [58]. Median PFS was not reached at the time of reporting. Of 

note, a case report has demonstrated efficacy of T-DM1 in the treatment of metastatic 

salivary gland carcinoma with brain metastases [59].

Trastuzumab deruxtecan (T-DXd) has been approved for treatment of both HER2+ breast 

and gastric cancer and has shown promising activity in additional HER2+ solid tumors in 

first in human (FIH) and drug-drug interaction (DDI) trials [58]. In a 17-patient pooled 

analysis of the HER2- positive salivary gland carcinoma patients from these studies, Bando 

et al. has demonstrated a 47% response rate with a PFS of 14.1 months.

Although the development of the anti-HER3 mAb patritumab was discontinued due to 

limited activity in a Phase III trial, Daiichi has recently reported that the antibody–drug 

conjugates (ADC) patritumab deruxtecan (HER3-DXd; U3-1402) showed encouraging 

response rates in Phase I/II trials, including in EGFR mutated and TKI-resistant lung 

cancer [60–62]. These recent positive results support the druggability of HER3 using ADC 

anti-HER3 antibodies in lung cancer, which is now being extended to HNSCC.

Small molecule inhibitors

Lapatinib was studied in a phase II trial evaluating its efficacy in recurrent or metastatic 

squamous cell carcinoma of the head and neck [63]. Patients were separated into two 

arms based on those without or with exposure to an EGFR inhibitor. Response rate and 

progression free survival were used as primary endpoints for these groups, respectively. The 

first group failed to have any complete or partial responses, and stable disease was seen 

in 41% of patients in arm A and 17% in arm B. Median PFS was 52 days for both, and 

median OS was 288 (95% CI, 62–374) and 155 (95% CI, 75–242) days, respectively. They 

performed correlative analysis in tumors that revealed that EGFR was not inhibited, leading 

to the conclusion that lapatinib as monotherapy is ineffective in recurrent or metastatic 

head and neck squamous cell carcinoma. Lapatinib was further studied in combination with 

chemoradiation in patients with locally advanced head and neck squamous cell carcinoma 

[64]. This combination showed a numerical improvement compared to chemoradiation with 
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placebo, particularly in p16-negative patients, with a median PFS of >20.4 vs. 10.9 months. 

A similar study by del Campo et al. in patients treated with either lapatinib (71 patients) 

or placebo (36 patients) before chemoradiotherapy, found an objective response rate of 70% 

cs. 53% which was not statistically significant [65]. Of note, for patients that received four 

weeks or greater lapatinib therapy, the ORR prior to definitive treatment was 17% vs. 0%. 

Notably, all of these patients overexpressed EGFR, with 50% having HER2 expression by 

IHC.

Afatinib was first explored in a phase II window of opportunity trial to assess its potential 

role as a neoadjuvant agent [66]. Patients were assigned 5:1 to receive afatinib for 14 

days prior to surgery or no neoadjuvant treatment. Patients who received the neoadjuvant 

afatinib had a 70% (95% CI, 47–87%) partial metabolic FDG-PET response. Assessed 

objectively by RECIST v1.1, the response rate was 22% (95% CI 8–44%). Afatinib therapy 

was then evaluated in a phase III platinum-progressed recurrent and metastatic head and 

neck squamous cell carcinoma in the LUX-H&N1 study [66]. Patients were assigned to 

receive either afatinib or methotrexate. PFS favored afatinib at 2.6 months (95% CI, 2.0–2.7) 

compared to 1.7 months (95% CI, 1.5–2.4). This was statistically significant with a HR 

of 0.80 (95% CI, 0.65–0.98). A subsequent biomarker analysis of this patient population 

showed that afatinib was likely to be more effective in patients with p16-negative, EGFR-

amplified, HER3-low, or PTEN-high tumors [67]. A similar study in primarily Asian 

populations, LUX-Head and Neck 3, found a similar improvement in PFS with afatinib 

but no significant improvement in OS compared to methotrexate [68]. The LUX-Head and 

Neck 2 study assessed the role of afatinib in adjuvant treatment following definitive therapy 

in locally advanced head and neck squamous cell carcinoma [69]. This study, along with the 

similar LUX-Head and Neck 4, were stopped early due to signals of lack of efficacy with 

increased toxicity from afatinib. Afatinib was combined with pembrolizumab in a phase II 

trial [70]. The ORR was 41.4% with a PFS of 4.1 months and OS of 8.9 months. Of note, 

the combination led to upregulation of genes associated with the immune response through 

enhanced antigen presentation.

Dacomitinib, an irreversible inhibitor of EGFR/HER1, HER2 and HER4 is currently FDA 

approved for treatment of metastatic non-small cell lung cancer (NSCLC) and was studied 

in a phase II trial in patients with recurrent and/or metastatic head and neck squamous cell 

carcinoma following progression on platinum therapy [71]. Patients receiving dacomitinib 

demonstrated a response rate of 20.8% and OS of 6.6 months (95% CI, 5.4–10.3). Notably, 

patients with alterations in the PI3K pathway and high cytokine expression were noted to 

have a significantly shorter median OS, at 6.1 vs. 12.5 months (p=0.005).

Conclusion

While EGFR, HER2, and HER3 are widely expressed and known to initiate and drive 

pro-tumorigenic signaling in HNSCC, overall rates of response to singly-targeted therapies 

remain low. These tempered clinical responses to ErbB-directed therapies can be in part 

explained by redundancy and overlap across oncogenic signaling pathways. Cetuximab, 

for example, a monoclonal antibody which targets EGFR and is approved in HNSCC, has 

proven to be of significant but, ultimately, limited benefit monotherapeutically secondary to 
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the numerous and well-characterized mechanisms of both primary and secondary resistance 

(described in chapter 1). It may be the case that while targeted blockade of EGFR controls 

the RAS-ERK signaling pathway, it may not concurrently regulate PI3K/mTOR signaling 

pathway that is also responsible for driving oncogenesis in established tumors. Indeed, 

emerging preclinical and clinical data suggest that the same may be true of targeting 

HER2 and HER3 in HNSCC: just as the signaling pathways that support oncogenesis 

are multifaceted and overlapping, so must our therapeutic strategy be multimodal. Optimal 

outcomes may necessitate combination strategies as has been demonstrated in the literature 

[72–74]

In addition, there is now a growing appreciation of the dynamic interplay between aberrant 

cancer signaling and the immune-suppressive cancer microenvironment. Specifically, it has 

been recently demonstrated that ErbB oncogenic signaling pathways may polarize towards 

immunosuppression, which provides a premise for employing combination precision 

immuno-oncology therapeutic strategies. Early results from such combination IO approaches 

demonstrates improved response rates both preclinically with HER3 plus PD-1 [28] 

and clinically with cetuximab plus PD-1 [75]. Ultimately, we can envision that the 

mechanism of action underlying successful combination therapies targeting HER2 and 

HER3 in HNSCC will entail both tumor growth inhibition by concurrent disruption of 

aberrant downstream signaling pathways – both the RAS-MEK-ERK and PI3K-AKT-mTOR 

cascades – in addition to a reversal towards immune-permissive tumor microenvironment, 

thereby increasing the response to anti-PD-1 treatment [28].
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Figure 1. EGFR, HER2 and HER3 Signaling in Head and Neck Cancer.
(a) Cartoon overview highlighting the dominant signaling pathways known to play a role 

in HNC; HER3 has ligand dependent and independent activity (see text for details). (b) 

EGFR, HER2 and HER3 therapeutic targets (antibodies and small molecule inhibitors) with 

FDA-approval or under current clinical evaluation are depicted (see text for details). Created 

with the BioRender online platform (BioRender.com)
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Table 1:
Recently Completed and Ongoing Clinical Trials Targeting HER2 and HER3 in HNC.

HNSCC = head and neck squamous cell carcinoma, R/M = recurrent / metastatic, LA = locally advanced, 

WoO = window of opportunity, FIH = first in human

Class Study Agent Target Phase Population

Antibody

Gillison45 Trastuzumab HER2 II R/M HNSCC

Haddad46 Trastuzumab HER2 II LA- or R/M salivary gland carcinoma 
overexpressing HER2

Takahashi47 Trastuzumab HER2 II HER2-positive LA- or R/M salivary 
ductal carcinoma

Kurzrock48 Trastuzumab / 
Pertuzumab HER2 II HER2 amplified/overexpressing stage 

III/IV salivary gland cancers

Jimeno52 Duligotuzumab EGFR(HER1), HER3 Ib R/M HNSCC

MEHGAN 
(Fayette)53 Duligotuzumab EGFR(HER1), HER3 II R/M HNSCC post-chemotherapy

Duvvuri56 CDX-3379 HER3 WoO Operable HNSCC

Forster55 Patritumab HER3 II Untreated R/M HNSCC

Antibody-drug 
conjugate

Jhaveri49 T-DM1 HER2 II HER2 amplified with CN>7 and no 
prior HER2-targeting antibodies

Li57 T-DM1 HER2 II HER2 amplified salivary gland cancers

Bando50 T-DXd HER2 FIH/I HER2-positive persistent or recurrent 
salivary ductal carcinoma

Small molecule

Harrington63 Lapatinib EGFR(HER1), HER2 II LA-HNSCC

de Souza62 Lapatinib EGFR(HER1), HER2 II R/M HNSCC without (A) or with (B) 
prior EGFR inhibition

del Campo64 Lapatinib EGFR(HER1), HER2 II LA-HNSCC

Machiels65 Afatinib EGFR(HER1), HER2 II Treatment-naive surgical candidates 
with HNSCC

LUX-H&N65,67 Afatinib EGFR(HER1), HER2 III R/M HNSCC post-platinum

Kim70 Dacomitinib EGFR (HER1), 
HER2, HER4 II R/M HNSCC post-platinum
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